

ComponentOne

GridView for ASP.NET Web
Forms

GridView for ASP.NET Web Forms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

GridView for ASP.NET Web Forms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

Table of Contents
Cover Page 1

Cover Page Info 2

Overview 6

Help with ASP.NET Web Forms Edition 6

Key Features 7

Quick Start 8

Step 1 of 3: Binding C1GridView to a DataSource 8-9

Step 2 of 3: Customizing the C1GridView Control 9

Step 3 of 3: Running the Application 9-10

GridView Top Tips 11

Grid Performance 11

Add GridView Manually 11

Design-Time Support 12

Smart Tag 12-14

Context Menu 14

Property Builder 14-15

General Tab 15-17

Columns Tab 17-18

Paging Tab 18-19

Format Tab 19-20

Grouping Tab 20-21

Working with GridView for ASP.NET Web Forms 22

Themes 22-24

Keyboard Navigation 24-25

Editing Rows 25

Grouping 25-26

Setting Grouping Properties at Design Time 26

Collapsing and Expanding Groups 26

Sorting 26-27

Filtering 27-29

Filtering in C1BoundField and C1TemplateField Columns 29-30

Paging 30-31

Virtual Scrolling 31-32

Hierarchical Data Binding 32-33

GridView for ASP.NET Web Forms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating Hierarchical Grid 33

Export Service 33-39

Using AJAX 39-40

Task-Based Help 41

Binding the Grid to a Data Source 41

Binding the Grid in a Web Site Project 41

Binding the Grid in a Web Application Project 41-42

Automatically Updating the Data Source 42

Runtime Databinding of Template Field 42-45

Runtime Data Operations 46-48

Using the Property Builder 48

Setting Properties Using the Property Builder 48-50

Adding Columns Using the Property Builder 50

Formatting the Grid's Content 50

Creating a Sorted Grid 50-51

Hiding Specified Columns 51

Changing the Color of Column Headers 51-52

Customizing Column Data using ValueLists 52-54

Setting Alternate Row Styles 54-55

Setting Conditional Formatting 55-57

Creating a Scrollable Grid 57-58

Setting the Footer Text 58

Creating a Non Scrollable Row or Column 58-59

Adding Controls to a Column 59-60

Adding Template Columns 60

Binding Template Columns 60-62

Adding CheckBox or ListBox Controls to a Column 62

Adding Input for ASP.NET Web Forms Controls 62-64

Setting Column Width 64-65

Merging Rows 65-66

Creating a Pageable Grid 66

Tracking the Current Cell Position 66-67

Getting a Value from a Cell 67-68

Updating the Grid with AJAX 68

Moving Columns 68

Editing a Record 68-69

GridView for ASP.NET Web Forms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Paging the Grid 69

Selecting a Record 69

Sorting Columns 69-70

Filtering Columns 70

Updating the Grid at Run Time 70

Enable CheckBox Filtering 70-71

Client-Side Selection 71

Client-Side Tutorials 72

Client-Side Editing Tutorial 72

Step 1 of 4: Binding Data to the control 72-73

Step 2 of 4: Enabling client-side editing 73-74

Step 3 of 4: Data validation before updating 74-75

Step 4 of 4: Updating Data back to the Server 75-76

Updating Database from Client Side 76-80

Handling client side Key events 80

Samples 81-82

Client-side Reference 83

GridView for ASP.NET Web Forms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Overview
Display items from a data source in an interactive, fully customizable table with GridView for ASP.NET Web Forms.
Interactively select, edit, delete, sort, and group data. Show data across multiple pages making it easy for end-users to
page through data.

Help with ASP.NET Web Forms Edition
For information on installing ComponentOne Studio ASP.NET Web Forms Edition, licensing, technical support,
namespaces and creating a project with the control, please visit Getting Started with ASP.NET Web Forms Edition.

GridView for ASP.NET Web Forms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studioWeb/

Key Features
GridView for ASP.NET Web Forms allows you to interactively select, edit, delete, sort, and group data. GridView for
ASP.NET Web Forms includes advanced features that enable developers to build intuitive, professional-looking Web
applications quickly and easily:

Microsoft GridView Compatibility
GridView is fully compatible with Microsoft's GridView control, so you can upgrade existing ASP.NET
applications easily and be productive immediately.
Filtering
GridView supports a built-in data-entry row below the column headers for custom end-user operations such as
searching and filtering records. You can easily filter data by enabling the showFilter option.
Custom Grid Formatting
Intuitive formatting lets you customize your grids to get the look and functionally you want. Automatically
create columns, display borders and gridlines, allow editing, sort data, and much more.
Editing
Make edits to your data in the grid and save or cancel changes.
Row Merging
Configure your grid to automatically merge together rows containing the same value. Your end result is a
clean, well-organized grid.
Embed Input Controls
Enhance data entry and interactivity by incorporating Input for ASP.NET Web Forms controls in your grid.
Embed the masked editor, date time editor, numeric editor, percent editor, and currency editor into any grid
column.
Embed Controls and Images Into Any Grid Column
Display check boxes, list boxes, buttons, images, and more.
Code-free Grid Customization
Manage column collection, paging behavior, and edit the grid’s design without writing any UI code. With
GridView's extensive design-time support, adding customized grid functionality to your Web site has never
been easier.
Automatically Resize Columns and Rows
By setting a single property, GridView will automatically size column width and row height when the grid is
scrolled to adjust to fit the longest text in a column. You can also enable or disable automatic sizing for specific
columns and rows.
Bands
Column headers can span over multiple columns enabling you to create a hierarchical structure. For example,
organize several column subheadings under another, broader column header.
Grouping and Aggregates
Configure your grid in outline mode to enable the end-user to collapse and expand the groups by clicking on
the group headers. You can also determine whether groups will be initially collapsed or expanded. The grid will
display expanded/collapsed icons next to each group header row. Grouped rows can display aggregate data
such as counts or sums.
Reusable Templates
Save and load grid templates to create multiple grids with the same look and feel throughout a project and
across projects.
Theming
With just a click of the SmartTag, change the GridView's look by selecting one of the 6 premium themes (Arctic,
Midnight, Aristo, Rocket, Cobalt, and Sterling). Optionally, use ThemeRoller from jQuery UI to create a
customized theme!
CSS Support
Use a cascading style sheet (CSS) style to define custom skins. CSS support allows you to match the grid to
your organization's standards.

GridView for ASP.NET Web Forms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Quick Start
In this quick start you'll explore the functionality of GridView for ASP.NET Web Forms. In the following steps you'll
create a simple bound grid application using the C1GridView control. You'll add the C1GridViewcontrol to a project,
bind the control to a datasource, customize the grid's appearance and behavior, and explore some of the run-time
interactions possible with the control.

Step 1 of 3: Binding C1GridView to a DataSource
In this step you'll begin the quick start by creating a new project and adding the C1GridView control to your project.
You'll then bind the C1GridView control to a datasource. Note that in this example, you'll be using the Northwind
database, C1Nwind.mdb, installed by default in the ComponentOne Samples\Common folder installed in your
Documents folder.

Complete the following steps to begin:

1. From the Visual Studio File menu select New │ Project. The New Project dialog box will appear.
2. In the New Project dialog box expand a language in the left-hand pane and select Web. In the right pane,

choose ASP.NET Empty Web Application, enter a Name for your application, and select OK. A new
application will be created.

3. In the Solution Explorer, right-click the project and choose Add Reference.
4. In the Add Reference dialog box, locate and select the C1.Web.Wijmo.Controls and

C1.Web.Wijmo.Controls.Design assemblies and click OK. The references will be added.
5. Right-click the project in the Solution Explorer and from the context menu choose Add │ New Item.
6. In the Add New Item dialog box choose Web Form from the list of templates, name the item "Default.aspx",

and click Add. The new page should open.
7. In the Solution Explorer, right click the project name and choose Add | New Folder. Name the new folder

"App_Data".
8. Navigate to the Visual Studio Toolbox and double-click the C1GridView icon to add the control to your

project. Note that in source view, tag for C1GridView control is added within <form> tags.
9. In the Solution Explorer window, right-click the App_Data folder and select Add Existing Item in the context

menu.
10. In the Add Existing Item dialog box, navigate to where the Northwind database is located, by default in the

samples directory, select C1Nwind.mdb, and click Add to close the dialog box and add the file to your project.
11. Click the C1GridView control's smart tag to open the C1GridView Tasks menu.
12. Click the Choose Data Source drop-down arrow, and select <New data source>: The Data Source

Configuration Wizard will open.
13. Configure your data source by completing the following steps:

In Visual Studio 2012:

a. On the Choose a Data Source Type screen, select Database, leave the default ID entered, and click OK.
b. On the Choose Your Data Connection screen, click the drop-down arrow and select the

C1NWind.mdb database.
c. Click Next to continue.
d. Click Next on the next screen to use the default connection string.

In previous versions of Visual Studio:

a. On the Choose a Data Source Type screen, select Access Database. Leave the default ID entered, and
click OK.

b. On the Choose a Database screen, click the Browse button to locate a database.
c. In the Select Microsoft Access Database dialog box, click the App_Data folder in the Project folders

list, select the C1Nwind.mdb file in the Contents of folder pane, and click OK. The Nwind.mdb

GridView for ASP.NET Web Forms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

database should now be listed on the Choose a Database screen.
d. Click Next to continue.

14. On the Configure the Select Statement screen, confirm that the Specify columns from a table or view radio
button is selected, under Name choose Products from the drop-down list, and in the Columns pane choose
the asterisk (*) check box to select all the columns. Click Next to continue.

15. You can test the query on the Test Query page, and select Finish to close the wizard and complete binding the
grid. Note that the grid columns now reflect the datasource.

That's all you need to do to create a simple grid application! The grid is now bound Northwind database. If you run
your project now, you'll have a fully-functional grid application where you can interact with data in a tabular form and
you'll be able to access and interact with the data from the Products table of the database. In the next steps of this
quick start you'll customize the grid's appearance and behavior and explore the grid's run-time interactions.

Step 2 of 3: Customizing the C1GridView Control
In the previous step of the quick start you created a simple grid application and bound the grid to a datasource. In
this step you'll customize the initial grid application further by changing the grid's appearance and behavior settings.

Complete the following steps to continue:

1. Click once on the C1GridView control to select it and navigate to the Properties window.
2. Click the drop-down arrow next to the Theme property and select arctic in the list of themes. For more

information, see the Themes topic.
3. Click the C1GridView control's smart tag, and in the C1GridView Tasks menu, select Property builder.
4. The C1GridView Properties dialog box will open.
5. On the General tab, select the Allow sorting check box. Under Client-side select the Allow column moving

check box.
6. Click the Paging tab, and click the Allow paging check box. Note that, by default, Bottom is selected for the

position of the navigation, and the Numeric mode is selected.
7. Click the Columns tab in the C1GridView Properties dialog box. Here you can add and remove columns and

change column settings.

8. In the Selected columns list, choose any columns you wish to remove and press the button. For example,
remove the ProductID, SupplierID, CategoryID, UnitsOnOrder, and ReorderLevel columns.

9. Click Apply to apply your changes, and click OK to close the C1GridView Properties dialog box.

You've now completed binding the C1GridView control and customizing the grid's appearance and behavior settings.
In the next, and final, step you'll run your application to observe the changes you made.

Step 3 of 3: Running the Application
In the previous steps of the quick start you created a simple grid application, bound the grid to a datasource, and
customized the grid's appearance and behavior. In this step you'll run the grid application and explore some of the run-
time interactions possible with the C1GridView control.

Complete the following steps to continue:

1. In Visual Studio, select Debug | Start Debugging to run your application.
The grid will look similar to the following at run time:

GridView for ASP.NET Web Forms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Sort a column, by clicking in a column's header. In the following image.
3. Move a column by clicking on a column header once and dragging it to another location in the grid's header.
4. Page forward in the grid, by clicking once on a number page indicator at the bottom of the grid.

Congratulations! You've completed the C1GridView quick start. If you'd like to continue exploring GridView for
ASP.NET Web Forms, see the Samples and take a look at the Task-Based Help topics.

GridView for ASP.NET Web Forms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

GridView Top Tips

Grid Performance
The initialization process of the grid is slower if a large amount of data is displayed. You can reduce the page length
to speed up the process by using the following options:

Setting paging and sorting: Use Ajax calls instead of full post backs to implement paging and sorting.

Virtualization: Grid supports virtual scrolling for both rows and columns. You can set the VirtualizationSettings
property to row, column or both. This results in faster grid rendering and better performance. You can also
refer to Row Virtual Scrolling and Column Virtual Scrolling samples.

Modify Scroll Settings: When your grid is in the scroll mode, remove fixed columns and rows to enter a
"light" scrolling mode, which works much faster.

Use EnableConditionalDependencies: Set the EnableConditionalDependencies property to True. This
property reduces the number of resource files required to be registered at the time of page load. By default,
the property is set to False.

EnableConditionalDependencies adds only those resource files (.js and .css) to the page that are required for
a specific operation. A property, on which registration of a resource depends, is called controlling property.

These controlling properties, including AllowPaging, ScrollingSettings, AllowC1InputEditors and ShowFilter,
depend on different resources. For example, if you don't want to use paging in your grid, the resource files
related to AllowPaging do not get registered on pageload, resulting in optimized browser payload and faster
rendering.

This property works only when the EnableCombinedJavaScripts property is set to True.

Add GridView Manually

If you are not able to see the ASP.NET controls in the toolbox after installing ASP.NET Web Forms Edition, you can add
them manually. To manually add the C1GridView control to the Visual Studio Toolbox:

1. Open Visual Studio.
2. From the View menu, select Toolbox and right-click to open the context menu.
3. Right-click the tab where the controls are added and select Choose Items from the context menu. The Choose

Toolbox Items dialog box opens.
4. In the dialog box, select the .NET Framework Components tab. Sort the list by Namespace (click the

Namespace column header) and check the check boxes for all components belonging to the namespace
 C1.Web.Wijmo.Controls.C1GridView.

5. From the Visual Studio Toolbox, double-click the control or drag it onto your form. This adds the C1GridView
control to your web form.

GridView for ASP.NET Web Forms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://demo.componentone.com/ASPNET/ControlExplorer/C1GridView/VirtualScrolling.aspx
http://demo.componentone.com/ASPNET/ControlExplorer/C1GridView/ColumnsVirtualScrolling.aspx

Design-Time Support
GridView for ASP.NET Web Forms provides visual editing to make it easier to create a grid application. The
following sections describe how to use C1GridView's design-time environment to configure the C1GridView control:

Tasks Menu

A smart tag represents a shortcut tasks menu that provides the most commonly used properties in each control. You
can invoke each control's tasks menu by clicking on the smart tag () in the upper-right corner of the control. For
more information on how to use the smart tag in C1GridView, see C1GridView Smart Tag.

Context Menu

The context menu represents a shortcut menu that provides common Visual Studio commands, as well as commands
specific to the C1GridView control. You can display the C1GridView context menu by right-clicking anywhere on the
grid. For more information on how to use the context menu in C1GridView, see C1GridView Context Menu.

Property Builder

Quickly customize the appearance and behavior of the C1GridView control using the C1GridView Properties dialog
box. For more information on how to access and use the Property builder in C1GridView, see Property Builder.

Properties Window

You can also easily configure C1GridView at design time using the Properties window in Visual Studio. You can access
the Properties window by right-clicking the control and selecting Properties.

Smart Tag
A smart tag represents a short-cut Tasks menu that provides the most commonly used properties of a component.
To access the C1GridView Tasks menu, click the smart tag in the upper-right corner of the C1GridView control. The
C1GridView Tasks menu appears.

Note that when the grid is bound to a data source, the Tasks menu lists additional options and appears similar to the
following:

GridView for ASP.NET Web Forms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1GridView Tasks menu operates as follows:

Choose Data Source
Choose an existing data source or create a new connection through the Data Source Configuration Wizard.
See Binding the Grid to a Data Source for more information.
Configure Data Source
This option invokes the Data Source Configuration Wizard to configure the data source. This option only
appears if the C1GridView control is bound to a data source.
Refresh Schema
This option refreshes the data source's schema. This option only appears if the C1GridView control is bound to
a data source.
Property builder
Opens the Property builder where you can set properties and customize the grid. See Property Builder for
more information.
Load Layout
Allows you to load an XML layout file. When you click this option the Open dialog box opens allowing you to
select a file to load.
Save Layout
Allows you to save the layout file as an XML file. When you click this option the Save dialog box opens
allowing you to select a file to load.
Theme
Clicking the Theme drop-down box allows you to select from various visual schemes. For more information
about available visual styles, see Themes.
Create new theme…
The Create new theme… option opens ThemeRoller for Visual Studio. This allows you to customize a theme
without leaving your development environment. To find more information on using ThemeRoller in your
application, see ThemeRoller for Visual Studio.
Use CDN
Selecting the Use CDN check box will indicate that the widget extender must load client resources from a
content delivery network. By default this box is not checked.
CDN Path
Indicates the path for the content delivery network. Enter a URL here to change the path.
Use Bootstrap
Selecting the Use Bootstrap option applies Bootstrap theming to your control. To find more information on

GridView for ASP.NET Web Forms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studioWeb/Themeroller for visual studio.html

using Bootstrap theming in your application, see Bootstrap Theming.
Mobile Mode
Enables/Disables the mobile mode.
About
Clicking the About item displays a dialog box, which is helpful in finding the version number of ASP.NET Web
Forms Edition and online resources.
Add Extender
Clicking the Add Extender item opens the Extender Wizard, allowing you to add an extender to the control.
Edit Templates
Clicking this option invokes Template Editing Mode.
Enable Combined Javascripts
Checking on this property combines all the required javascript files into one file.
Enable Conditional Dependencies
This property registers dependency resources according to the selected control's settings. It adds only
those javascripts files on the page that are required to carry out a specific operation. This results in faster page
load and optimized grid performance.

Context Menu
Right-click anywhere on the grid to display the C1GridView context menu, which is a context menu that Visual Studio
provides for all .NET controls, although the C1GridView context menu has a few extra features.

The context menu commands operate as follows:

Show Smart Tag
This option shows the smart tag for the C1GridView control. For more information on how to use the smart tag
and available features, see Smart Tag.
Edit Template
Select Edit Template to edit the EmptyData Template or Pager Template. Choosing one of these options
will invoke Template Editing Mode.
End Template Editing
This option ends Template Editing Mode if you're currently editing a template. If you're not in Template
Editing Mode, this option will not be available.

GridView for ASP.NET Web Forms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studioWeb/Bootstrap for ASP.NET Wijmo Quick Start.html

Property Builder
The Property builder allows you to easily customize the appearance and behavior of the C1GridView control. To
access the Property builder, select Property builder from the C1GridView Tasks menu (see C1GridView Smart Tag
for details). The C1GridView Properties dialog box appears:

The C1GridView Properties window consists of five tabs:

Tab Description

General Displays the data source and allows you to set headers, footers, and sorting
properties.

Columns Allows you to specify the types of columns that appear and set the properties for
each.

Paging Lets you determine whether paging is used, and allows you to customize how
and where it appears.

Format Allows you to set the font, color and alignment of the grid and everything within
it, including the headers, footers, the pager, specific items, and columns.

Grouping Lets you set column grouping properties and determine how the group header
and footer rows should be formatted and displayed.

GridView for ASP.NET Web Forms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

General Tab
The General tab of the Property builder displays the data source and allows you to set headers, footers, and sorting
properties. The General tab consists of Data, Header and Footer, and Behavior settings:

The General tab includes the following options:

DataSourceID:
Displays the current data source. For information about data binding, see Binding the Grid to a Data Source.
DataMember:
Displays the current data member.
Show header:
When this check box is selected (default) the ShowHeader property is set to True and the grid's header is
visible.
Show footer:
When this check box is selected the ShowFooter property is set to True and the grid's header is visible. For an
example, see Setting the Footer Text. By default, this check box is not selected and ShowFooter is False.
Show filter:
Shows a filter row at the top of the grid. By default, this check box is not selected and ShowFilter is False.
Allow sorting:
When this check box is selected the AllowSorting property is set to True and users can sort the grid at run
time. By default, this check box is not selected and AllowSorting is False. For more information about sorting,
see the Sorting topic.
Allow column moving:

GridView for ASP.NET Web Forms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

When this check box is selected the AllowColMoving property is set to True and columns can be moved and
reordered in the grid at run time. By default this check box is unchecked and AllowPaging is False.
Allow column resizing:
When this check box is selected the AllowColSizing property is set to True and columns can be resized in the
grid at run time. See the Creating a Pageable Grid topic for an example. By default this check box is unchecked
and AllowColSizing is False.
Allow grouping:
When this check box is selected the grouping area appears at the top of the grid. By default this check box is
unchecked and grouping is not included.

Columns Tab
The Columns tab of the Property builder allows you to specify the types of columns that appear and set the
properties for each. The Columns tab consists of Column generation, Column list, and Column properties sections:

The Columns tab includes the following options and sections:

Create columns automatically at run time: When this check box is selected (default)
the AutoGenerateColumns property is set to True and column objects are generated and displayed
automatically. Note that when the grid is bound, this option may be automatically deselected.
Available columns: This window lists the available column types. Available column types include:

C1Band: displays a banding column used to create multilevel column headers.
C1BoundField: displays a column bound to a field in a data source.
C1ButtonField: displays a command button for each item.

GridView for ASP.NET Web Forms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1CheckBoxField: displays a Boolean check box for each item.
C1CommandField: displays a column containing editing commands for each item.
C1HyperLinkField: displays each item as a hyperlink.
C1TemplateField: displays each item in the column following a specified template.
When the grid is bound to a data source, the columns available from that data source will be listed
under the Data Fields option in the Available columns window.

Selected columns: This window lists the current selected columns. When the grid is bound to a data source,
the bound columns will appear in this window.
To add a columns to the Selected columns list, choose a column in the Available columns list and click the
Move arrow button to move the item to the Selected columns list.
To move the order of columns, select the Up and Down arrows to the right of the window. To remove a
column from the list, click the Delete button to the right of the window.
Column properties: This list displays the available properties for a column. To change a column's properties,
click on that column in the Selected columns list and click the text box or drop-down arrow next to a property
in the Column properties window to modify its value.

Paging Tab
The Paging tab of the Property builder allows you to determine whether paging is used and lets you customize how
and where it appears. For more information about paging, see the Paging topic. The Paging tab includes the Paging
and Page Navigation sections:

The Paging tab includes the following options:

GridView for ASP.NET Web Forms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

Allow paging: When this check box is selected the AllowPaging property is set to True and paging is included
in the grid. See the Creating a Pageable Grid topic for an example. By default this check box is unchecked and
AllowPagingis False.
Allow custom paging: When the Allow paging check box is selected, this option is available. When this check
box is selected the AllowCustomPaging property is set to True and custom paging is allowed. By default this
check box is unchecked and AllowCustomPaging is False.
Page size: When the Allow paging check box is selected, this option is available. The Page size text box sets
the PageSize property and allows you to choose how many items are visible on the grid on each page. By
default, PageSize is 10.
Show navigation: This option is available when the Allow paging check box is selected. When this check box
is selected (default) the Visible property is set to True and paging controls appear on the grid.
Position: This option is available when the Allow paging and Show navigation check boxes are selected. This
option sets the Position property and lets you determine where the pager controls will appear in the grid.
Options include:

Bottom: Paging controls will appear at the bottom of the grid. This is the default setting.
Top: Paging controls will appear at the top of the grid.
TopAndBottom: Paging controls will appear both at the top and bottom of the grid.

Mode: This option is available when the Allow paging and Show navigation check boxes are selected. This
option sets the Mode property and lets you determine what kind of pager controls should appear on the grid.
Options include:

NextPrevious: Previous and Next button pager controls will used.
Numeric: Numbered link button pager controls that allow users to access pages directly will be used .
This is the default setting.
NextPreviousFirstLast: Previous, Next, First, and Last button pager controls will be used.
NumericFirstLast: Numbered and First, and Last button pager controls will be used.

Buttons count: This option is only available when the Numeric or NumericFirstLast Mode is selected and it
sets PageButtonCount property and determines the number of page buttons to display in the pager control. By
default, PageButtonCount is 10.
First page text, First page image class, Last page text, and Last page image image class: These options are
only available when the NextPreviousFirstLast or NumericFirstLast Modeis selected:

The First page text option sets the FirstPageText property and determines the text to display for the
First page button.
The First page image class option sets the C1GridViewPagerSettings.FirstPageImageUrl property
and determines the image to display for the First page button. Click the button next to the First page
image class text box to select an image.
The Last page text option sets the LastPageText property and determines the text to display for the
Last page button.
The Last page image class option sets the C1GridViewPagerSettings.LastPageImageUrl property
and determines the image to display for the Last page button. Click the button next to the Last page
image class text box to select an image.

Next page text, Next page image class, Previous page text, and Previous page image class: These options
are only available when the NextPrevious or NextPreviousFirstLast Modeis selected:

The Next page text option sets the NextPageText property and determines the text to display for the
Next page button.
The Next page image class option sets the C1GridViewPagerSettings.NextPageImageUrl property
and determines the image to display for the Next page button. Click the button next to the Next page
image class text box to select an image.
The Previous page text option sets the PreviousPageText property and determines the text to display
for the Previous page button.
The Previous page image class option sets the C1GridViewPagerSettings.PreviousPageImageUrl
property and determines the image to display for the Previous page button. Click the button next to
the Previous page image class text box to select an image.

GridView for ASP.NET Web Forms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

Format Tab
The Format tab of the Property builder allows you to set the font, color and alignment of the grid and everything
within it, including the headers, footers, the pager, specific items, and columns. The Format tab includes the Objects,
Columns, and Column properties sections:

The Format tab includes the following sections:

Objects: Displays the available objects. Choose a object to set it's formatting properties in the Column
properties window.
Columns: Displays the list of available columns. If the grid is bound, the bound columns will appear in this list.
Choose a column to set it's formatting properties in the Column properties window.
Column properties: When an object or column is selected from the appropriate pane, the Column properties
window displays the available formatting properties that can be set for that object or column.

Grouping Tab
The Grouping tab of the Property builder allows you to set column grouping properties and determine how the
group header and footer rows should be formatted and displayed. For more information about grouping, see
the Grouping topic. The Grouping tab includes the Column list and Grouping properties sections:

GridView for ASP.NET Web Forms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Grouping tab includes the following sections:

Column list: Displays the list of available columns. If the grid is bound, the bound columns will appear in this
list. Choose a column to set it's grouping properties in the Grouping properties window.
Grouping properties: When an column is selected from Column list, the Grouping properties window
displays the available grouping properties that can be set for that column. You can customize grouping
behavior and set how the group header and footer rows should be formatted and displayed.

GridView for ASP.NET Web Forms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with GridView for ASP.NET Web Forms
GridView for ASP.NET Web Forms allows you to select, edit, delete, filter, and sort the items displayed in the table
generated by the C1GridView component. GridView for ASP.NET Web Forms also supports paging, so data can be
displayed across multiple pages, which are accessed by default or customized navigation buttons.

The columns of a table created using the C1GridView component correspond to the fields in a data source. You can
control which columns are displayed, the types of columns to display, and the appearance of the whole table.

Using the AutoGenerateColumns property, you can generate columns automatically, manually, or both. Setting this
property to True (default) creates a C1BoundField for each field in the data source. Setting this property to False
allows you to specify the columns to display, which are added to the Columns collection.

Note: Explicitly declared columns are rendered first, followed by automatically generated columns.
Automatically generated columns are not added to the Columns collection.

Class Hierarchy

The following list summarizes the class relationships between the more important classes included in the GridView
for ASP.NET Web Forms:

C1.Web.Wijmo.Controls.C1GridView.C1GridView : System.Web.UI.WebControls.WebControl
Encapsulates most of the grid functionality. This component is shown in the Visual Studio's Toolbox.
C1.Web.Wijmo.Controls.C1GridView.C1Field : System.Object
Base class for columns.
C1.Web.Wijmo.Controls.C1GridView.C1GridViewRow : System.Web.UI.WebControls.TableRow
Grid items.
C1.Web.Wijmo.Controls.C1GridView.C1GridViewRowCollection : System.Collections.CollectionBase
Collection of items.
C1.Web.Wijmo.Controls.C1GridView.PagerStyle : System.Web.UI.WebControls.TableItemStyle
Style of the Pager. Determines if and how the pager is displayed.
C1.Web.Wijmo.Controls.C1GridView.GroupInfo : System.Object
Used to determine how and where grouped header and footer rows are displayed.

Themes
C1GridView includes themes allowing you to easily change the control's appearance. The control includes several
built-in themes allowing you to customize the control's appearance to your application. You can easily change themes
from the C1GridView Tasks menu, from the Properties window, and in code. For more information on changing
themes see the Theming.

Changing Themes

You can change the theme of a C1GridView at design time using the Properties window:

1. Click the C1GridView control once to select it, and navigate to the Properties window.
2. In the Properties window, click the Theme drop-down arrow and select a style, for example rocket.

The theme you selected is applied to your grid.

Included Themes

The following themes are included in GridView for ASP.NET Web Forms:

arctic
aristo
cobalt

GridView for ASP.NET Web Forms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studioWeb/Themeroller for visual studio.html

midnight
rocket
sterling

arctic

The following image displays the arctic theme:

aristo

The following image displays the aristo theme. This is the default appearance of C1GridView.

cobalt

The following image displays the cobalt theme:

GridView for ASP.NET Web Forms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

midnight

The following image displays the midnight theme:

rocket

The following image displays the rocket theme:

sterling

The following image displays the sterling theme:

Keyboard Navigation

GridView for ASP.NET Web Forms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

At run time you can navigate through the grid using keyboard navigation. Available keyboard navigation is similar to
products like Microsoft Excel, to make it easier for users to intuitively navigate the grid. Keyboard navigation also
allows greater accessibility in navigating and manipulating the grid.

The following table describes the possible interactions:

Option Description

Up Arrow Moves the focus to one cell up.

Down Arrow Moves the focus to one cell down.

Left Arrow Moves the focus by one cell to the left.

Right Arrow Moves the focus by one cell to the right.

Home Moves the focus to the first cell of the current row.

End Moves the focus to the last cell of the current row.

Page Up Moves the focus to the first cell of the current column.

Page Down Moves the focus to the last cell of the current column.

Tab Moves the focus to the next cell of the current row. When last cell of the grid is in focus,
Tab key press moves the focus to the first cell of the GridView. When
KeyActionTab property of C1GridView is set to MoveAcrossOut, the focus shifts from last
cell to the next control on pressing the Tab key.

Editing Rows
Each row in the C1GridView component represents a record in the data source. You can select, edit, delete, and apply
different styles to your rows.

If you are creating data manually, by adding a C1ButtonField and code for the C1GridView.RowEditing,
C1GridView.UpdateCommand and C1GridView.RowCancelingEdit events, you can select each row to be edited or
deleted. If you connect to the data source control, this is all taken care for you automatically.

The EditRowStyle property allows you to determine the appearance of the rows. For additional information on editing
rows, see GridView for ASP.NET Web Forms Task-Based Help.

The RowMerge property allows you to merge rows containing identical text. You can use the Property builder to
specify which rows to merge and how they are merged. For additional information, see Merging Rows.

You can use AJAX to update the grid when the user edits a record at run time by setting the Action property. For more
information, see Editing a Record.

Grouping
The C1GridView data grouping features allow you to automatically calculate data aggregates and create trees with
nodes that can be collapsed and expanded.

If ShowGroupArea is set to True, a grouping area will appear at the top of the grid:

To group at run time, simply drag a column header into the grouping area. Note that you may need to set
the AllowColMoving property to True to allow run-time column manipulation.

The C1GridView data grouping features are controlled by two properties of the C1Field class:

The GroupInfo property determines whether a group should be created for the column, as well as the

GridView for ASP.NET Web Forms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

appearance, position, and content of the group header and group footer rows.
The Aggregate property determines the type of aggregate that should be calculated for this column and
included in the group header and footer rows.

Typically, you will set the GroupInfo property for columns that contain categories that you would like to group on (for
example, OrderYear, Country, and so on). You will set the Aggregateproperty for columns that contain the values that
you want to aggregate on (for example, Amount, Sales, Expenses, and so on).

You can customize the text that appears in the grouping area by setting the GroupAreaCaption property.

Setting Grouping Properties at Design Time
You can set up the Grouping properties at design time using the Property builder. You will use three tabs in the
C1GridView Properties dialog box to set up each aspect of data grouping:

Grouping tab: This tab contains a list of columns. For each column that you want to group on, set the Position
property to determine where the group header and footer rows should be displayed (set Position to None to
remove grouping for a column). Also set the HeaderText (and/or FooterText) property to determine what will
be displayed in the group header/footer rows. Optionally, set up the group header and footer styles.
See Grouping Tab for more information.
Columns tab: Set the Aggregate property on each column that you want to aggregate on. Usually, these will
be columns that contain numeric values, and will not be grouped on. See Columns Tab for more information.
Format tab: Select each column that you are grouping on and set the styles for the group header and group
footer rows. Typically, you will set the background color so the group headers and footers stand out from the
regular rows. See Format Tab for more information.

For additional information on the Property builder, see Property Builder.

Collapsing and Expanding Groups
GridView for ASP.NET Web Forms generates client-side script that allows users to collapse and expand the groups
without round trips to the server.

If you set the OutlineMode property to StartCollapsed or StartExpanded, the grid will display expanded/collapsed
icons next to each group header row. The users can click these icons to collapse and expand the groups to see the
overall structure or the details of the data.

The behavior for the outline nodes is as follows:

Click:
If the node is currently expanded, it becomes collapsed. All subordinate group headers and data are
hidden.
If the node is currently collapsed, it becomes expanded. If there are any subordinate group headers,
they are displayed in the collapsed state. If there are no subordinate group headers, the data is
displayed.

SHIFT-Click:
All nodes and data below the node that was clicked are displayed.

You can select different icons for the group headers using the CollapsedImageClass and ExpandedImageClass
properties.

For additional information on grouping, see the GridView for ASP.NET Web Forms Task-Based Help.

Sorting

GridView for ASP.NET Web Forms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1GridView control provides built-in sorting functionality without requiring any coding. You can further customize
the sort functionality of the C1GridView control by using custom SortExpression property values for columns as well as
by using the Sorting and Sorted events.

You can enable the default sorting behavior in the C1GridView control by setting its AllowSorting property to True.
When AllowSorting is True, the C1GridView control renders a LinkButton control in the column headers and implicitly
sets the SortExpression property of each column to the name of the data field to which it is bound. For example, if the
grid contains a column that displays the City column of the Employees table in the Northwind sample database, the
SortExpression of that column will be set to City. You can determine or set the sort direction with the SortDirection
property (Ascending, Descending, or None).

At run time, users can click the LinkButton control in a column heading to sort by that column. Clicking the link
causes the page to perform a postback and raises the C1GridView control's Sorting event. After the query has
executed, the grid's Sorted event is raised. Finally, the data source control rebinds the C1GridView control to the
results of the resorted query. When a column is sorted, the column header will display a sort indicator at run time (an
arrow icon) indicating the direction of the sort.

In the following image, the Skaters column was sorted:

Note that if the data source control does not support sorting and a sorting operation is performed in the
C1GridView control, the C1GridView control throws the NotSupportedException exception. You can catch this
exception in a handler for the Sorting event and check the data source to determine whether sorting is supported, or
by using your own sorting logic.

You can use AJAX to update the grid when the user sorts a column at run time by setting the Action property. For an
example, see Sorting Columns.

Filtering
The C1GridView control provides built-in data filtering functionality without requiring any coding. To be able to filter
data at run time, the ShowFilter property must be set to True (by default this is False). When ShowFilter is True a filter
bar appears at the top of the grid just under the grid's column headings.

To filter data in the grid at run time, simply type text in the filter bar, click the drop-down arrow in the filter row in the
column you are filtering, and select a filter type from the menu. To remove the filter, click the drop-down arrow in the
filter row in the column you are filtering and select NoFilter. In the following image, the Discount column has been
filtered so entries equal to "25%" appear:

GridView for ASP.NET Web Forms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can choose what the filter condition should be by setting the FilterOperator property (note that you can set this
property in the Columns tab of the Property builder). By default FilterOperator is set to Contains, but you can set
the FilterOperator to the following options:

Option Description

NoFilter No filter is applied.

Contains (default) The filter term is contained in the column.

NotContain The filter term is not contained in the column.

BeginsWith Items in the column begin with the filter term.

EndsWith Items in the column end with the filter term.

Equals Items in the column equal the filter term exactly.

NotEqual Items in the column do not equal the filter term exactly.

Greater Items in the column are less than the (numeric) filter term.

Less Items in the column are greater than the (numeric) filter term.

GreaterOrEqual Items in the column are greater than or equal to the (numeric) filter term.

LessOrEqual Items in the column are less than or equal to the (numeric) filter term.

IsEmpty Items in the column are empty.

NotIsEmpty Items in the column are not empty.

IsNull Items in the column are null.

NotIsNull Items in the column are not null.

Custom Custom filter is applied.

You can customize the appearance of the filter bar by setting the FilterStyle property. To show a filter button, you
should either set AutoGenerateFilterButton to True or manually create a C1CommandField and set
its ShowFilterButton property to True. If no filter button is visible, the user can trigger the filter by pressing the ENTER
key.

You can use AJAX to update the grid when the user filters columns at run time by setting the Action property. For

GridView for ASP.NET Web Forms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

more information, see Filtering Columns.

Filtering in C1BoundField and C1TemplateField Columns
The C1GridView control supports filtering in both C1BoundField and C1TemplateField columns through the following
available properties:

DataField

It is used to specify the data field to which the filter setting is applied. Its type is string.

FilterOperator

It is used to specify the filter operator. Its type is the enum of FilterOperator. It only works when DataField is
set.

FilterValue

It is used to specify the filter value. Its type is string. It only works when DataField is set.

FilterCustomOperator

It is used as filter operator when the FilterOperator property is equal to FilterOperator.Custom. Its type is
string. It only works when DataField is set.

FilterStyle

It is used to provide a custom style for the filter item. Its type is TableItemStyle. It only works when DataField is
set.

ShowFilter

It is used to indicate whether filter text box should be shown in the filter row. It allows end-user filtering if the
DataField property is set. Its type is bool. It only works when DataField is set.

FilterExpression

It can contain the filter conditions that include the filter settings for multiple fields. The user can set the text of
the filter conditions to this property to apply a complex filter. Its type is string. It works when DataField is not
set.

The following code illustrates filtering for C1TemplateField setting ShowFilter and FilterValue in the grid.
Source View

 <Columns>
 <cc1:C1TemplateField DataField="ProductName" HeaderText="Product Name"
FilterValue="Chai">
 <ItemTemplate>
 <asp:Label runat="server" Font-Italic="true" ShowFilter=true
ID="lbl1" Text='<%# Bind("ProductName") %>'> </asp:Label>
 </ItemTemplate>
 </cc1:C1TemplateField>
 <cc1:C1BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit"
SortExpression="QuantityPerUnit">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="UnitPrice" HeaderText="UnitPrice"

GridView for ASP.NET Web Forms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

SortExpression="UnitPrice">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="UnitsInStock" HeaderText="UnitsInStock"
SortExpression="UnitsInStock">
 </cc1:C1BoundField>
 <cc1:C1CheckBoxField DataField="Discontinued" HeaderText="Discontinued"
SortExpression="Discontinued">
 </cc1:C1CheckBoxField>
 </Columns>

The output for the above code is as shown:

The following code illustrates filtering for C1TemplateField by setting FilterOperator and FilterValue properties.

Source View

<Columns>
 <cc1:C1TemplateField DataField="ProductName" HeaderText="Product Name"
FilterOperator="BeginsWith" FilterValue="a">
 <ItemTemplate>
 <asp:Label runat="server" Font-Italic="true" ID="lbl1" Text='<%#
Bind("ProductName") %>'> </asp:Label>
 </ItemTemplate>
 </cc1:C1TemplateField>
</Columns>

The output for the above code is as shown:

Paging

GridView for ASP.NET Web Forms 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1GridView control provides built-in data paging functionality without requiring any coding. By default the grid is
displayed in one continuous window. If you choose, you can display the grid on multipage "pages". If paging is set, at run
time users can navigate each page of the grid through buttons or links at the top or bottom of the grid. For an example of
adding paging, see the Creating a Pageable Grid topic.

To be able to page data at run time, the AllowPaging property must be set to True (by default this is False). When
PagerSettings.Visible is True paging navigation appears by default at the bottom of the grid in the grid's footer. You can
change the position of the paging controls, if you choose, by setting the Position property. By default, 10 items appear on
each page of the grid. You can change this number, by setting the PageSize property. For example, in the image below the
PageSize has been set to 5.

By default the paging controls appear as numeric links:

You can change the appearance of the paging controls by setting the Mode property. You can set the Mode property to the
following options:

Mode Description

NextPrevious A set of pagination controls consisting of Previous and Next buttons.

Numeric(default) A set of pagination controls consisting of numbered link buttons to access pages directly.

NextPreviousFirstLast A set of pagination controls consisting of Previous, Next, First, and Last buttons.

NumericFirstLast A set of pagination controls consisting of numbered and First and Last link buttons.

To customize the pager controls, you can set the PagerSettings. The paging properties are easily accessed at design time on
the Paging tab of the Property builder (the C1GridView Properties dialog box).

You can use AJAX to update the grid when the user pages the grid at run time by setting the Action property. For more
information, see Paging the Grid.

Virtual Scrolling
Virtual scrolling can be used to speed up the rendering of a grid when a massive amount of data is displayed. It allows the grid to retrieve data through callbacks to the server, making the data load faster while keeping the scrolling
smooth.

The following example shows how to implement virtual scrolling for rows and columns by setting the ScrollingSettings, VirtualizationSettings and CallbackSettings properties. This markup can be added to the *.aspx page's body content.

<asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent">
 <asp:ScriptManager ID="ScriptManager1" runat="server">
</asp:ScriptManager>
 </p>

<%--Bind the grid to a datasource--%>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data Source=|DataDirectory|\C1NWind.mdb;Persist Security Info=True"
 ProviderName="System.Data.OleDb" SelectCommand="SELECT * FROM ORDERS">
 </asp:SqlDataSource>

 <%--Set C1GridView's ScrollingSettings.VirtualizationSettings.Mode and CallbackSettings.Action--%>

<cc1:C1GridView ID="C1GridView1" runat="server" DataSourceID="SqlDataSource1" Height="400px">
 <CallbackSettings Action="Scrolling" />
 <ScrollingSettings Mode="Both">
 <VirtualizationSettings Mode="Both" />
 </ScrollingSettings>
</cc1:C1GridView>

GridView for ASP.NET Web Forms 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

To implement virtual scrolling for rows and columns in GridView, follow these steps:

1. Bind the grid to a data source.
2. Set the ScrollingSettings Mode to Both to enable the virtual scrolling feature.
3. Set the VirtualizationSettings Mode value to Rows, Columns, or Both to allow scrolling for rows and columns accordingly.
4. Set the Action property to Scrolling. This tells the grid to use callbacks to the server during scrolling. There are two modes of virtual scrolling determined by the CallbackSettings property. The first one is static, where all data is

available to the client, but the rows are rendered when scrolled. The second mode is dynamic and set by the Scrolling value. New portions of data are requested from the server when they need to be rendered.

Hierarchical Data Binding
C1GridView allows you to bind data in a hierarchical grid of summary rows and detail rows using your customized
query. Hierarchical relationships are defined manually between multiple tables in C1DetailGridView. It enables you to
display the hierarchical data with multilevel, multiple layouts and provide features such as sorting, filtering, grouping
and editing.

The image below shows the hierarchical grid with one of its rows expanded.

Important Properties

DataSourceID: Each grid must have its own data source to represent the data hierarchy in GridView. The data
source for each detail grid view is set using the DataSourceID property.
DataKeyNames: The DataKeyNames property is used to identify a primary key for the C1GridView control. This
property takes the name of fields from the connected database, as an array of strings. The primary key columns
for each table in the datasource are added to the DataKeyNames property of the respective parent table or
child table.
Source View

<cc1:C1GridView runat="server" DataSourceID="SqlDataSource1"
DataKeyNames="CustomerID, CompanyName">

MasterDetailRelation: The MasterDetailRelation property is used to specify how data is linked between the
detail or child table and the parent table. It allows you to link two different tables from the data source by

GridView for ASP.NET Web Forms 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn.microsoft.com/en-IN/library/ms179610.aspx

specifying MasterDataKeyName and DetailDataKeyName property.
MasterDataKeyName : The MasterDataKeyName property is used to set the relation between the parent and
the child table. This property should be set to match the field specified in DataKeyNames for the parent table.
DetailDataKeyName : The DetailDataKeyName property is also used to set the relation between the child
table and the parent table. It retrieves the data from the child table for the detail section. The field set
as DetailDataKeyName should be the foreign key of the child table in the corresponding relation and it should
also be a primary key in child table so that it matches with the field set as the MasterDataKeyName.
Source View

<Relation>
<cc1:MasterDetailRelation MasterDataKeyName="CustomerID"
DetailDataKeyName="CustomerID" />
</Relation>

PageSize: The PageSize property can be set to define the number of rows to be displayed in the parent or
child grid.

Creating Hierarchical Grid
This topic demonstrates how to create a Hierarchical GridView in C1GridView at runtime.

In this example, the C1GridView control is bound to the Customers table and Orders table of Nwind.mdb database. Fields from these tables are used to display a hierarchical GridView in C1GridView.

In Source View

To create a hierarchical grid in C1GridView, modify the <cc1:C1GridView ></cc1:C1GridView > tag as shown below:

Source View

 <wijmo:c1gridview id="C1GridView1" runat="server" allowvirtualscrolling="False" autogeneratecolumns="False" culture="ja-JP" datakeynames="CustomerID" datasourceid="SqlDataSource1" freezingmode="None" rowheight="19" scrollmode="None" staticcolumnindex="-1" staticrowindex="-1">
 <Columns>
 <wijmo:C1BoundField DataField="CustomerID" HeaderText="CustomerID" SortExpression="CustomerID" ReadOnly="True" Width="200" />
 <wijmo:C1BoundField DataField="CompanyName" HeaderText="CompanyName" SortExpression="CompanyName" Width="200" />
 <wijmo:C1BoundField DataField="Country" HeaderText="Country" SortExpression="Country" Width="200" />
 <wijmo:C1BoundField DataField="City" HeaderText="City" SortExpression="City" Width="200" />
 <wijmo:C1BoundField DataField="ContactName" HeaderText="ContactName" SortExpression="ContactName" Width="200" />
 <wijmo:C1BoundField DataField="ContactTitle" HeaderText="ContactTitle" SortExpression="ContactTitle" Width="200" />
 <wijmo:C1BoundField DataField="Address" HeaderText="Address" SortExpression="Address" Width="200" />
 <wijmo:C1BoundField DataField="PostalCode" HeaderText="PostalCode" SortExpression="PostalCode" Width="200" />
 <wijmo:C1BoundField DataField="Phone" HeaderText="Phone" SortExpression="Phone" Width="200" />
 <wijmo:C1BoundField DataField="Fax" HeaderText="Fax" SortExpression="Fax" Width="200" />
 </Columns>
 <Detail runat="server">
 <wijmo:C1DetailGridView ID="Orders" DataSourceID="SqlDataSource2" DataKeyNames="OrderID" AutogenerateColumns="false" AllowSorting="true" PageSize="5" AllowColMoving="true">
 <Columns>
 <wijmo:C1BoundField DataField="OrderID" HeaderText="OrderID" SortExpression="OrderID" Width="150" />
 <wijmo:C1BoundField DataField="CustomerID" HeaderText="CustomerID" SortExpression="CustomerID" Width="150" />
 <wijmo:C1BoundField DataField="ShippedDate" HeaderText="ShippedDate" SortExpression="ShippedDate" Width="150" />
 <wijmo:C1BoundField DataField="Freight" HeaderText="Freight" SortExpression="Freight" Width="150" />
 <wijmo:C1BoundField DataField="ShipVia" HeaderText="ShipVia" SortExpression="ShipVia" Width="150" />
 </Columns>
 <Relation>
 <wijmo:MasterDetailRelation DetailDataKeyName="CustomerID" MasterDataKeyName="CustomerID" />
 </Relation>
 </wijmo:C1DetailGridView>
 </Detail>
</wijmo:c1gridview>
<!--Provide Datasource-->
<asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$ ConnectionStrings:ConnectionString %>" ProviderName="<%$ ConnectionStrings:ConnectionString.ProviderName %>" SelectCommand="SELECT * FROM [Customers]"></asp:SqlDataSource>
<asp:SqlDataSource ID="SqlDataSource2" runat="server" ConnectionString="<%$ ConnectionStrings:ConnectionString %>" ProviderName="<%$ ConnectionStrings:ConnectionString.ProviderName %>" SelectCommand="SELECT * FROM [Orders] Where CustomerID = @CustomerID">
 <SelectParameters>
 <asp:SessionParameter Name="CustomerID" SessionField="CustomerID" Type="string"></asp:SessionParameter>
 </SelectParameters>
</asp:SqlDataSource>

Note: Note that the value of MasterDataKeyName field is passed as a session parameter while executing the Select query for the child view. This will retrieve the data from the database and display the same in the parent hierarchial view.

In Code

Open the code behind and add the following code to create a hierarchical grid view before the Page_Load event:

C#

protected void Page_Init(object sender, EventArgs e)
{
 C1.Web.Wijmo.Controls.
 C1GridView.C1DetailGridView orders =
 new C1.Web.Wijmo.Controls.
 C1GridView.C1DetailGridView();
 orders.ID = "Orders";
 orders.DataSourceID = "SqlDataSource2";
 orders.DataKeyNames = new string[] { "OrderID" };
 C1.Web.Wijmo.Controls.
 C1GridView.MasterDetailRelation ordersRelation =
 new C1.Web.Wijmo.Controls.
 C1GridView.MasterDetailRelation();
 ordersRelation.DetailDataKeyName = "CustomerID";
 ordersRelation.MasterDataKeyName = "CustomerID";
 orders.Relation.Add(ordersRelation);
 C1GridView1.Detail.Add(orders);
}

Visual Basic

Protected Sub Page_Init(ByVal sender As Object,
 ByVal e As System.EventArgs) Handles Me.Init
 Dim orders As New C1.Web.Wijmo.Controls.
 C1GridView.C1DetailGridView()
 orders.ID = "Orders"
 orders.DataSourceID = "SqlDataSource2"
 orders.DataKeyNames = New String() {"OrderID"}
 Dim ordersRelation As New C1.Web.Wijmo.Controls.
 C1GridView.MasterDetailRelation()
 ordersRelation.DetailDataKeyName = "CustomerID"
 ordersRelation.MasterDataKeyName = "CustomerID"
 orders.Relation.Add(ordersRelation)
 C1GridView1.Detail.Add(orders)
End Sub

What You’ve Accomplished

Run the project and observe that you now have a fully-functional hierarchical grid application with Orders and Customers table of the database.

copyCode

copyCode

copyCode

Export Service

GridView for ASP.NET Web Forms 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn.microsoft.com/en-IN/library/ms179610.aspx

Use the C1 ASP.NET Export Service, to export GridView to Excel, CSV and PDF, without creating a complex export application. This service resides on the
application server.

The advantages of using C1 ASP.NET Export Service are:

Export your grid, while preserving its formatting.
Change exported file settings as per the requirement.

Export Service is a web-application that is deployed on Internet Information Services (IIS). Run the C1ASPNETExportService installer, placed in
C:\Program Files\ComponentOne\ASP.NET Web Forms Edition folder. It installs the following files in IIS.

You can also locate these files at the following location:

C:\ProgramData\ComponentOne\C1ASPNET\C1APNETExportService

System Requirements

Following are the system requirements of the service host:

Microsoft Windows 7 or above.
IIS 7.0 or above with ASP.NET 4.0 or above (.NET framework 4.0).

You may update .Net framework 4.0 in Microsoft Windows 7 or Microsoft Windows Server 2008 R2. See
http://support.microsoft.com/kb/2468871, for more information.

GridView Export Setting

Following are the settings, to download the grid in various formats:

Export to Excel

FileFormat: GridView can be exported to Excel sheets in xls or xlsx format.
Author: Specifies the name of the person or organization responsible for writing the data.
Auto Row Height: Selects whether the rows height will be adjusted based on its content or not.
Server URL: Sets the URL of the server, from where the grid is to be exported. Enter ServerURL/exportapi/grid.
File Name: Sets the name to be used for the exported file.

Export to CSV:

Server URL: Sets the URL or the server, from where the grid is to be exported. Enter ServerURL/exportapi/grid.
File Name: Sets the name to be used for the exported file.

Export to PDF

Repeat Grid Header: Repeats the grid header.
Auto Fit Width: Enables auto-fit.
Landscape: Enables landscape mode.
Margin Settings:

Top: Sets the top margin size in points.
Bottom: Sets the bottom margin size in points.
Right: Sets the right margin size in points.
Left: Sets the left margin size in points.
Paper Kind: Sets the paper kind. eg: Custom, Letter, LetterSmall, etc

Page Size:
Width: Sets the page width in points
Height: Sets the page height in points.

File Content:
Image Quality: Sets the image quality to Low, Medium or High
Compression: Sets the compression level to Default, None, Best Speed or Best Compression.
Font Type: Sets the Font type to True Type or Embedded.

Document Info:
Author: Sets the name of the person or organization that created the document.
Creator: Sets the name of the application that created the original document.
Subject: Sets the subject of the document.
Title: Sets document title in the title bar.
Producer: Sets the name of the application that created the PDF document.
Keywords: Sets the keywords associated with the PDF document that can be used to locate the document.

GridView for ASP.NET Web Forms 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://support.microsoft.com/kb/2468871

Document Security:
Encryption Type: Sets the Encryption Type to NotPermit, Standard40, Standard128 or Aes128.
Owner Password: Sets the password required to edit permissions for the document.
User Password: Sets the password required to open the document.
Allow Copy Content: Enables or disables copy content.
Allow Edit Annotations: Enables or disables users from editing annotations.
Allow Edit Content: Enables or disables users from editing content in the document.
Allow Print: Enables or disables printing for the document.

Configuration Setting:
Server URL: Sets the server URL. Enter ServerURL/exportapi/grid.
File Name: Sets the file name to be used for the exported PDF.

Usage

The exportGrid method will be called to export the GridView content to Excel, CSVS or PDF. These steps assume that you have added a button to the
form, on whose click event you would call the export function. Add the following code within the <head></head>tags, to export the GridView to Excel.
 <script src="http://code.jquery.com/jquery-1.9.1.min.js" type="text/javascript"></script>
 <asp:PlaceHolder runat="server">
 <script type="text/javascript">

 $(function () {
 $("#Button1").click(exportExcel);
 });

 // Export function
 function exportExcel() {
 var fileName = "ExportedGrid";
 var type = "Xls";
 var excelSetting = {
 showGridLines: true,
 autoRowHeight: true,
 author: "ComponentOne"
 };
 var url = "http://demos.componentone.com/ASPNET/ExportService" + "/exportapi/grid";
 $("#<%=C1GridView1.ClientID%>").c1gridview("exportGrid", fileName, type, excelSetting, url);
 }
 </script>
 </asp:PlaceHolder>

Add the following code within the <head></head> tags, to export the GridView to a CSV file:
 <script src="http://code.jquery.com/jquery-1.9.1.min.js" type="text/javascript"></script>
 <asp:PlaceHolder ID="PlaceHolder1" runat="server">
 <script type="text/javascript">

 $(function () {
 $("#Button1").click(exportCsv);
 });

 // Export function
 function exportCsv() {
 var fileName = "ExportedGrid";
 var url = "http://demos.componentone.com/ASPNET/ExportService" + "/exportapi/grid";
 $("#<%=C1GridView1.ClientID%>").c1gridview("exportGrid", fileName, "csv", url);
 }
 </script>
 </asp:PlaceHolder>

Add the following code within the <head></head> tags, to export the GridView to a PDF:
<script src="http://code.jquery.com/jquery-1.9.1.min.js" type="text/javascript"></script>
 <asp:PlaceHolder ID="PlaceHolder1" runat="server">
 <script type="text/javascript">

 $(function () {
 $("#Button1").click(exportPdf);

 });

 // pdf settings
 function getPdfSetting() {
 return {
 repeatHeader: true,
 landscape: true,
 autoFitWidth: true,
 pageSize: {
 width: 300,
 height: 400
 },

GridView for ASP.NET Web Forms 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

 paperKind: 'A4',
 margins: {
 top: 50,
 right: 50,
 bottom: 50,
 left: 50
 },
 imageQuality:'Low',
 compression: 'BestCompression',
 fontType: 'TrueType',
 author: 'ComponentOne',
 creator: 'ComponentOne',
 subject: 'Grid Export',
 title: 'Grid Export',
 producer: 'ComponentOne',
 keywords: 'Grid, GridView, Export, PDF',
 encryption: 'NotPermit',
 ownerPassword: '0000',
 userPassword: '00000',
 allowCopyContent: true,
 allowEditAnnotations: true,
 allowEditContent: true,
 allowPrint: true,
 }
 }

 // Export function
 function exportPdf() {
 var fileName = 'ExportGrid';
 var pdfSetting = getPdfSetting();
 var url = "http://demos.componentone.com/ASPNET/ExportService" + "/exportapi/grid";
 $("#<%=C1GridView1.ClientID%>").c1gridview("exportGrid", fileName, "pdf", pdfSetting, url);
 }

 </script>
</asp:PlaceHolder>

The following image displays the properties of the PDF generated:

GridView for ASP.NET Web Forms 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

GridView for ASP.NET Web Forms 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

GridView for ASP.NET Web Forms 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

In case the file is not downloaded on Internet Explorer, turn off Internet Explorer protected mode to export file or run Internet Explorer as administrator.
To turn off the protected mode:

Open Internet Explorer Settings and select Internet Options.
In the Security tab select Internet and uncheck "Enable Protected Mode".

Using AJAX
Asynchronous JavaScript and XML (AJAX) provides a very effective way of communicating with data which resides
on a server. This means that Web pages (ASP.NET Web applications) can execute server-side logic and update various
page elements without reloading the entire page. This is a highly efficient way to present data via Web applications. It
saves page reloading time and provides a more streamlined user experience.

AJAX allows GridView for ASP.NET Web Forms to load data without having to do a postback to the server,
minimizing load time and greatly improving the end-user experience. Using C1GridView's Callback feature, the grid
calls back to the server to retrieve only the information that is requested, unlike with a server postback, where the
whole page must be reloaded to update the grid. End-users can quickly modify a grid without that annoying flicker of
the screen during load time.

You can use the Callback feature for editing the grid, grouping and outlook grouping, paging, row selection, sorting,

GridView for ASP.NET Web Forms 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

and scrolling the grid by simply setting C1GridView's Action property to one of the following options:

None: All actions are performed via postback.
ColMove: Column moving is performed via callbacks.
Editing: Editing is performed via callbacks.
Paging: Paging is performed via callbacks.
Selection: Row selection is performed via callbacks.
Sorting: Sorting is performed via callbacks.
Filtering: Filtering is performed via callbacks.
All: All actions on the grid are performed via callbacks.

For more information on using GridView for ASP.NET Web Forms and AJAX, see the Updating the Grid with AJAX
topic.

GridView for ASP.NET Web Forms 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET, know what a DataSet is,
and know how to use bound controls in general. By following the steps outlined in the help, you will be able to create
projects demonstrating a variety of C1GridView features and get a good sense of what C1GridView can do.

The help uses the standard Northwind Access database, Nwind.mdb, for bound data, which is installed by default in
the ComponentOne Samples\Common folder in your Documents folder. The database is referred to by filename
instead of the full pathname for the sake of brevity.

Note: Depending on where you store the projects and database files, you may need to change the location of
the Nwind.mdb reference in the projects.

Each task-based help topic also assumes that you have created a new ASP.NET project, have placed a bound
C1GridView control on the form, and have used the Imports (Visual Basic) or using (C#) statement for the
C1.Web.Wijmo.Controls.C1GridView namespace and relevant System namespaces. For additional information,
see Binding the Grid to a Data Source.

Binding the Grid to a Data Source
The following topics demonstrate how to bind C1GridView to a data source control. The steps for binding
C1GridView to a data source are slightly different in a Web site project from a Web application project.

Binding the Grid in a Web Site Project
To bind C1GridView to a data source control in a Web Site project, complete the following steps:

1. In the Solution Explorer, right click the project name and choose Add | New Folder. Name the new folder
"App_Data".

2. In the Solution Explorer, right-click the App_Data folder, and then click Add Existing Item.
3. Locate the Nwind.mdb file, installed by default in the samples folder.
4. In the Add Existing item dialog box, click the Nwind.mdb file, and then click Add.
5. Go back to the Default.aspx page.
6. Select the C1GridView control, and click the Smart Tag to open the C1GridView Tasks menu.
7. Click the Choose Data Source drop-down arrow and select <New data source>.
8. In the Data Source Configuration Wizard, select Access Database and click OK.
9. Click Browse and select App_Data under Project folders in the Select Microsoft Access Database dialog

box.
10. Choose Nwind.mdb in the Contents of folder pane on the right-hand side and click OK.
11. Click Next. The Configure the Select Statement window appears.

a. Confirm that the Specify columns from a table or view option is selected.
b. In the Name drop-down list, select Products.
c. In the Columns box, select ProductName, QuantityPerUnit, and UnitsInStock or desired other check

boxes.
12. Click Next. The Test Query page appears. Optionally, click Test Query to test your query.
13. Click Finish to close the wizard and add the data source.

Binding the Grid in a Web Application Project
To bind C1GridView to a data source control in a Web Application project, complete the following steps:

GridView for ASP.NET Web Forms 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. In the project, select Project | Add Existing Item.
2. Locate and select the Nwind.mdb file, installed by default in the samples folder, and click Add. The Data

Source Configuration Wizard appears.
3. Check the Tables check box and click Finish.
4. Right-click the C1GridView control and then click Show Smart Tag.
5. On the C1GridView Tasks menu, click the Choose Data Source drop-down arrow and select <New data

source…>. The Data Source Configuration Wizard appears.
6. Select Access Database and click OK.
7. Click the Browse button and select the Nwind.mdb that appears under Contents of folder.
8. Click OK and then Next. The Configure the Select Statement window appears.

a. Make sure the Specify columns from a table or view option is selected.
b. In the Name drop-down list, select Products.
c. In the Columns box, select ProductID, ProductName, QuantityPerUnit, and UnitsInStock or other

desired check boxes.
9. Click Next. The Test Query page appears. Optionally, click Test Query to test your query.

10. Click Finish to close the wizard and add the data source.

Automatically Updating the Data Source
This topic illustrates how to create an editable grid using templates and a DataSource control. Complete the following steps:

1. Create a grid and bind it to a DataSource control; see Binding the Grid to a Data Source topic for details. Use the Suppliers
table in the Northwind database and retrieve the SupplierID, CompanyName, ContactName, and Address fields.

2. Configure UpdateQuery:
a. Right-click the AccessDataSource1 component and then click Properties. In the Properties tab click the ellipsis button

next to UpdateQuery. The Command and Parameter Editor dialog box appears.
b. Click Query Builder, select the Suppliers table and click Add.
c. Insert the following text in UPDATE command and click OK to close the Query Builder:

UPDATE Suppliers SET CompanyName = ?, ContactName = ?, Address = ? WHERE (SupplierID = ?)
d. Click the Add Parameter button and rename the parameter "SupplierID".
e. Click Show advanced properties and set the Type property to Int32.
f. In the same way, add CompanyName, ContactName, Address parameters, but set their Types to String.
g. Click OK to close the Command and Parameter Editor dialog box.

3. Right-click the C1GridView control and then click Show Smart Tag.
4. On the C1GridView Tasks menu, in the Choose Data Source box, click AccessDataSource1, if necessary.
5. Right-click the C1GridView control and click Properties. In the Properties window set the DataKeyNames value to SupplierID.
6. In the Properties window, set the AllowClientEditing property to True.

Runtime Databinding of Template Field
This topic demonstrates how to bind template fields to a C1GridView at runtime.

In this example, the C1GridView control is bound to the Customers table of C1Nwind.mdb database, and the field
Country is attached to a C1TemplateField containing a C1ComboBox.

In the Designer

Complete the following steps:

1. Right-click the C1GridView control and select Show Smart Tag from the context menu to bind it to the
C1Nwind.mdb database, which is located by default in the samples directory. For detailed steps go to Step 1 of
3: Binding C1GridView to a DataSource.

2. Add a template field to the Country field column and add C1ComboBox in the ItemTemplate section in the
editor document. For detailed steps go to Adding Controls to a Column.

In Source View

To add a Template column in C1GridView, modify the <cc1:C1GridView ></cc1:C1GridView > tag as shown

GridView for ASP.NET Web Forms 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

below:
<cc1:C1GridView ID="C1GridView1" runat="server" AutogenerateColumns="False"
DataKeyNames="CustomerID" DataSourceID="SqlDataSource1">
 <Columns>
 <cc1:C1BoundField DataField="CustomerID" HeaderText="CustomerID"
ReadOnly="True" SortExpression="CustomerID">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="CustomerName" HeaderText="CustomerName"
SortExpression="CustomerName">
 </cc1:C1BoundField>
 <cc1:C1TemplateField HeaderText="Country">
 <ItemTemplate>

 <%# Eval("Country") %>
 </ItemTemplate>
 <EditItemTemplate>
 <cc1:C1ComboBox ID="dlCountry" runat="server">
 </cc1:C1ComboBox>
 </EditItemTemplate>
 </cc1:C1TemplateField>
 <cc1:C1CommandField ShowEditButton="True">
 </cc1:C1CommandField>
 </Columns>

 </cc1:C1GridView>

In Code

1. To bind the C1ComboBox in each row, add the following code to handle the RowDataBound event :

To write the code in Visual Basic

Visual Basic

 Protected Sub C1GridView1_RowDataBound(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewRowEventArgs) Handles C1GridView1.RowDataBound
 If (e.Row.RowState And C1GridViewRowState.Edit) > 0 Then
 ' Retrieve the underlying data item. In this example
 ' the underlying data item is a DataRowView object.
 Dim rowView As DataRowView = DirectCast(e.Row.DataItem, DataRowView)
 ' Retrieve the country value for the current row.
 Dim country As [String] = rowView("Country").ToString()
 ' Retrieve the DropDownList control from the current row and DataBind it.
 Dim dlCountry As C1ComboBox = DirectCast(e.Row.FindControl("dlCountry"), C1ComboBox)
 dlCountry.DataSource = GetData()
 dlCountry.DataTextField = "Country"
 dlCountry.DataValueField = "Country"
 dlCountry.DataBind()
 'Retrieve item from dropdown and set it as selected.
 For Each item As C1ComboBoxItem In dlCountry.Items
 If item.Text = country Then
 dlCountry.SelectedValue = item.Text
 End If
 Next
 End If
 End Sub

GridView for ASP.NET Web Forms 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Protected Function GetData() As DataTable
 Dim con As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; Data Source=" +
Server.MapPath("~/App_Data/C1NWind1.mdb"))
 Dim cmd As New OleDbCommand("Select Country from Countries", con)
 Dim da As New OleDbDataAdapter(cmd)
 Dim dt As New DataTable()
 da.Fill(dt)
 Return dt
 End Function

To write the code in C#

C#

protected void C1GridView1_RowDataBound(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewRowEventArgs e)
 {
 if ((e.Row.RowState & C1GridViewRowState.Edit)>0) {
 // Retrieve the underlying data item. In this example
 // the underlying data item is a DataRowView object.
 DataRowView rowView = (DataRowView)e.Row.DataItem;
 // Retrieve the country value for the current row.
 String country = rowView["Country"].ToString();
 // Retrieve the DropDownList control from the current row and DataBind it.

 C1ComboBox dlCountry = (C1ComboBox)e.Row.FindControl("dlCountry");
 dlCountry.DataSource = GetData();
 dlCountry.DataTextField = "Country";
 dlCountry.DataValueField = "Country";
 dlCountry.DataBind();

 //Retrieve item from dropdown and set it as selected.

 foreach (C1ComboBoxItem item in dlCountry.Items) {
 if (item.Text == country) {
 dlCountry.SelectedValue = item.Text;
 }
 }
 }
 }
 DataTable GetData() {
 OleDbConnection con = new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0; Data
Source="+Server.MapPath("~/App_Data/C1NWind1.mdb"));
 OleDbCommand cmd = new OleDbCommand("Select Country from Countries",con);
 OleDbDataAdapter da = new OleDbDataAdapter(cmd);
 DataTable dt = new DataTable();
 da.Fill(dt);
 return dt;
 }

GridView for ASP.NET Web Forms 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. To provide the parameters, i.e. SelectedValue of C1ComboBox, to the Update command, add the following
code to handle the RowUpdating event:

To write the code in Visual Basic

Visual Basic

 Protected Sub C1GridView1_RowUpdating(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewUpdateEventArgs) Handles C1GridView1.RowUpdating
 ' Retrieve the row being edited.
 Dim row As C1GridViewRow = C1GridView1.Rows(C1GridView1.EditIndex)
 ' Retrieve the DropDownList control from the row.
 Dim combo As C1ComboBox = DirectCast(row.FindControl("dlCountry"), C1ComboBox)
 ' Add the selected value of the DropDownList control to
 ' the NewValues collection. The NewValues collection is
 ' passed to the data source control, which then updates the
 ' data source.
 e.NewValues("Country") = combo.SelectedValue
 SqlDataSource1.UpdateCommand = "Update Customers Set CustomerName=@CustomerName,
Country=@Country where CustomerID=@CustomerID"
 SqlDataSource1.UpdateParameters.Add("CustomerID", e.Keys("CustomerID").ToString())
 SqlDataSource1.UpdateParameters.Add("CustomerName", e.NewValues("CustomerName").ToString())
 SqlDataSource1.UpdateParameters.Add("Country", e.NewValues("Country").ToString())
 SqlDataSource1.Update()
 End Sub

To write the code in C#

C#

 protected void C1GridView1_RowUpdating(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewUpdateEventArgs e)
 {
 // Retrieve the row being edited.
 C1GridViewRow row = C1GridView1.Rows[C1GridView1.EditIndex];
 // Retrieve the DropDownList control from the row.

 C1ComboBox combo = (C1ComboBox)row.FindControl("dlCountry");
 // Add the selected value of the DropDownList control to
 // the NewValues collection. The NewValues collection is
 // passed to the data source control, which then updates the
 // data source.

 e.NewValues["Country"] = combo.SelectedValue;
 SqlDataSource1.UpdateCommand = "Update Customers Set CustomerName=@CustomerName,
Country=@Country where CustomerID=@CustomerID";
 SqlDataSource1.UpdateParameters.Add("CustomerID", e.Keys["CustomerID"].ToString());
 SqlDataSource1.UpdateParameters.Add("CustomerName", e.NewValues["CustomerName"].ToString());
 SqlDataSource1.UpdateParameters.Add("Country", e.NewValues["Country"].ToString());
 SqlDataSource1.Update();
 }

GridView for ASP.NET Web Forms 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

mailto:CustomerName=@CustomerName
mailto:Country=@Country
mailto:CustomerID=@CustomerID
mailto:CustomerName=@CustomerName
mailto:Country=@Country
mailto:CustomerID=@CustomerID

Runtime Data Operations
The following topics explain how to perform data operations like sorting, filtering, paging and grouping to your grid
when data is bounded dynamically.

Sorting

To implement sorting, you need to handle the Sorting and Sorted events. Use the following code to rebind
the grid in the Sorted event:

To write the code in Visual Basic

Visual Basic

 Protected Sub C1GridView1_Sorting(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewSortEventArgs) Handles C1GridView1.Sorting
 End Sub
 'Handles Sorting
 Protected Sub C1GridView1_Sorted(sender As Object, e As EventArgs) Handles C1GridView1.Sorted
 C1GridView1.DataSource = BindGrid()
 C1GridView1.DataBind()
 End Sub

To write the code in C#

C#

 protected void C1GridView1_Sorting(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewSortEventArgs e)
 {
 }
//Handles Sorting
protected void C1GridView1_Sorted(object sender, EventArgs e)
 {
 C1GridView1.DataSource = BindGrid();
 C1GridView1.DataBind();
 }

Filtering

To implement filtering, you need to handle the Filtering and Filtered events. Use the following code to rebind
the grid in the Filtered event:

To write the code in Visual Basic

Visual Basic

Protected Sub C1GridView1_Filtering(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewFilterEventArgs)
End Sub
 'Handles Filtering
 Protected Sub C1GridView1_Filtered(sender As Object, e As EventArgs) Handles C1GridView1.Filtered
 C1GridView1.DataSource = BindGrid()
 C1GridView1.DataBind()
End Sub

GridView for ASP.NET Web Forms 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write the code in C#

C#

 protected void C1GridView1_Filtering(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewFilterEventArgs e)
 {
 }
 //Handles Filtering
 protected void C1GridView1_Filtered(object sender, EventArgs e)
 {
 C1GridView1.DataSource = BindGrid();
 C1GridView1.DataBind();
 }

Paging

To implement paging, you need to handle the Paging event. Use the following code to rebind the grid in the
grid after you set the NewPageIndex as the PageIndex of C1GridView:

To write the code in Visual Basic

Visual Basic

'Handles Paging
Protected Sub C1GridView1_PageIndexChanging(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewPageEventArgs) Handles C1GridView1.PageIndexChanging
 C1GridView1.PageIndex = e.NewPageIndex
 C1GridView1.DataSource = BindGrid()
 C1GridView1.DataBind()
 End Sub

To write the code in C#

C#

//Handles Paging
 protected void C1GridView1_PageIndexChanging(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewPageEventArgs e)
 {
 C1GridView1.PageIndex = e.NewPageIndex;
 C1GridView1.DataSource = BindGrid();
 C1GridView1.DataBind();
 }

Grouping

To implement grouping, you need to handle the ColumnGrouped and ColumnUngrouped events.

Note: For grouping C1GridView, set AllowColMoving and ShowGroupArea properties to true.

Use the following code to rebind the grid in the ColumnGrouped event while providing HeaderText of the
dragged column as the parameter:

To write the code in Visual Basic

GridView for ASP.NET Web Forms 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

'Handles Column UnGrouping
Protected Sub C1GridView1_ColumnUngrouped(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewColumnUngroupedEventArgs) Handles
C1GridView1.ColumnUngrouped
 End Sub
'Handles Column Grouping
 Protected Sub C1GridView1_ColumnGrouped(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewColumnGroupedEventArgs) Handles
C1GridView1.ColumnGrouped
 C1GridView1.DataSource = BindGrid(e.Drag.HeaderText)
 C1GridView1.DataBind()
 End Sub

To write the code in C#

C#

//Handles Column UnGrouping
 protected void C1GridView1_ColumnUngrouped(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewColumnUngroupedEventArgs e)
 {
 }
 //Handles Column Grouping
 protected void C1GridView1_ColumnGrouped(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewColumnGroupedEventArgs e)
 {
 C1GridView1.DataSource = BindGrid(e.Drag.HeaderText);
 C1GridView1.DataBind();
 }

Using the Property Builder
The Property builder allows you to easily customize the appearance and behavior of the C1GridView control. Using the
Property builder, you can determine whether to show headers and footers, customize paging and page navigation,
and format the appearance of the C1GridView control.

To access the Property builder, select Property builder from the C1GridView Tasks menu.
The C1GridView Properties dialog box appears. For more information about the Property builder and the available
options, see the Property Builder topic.

Setting Properties Using the Property Builder
The C1GridView Properties dialog box allows you to easily set properties to customize the C1GridView control's
appearance and behavior. To set properties using the Property builder, complete the following steps:

1. Right-click C1GridView and select Show Smart Tag from the context menu. Select Property builder from the
C1GridView Tasks menu.
The C1GridView Properties dialog box appears.

2. From the C1GridView Properties dialog box, select one of the following tabs in the left column. For this

GridView for ASP.NET Web Forms 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

example, the Columns tab is selected.
The C1GridView Properties dialog box includes five tabs as follows:
Tab Description

General Displays the data source and allows you to set headers, footers, and sorting properties.
See General tab for more information.

Columns Allows you to specify the types of columns that appear and set the properties for each.
See Columns tab for more information.

Paging You can determine whether paging is used, and you can customize how and where it
appears. See Paging tab for more information.

Format Allows you to set the font, color and alignment of the grid and everything within it,
including the headers, footers, the pager, specific items, and columns. See Format tab for
more information.

Grouping You can determine whether a column is grouped on and how the group header and footer
rows should be formatted and displayed. See Grouping tab for more information.

3. Choose one of the columns in the list of Selected columns.
4. Set the desired properties under Column properties and click Apply.
5. Once you are finished setting the properties, click OK.

Alternatively, C1GridView properties can be set using the Properties window at design time.

GridView for ASP.NET Web Forms 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Select the C1GridView control.
2. Select Properties Window from the View menu on the Visual Studio toolbar.
3. In the Properties window, set any of the desired properties.

Adding Columns Using the Property Builder
Using the C1GridView Properties dialog box, you can also add and remove columns and determine the types of
columns to display. Available column types include:

C1Band: displays a banding column used to create multilevel column headers.
C1BoundField: displays a column bound to a field in a data source.
C1ButtonField: displays a command button for each item.
C1CheckBoxField: displays a Boolean check box for each item.
C1CommandField: displays a column containing editing commands for each item.
C1HyperLinkField: displays each item as a hyperlink.
C1TemplateField: displays each item in the column following a specified template.

To add columns, complete the following steps:

1. Right-click C1GridView control and select Show Smart Tag from the context menu. Select Property builder
from the C1GridView Tasks menu. The C1GridView Properties dialog box appears.

2. Click the Columns tab in the left pane. For more information about the Columns tab, see the Columns tab
topic.

3. Under Column List, select the desired column from the list of Available columns.
4. Click the arrow button between the column lists to create a column under the list of Selected columns. In the

image below a HyperLink column was added:

Note: When the check box next to Create columns automatically at run time is selected (default), bound
columns are automatically created. If you deselect the box, you must manually create columns.

Formatting the Grid's Content
The following task-based help topics explain how to format your grid, including customizing the grid's content,
column headers, footers, and more.

Creating a Sorted Grid
To configure the grid to automatically sort a column, complete the following steps:

GridView for ASP.NET Web Forms 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Select the C1GridView control and set the C1GridView.AllowSorting property to True.

To write the code in Visual Basic:

Visual Basic

C1GridView1.AllowSorting = True

To write the code in C#:

C#

C1GridView1.AllowSorting = true;

2. Set the C1GridView.DataSourceID property.

3. Run your application and click the HeaderText of the column you want to sort.

Sample Project Available
For the complete sample, see the Sorting page located in the ControlExplorer sample. See GridView for ASP.NET Web
Forms Samples for more information.

Hiding Specified Columns
You can choose to hide columns in the C1GridView control by setting the Visible property for those columns to False.
To specify the columns to be displayed in C1GridView, complete the following steps:

1. Right-click C1GridView and select Show Smart Tag from the context menu.
2. Select Property builder from the C1GridView Tasks menu. The C1GridView Properties dialog box appears.
3. Click the Columns tab in the left pane.
4. Deselect the Create columns automatically at run time check box if it is selected.
5. Select a column that you do not want to appear from the list of Selected columns.
6. Under Column properties, set the Visible property to False. Do this for any column in the data source that you

do not want to appear in the grid.
Note that you can also remove columns from being displayed by selecting the column in the Selected columns
list and clicking the Delete button ("X").

7. Click OK to save your settings and close the C1GridView Properties dialog box.

What You've Accomplished
Run your application and observe that the columns that you changed the visibility for do not appear in the grid at run
time.

Changing the Color of Column Headers
You can easily use themes to customize the grid's appearance. For more information about themes and available
themes, see the Themes topic. In the following steps, you'll learn to customize the appearance of the Grid control
other than using themes.

Note: These steps assume that you have already created an Asp.Net project containing a GridView. For more
information, see the GridView for ASP.NET Web Forms Quick Start topic.

GridView for ASP.NET Web Forms 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

Complete the following steps:

1. Click the Source button to switch to Source view.
2. Add the following code inside the <head> tag on your page:

 <style type=”text/css”>
 .wijgridth {
 background-image: none !important;
 background-color: Yellow !important;
 height: 27px;
 text-align: -moz-center;
 border: solid 1px #4c535c;
 vertical-align: middle;
 border-right: none;
 font-weight: normal;
 color: #000;
 border-top: none;
 }
 </style>

Note: ASP.NET controls contain images in its background; therefore before making any changes to the
background of a control’s element like header, toolbar or cell, you need to remove the image first.

What You've Accomplished
Run your application and observe that the column headers now appear yellow:

Customizing Column Data using ValueLists
This topic demonstrates how to change the display of cell data using the ValueList property.
With the ValueList property, you can substitute the actual cell data values of columns like those with ID data with
understandable display values.

In Code

Add the following code to the Page_Load event to prepare a ValueList dictionary that contains the replacement text:

To write the code in VB:

Visual Basic

' Prepare ValueList dictionary
 Dim ht As New Hashtable()
 ht.Add("1", "Beverages")
 ht.Add("2", "Condiments")
 ht.Add("3", "Confections")
 ht.Add("4", "Dairy Products")
 ht.Add("5", "Grains/Cereals")

GridView for ASP.NET Web Forms 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ht.Add("6", "Meat/Poultry")
 ht.Add("7", "Produce")
 ht.Add("8", "Seafood")

To write the code in C#:

C#

// Prepare ValueList dictionary
 Hashtable ht = new Hashtable();
 ht.Add("1", "Beverages");
 ht.Add("2", "Condiments");
 ht.Add("3", "Confections");
 ht.Add("4", "Dairy Products");
 ht.Add("5", "Grains/Cereals");
 ht.Add("6", "Meat/Poultry");
 ht.Add("7", "Produce");
 ht.Add("8", "Seafood");

Assign the column, CategoryID in this example, which contains the items to be replaced by the items in the ValueList
dictionary:

To write the code in Visual Basic:

Visual Basic

' Assign values from the ValueList dictionary to the actual cell data value.
 CType(C1GridView1.Columns.ColumnByName("CategoryID"),
C1.Web.Wijmo.Controls.C1GridView.C1BoundField).ValueList = ht Sub

To write the code in C#:

C#

// Assign values from the ValueList dictionary to the
actual cell data value.
 ((C1.Web.Wijmo.Controls.C1GridView.C1BoundField)C1GridView1.Columns.ColumnByName("CategoryID")).ValueList
= ht;

What You've Accomplished

When your run the project, the items in the CategoryID column of the grid are replaced with the items in the
ValueList dictionary and appear in the CategoryID column of the C1GridView.
The initial grid without substituted text appears similar to the following:

GridView for ASP.NET Web Forms 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

The grid with the substituted text appears similar to the following:

Setting Alternate Row Styles
This topic demonstrates how to change the color of alternating rows of a C1GridView.

In the Designer

Complete the following steps:

1. Drag and drop a C1GridView control onto your Web Form.
2. Add data to the C1GridView. For more information, see Binding the Grid to a Data Source.
3. Click OK.

In Source View

To change the color of alternating rows, add the following code between the <head> </head> tags as shown below:

<style type = "text/css">
// Set the color of alternating rows
 .wijmo-wijgrid-alternatingrow
 {
 background-color:pink!important;
 }
</style>

In CSS

By default, the “aristo” theme supports alternate row coloring in C1GridView. In order to modify any existing theme to
get alternate row styles follow the steps below:

1. Open the CSS file of the theme to be modified from the following link:
http://wijmo.com/theming/

2. Create a new file in a text editor and copy the contents of the theme’s CSS file. Modify the code to set the color
of the alternating rows as defined above under In Source View heading.

3. Save the file with “.css” extension.

GridView for ASP.NET Web Forms 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://wijmo.com/theming/

4. Add the CSS file into your project.
5. Link the CSS file by adding the following code within the <head></head> tags in the source view as shown

below:

<link rel=”stylesheet” type=”text/css” href=”name.css”>

Note: The stylesheet is the CSS file inside the “custom-theme” folder.

What You've Accomplished

When you run the project, the color of alternating rows is changed.

Setting Conditional Formatting
In some cases you may want to change the grid's appearance based on given conditions.

In Code

You can change the appearance of grid rows and cells matching specific criteria using the RowDataBound event.

To change the color of a specific row or a cell's font using the RowDataBound event, complete the following steps:

1. Specify the row number you want to change using the RowIndex property.
2. Set the desired color of the C1GridViewRow.BackColor property.

For example, add the following code to the RowDataBound event:

To write the code in Visual Basic:

Visual Basic

Protected Sub C1GridView1_RowDataBound(ByVal sender As Object, ByVal e As
C1.Web.UI.Controls.C1GridView.C1GridViewRowEventArgs) Handles C1GridView1.RowDataBound
 If (e.Row.RowIndex = 2) Then
 e.Row.BackColor = System.Drawing.Color.Red
 End If
 End Sub

To write the code in C#:

Visual Basic

private void C1GridView1_RowDataBound(object sender,
C1.Web.UI.Controls.C1GridView.C1GridViewRowEventArgs e)
 {
 if ((e.Row.RowIndex == 2)) {
 e.Row.BackColor = System.Drawing.Color.Red;
 }
}

3. You can also change the color of the font used in a specific cell by specifying the text in the cell and the

GridView for ASP.NET Web Forms 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

desired color.

For example, add the following code to the RowDataBound event:

To write the code in Visual Basic:

Visual Basic

Protected Sub C1GridView1_RowDataBound(ByVal sender As Object, ByVal e As
C1.Web.UI.Controls.C1GridView.C1GridViewRowEventArgs) Handles C1GridView1.RowDataBound
 If (e.Row.Cells(0).Text = "Chang") Then
 e.Row.Cells(0).ForeColor = System.Drawing.Color.Green
 End If
 End Sub

To write the code in C#:

C#

private void C1GridView1_RowDataBound(object sender,
C1.Web.UI.Controls.C1GridView.C1GridViewRowEventArgs e)
 {
 if ((e.Row.Cells[0].Text == "Chang")) {
 e.Row.Cells[0].ForeColor = System.Drawing.Color.Green;
 }
 }

Note: You may need to change the column index in the code. This code changes the font color of the
cell consisting of the text "Chang" to green.

What You've Accomplished

The first code snippet changes the background color of the third row to red.

The second code snippet changes the color of a specific row or a cell's font using the RowDataBound event.

GridView for ASP.NET Web Forms 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating a Scrollable Grid
Complete the followingsteps to enable vertical and horizontal scrolling in a C1GridView control.

In the Design View

1. Select the GridView control and right click to open Properties > Properties Window.
2. In the Properties Window, Expand Scrolling Settings and change the Mode to Both.
3. Enter 250px in the Height textbox and 450px in the Width textbox.

In Code

To write the code in Visual Basic:

Visual Basic

' Set the grid's height and width.
 C1GridView1.Height = 250
 C1GridView1.Width = 450
' Turn scrolling on and set both horizontal and vertical scrolling.
 C1GridView1.ScrollingSettings.Mode = C1.Web.Wijmo.Controls.C1GridView.ScrollMode.Both

To write the code in C#:

C#

// Set the grid's height and width.
 C1GridView1.Height = 250;
 C1GridView1.Width = 450;
// Turn scrolling on and set both horizontal and vertical scrolling.
 C1GridView1.ScrollingSettings.Mode = C1.Web.Wijmo.Controls.C1GridView.ScrollMode.Both;

In Source View

Modify the ScrollingSettings property within the <cc1:C1GridView> to enable both horizontal and vertical scrolling.

 <cc1:C1GridView ID="C1GridView1" runat="server" Height="250px" Width="450px">
 <ScrollingSettings Mode="Both">
 </ScrollingSettings>

GridView for ASP.NET Web Forms 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note that the Height and Width properties must be specified in order for the scrollbars to appear and scroll
properly.

Setting the Footer Text
This topic demonstrates how to show a footer and set its text in C1GridView at design time and programmatically.

In the Designer

Complete the following steps:

1. Right-click the C1GridView control and then click Show Smart Tag. On the C1GridView Tasks menu, click Property builder. The C1GridView Properties window appears.
2. On the General tab, check the Show footer check box.
3. Select the Columns tab and deselect Create columns automatically at run time if it is selected.
4. Choose a column in the list of Selected columns.
5. Enter the desired text in the FooterText property.

In Source View

Switch to Source view and complete the following: steps:

1. Set the following text to the <cc1:C1GridView> tag:
Set the AutoGenerateColumns property to False.
Set the ShowFooter property to True.

It will appear similar to the following:
<cc1:C1GridView ID="C1GridView1" runat="server" DataSourceID="AccessDataSource1" AutogenerateColumns="False" ShowFooter="True">

2. Set the footer text for individual columns using the FooterText property by adding the following FooterText="Total Price" text within a <cc1:C1BoundField> tag, so it appears
similar to the following:
<cc1:C1BoundField DataField="ProductName" HeaderText="ProductName" SortExpression="ProductName" FooterText="Footer">
This will set the FooterText property.

In Code

Open the Code Editor and set the following properties in code:

Set the AutoGenerateColumns property to False.
Set the ShowFooter property to True.
Set the footer text for individual columns using the FooterText property. This property must be set before the DataBind method is called.

For example, add the following code to the Page_Load event:

To write the code in Visual Basic:

Visual Basic

C1GridView1.AutoGenerateColumns = False
 C1GridView1.ShowFooter = True
 C1GridView1.Columns(0).FooterText = "Footer"

To write the code in C#:

C#

C1GridView1.AutoGenerateColumns = false;
 C1GridView1.ShowFooter = true;
 C1GridView1.Columns[0].FooterText = "Footer";

What You've Accomplished
This example sets the footer text for the first column to "Footer".

Note: The footer text can only be set for columns that are not automatically generated.

Creating a Non Scrollable Row or Column
You can use the StaticRowIndex or StaticColumnIndex to freeze a row/column in order to prevent it from scrolling. An
integer value to determine the row/column number to be frozen is set in this property.

GridView for ASP.NET Web Forms 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following example fixes the first row in the grid so that it will not scroll.

In the Designer

Complete the following steps:

1. Create a scrollable grid. See Creating a Scrollable Grid for further details.
2. Right click the grid and choose Properties to view the associated properties and events of the C1GridView.
3. Set the StaticRowIndex property to the index value of the row that has to be frozen.
4. Click OK to save the setting and close the properties dialog.

In Source View

Complete the following steps:

1. Create a scrollable grid. See Creating a Scrollable Grid for further details.
2. Switch to Source view.
3. Set the StaticRowIndex property of C1GridView to the index value of the column to be frozen by adding

StaticRowIndex='0’ to the <cc1: C1GridView> tag as shown below:

<cc1:C1GridView ID="C1GridView1" runat="server" StaticRowIndex='0'>

This keeps the first row fixed when the grid is scrolled vertically.

In Code

Complete the following steps:

1. Create a scrollable grid. See Creating a Scrollable Grid for further details.
2. Set the first column's StaticRowIndex property to 0. This keeps the first row fixed when the grid is scrolled

vertically.

To write the code in Visual Basic:

Visual Basic

' Fix the top row of the grid when scrolling vertically.

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
 C1GridView1.StaticRowIndex = 0
 End Sub

To write the code in C#:

C#

// Fix the top row of the grid when scrolling vertically.

protected void Page_Load(object sender, EventArgs e)

{>

C1GridView1.StaticRowIndex = 0;

>}

Run your application and scroll the grid. Note that the first row does not scroll with the other rows of the grid.

Follow the same process using the StaticColumnIndex property to create non-scrollable columns.

GridView for ASP.NET Web Forms 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding Controls to a Column
Adding arbitrary controls to grid columns is simple using template columns. The following task-based help topics will
walk you through adding templates columns, adding controls to template columns, and binding controls in template
columns.

Adding Template Columns
To add template columns to C1GridView, complete the following steps:

1. Right-click the C1GridView control and then click Show Smart Tag. On the C1GridView Tasks menu, click
Property builder. The C1GridView Properties window appears.

2. Click the Columns tab.

3. Click the button to remove all columns from the Selected columns list.
4. Select Template Field from the Available columns list.
5. Click the arrow button between the column lists to copy the Template Column to the Selected columns list.

Repeat this task three times to create three more (and a total of four) Template Columns.
6. Under Column properties, set each column's HeaderText property to "Supplier #", "Contact name",

"Company name", and "Address" respectively and click Apply.

Note: To view changes to each Template Column, you must click the Apply button.

7. From the Available columns list, expand the Command Field node and select Edit, Update, Cancel.
8. Click the arrow button between the column lists to copy the Edit, Update, Cancel into the Selected columns

list.The Selected columns list should look like this:

9. Click OK to close the C1GridView Properties dialog box.

Binding Template Columns
This topic explains how to bind the following to a data source: a non-editable template column and a template
column that can be edited at run time. Note that this topic assumes you have completed the Adding Template
Columns topic.

Binding a non-editable template column

To bind a non-editable template column Supplier # to a data source, complete the following steps:

1. Right-click the C1GridView control and then click Show Smart Tag.
2. On the C1GridView Tasks menu, click Edit Templates. The template editor appears:

GridView for ASP.NET Web Forms 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Click the C1GridView Smart Tag and select Column[0] – Supplier # from the Display drop-down list. The
template editor appears:

4. From the Standard tab in the Toolbox, drag a Label control into the Item Template section.
5. If the Label Tasks menu does not appear, click the Label1 Smart Tag, and then click Edit DataBindings. The

Label1 DataBindings window appears.
6. Select Text in the Bindable properties list, and then select the SupplierID field from the Bound to box.
7. Click OK.
8. Click the C1GridView Smart Tag, and select End Template Editing from the C1GridView Tasks menu.

Binding editable template columns

To bind editable template columns Contact name, Company name, and Address to a data source, complete the
following steps:

1. Click C1GridView's smart tag and select Edit Templates.
2. Select Column[1] – Contact name from the Display drop-down list.
3. From the Standard tab in the Toolbox, drag a Label control into the Item Template section.
4. If the Label Tasks menu does not appear, click the Label2 Smart Tag, and then click Edit DataBindings. The

GridView for ASP.NET Web Forms 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

Label2 DataBindings window appears.
5. Select Text in the Bindable properties list, and then select the ContactName field from the Bound to combo

box.
6. Click OK.
7. From the Standard tab in the Toolbox, drag a TextBox control into the EditItem Template section.
8. If the TextBox Tasks menu does not appear, click the TextBox1 Smart Tag, and then click Edit DataBindings.
9. Select Text in the Bindable properties list, and then select the ContactName field from the Bound to check

box.
10. Make sure that the Two-way databinding check box is selected and click OK.
11. Repeat the steps above for the Company name and Address columns. Bind them to the CompanyName and

Address fields accordingly.
12. Click the C1GridView Smart Tag and select End Template Editing from the C1GridView Tasks menu.

What You've Accomplished

Run the project. When you click the Edit button in the first row, an editable text box appears for each column except
for the Supplier # column. You can edit the information, and click Update to update the database or click Cancel to
ignore any edits you made.

Adding CheckBox or ListBox Controls to a Column
To use the standard ASP.NET CheckBox and ListBox controls to display data for a column, complete the following
steps:

1. Right-click C1GridView and select Show Smart Tag from the context menu. From the C1GridView Tasks menu,
select Property builder. The C1GridView Properties dialog box appears.

2. Click the Columns tab in the left pane.
3. Under Column List, select Template Field from the list of Available columns.
4. Click the arrow button between the column lists to copy the Template Field to the list of Selected columns.
5. Select the new Template Field and set the desired properties under Column properties. This might include

adding a header or footer to the column, fixing the column's size or position, and so on.
6. Click OK to return to the form.
7. Click the C1GridView Smart Tag and select Edit Templates from the C1GridView Tasks menu.
8. Click the Display drop-down arrow and choose the new Template Field you created.

The template editor Document appears.
9. Select the ItemTemplate section.

10. Double-click the CheckBox or ListBox control in the Visual Studio Toolbox to add it to the
ItemTemplate section. Note that you can format the CheckBox or ListBox using the Properties window.

11. Click the C1GridView smarttTag and select End Template Editing from the C1GridView Tasks menu.

GridView for ASP.NET Web Forms 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding Input for ASP.NET Web Forms Controls
GridView for ASP.NET Web Forms is fully compatible with Input for ASP.NET Web Forms controls. Using the Input
for ASP.NET Web Forms controls, you can easily add in data validation to your grid, including masked, date, numeric,
percent, and currency editing.

Note: For more information about Input for ASP.NET Web Forms, see the Input for ASP.NET Web Forms
documentation.

In the following steps you'll create template columns in the C1GridView control and add the C1InputNumeric and
C1InputCurrency controls to those columns. Note that in the follow steps it is assumed that you have created a
C1GridView control and bound it to the Products table of the NorthWind database.

Complete the following steps:

1. Right-click C1GridView and select Show Smart Tag from the context menu. From the C1GridView Tasks
menu, select Property builder. The C1GridView Properties dialog box appears.

2. Click the Columns tab in the left pane.
3. If the Create columns automatically at run time check box is selected, deselect it.
4. In the Selected columns list, remove the following columns by selecting the column and clicking the Delete

button: ProductID, SupplierID, CategoryID, UnitPrice, UnitsInStock, UnitsOnOrder, and ReorderLevel.
Note that you'll add template columns to replace most of these columns.

5. In the Available columns list, select Template Field from the list of column types.
6. Click the arrow button between the column lists to copy the Template Field to the list of Selected columns.

Repeat this step two more times, so that you've added a total of three template columns.
7. Set the HeaderText property for each template column to "Price", "Stock", and "Ordered", respectively.
8. Using the Down arrow button, move the Discontinued column to the bottom of the Selected columns list.
9. Click OK to return to close the C1GridView Properties dialog box and return to the form.

10. Click the C1GridView smart tag and select Edit Templates from the C1GridView Tasks menu.
11. Add the C1InputCurrency control to the Price column:

a. In the C1GridView Tasks menu, click the Display drop-down arrow and under Column[2] – Price,
choose Item Template. The Item Template editor appears.

b. Click in the body area of the template, navigate to the Visual Studio Toolbox, and double-click the
C1InputCurrency control to add it to the C1TemplateField.ItemTemplate.

c. Click the C1InputCurrency control's smart tag, and select Edit DataBindings from the
C1InputCurrency Tasks menu. This will open the C1InputCurrency DataBindings dialog box.

d. In the C1InputCurrency DataBindings dialog box, select the Show all properties check box if it is not
already selected.

e. Select Value in the list of Bindable properties, choose the Field binding radio button, and in the
Bound to drop-down list, select UnitPrice.

f. Click OK to save your settings and close the C1InputCurrency DataBindings dialog box.
g. Click once on the C1InputCurrency control to select it and in the Properties window set the Width

property to "60px".
12. Add the C1InputNumeric control to the Stock column:

a. Click the C1GridView smart tag, click the Display drop-down arrow, and under Column[3] – Stock,
choose Item Template.

b. Click in the body area of the template, navigate to the Visual Studio Toolbox, and double-click the
C1InputNumeric control to add it to the C1TemplateField.ItemTemplate.

c. Click the C1InputNumeric control's smart tag, and select Edit DataBindings from the
C1InputNumeric Tasks menu. This will open the C1InputNumeric DataBindings dialog box.

d. In the C1InputCurrency DataBindings dialog box, select the Show all properties check box if it is not
already selected.

e. Select Value in the list of Bindable properties, choose the Field binding radio button, and in the
Bound to drop-down list, select UnitsInStock.

GridView for ASP.NET Web Forms 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1inputwijmo/

f. Click OK to save your settings and close the C1InputNumeric DataBindings dialog box.
g. Click once on the C1InputNumeric control to select it and in the Properties window set the Width

property to "60px".
h. Click the C1InputNumeric control's smart tag and, in the C1InputNumeric Tasks menu, enter "0" in

the DecimalPlaces text box.
13. Add the C1InputNumeric control to the Ordered column:

a. Click the C1GridView smart tag, click the Display drop-down arrow, and under Column[4] – Ordered,
choose Item Template.

b. Click in the body area of the template, navigate to the Visual Studio Toolbox, and double-click the
C1InputNumeric control to add it to the C1TemplateField.ItemTemplate.

c. Click the C1InputNumeric control's smart tag, and select Edit DataBindings from the
C1InputNumeric Tasks menu. This will open the C1InputNumeric DataBindings dialog box.

d. In the C1InputCurrency DataBindings dialog box, select the Show all properties check box if it is not
already selected.

e. Select Value in the list of Bindable properties, choose the Field binding radio button, and in the
Bound to drop-down list, select UnitsOnOrder.

f. Click OK to save your settings and close the C1InputNumeric DataBindings dialog box.
g. Click once on the C1InputNumeric control to select it and in the Properties window set the Width

property to "60px".
h. Click the C1InputNumeric control's smart tag and, in the C1InputNumeric Tasks menu, enter "200" in

the MaxValue text box.
i. Click the C1GridView smart tag and select End Template Editing from the C1GridView Tasks menu.

What You've Accomplished
Run your application and observe that the grid now uses Input for ASP.NET Web Forms controls in the Price, Stock,
and Ordered columns:

Setting Column Width
This topic demonstrates how to set the width of a column in C1GridView.

A column's width can be specified in code if the column is not automatically generated. To set the column width:

1. Set the C1GridView.AutoGenerateColumns property of C1GridView to False.
2. Specify the columns to appear in C1GridView. See Hiding Specified Columns for more information.
3. Set the width of the third column, for example, via the Code Editor or at design time:

Add the following code after the DataBind method is called:

To write the code in Visual Basic:

Visual Basic

C1GridView1.Columns(2).ItemStyle.Width = New Unit(500)

To write the code in C#:

GridView for ASP.NET Web Forms 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

C1GridView1.Columns[2].ItemStyle.Width = new Unit(500);

From the Property builder, select Format tab in the left pane and select a column from the list of Columns on the right. Change the Width property to 500 Pixels, and
click OK.
OR
Edit the column's markup to include a Width element:
wijmo:C1BoundField DataField="ContactName" HeaderText="ContactName" SortExpression="ContactName" Width="500">

What You've Accomplished

In this topic you learned how to change the width of a column. In this example, the third column is 500 pixels:

Merging Rows
This topic demonstrates how to merge rows containing identical text in C1GridView.

The RowMerge property allows the selected column to merge rows with the same text. For example in the following image, setting the RowMerge property
to Free allows the Property column to merge the rows with the same text:

In Code

Use the RowMerge property of the C1GridView class to determine if and how rows are merged:

To write the code in Visual Basic:

Visual Basic

CType(C1GridView1.Columns(0), C1.Web.Wijmo.Controls.C1GridView.C1Field).RowMerge = C1.Web.Wijmo.Controls.C1GridView.RowMerge.Free

To write the code in C#:

C#

((C1.Web.Wijmo.Controls.C1GridView.C1Field)C1GridView1.Columns[0]).RowMerge = C1.Web.Wijmo.Controls.C1GridView.RowMerge.Free;

In Source View

Set the RowMerge property in the column's markup:

<cc1:C1GridView ID="C1GridView1" runat="server" DataSourceID="SqlDataSource1" AutoGenerateColumns="false">
 <Columns>
 <cc1:C1BoundField DataField="ProductName" SortExpression="ProductName" HeaderText="Name" RowMerge="Free" />
 <cc1:C1BoundField DataField="OrderID" SortExpression="OrderID" HeaderText="OrderID" />

GridView for ASP.NET Web Forms 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <cc1:C1BoundField DataField="Quantity" SortExpression="Quantity" HeaderText="Quantity" />
 <cc1:C1BoundField DataField="Total" SortExpression="Total" HeaderText="Totals" />
 </Columns>
</cc1:C1GridView>

In Design View

The RowMerge property can also be accessed in the Property Builder. Simply select a column from the list of Selected columns, click the drop-down arrow
next to the RowMerge property and choose Free or Restricted. The default is None.

Sample Project Available
For the complete sample, see the Merging page located in the ControlExplorer sample. See GridView for ASP.NET Web Forms Samples for more information.

Adding Paging
This topic demonstrates how to display the contents of C1GridView on multiple pages, navigate through those pages and set the number of items to be
displayed on each page. For more information, see the Paging topic.

In the Designer

Complete the following steps:

1. Right-click the C1GridView control and then click Show Smart Tag. On the C1GridView Tasks menu, click Property builder. The C1GridView
Properties window appears.

2. Select the Paging tab and check the Allow paging check box. This sets the AllowPaging property to True.
3. Specify the number of rows to appear on the page in the Page size text box, for example "4".
4. The Show navigation check box under Page navigation is selected by default. This places the page navigation buttons on the page. You can

specify their location on the page by clicking the Position drop-down arrow and selecting Bottom, Top, or TopAndBottom. The Mode property is set
to Numeric by default, so numeric navigation buttons appear on the page.

In Source View

Complete the following steps:

1. Add AllowPaging="True" and PageSize="4" to the <cc1:C1GridView> tag to set the AllowPaging property to True and the PageSize property to
move through the pages of data from the data source four items at a time:
 <cc1:C1GridView ID="C1GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="AccessDataSource1"
 VisualStylePath="~/C1WebControls/VisualStyles" AllowPaging="True" PageSize="4">

The PagerSettings.Mode property is set to Numeric by default, so numeric navigation buttons appear on the page.

2. If you want to change the position of the navigation buttons, set the Position to Top or TopAndBottom by adding <PagerSettings
Position="TopAndBottom"/> or <PagerSettings Position="TopAndBottom"/> between the <cc1:C1GridView> and </cc1:C1GridView> tags.

In Code

Complete the following steps:

1. Set AllowPaging property to True and PageSize to 4 to move through the pages of data from the data source four items at a time. The
Mode property is set to Numeric by default, so numeric navigation buttons appear on the page.

To write the code in Visual Basic:

Visual Basic

C1GridView1.AllowPaging = True
C1GridView1.PageSize = 4

To write the code in C#:

C#

C1GridView1.AllowPaging = true;
C1GridView1.PageSize = 4;

2. If you want to change the position of the navigation buttons, set the Position to Top or TopAndBottom.

What You've Accomplished

Run your application and observe that paging controls appear at the bottom of the grid, and that 4 items are displayed on each page:

Tracking the Current Cell Position
By default client-side selection information is unavailable on the server. However, you can track when the current cell position changes and send this data

GridView for ASP.NET Web Forms 66

Copyright © 2017 GrapeCity, inc. All rights reserved.

to server at postback.

For example, complete the following steps:

1. Add the following script to your application's markup:
 <script type="text/javascript">
 function onCurrentCellChanged(e, args) {
 $("#currentCellValue").val($(e.target).c1gridview("currentCell").value());
 }
 </script>

2. Edit the C1GridView control's markup so it appears similar to the following:
<cc1:C1GridView ID="C1GridView1" runat="server" DataSourceID="AccessDataSource1" AutogenerateColumns="false"
 OnClientCurrentCellChanged="onCurrentCellChanged">
 <Columns>
 <cc1:C1BoundField DataField="OrderID" HeaderText="OrderID" />
 <cc1:C1BoundField DataField="Quantity" HeaderText="Quantity" />
 </Columns>
 </cc1:C1GridView>

3. Right-click the window and select View Code to switch to Code view.
4. Add the following code to the Page_Load event in your application:

To write the code in Visual Basic:

Visual Basic

Page.ClientScript.RegisterHiddenField("currentCellValue", Nothing)
 If IsPostBack Then
 Dim currentCellValue As String = Page.Request("currentCellValue")
 End If

To write the code in C#:

C#

Page.ClientScript.RegisterHiddenField("currentCellValue", null);
 if (IsPostBack)
 {
 string currentCellValue = Page.Request["currentCellValue"];
 }

This code allows you to track when the current cell position changes and send this data to server at postback.

Getting a Value from a Cell
You can easily read the value of a cell in a grid by using the NewEditIndex property to get the index of the row being
edited.

For example, use the following code:

To write the code in Visual Basic:

Visual Basic

' Get the index of the row being edited.
Protected Sub C1GridView1_RowEditing(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewEditEventArgs)
 Handles C1GridView1.RowEditing
 Dim idx As Integer
 Dim id As String
 idx = e.NewEditIndex
' Get the text in a cell in the edited row.
 id = C1GridView1.Rows(idx).Cells(0).Text
End Sub

To write the code in C#:

GridView for ASP.NET Web Forms 67

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

// Get the index of the row being edited.
protected void C1GridView1_RowEditing(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewEditEventArgs e)
 {
 int idx = 0;
 string id;
 idx = e.NewEditIndex;

 // Get the text in a cell in the edited row.
 id = C1GridView1.Rows[idx].Cells[0].Text;
 }

The above code will get a numeric value in a specified column in the row that has been edited.

Updating the Grid with AJAX
The following task-based help items demonstrate setting C1GridView properties to use AJAX to update the grid,
including moving columns, paging, sorting, filtering and more.

Note that multiple Actions may be selected for a grid, or you can set the Action property to All for all actions on the
grid to be performed via callbacks.

Moving Columns
You can use AJAX to update the grid when the user moves columns at run time. For example, you can update the grid with AJAX on column move in the Designer, in Source view, and in code.

In the Designer

To enable AJAX when moving a column, complete the following steps:

1. Select the C1GridView control and set the AllowColMoving property to True in the Properties window. If you run the program now, you will notice that the whole page refreshes when you move a column.
2. In the project, with C1GridView still selected, expand the CallbackSettings node, click the drop-down arrow next to the Action property in the Properties window, and check the ColMove check box.

In Source View

Switch to Source view and add AllowColMoving="True" and CallbackOptions="ColMove" to the <cc1:C1GridView> tag, so it appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="AccessDataSource1" VisualStylePath="~/C1WebControls/VisualStyles" AllowColMoving="True" CallbackOptions="ColMove">

In Code

To enable AJAX when moving a column, add the following code to the Page_Load event:

To write the code in Visual Basic:

Visual Basic

C1GridView1.AllowColMoving = True
C1GridView1.CallbackOptions = CallbackOptions.ColMove

To write the code in C#:

C#

C1GridView1.AllowColMoving = true;
C1GridView1.CallbackOptions = CallbackOptions.ColMove;

What You've Accomplished

Run the program and move a column. You will notice only the grid refreshes, not the entire page.

Editing a Record
You can use AJAX to update the grid when the user edits a record at run time. For more information about editing
records, see the Editing Rows topic.

To enable AJAX when editing a record, complete the following steps:

1. Select the C1GridView control and click the Smart Tag to open the C1GridView Tasks menu.
2. Select Property builder. The C1GridView Properties dialog box (the Property builder) appears.
3. Click the Columns tab and expand the Command Column node in the list of Available columns.
4. Click Edit, Update, Cancel and then click the arrow button to add the Edit, Update, Cancel button column to

the list of Selected columns.
5. Click OK to close the Property builder.

GridView for ASP.NET Web Forms 68

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. With the C1GridView control still selected, expand the CallbackSettings node, click the drop-down arrow next
to the Action property in the Properties window, and check the Editing check box.

What You've Accomplished
Run the program and notice that only the grid refreshes when you click the Edit button. The entire page does not
have to reload.

Paging the Grid
You can use AJAX to update the grid when the user pages the grid at run time. For example, you can update the grid with AJAX on grid paging in the Designer, in Source view, and in code. For more information about paging, see Paging and Creating a Pageable Grid.

In the Designer

To enable AJAX when paging through a C1GridView, complete the following steps:

1. Select the C1GridView control and click the Smart Tag to open the C1GridView Tasks menu.
2. Select Property builder. The C1GridView Properties dialog box (the Property builder) appears.
3. Click the Paging tab and select the Allow paging check box in the Paging section.
4. Click OK to close the Property builder.
5. With the C1GridView control still selected, expand the CallbackSettings node, click the drop-down arrow next to the Action property in the Properties window, and check the Paging check box.

In Source View

Switch to Source view and add AllowPaging="True" and CallbackOptions="Paging" to the <cc1:C1GridView> tag, so it appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="AccessDataSource1" VisualStylePath="~/C1WebControls/VisualStyles" AllowPaging="True" CallbackOptions="Paging">

In Code

To enable AJAX when filtering a column, add the following code to the Page_Load event:

To write the code in Visual Basic:

Visual Basic

C1GridView1.AllowPaging = True
C1GridView1.CallbackOptions = CallbackOptions.Paging

To write the code in C#:

C#

C1GridView1.AllowPaging = true;
C1GridView1.CallbackOptions = CallbackOptions.Paging;

What You've Accomplished
Run the program and click the paging navigation at the bottom of the grid. Notice that only the grid refreshes as you page through it. The entire page is not reloaded.

Selecting a Record
You can use AJAX to update the grid when the user selects a record at run time. To enable AJAX when selecting a
record, complete the following steps:

1. Select the C1GridView control and click the Smart Tag to open the C1GridView Tasks menu.
2. Select Property builder. The C1GridView Properties dialog box (the Property builder) appears.
3. Click the Columns tab and expand the Command Field node in the list of Available columns.
4. Click Select and then click the arrow button to add a Select button column to the list of Selected columns.
5. Click the Format tab and choose Selected Rows under Rows in the list of Objects.
6. Click the BackColor ellipsis button and choose a color. This will highlight the selected record in the grid.
7. Click OK to close the Property builder.
8. With the C1GridView control still selected, expand the CallbackSettings node, click the drop-down arrow next

to the CallbackSettings.Action property in the Properties window, and check the Selection check box.

What You've Accomplished
Run the program and notice that only the grid refreshes when you select a record in the grid.

Sorting Columns
You can use AJAX to update the grid when the user sorts a column at run time. For example, you can update the grid with AJAX on column sort in the Designer, in Source view, and in code. For more information about sorting, see the Sorting topic.

In the Designer

To enable AJAX when sorting on a column, complete the following steps:

1. Select the C1GridView control and click the Smart Tag to open the C1GridView Tasks menu.
2. Select Property builder. The C1GridView Properties dialog box (the Property builder) appears.
3. Click the General tab and select the Allow sorting check box in the Behavior section.
4. Click OK to close the Property builder. If you run the program now, you will notice that the whole page refreshes when you sort a column.
5. In the project, with the C1GridView control still selected, expand the CallbackSettings node, click the drop-down arrow next to the Action property in the Properties window, and check the Sorting check box.

In Source View

Switch to Source view and add AllowSorting="True" and CallbackOptions="Sorting" to the <cc1:C1GridView> tag, so it appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="AccessDataSource1" VisualStylePath="~/C1WebControls/VisualStyles" AllowSorting="True" CallbackOptions="Sorting">

In Code

To enable AJAX when filtering a column, add the following code to the Page_Load event:

To write the code in Visual Basic:

Visual Basic

C1GridView1.AllowSorting = True
 C1GridView1.CallbackOptions = CallbackOptions.Sorting

GridView for ASP.NET Web Forms 69

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write the code in C#:

C#

C1GridView1.AllowSorting = true;
 C1GridView1.CallbackOptions = CallbackOptions.Sorting;

What You've Accomplished
Now when you run the program and sort a column, you will notice that only the grid, and not the entire page, refreshes.

Filtering Columns
You can use AJAX to update the grid when the user filters columns at run time. For example, you can update the grid with AJAX on filtering in the Designer, in Source view, and in code. For more information about filtering columns, see the Filtering topic.

In the Designer

To enable AJAX when filtering a column, complete the following steps:

1. Select the C1GridView control and navigate to the Properties window.
2. In the Properties window, set the ShowFilter property to True.
3. If you run the program now, you will notice that the whole page refreshes when you filter a column.
4. In the project, with the C1GridView control still selected, expand the CallbackSettings node, click the drop-down arrow next to the Action property in the Properties window, and check the Filtering check box.

In Source View

Switch to Source view and add ShowFilter="True" and CallbackOptions="Filtering" to the <cc1:C1GridView> tag, so it appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="AccessDataSource1" VisualStylePath="~/C1WebControls/VisualStyles" ShowFilter="True" CallbackOptions="Filtering">

In Code

To enable AJAX when filtering a column, add the following code to the Page_Load event:

To write the code in Visual Basic:

Visual Basic

C1GridView1.ShowFilter = True
C1GridView1.CallbackOptions = CallbackOptions.Filtering

To write the code in C#:

C#

C1GridView1.ShowFilter = true;
C1GridView1.CallbackOptions = CallbackOptions.Filtering;

What You've Accomplished

Now when you run the program and filter a column, you will notice that only the grid refreshes.

Updating the Grid at Run Time
While you can use the RowUpdating event to edit the grid's underlying data source, another option is to use the client-side
Update() method. The RowUpdating event gets fired when the client-side Update() method is called. In some situations you
may prefer this method to send edits done by user to server in client-editing mode.

In this example, you'll add a button that updates the grid when clicked. Complete the following steps:

1. Select View | Markup to switch to Source view.
2. Add the following markup just above the <cc1:C1GridView> tag to add a button to the application.

<asp:Button ID="btn1" runat="server" Text="Update" OnClientClick="btn_ClientClick()" />

3. Add the following markup inside the application's <head></head> tags:

<script type="text/javascript">
 function btn_ClientClick(sender, args) {
 var grid = $("#C1GridView1");
 grid.c1gridview("endEdit");
 grid.c1gridview("update");
 }
</script>

This script will update the grid when the button is clicked.

Enable CheckBox Filtering
This topic demonstrates how to use filters on a CheckBox column of a C1GridView control.

Note: To use CheckBox Filters in the C1GridView control, the table in the database bound to the C1GridView must contain
a yes/no (CheckBox) field.

In the Designer

Complete the following steps:

GridView for ASP.NET Web Forms 70

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Drag and drop a C1GridView control to your Web Form.
2. Add data to the C1GridView. For more information, see Binding the Grid to a Data Source.
3. Click the Smart Tag on the top left corner of the C1GridView control to enable filters and select Property Builder from

the drop-down menu.
4. In the Property Builder window, check the ShowFilter option and click OK. A filter bar appears at the top of the grid

just under the grid’s column headings.

In Source View

To enable filtering on the checkbox field, modify the <cc1:C1GridView ></cc1:C1GridView > tag as shown below:

<cc1:C1GridView ID="C1GridView1" runat="server" AutogenerateColumns="False" DataKeyNames="ID"
DataSourceID="SqlDataSource1" ShowFilter="True">

Set the ShowFilter property to True.

In Code

To enable checkbox filters, add the following code to the Page_Load event:

To write the code in Visual Basic:

Visual Basic

' Set ShowFilter to True
 C1GridView1.ShowFilter = True

To write the code in C#:

C#

// Set ShowFilter to true
 C1GridView1.ShowFilter = true;

Client-Side Selection
This topic demonstrates how to enable client side selection and change the background color of selected rows, columns and cells of a C1GridView.

In the Designer

Complete the following steps to create a bound grid:

1. Drag and drop a C1GridView control to your Web Form.
2. Add data to the C1GridView. For more information, see Binding the Grid to a Data Source.
3. Click OK.

In Source View

To change the background color of a single selected row, add ClientSelectionMode= "SingleRow" to the <c1:C1GridView> tag so that it appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server" AutogenerateColumns="False" DataKeyNames="EmployeeID" DataSourceID="SqlDataSource1" ClientSelectionMode= "SingleRow">

To define the background color, add the following code between the <head> </head> tag as shown below:

<style type = "text/css">
.wijmo-wijgrid .ui-state-highlight
{
 background-color: Green!important;
 }
</style>

To change background color of multiple rows, add ClientSelectionMode = "MultiRow" to the <c1:C1GridView> tag and attach the CSS code as shown above. ClientSelectionMode property can also be set for cells or columns.

What You've Accomplished

When you run the project, the background color of the selected rows are changed. To select multiple rows use the SHIFT or CTRL keys.

GridView for ASP.NET Web Forms 71

Copyright © 2017 GrapeCity, inc. All rights reserved.

Client-Side Tutorials
The following tutorials will walk you through completing more complex applications using the C1GridView control's
client-side scripting.

Client-Side Editing Tutorial
In this tutorial, you will create a grid bound to a datasource, enable client-side editing using the AllowClientEditing
property, and validate the data provided by the user before it gets updated back to the server.

Step 1 of 4: Binding Data to the control
In this step you begin by creating a new project, adding the C1GridView control to it and then binding it to a datasource.
Note that in this example, you'll be using the Northwind database, C1Nwind.mdb, installed by default in the ComponentOne Samples\Common folder installed in your Documents folder.

In the Designer

1. From the Visual Studio File menu select New │ Project. The New Project dialog box appears.
2. In the New Project dialog box expand the language node in the left pane and select Web.
3. In the right pane, choose ASP.NET Empty Web Application, enter a Name for your application, and select OK. A new application is created.
4. In the Solution Explorer, right-click the project name and choose Add Reference.
5. In the Add Reference dialog box, locate and select the C1.Web.Wijmo.Controls and C1.Web.Wijmo.Controls.Design assemblies and click OK. The references are added.
6. Right-click the project in the Solution Explorer and from the context menu choose Add │ New Item.
7. In the Add New Item dialog box choose Web Form from the list of templates, name the item Default.aspx, and click Add. The new web form opens.
8. In the Solution Explorer, right click the project name and choose Add | New Folder. Name the new folder App_Data.
9. Navigate to the Visual Studio Toolbox and double-click the C1GridView icon to add the control to your project.

10. In the Design view, select the C1GridView control.
11. In the Solution Explorer window, right-click the App_Data folder and select Add Existing Item from the context menu.
12. In the Add Existing Item dialog box, navigate to where the Northwind database is located and select C1Nwind.mdb. By default the Northwind database is in the samples directory.
13. Click Add to close the dialog box and add the file to your project.

In Source View
Switch to source view and complete the following steps:

1. Click the C1GridView control to select it and navigate to the Properties window to set C1GridView control properties or set the following text to the <cc1:C1GridView> tag:
a. Set the HighlightCurrentCell property to True.
b. Set the AllowKeyboardNavigation property to True.
c. Set the AutogenerateColumns property to False.
d. Set the DataKeyNames property to OrderID.

It will appear similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server" DataKeyNames="OrderID" HighlightCurrentCell="true" AllowKeyboardNavigation="true"
 AutogenerateColumns="false">

2. Add columns to bind data fields using the following code inside the <cc1:C1GridView> … </cc1:C1GridView> tags.
<Columns>
 <cc1:C1BoundField DataField="OrderID" HeaderText="OrderID"></cc1:C1BoundField>
 <cc1:C1BoundField DataField="ShipName" HeaderText="ShipName"></cc1:C1BoundField>
 <cc1:C1BoundField DataField="ShipCity" HeaderText="ShipCity"></cc1:C1BoundField>
 <cc1:C1BoundField DataField="ShippedDate" HeaderText="ShippedDate"></cc1:C1BoundField>
 </Columns>

3. Add the following code after </cc1:C1GridView> to set the query:
<asp:AccessDataSource ID="AccessDataSource1" runat="server" DataFile="~/App_Data/C1Nwind.mdb" SelectCommand="SELECT TOP 10 [OrderID], [ShipName],
 [ShipCity], [ShippedDate] FROM ORDERS WHERE [ShippedDate] IS NOT NULL"></asp:AccessDataSource>

In Code

Open the code behind and add the following code:

1. Add the following code to the Page_Load event to refresh the view in the grid:

To write code in Visual Basic:

Visual Basic

If Not IsPostBack Then
 UpdateView()
End If

To write code in C#:

C#

if (!IsPostBack)
 {
 UpdateView();
 }

2. Add the following at the top of your page to add namespaces in your code:

To write code in Visual Basic:

Visual Basic

Imports System.Collections

GridView for ASP.NET Web Forms 72

Copyright © 2017 GrapeCity, inc. All rights reserved.

Imports System.Data
Imports System.Data.OleDb

To write code in C#:

C#

using System.Collections;
using System.Data;
using System.Data.OleDb;

3. Add the following code to bind the data source to the grid after the Page_Load event:

To write code in Visual Basic:

Visual Basic

Private Function GetDataSet() As DataTable

 Dim orders As DataTable = TryCast(Page.Session("ClinetOrders"), DataTable)

 If orders Is Nothing Then_
 Using connection As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data_

 Source=|DataDirectory|\C1Nwind.mdb;Persist Security Info=True")
 Using adapter As New OleDbDataAdapter("SELECT TOP 10 [OrderID], [ShipName],_

 [ShipCity], [ShippedDate] FROM ORDERS WHERE [ShippedDate] IS NOT NULL", connection)
 orders = New DataTable("Orders")
 adapter.Fill(orders)

 orders.PrimaryKey = New DataColumn() {orders.Columns("OrderID")}

 Page.Session("ClinetOrders") = orders
 End Using
 End Using
 End If
 Return orders
End Function

Private Sub UpdateView()
 ' Bind the data
 C1GridView1.DataSource = GetDataSet()
 C1GridView1.DataBind()
End Sub

To write the code in C#:

C#

private DataTable GetDataSet()
 {
 DataTable orders = Page.Session["ClinetOrders"] as DataTable;
 if (orders == null)
 {
 using (OleDbConnection connection = new OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=|DataDirectory|\C1Nwind.mdb;Persist Security Info=True"))
 {
 using (OleDbDataAdapter adapter = new OleDbDataAdapter("SELECT TOP 10 [OrderID], [ShipName], [ShipCity], [ShippedDate] FROM ORDERS WHERE [ShippedDate] IS NOT NULL",
connection))
 {
 orders = new DataTable("Orders");
 adapter.Fill(orders);
 orders.PrimaryKey = new DataColumn[] { orders.Columns["OrderID"] };
 Page.Session["ClinetOrders"] = orders;
 }
 }
 }
 return orders;
 }

 private void UpdateView()
 {
 //Bind the data
 C1GridView1.DataSource = GetDataSet();
 C1GridView1.DataBind();
 }

What You’ve Accomplished
Run the project and observe that you now have a fully-functional grid application Orders table of the database.

In the next step of this tutorial you'll customize the grid's functionality by setting the client side edit feature and explore the grid's run-time interactions.

GridView for ASP.NET Web Forms 73

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 2 of 4: Enabling client-side editing
In the previous step of the tutorial you created a simple grid application and bound the grid to a data source. In this step you customize the grid
application further by enabling client-side editng.

Complete the following steps to continue:

In Source View

Click the C1GridView control to select it and navigate to the Properties window to set C1GridView control AllowClientEditing property to True or
set the following in the <cc1:C1GridView> tag:

AllowClientEditing="true"

It will appear similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server"
AllowClientEditing="true" DataKeyNames="OrderID" HighlightCurrentCell="true" AllowKeyboardNavigation="true"
AutogenerateColumns="false">

What You’ve Accomplished
Run the project and see that you can now edit the cell on double click.

 In the next step of this tutorial add data validation to the grid values.

Step 3 of 4: Data validation before updating
In the previous step of the tutorial you enabled client-side editing. In this step you customize the grid application
further by validating the data provided by the user before it is updated back to the server.

Complete the following steps to continue:

In Source View

1. Add the validation condition in the beforeCellUpdate function within the <head>...</head> tags. In this
example, if the value in the Order ID field is less than 10000, a message appears :
 <script type="text/javascript">
 function beforeCellUpdate(e, args) {
 if (args.cell.column().dataField === "OrderID") {
 var editor = $(args.cell.tableCell()).find("input"),
 value = parseInt(editor.val());

 if (value < 10000) {
 editor.addClass("invalid-value");
 alert("Invalid value!");
 return false;
 }
 }
 }
 </script>

2. Click the C1GridView control to select it and navigate to the Properties window to

GridView for ASP.NET Web Forms 74

Copyright © 2017 GrapeCity, inc. All rights reserved.

set OnClientBeforeCellUpdate property to beforeCellUpdate, or add
OnClientBeforeCellUpdate="beforeCellUpdate" in <cc1:C1GridView> tag.

What You’ve Accomplished

Run your project and observe that when you try to edit the data from the Orders table, the changed value is validated
against the condition we set above. If the input provided by the user in any OrderID field less than 10000, then an
"Invalid value" message appears.

In the next step of this tutorial, update the validated data back to the server.

Step 4 of 4: Updating Data back to the Server
In the previous step of the tutorial you validated the data entered by the user against a condition. In this step you update the new data back to the server.

Complete the following steps to continue:

In Source View

1. Add <CallbackSettings Action="Editing" /> after the <Columns>...</Columns> tags.
2. Click the C1GridView control to select it and navigate to the Properties window to set C1GridView control AutoGenerateDeleteButton property to True or set the following in the <cc1:C1GridView> tag:

AutoGenerateDeleteButton="true"

It appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server"
AutoGenerateDeleteButton="true" AllowClientEditing="true" DataKeyNames="OrderID" HighlightCurrentCell="true" AllowKeyboardNavigation="true" AutogenerateColumns="false">

In Code

1. Add the following code to the C1GridView1_RowEditing event:

To write the code in Visual Basic:

Visual Basic

Private Sub C1GridView1_RowEditing(sender As Object, e As C1.Web.Wijmo.Controls.C1GridView.C1GridViewEditEventArgs)
 C1GridView1.EditIndex = e.NewEditIndex
 UpdateView()

End Sub

To write the code in C#:

C#

void C1GridView1_RowEditing(object sender, C1.Web.Wijmo.Controls.C1GridView.C1GridViewEditEventArgs e)
 {
C1GridView1.EditIndex = e.NewEditIndex;
 UpdateView();
 }

2. To handle the C1GridView1_RowEditing event, add the following code to the Page_Init event:

To write the code in Visual Basic:

Visual Basic

Protected Sub Page_Init(sender As Object, e As EventArgs)
 AddHandler C1GridView1.RowEditing, AddressOf C1GridView1_RowEditing
End Sub

To write the code in C#:

C#

protected void Page_Init(object sender, EventArgs e)
 {
 C1GridView1.RowEditing += C1GridView1_RowEditing;
 }

3. Update the dataset to handle the changes made by the user. Add the following code in the C1GridView1_RowUpdating event:

To write the code in Visual Basic:

Visual Basic

Dim orders As DataTable = GetDataSet()

Dim row As DataRow = orders.Rows.Find(C1GridView1.DataKeys(e.RowIndex).Value)
 If row IsNot Nothing Then
 For Each entry As DictionaryEntry In e.NewValues
 row(DirectCast(entry.Key, String)) = entry.Value
 Next
 Else
 Throw New RowNotInTableException()
 End If

To write the code in C#:

C#

DataTable orders = GetDataSet();
 DataRow row = orders.Rows.Find(C1GridView1.DataKeys[e.RowIndex].Value);
 if (row != null)
 {
 foreach (DictionaryEntry entry in e.NewValues)
 {
 row[(string)entry.Key] = entry.Value;
 }
 }
 else
 {
 throw new RowNotInTableException();
 }

4. Accept changes in the dataset so that the edited values are sent back to the server. Add the following code in the C1GridView1_EndRowUpdated event:

GridView for ASP.NET Web Forms 75

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write the code in Visual Basic:

Visual Basic

GetDataSet().AcceptChanges()
UpdateView()

To write the code in C#:

C#

GetDataSet().AcceptChanges();
UpdateView();

5. Delete a row when the corresponding Delete button is clicked. Add the following code in the C1GridView1_RowDeleting event:

To write the code in Visual Basic:

Visual Basic

Dim orders As DataTable = GetDataSet()

Dim row As DataRow = orders.Rows.Find(C1GridView1.DataKeys(e.RowIndex).Value)

 If row IsNot Nothing Then
 orders.Rows.Remove(row)
 orders.AcceptChanges()
 UpdateView()
 Else
 Throw New RowNotInTableException()
 End If

To write the code in C#:

C#

DataTable orders = GetDataSet();
 DataRow row = orders.Rows.Find(C1GridView1.DataKeys[e.RowIndex].Value);

 if (row != null)
 {
 orders.Rows.Remove(row);
 orders.AcceptChanges();
 UpdateView();
 }
 else
 {
 throw new RowNotInTableException();
 }

6. Handle the C1GridView1_RowDeleting event, add the following code to the UpdateView() method:

To write the code in Visual Basic:

Visual Basic

AddHandler C1GridView1.RowDeleting, AddressOf C1GridView1_RowDeleting

To write the code in C#:

C#

C1GridView1.RowDeleting += new C1.Web.Wijmo.Controls.C1GridView.C1GridViewDeleteEventHandler(C1GridView1_RowDeleting);

In Source View

Click the C1GridView control to select it and navigate to the properties window to handle C1GridView control events or set the following text to the <cc1:C1GridView> tag:

1. Set the EndRowUpdated event to C1GridView1_EndRowUpdated.
2. Set the RowDeleting event to C1GridView1_RowDeleting.
3. Set the RowUpdating event to C1GridView1_RowUpdating.

 The tag appears similar to the following:

<cc1:C1GridView ID="C1GridView1" runat="server"
AutoGenerateDeleteButton="true" AllowClientEditing="true" DataKeyNames="OrderID" HighlightCurrentCell="true" OnRowUpdating="C1GridView1_RowUpdating" OnEndRowUpdated="C1GridView1_EndRowUpdated" OnRowDeleting="C1GridView1_RowDeleting" AllowKeyboardNavigation="true" AutogenerateColumns="false">

What You’ve Accomplished

Run the project and see that the edited data value is updated on the server. You can also delete a row and update the grid with the changes.

The following images illustrate the resultant grid interactions explained in this tutorial.

Fig (i) - Editing column value in the grid

Fig (ii) - Changed value updated in the grid

Fig (iii) - Deleting a row in the grid

Fig (iv) - Updated grid after deletion

Updating Database from Client Side
C1GridView enables editing the cells of the grid at client side, without defining Template columns, by setting the
AllowClientEditing to true.

Note: Oledb and Sql datasource can be used for binding.

In the Designer

Right-click the C1GridView control and select Show Smart Tag from the context menu to bind it to the C1Nwind.mdb
database, which is located by default in the samples directory. For detailed steps go to Step 1 of 3: Binding
C1GridView to a DataSource.

GridView for ASP.NET Web Forms 76

Copyright © 2017 GrapeCity, inc. All rights reserved.

In Source View

1. To define the DataKeyNames and the columns, and to set the CallbackSettings for editing in C1GridView,
modify the <cc1:C1GridView ></cc1:C1GridView > tag as shown below:
<cc1:C1GridView ID="C1GridView1" runat="server"
OnRowUpdating="C1GridView1_RowUpdating"
AutogenerateColumns="false" DataKeyNames="CustomerID"
ClientSelectionMode="SingleRow"
AllowClientEditing="true" ShowFilter="true" OnFiltering="C1GridView1_Filtering"
OnEndRowUpdated="C1GridView1_EndRowUpdated">
 <CallbackSettings Action="Editing, Filtering" />
 <Columns>
 <cc1:C1BoundField DataField="CustomerID" HeaderText="CustomerID"
SortExpression="CustomerID">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="CompanyName" HeaderText="Company Name"
SortExpression="CompanyName">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="ContactName" HeaderText="Contact Name"
SortExpression="ContactName">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="City" HeaderText="City"
SortExpression="City">
 </cc1:C1BoundField>
 <cc1:C1BoundField DataField="Country" HeaderText="Country"
SortExpression="Country">
 </cc1:C1BoundField>
 </Columns>
</cc1:C1GridView>

2. To add a button named "Update", add the following code:
<asp:Button ID="btn1" runat="server" Text="Update C1GridView"
 OnClientClick="btn_ClientClick(); return false;" />

3. Use the following jQuery function to call the update() method:
function btn_ClientClick(sender, args) {
 var grid = $("#C1GridView1");
 grid.c1gridview("endEdit");
 grid.c1gridview("update");
 }

In Code

1. To set the Update command and to call the Update() method, add the following code :

To write the code in Visual Basic

Visual Basic

 Public Function GetDataTable() As DataTable
 Dim dt As DataTable = TryCast(Page.Session("Customers"), DataTable)
 Dim con As New OleDbConnection("provider=Microsoft.Jet.Oledb.4.0; Data Source=" +
Server.MapPath("~/App_Data/C1NWind.mdb"))
 Dim da As New OleDbDataAdapter()
 da.SelectCommand = New OleDbCommand("SELECT * FROM [Customers] Order By [CustomerID]", con)
 da.UpdateCommand = New OleDbCommand("Update [Customers] set [CompanyName]=?,
[ContactName]=?, [City]=?, [Country]=? where CustomerID = ?", con)
 da.UpdateCommand.Parameters.Add("@CompanyName", OleDbType.VarChar, 50, "CompanyName")

GridView for ASP.NET Web Forms 77

Copyright © 2017 GrapeCity, inc. All rights reserved.

 da.UpdateCommand.Parameters.Add("@ContactName", OleDbType.VarChar, 50, "ContactName")
 da.UpdateCommand.Parameters.Add("@City", OleDbType.VarChar, 50, "City")
 da.UpdateCommand.Parameters.Add("@Country", OleDbType.VarChar, 50, "Country")
 da.UpdateCommand.Parameters.Add("@CustomerID", OleDbType.VarChar, 50, "CustomerID")
 If dt Is Nothing Then
 dt = New DataTable()
 da.Fill(dt)
 dt.PrimaryKey = New DataColumn() {dt.Columns("CustomerID")}
 Page.Session("Customers") = dt
 End If
 da.Update(dt)
 Return dt
 End Function

To write the code in C#

C#

public DataTable GetDataTable()
 {
 DataTable dt = Page.Session["Customers"] as DataTable;
 OleDbConnection con = new OleDbConnection("provider=Microsoft.Jet.Oledb.4.0; Data Source=" +
Server.MapPath("~/App_Data/C1NWind.mdb"));
 OleDbDataAdapter da = new OleDbDataAdapter();
 da.SelectCommand = new OleDbCommand("SELECT * FROM [Customers] Order By [CustomerID]", con);

 da.UpdateCommand = new OleDbCommand("Update [Customers] set [CompanyName]=?,
[ContactName]=?, [City]=?, [Country]=? where CustomerID = ?", con);
 da.UpdateCommand.Parameters.Add("@CompanyName", OleDbType.VarChar, 50, "CompanyName");
 da.UpdateCommand.Parameters.Add("@ContactName", OleDbType.VarChar, 50, "ContactName");
 da.UpdateCommand.Parameters.Add("@City", OleDbType.VarChar, 50, "City");
 da.UpdateCommand.Parameters.Add("@Country", OleDbType.VarChar, 50, "Country");
 da.UpdateCommand.Parameters.Add("@CustomerID", OleDbType.VarChar, 50, "CustomerID");
 if (dt == null)
 {
 dt = new DataTable();
 da.Fill(dt);
 dt.PrimaryKey = new DataColumn[] { dt.Columns["CustomerID"] };
 Page.Session["Customers"] = dt;
 }
 da.Update(dt);
 return dt;
 }

2. To update the row with the modified data, add the following code to handle the RowUpdating event:

To write the code in Visual Basic

Visual Basic

Protected Sub C1GridView1_RowUpdating(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewUpdateEventArgs) Handles C1GridView1.RowUpdating
 Dim customers As DataTable = GetDataTable()
 Dim row As DataRow = customers.Rows.Find(C1GridView1.DataKeys(e.RowIndex).Value)

GridView for ASP.NET Web Forms 78

Copyright © 2017 GrapeCity, inc. All rights reserved.

 If row IsNot Nothing Then
 For Each entry As DictionaryEntry In e.NewValues
 row(DirectCast(entry.Key, String)) = entry.Value
 Next
 Else
 Throw New RowNotInTableException()
 End If
 End Sub

To write the code in C#

C#

 protected void C1GridView1_RowUpdating(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewUpdateEventArgs e)
 {
 DataTable customers = GetDataTable();
 DataRow row = customers.Rows.Find(C1GridView1.DataKeys[e.RowIndex].Value);
 if (row != null)
 {
 foreach (DictionaryEntry entry in e.NewValues)
 {
 row[(string)entry.Key] = entry.Value;
 }
 }
 else
 {
 throw new RowNotInTableException();
 }
 Page.Session["Customers"] = customers;
 }

3. To rebind the grid, add the following code to handle the EndRowUpdated event:

To write the code in Visual Basic

Visual Basic

 Protected Sub C1GridView1_EndRowUpdated(sender As Object, e As
C1.Web.Wijmo.Controls.C1GridView.C1GridViewEndRowUpdatedEventArgs) Handles
C1GridView1.EndRowUpdated
 C1GridView1.DataSource = GetDataTable()
 C1GridView1.DataBind()
 End Sub

To write the code in C#

C#

 protected void C1GridView1_EndRowUpdated(object sender,
C1.Web.Wijmo.Controls.C1GridView.C1GridViewEndRowUpdatedEventArgs e)
 {
 C1GridView1.DataSource = GetDataTable();
 C1GridView1.DataBind();

GridView for ASP.NET Web Forms 79

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }

You can change the selection to some other row and edit the values to save the updated values. Double-click the cells
to make them editable.

Tip: You cannot edit a grid containing a single row, as there is no other row which can be clicked to change the
selection and make the changes. The workaround for the same is to call the client side update() method of
C1GridView. For details please visit our online blog.

Handling client side Key events
This topic demonstrates how to enable handling key events, in C1GridView control, at client side. Since C1GridView
does not have any keyboard events of its own, you need to handle its OnClientBeforeCellEdit event and define the
keyup event for each cell. Thus, if you make a change in any cell then this event will fire, and you can check the
content entered by the end user.

Use the following code in OnClientBeforeCellEdit event in the source view:

 function BeforeCellEdit(e, args) {
 var cell = args.cell;
 var grid = $("#<%=C1GridView1.ClientID %>");
 cell.container().keyup(function (event) {
 var count = 0;
 var key = event.which;
 if (key >= 65 && key <= 90) {
 count = 1;
 }
 else if (key >= 48 && key <= 57) {
 count = 1;
 } if (count == 1) {
 $(grid).c1gridview("endEdit");
 var row = cell.rowIndex();
 var col = cell.cellIndex();
 $(grid).c1gridview("currentCell", col + 1, row);
 }
 });
 }

In the above code, you retrieve the key entered by the user with the help of the event, and if it is a letter or a number
then the focus moves to the next cell. Similarly, you can check the user input and can take corresponding action on
the basis of same.

GridView for ASP.NET Web Forms 80

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://our.componentone.com/2012/04/13/updating-database-from-client-side/

Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos
which may make use of other development tools included with the ComponentOne Studios. Samples can be accessed
from the ComponentOne ControlExplorer. The ControlExplorer sample includes a section that details some of the
functionality available in the C1GridView control.

C# Samples

The following pages within the ControlExplorer sample installed with ASP.NET Web Forms Edition detail the
C1GridView control's functionality:

for ASP.NET Web Forms
Sample Description

Overview The C1GridView displays the values of a data source in a table where each
column represents a field and each row represents a record. This sample
demonstrates a simple sortable grid.

CustomEditing The C1GridView supports server editing. This sample shows how to use
custom data binding to bind the C1GridView to a dataset stored in the
session object, how to use template fields to implement custom editors and
how to use UpdateBindings collections of the template fields to
automatically update the dataset with the Update method when custom data
binding is used.

ClientSideSelection C1GridView supports several modes of client-side cell selection. This sample
shows these modes and demonstrates how to use the client-side object
model to change selection mode without sending requests to the server.

Filtering The C1GridView supports an intuitive user interface for filtering the rows in
the grid. This sample demonstrates filtering.

Columns This sample shows how to use bands to organize column headers into a
hierarchical structure. It also shows you how to sort columns and use a drag-
and-drop operation to reorder columns.

Paging Paging is allowed if the AllowPaging property is set to True. This sample
demonstrates paging.

GroupArea The C1GridView supports data grouping against one or more columns. The
column will be grouped if the GroupInfo.Position property is set to a value
other than None. This sample demonstrates grouping.

Aggregates The C1GridView supports aggregates calculation against one or more
grouped columns. It is possible to calculate aggregate values for each group
of data rows. An aggregate can be calculate for any column with compatible
data type if the column is preceded by a grouped column. C1GridView
supports aggregate functions like Sum, Count, Min, Max and other.

Scrolling The C1GridView supports both horizontal and vertical scrolling. Scrolling is
allowed if the ScrollingSettings.Mode property is set to value other than
None. When scrolling is used, C1GridView's header is automatically fixed.

CurrentCell The C1GridView supports operations on the current cell. The current cell is a
data cell having focus. C1GridView highlights the current cell position, tracks
it changes, and allows the retrieval of data value.

GridView for ASP.NET Web Forms 81

Copyright © 2017 GrapeCity, inc. All rights reserved.

GroupRowsCustomStyling In this sample group header cells are styled using the .wijmo-wijgrid .wijmo-
wijgrid-groupheaderrow CSS sequence.

ClientSideEditing The C1GridView supports client editing. This sample shows how to update a
dataset stored in the session object when client editing is used and how to
provide client-side custom editors.

Merging The C1GridView supports row merging. Identical values of the particular
column can be spanned within a single cell. Row merging is allowed if the
RowMerge property of the column is set to value other than None.

Sorting This sample demonstrates sorting. Sorting is allowed if the AllowSorting
property is set to True. End-user sorting is allowed if the SortExpression
property of the column is set to non-empty value.

GridView for ASP.NET Web Forms 82

Copyright © 2017 GrapeCity, inc. All rights reserved.

Client-side Reference
As part of the amazing ComponentOne Web stack, the Wijmo jQuery UI widgets are optimized for client-side Web
development and utilize the power of jQuery for superior performance and ease of use.

The ComponentOne Wijmo website at http://wijmo.com/widgets/ provides everything you need to know about
Wijmo widgets, including demos and samples, documentation, theming examples, support and more.

The client-side documentation provides an overview, sample markup, options, events, and methods for each widget.
To get started with client-side Web development for GridView for ASP.NET Web Forms, click one of the external
links to view our Wijmo wiki documentation. Note that the Overview topic for each of the widgets applies mainly to
the widget, not to the server-side ASP.NET Web Forms control.

GridView

wijgrid documentation
wijgrid API

GridView for ASP.NET Web Forms 83

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/SuperPages/webstack/
http://wijmo.com/widgets/
http://wijmo.com/docs/wijmo/#Grid.html
http://wijmo.com/docs/wijmo/#Wijmo~wijmo.grid_namespace.html

	Cover Page
	Cover Page Info
	Table of Contents
	Overview
	Help with ASP.NET Web Forms Edition

	Key Features
	Quick Start
	Step 1 of 3: Binding C1GridView to a DataSource
	Step 2 of 3: Customizing the C1GridView Control
	Step 3 of 3: Running the Application

	GridView Top Tips
	Grid Performance
	Add GridView Manually

	Design-Time Support
	Smart Tag
	Context Menu
	Property Builder
	General Tab
	Columns Tab
	Paging Tab
	Format Tab
	Grouping Tab

	Working with GridView for ASP.NET Web Forms
	Themes
	Keyboard Navigation
	Editing Rows
	Grouping
	Setting Grouping Properties at Design Time
	Collapsing and Expanding Groups

	Sorting
	Filtering
	Filtering in C1BoundField and C1TemplateField Columns
	Paging
	Virtual Scrolling
	Hierarchical Data Binding
	Creating Hierarchical Grid

	Export Service
	Using AJAX

	Task-Based Help
	Binding the Grid to a Data Source
	Binding the Grid in a Web Site Project
	Binding the Grid in a Web Application Project
	Automatically Updating the Data Source
	Runtime Databinding of Template Field
	Runtime Data Operations

	Using the Property Builder
	Setting Properties Using the Property Builder
	Adding Columns Using the Property Builder

	Formatting the Grid's Content
	Creating a Sorted Grid
	Hiding Specified Columns
	Changing the Color of Column Headers
	Customizing Column Data using ValueLists
	Setting Alternate Row Styles
	Setting Conditional Formatting
	Creating a Scrollable Grid
	Setting the Footer Text
	Creating a Non Scrollable Row or Column

	Adding Controls to a Column
	Adding Template Columns
	Binding Template Columns
	Adding CheckBox or ListBox Controls to a Column
	Adding Input for ASP.NET Web Forms Controls

	Setting Column Width
	Merging Rows
	Creating a Pageable Grid
	Tracking the Current Cell Position
	Getting a Value from a Cell
	Updating the Grid with AJAX
	Moving Columns
	Editing a Record
	Paging the Grid
	Selecting a Record
	Sorting Columns
	Filtering Columns

	Updating the Grid at Run Time
	Enable CheckBox Filtering
	Client-Side Selection

	Client-Side Tutorials
	Client-Side Editing Tutorial
	Step 1 of 4: Binding Data to the control
	Step 2 of 4: Enabling client-side editing
	Step 3 of 4: Data validation before updating
	Step 4 of 4: Updating Data back to the Server

	Updating Database from Client Side
	Handling client side Key events

	Samples
	Client-side Reference

