
ComponentOne

BasicLibrary for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
UWP Edition Basic Library 7-8

Getting Started with UWP Edition 8

Help with UWP Edition 8

CollectionView for UWP 8

CollectionView for UWP Key Features 8-9

Getting Started with C1CollectionView 9

C1CollectionView Versus CollectionViewSource 9-11

Sorting C1CollectionView 11-12

Filtering C1CollectionView 12-13

Grouping C1CollectionView 13-14

Custom Grouping 14-15

DropDown for UWP 15

DropDown for UWP Key Features 15

C1DropDown Quick Start 15-16

Step 1 of 3: Creating an Application with a C1DropDown Control 16-17

Step 2 of 3: Adding Content to the C1DropDown Control 17-18

Step 3 of 3: Running the C1DropDown Application 18-19

Working with DropDown for UWP 19-20

C1DropDown Elements 20-21

C1DropDown Interaction 21

Drop-Down Box Direction 21-22

Additional Controls 22

C1DropDownButton Elements 22

DropDown for UWP Task-Based Help 22-23

Creating a DropDown 23-24

Adding Content to C1DropDown 24-25

Changing the Drop-Down Direction 25

Hiding the Drop-Down Arrow 25-26

Opening the Drop-Down on MouseOver 26

Creating a Hierarchical C1DropDown 26-29

GridSplitter for UWP 29

GridSplitter for UWP Quick Start 29-31

Layout Panels for UWP 31

Layout Panels for UWP Features 31

BasicLibrary for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Layout Panels for UWP Quick Starts 31-32

WrapPanel for UWP Quick Start 32

Step 1 of 3: Creating an Application 32

Step 2 of 3: Adding a C1WrapPanel to the Application 32-33

Step 3 of 3: Running the Application 33-34

DockPanel for UWP Quick Start 34

Step 1 of 3: Creating an Application 34

Step 2 of 3: Adding a C1DockPanel to the Application 34-35

Step 3 of 3: Running the Application 35

UniformGrid for UWP Quick Start 35

Step 1 of 3: Creating a UWP Application 35-36

Step 2 of 3: Adding the C1UniformGrid control to the Application 36-37

Step 3 of 3: Running the Application 37-38

Layout Panels for UWP Task-Based Help 38

Wrapping and Formatting Items with C1WrapPanel 38-39

Wrapping Items Vertically with C1WrapPanel 39-40

ListBox for UWP 40

ListBox for UWP Key Features 40-41

C1ListBox Quick Start 41

Step 1 of 3: Creating an Application with a C1ListBox Control 41-42

Step 2 of 3: Adding Data to the ListBox 42-46

Step 3 of 3: Running the ListBox Application 46

C1TileListBox Quick Start 46

Step 1 of 3: Creating an Application with a C1TileListBox Control 46-47

Step 2 of 3: Adding Data to the TileListBox 47-53

Step 3 of 3: Running the TileListBox Application 53

Top Tips 53-54

Working with ListBox for UWP 54

Basic Properties 54-56

Optical Zoom 56

UI Virtualization 56

Orientation 56

Preview State 56-57

Input for UWP 57

Input for UWP Key Features 57

Input for UWP Quick Starts 57

BasicLibrary for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

NumericBox for UWP Quick Start 57-58

Step 1 of 4: Creating an Application with NumericBox Control 58-59

Step 2 of 4: Adding C1NumericBox Controls 59-60

Step 3 of 4: Adding Code to the Application 60-64

Step 4 of 4: Running the Application 64-65

MaskedTextBox for UWP Quick Start 65

Step 1 of 4: Setting up the Application 65-66

Step 2 of 4: Customizing the Application 66-67

Step 3 of 4: Adding Code to the Application 67-69

Step 4 of 4: Running the Application 69-70

Working with Input for UWP 70

Working with C1NumericBox 70

Number Formatting 70-73

Input Validation 73-74

Working with C1MaskTextBox 74

Mask Formatting 74-75

Mask Elements 75-76

Literals 76

Prompts 76

Watermark 76

Input for UWP Task-Based Help 76-77

C1NumericBox Task-Based Help 77

Setting the Start Value 77

Setting the Increment Value 77-78

Setting the Minimum and Maximum Values 78-79

Hiding the Up and Down Buttons 79-80

Locking the Control from Editing 80

C1MaskedTextBox Task-Based Help 80-81

Setting the Value 81

Adding a Mask for Currency 81-82

Changing the Prompt Character 82-83

Changing Font Type and Size 83-84

Locking the Control from Editing 84

Menu for UWP 84-85

Menu for UWP Key Features 85-86

Menu for UWP Quick Start 86

BasicLibrary for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1 of 4: Creating a Universal Windows Application 86-88

Step 2 of 4: Adding C1Menu to the Application 88-92

Step 3 of 4: Adding a C1ContextMenu to the C1Menu Control 92-93

Step 4 of 4: Running the Project 93-94

Radial Menu for UWP 94

Radial Menu for UWP Key Features 94

Radial Menu for UWP Quick Start 94

Step 1 of 3: Creating a C1RadialMenu Application 94-95

Step 2 of 3: Adding RadialMenu Items to the Control 95-99

Step 3 of 3: Running the Project 99-100

WorkingwithC1Radial Menu 100

C1RadialMenu Elements 100-101

C1RadialMenuItem and C1RadialPanel Elements 101-103

C1RadialMenu Features 103

Automatic Collapsing 103

Checkable Radial Menu Items 103-104

Navigation Button 104-105

Nested Submenus 105-106

Positioning Items 106-108

Selecting Items 108-110

Radial Menu for UWP Task-Based Help 110

Creating Radial Menus 110

Creating a Top-Level Menu 110-111

Creating a Submenu 111-112

Creating a Color Picker Menu 112-115

Creating a Numeric Radial Menu 116-119

Working with Checkable Radial Menu Items 119

Creating a Checkable C1RadialMenuItem 119-120

Creating Mutually Exclusive Checkable Radial Menu Items 120-121

Customizing the C1RadialMenu's Appearance 121

Enabling Automatic Menu Collapsing 121-122

Adding a Separator Between Radial Menu Items 122-123

Adding an Icon to a Radial Menu Item 123-124

RangeSlider for UWP 124-125

RangeSlider for UWP Quick Start 125

BasicLibrary for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1 of 4: Setting Up the Application 125-126

Step 2 of 4: Adding a C1RangeSlider Control 126-128

Step 3 of 4: Adding Code to the Application 128-129

Step 4 of 4: Running the Application 129-131

RangeSlider Elements 131

RangeSlider Features 131

Minimum and Maximum 131-132

Thumb Values and Range 132-133

RangeSlider Orientation 133-135

TabControl for UWP 135

TabControl for UWP Key Features 135-136

TabControl for UWP Quick Start 136

Step 1 of 3: Creating a C1TabControl Application 136

Step 2 of 3: Adding C1TabControl to the Application 136-137

Step 3 of 3: Running the Project 137

TreeView for UWP 137-138

TreeView for UWP Key Features 138

TreeView for UWP Quick Start 138

Step 1 of 3: Creating an Application with a C1TreeView Control 138-139

Step 2 of 3: Adding C1TreeView Items toC1TreeView 139-140

Step 3 of 3: Customizing TreeView’sAppearance and Behavior 140-141

C1TreeView Structure 141-142

TreeView Creation 142

Static TreeView Creation 142

Dynamic TreeView Creation 142-144

Data Source TreeView Creation 144

C1TreeView Templates 145

TreeView Behavior 145

Drag-and-Drop Nodes 146

Load on Demand 146-149

Node Selection 149-150

Node Navigation 150-151

TreeView for UWP Task-Based Help 151

Adding C1TreeViewItems using Code 151-153

Getting the Text or Value of the SelectedItem in a TreeView 153

Adding Check Boxes to the TreeView 153-156

BasicLibrary for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Enabling Drag-and-Drop 156-157

BasicLibrary for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

UWP Edition Basic Library
Get UI controls for data visualization, layout, input, and more inside ComponentOne Studio UWP Edition. Based on
our popular Silverlight controls and designed to enhance the rich user experience of the UWP platform, these controls
give you powerful and unique functionality to help you build better and more compelling Universal Windows apps.

The basic library includes the following controls:

CollectionView for UWP

Get a more powerful implementation of the ICollectionView interface with CollectionView for UWP.
The C1CollectionView class delivers missing functionality like sorting, filtering, grouping, and modifying any
collection. Use C1CollectionView as you would use CollectionViewSource in your Windows Store apps to
instantly get more functionality without sacrifice.

Input for UWP

Provide smarter input for phone numbers, zip codes, percentages and more. With Input for UWP you get two
controls for masked and numeric input. Quickly gather valid input while displaying formatted text
automatically.

Layout Panels for UWP

Control the flow and positioning of the content in your Universal Windows apps with Layout Panels for UWP.
Wrap content vertically or horizontally using C1WrapPanel. Dock content along the edges of the panel
with C1DockPanel. Display content neatly in a grid using C1UniformGrid.

ListBox for UWP

Get two high performance controls for displaying lists of bound data with ListBox for UWP. Display lists with
tile layouts or with optical zoom using the C1ListBox and C1TileListBox controls. These controls support UI
virtualization so they are blazing-fast while able to display thousands of items with little-to-no loss of
performance.

Menu for UWP

Add the classic "File" menu system to your Windows Store applications with Menu for UWP. The C1Menu
control gives a real desktop look-and-feel with traditional looking menus that support deep nested items and
vertical orientation.

RadialMenu for UWP

Add an attractive radial menu system to your Windows Store apps with RadialMenu for UWP. Modeled after
popular Microsoft apps, the C1RadialMenu control gives you a unique and touch-friendly alternative to the
traditional context menu.

TabControl for UWP

Organize and navigate content as tabs with TabControl for UWP. Tabs help utilize available space while
letting the user see all available items to select. Tabs can be positioned to the top, bottom, left, or right of a
page and support several different shapes and built-in features.

TreeView for UWP

Get a hierarchical view of your data items with TreeView for UWP. The familiar TreeView UI is now available
for Windows 8 applications. Supports collapsible nodes, hierarchical templates, check box nodes, editing, and
drag-and-drop operations.

BasicLibrary for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

DropDown for UWP

Create drop-downs for any type of custom input with DropDown for UWP. Make custom drop-down editors
without having to mess with popups and flyouts. The C1DropDown control allows you to create that
specialized drop-down for anything imaginable such as a color picker, an autocomplete textbox, or even a
hierarchical combobox.

RangeSlider for UWP

Add smooth numeric data selection to your UWP applications with RangeSlider for UWP. It extends the basic
slider control and provides two thumb elements instead of one, allowing users to select ranges instead of
single values.

GridSplitter for UWP

Redistribute space between columns and rows with GridSplitter for UWP.

HeaderedContentControl for UWP

Add style to your UI, create customized layout and display blocks of content. This control is comprised of two
elements: a header bar and a content panel. The header can be horizontal or vertical and the content panel can
be located accordingly.

Getting Started with UWP Edition

Help with UWP Edition
Getting Started

For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with Component Studio UWP Edition.

CollectionView for UWP
Get a more powerful implementation of the ICollectionView interface with CollectionView for UWP.
The C1CollectionView class delivers missing functionality like sorting, filtering, grouping, and modifying any collection.
Use C1CollectionView as you would use CollectionViewSource in your Universal Windows apps to instantly get more
functionality without sacrifice.

CollectionView for UWP Key Features
CollectionView for UWP includes the following key features:

Sorting, Filtering and Grouping

The C1CollectionView class and IC1CollectionView interface give you support for sorting, filtering, and
grouping collections in UWP apps. The object model and functionality are virtually identical to those in the
ICollectionView interface provided in WPF, Silverlight, and Windows Phone, so there is no learning curve.

More Powerful than CollectionViewSource

The standard ICollectionView interface and CollectionViewSource implementations in UWP are limited
compared to WPF and Silverlight. For instance, the UWP implementation of ICollectionView does not support

BasicLibrary for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/

sorting, filtering or editing. The C1CollectionView class adds these missing elements so you can achieve the
functionality you need.

Use with Any Control

C1CollectionView implements the ICollectionView interface completely, so any standard items control can use
it as a data source. Many ComponentOne controls make use of the C1CollectionView class internally and
automatically, but the interface is public so you can use it yourself with any control.

Editable Live Rowsets

C1CollectionView provides a live rowset. Any changes made to the data in C1CollectionView are automatically
propagated to the underlying collection. C1CollectionView also adds and implements the
IEditableCollectionView interface, cloned from WPF and Silverlight, so you get a better editing experience
including pressing escape to cancel all changes made to the item being edited.

Familiar Object Model

The C1CollectionView interface is based on the WPF and Silverlight ICollectionView, so you will be familiar
with sorting, filtering and grouping your collections. The C1CollectionView class is also compatible with WPF,
Silverlight and Windows Phone versions so you can easily re-use your code.

Getting Started with C1CollectionView
C1CollectionView implements the IC1CollectionView interface which in turn implements the standard ICollectionView
interface. Like the standard CollectionView class in WPF, C1CollectionView supports current item management, item
selection, sorting, grouping, filtering and editing. If you can’t find enough information about a topic in this
documentation then you can easily search the web for ICollectionView practices in WPF and Silverlight to find very
valuable information that can be used in UWP.

The C1CollectionView class can be found in the C1.UWP assembly.

To get started with C1CollectionView, instantiate it with an IEnumerable collection of your business objects:

Visual Basic

Dim customers As List(Of Customer) = Await GetCustomerData()
Dim view = New C1.Xaml.C1CollectionView(customers)

C#

List<Customer> customers = await GetCustomerData();
var view = new C1.Xaml.C1CollectionView(customers);

Then bind it to your favorite ItemsControl or data grid to start using C1CollectionView:

Visual Basic

C1FlexGrid1.ItemsSource = view

C#

c1FlexGrid1.ItemsSource = view;

C1CollectionView Versus CollectionViewSource

BasicLibrary for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

The standard ICollectionView interface and CollectionViewSource implementations in UWP are limited compared to
WPF and Silverlight. For instance, the UWP implementation of ICollectionView does not support sorting, filtering or
collection editing. The C1CollectionView class adds these missing elements so you can achieve that extra functionality
you need. The IC1CollectionView interface is based on the WPF and Silverlight ICollectionView, so if you are familiar
with those platforms, you will be familiar with sorting, filtering and grouping with C1CollectionView. If you are
familiar with the CollectionViewSource class then moving to C1CollectionView is very easy.

Take a look at this example binding the C1FlexGrid control to a CollectionViewSource versus a C1CollectionView
given the same underlying list of Customer objects.

CollectionViewSource:

Visual Basic

Dim customers As List(Of Customer) = Await GetCustomerData()
Dim view = New CollectionViewSource()
view.Source = customers
c1FlexGrid1.ItemsSource = view.View

C#

List<Customer> customers = await GetCustomerData();
var view = new CollectionViewSource();
view.Source = customers;
c1FlexGrid1.ItemsSource = view.View;

C1CollectionView:

Visual Basic

Dim customers As List(Of Customer) = Await GetCustomerData()
Dim view = New C1.Xaml.C1CollectionView(customers)
c1FlexGrid1.ItemsSource = view

C#

List<Customer> customers = await GetCustomerData();
var view = new C1.Xaml.C1CollectionView(customers);
c1FlexGrid1.ItemsSource = view;

If you are working in MVVM, simply expose a property of type IC1CollectionView on the view model and populate
the collection within the view model. Then bind the ItemsSource property of C1FlexGrid (or whatever control you are
using) to the property in XAML.

Visual Basic

''' <summary>
''' Gets the collection of customers.
''' </summary>
Public ReadOnly Property Customers() As C1.Xaml.IC1CollectionView
 Get
 Return view
 End Get
End Property

BasicLibrary for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

/// <summary>
/// Gets the collection of customers.
/// </summary>
public C1.Xaml.IC1CollectionView Customers
{
 get { return view; }
}

Sorting C1CollectionView
You can sort items in your collection using C1CollectionView just as you would using a CollectionView
implementation in any other platform. When you sort a C1CollectionView, the underlying data set is not affected.

For example you can sort by using the SortDescriptions property passing in a SortDescription object:

Visual Basic

Dim list = New System.Collections.ObjectModel.ObservableCollection(Of Customer)()
' create a C1CollectionView from the list
Dim _view As New C1.Xaml.C1CollectionView(list)
' sort customers by country
_view.SortDescriptions.Add(New C1.Xaml.SortDescription("Country",
C1.Xaml.ListSortDirection.Ascending))

C#

var list = new System.Collections.ObjectModel.ObservableCollection<Customer>();
// create a C1CollectionView from the list
C1.Xaml.C1CollectionView _view = new C1.Xaml.C1CollectionView(list);
// sort customers by country
_view.SortDescriptions.Add(new C1.Xaml.SortDescription("Country",
C1.Xaml.ListSortDirection.Ascending));

Where "Country" is the name of the property which you want to sort on. You can sort ascending (A-Z) or descending
(Z-A) depending on the ListSortDirection parameter.

Sorting on more than one property or column

You can sort on more than one property by simply adding additional SortDescriptions. If you are sorting by multiple
properties you should use the DeferRefresh method to defer the automatic refresh after each sort so that you only
apply each sort once.

Visual Basic

' sort multiple properties using DeferRefresh so you only refresh once
Using _view.DeferRefresh()
 _view.SortDescriptions.Clear()
 _view.SortDescriptions.Add(New C1.Xaml.SortDescription("Country",
C1.Xaml.ListSortDirection.Ascending))
 _view.SortDescriptions.Add(New C1.Xaml.SortDescription("Name",
C1.Xaml.ListSortDirection.Ascending))

BasicLibrary for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/BasicLibraryUWP_API/html/BFD5E415.htm

End Using

C#

// sort multiple properties using DeferRefresh so you only refresh once
using (_view.DeferRefresh())
{
 _view.SortDescriptions.Clear();
 _view.SortDescriptions.Add(new C1.Xaml.SortDescription("Country",
C1.Xaml.ListSortDirection.Ascending));
 _view.SortDescriptions.Add(new C1.Xaml.SortDescription("Name",
C1.Xaml.ListSortDirection.Ascending));
}

Note: If the collection implements INotifyCollectionChanged any changes to the data will be applied to the sort
even after it’s been set.

For more advanced sorting that can improve performance see the C1CollectionView.CustomSort property.

Filtering C1CollectionView
With C1CollectionView you can filter a collection to produce a new sub-set containing exactly those elements of the
original collection for which a given predicate returns true. When you filter a C1CollectionView, the underlying data
set is not affected. The Filter property gets or sets a callback used to determine if an item is suitable for inclusion in
the view.

For example, you can set a predicate to the Filter property and this will cause the list to be filtered by that predicate.

Visual Basic

' create an observable list of customers
Dim list = New System.Collections.ObjectModel.ObservableCollection(Of Customer)()

' create a C1CollectionView from the list
_view = New C1.Xaml.C1CollectionView(list)

' filter by country = Austria. Customers not from Austria will be filtered out.
_view.Filter = Sub(item As Object)
Dim c As Customer = TryCast(item, Customer)
If c IsNot Nothing Then
 If c.Country.Equals("Austria") Then
 Return True
 End If
End If
Return False
End Sub

C#

// create an observable list of customers
var list = new System.Collections.ObjectModel.ObservableCollection<Customer>();

// create a C1CollectionView from the list

BasicLibrary for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/BasicLibraryUWP_API/html/E88E02C1.htm

_view = new C1.Xaml.C1CollectionView(list);

// filter by country = Austria. Customers not from Austria will be filtered out.
_view.Filter = delegate(object item)
{
 Customer c = item as Customer;
 if (c != null)
 {
 if (c.Country.Equals("Austria"))
 return true;
 }
 return false;
};

Note: If the collection implements INotifyCollectionChanged any changes to the data will be applied to the
filter even after it’s been set.

For an advanced example of filtering, see the Filter sample for FlexGrid for UWP:
http://our.componentone.com/samples/UWPxaml-filter.

Grouping C1CollectionView
Group your collection by a particular property using the GroupDescriptions property on C1CollectionView.

For example, to group the collection by the "Country" property:

Visual Basic

Dim list = New System.Collections.ObjectModel.ObservableCollection(Of Customer)()
' create a C1CollectionView from the list
_view = New C1.Xaml.C1CollectionView(list)

' group customers by country
_view.GroupDescriptions.Add(New C1.Xaml.PropertyGroupDescription("Country"))

C#

var list = new System.Collections.ObjectModel.ObservableCollection<Customer>();

// create a C1CollectionView from the list
_view = new C1.Xaml.C1CollectionView(list);

// group customers by country
_view.GroupDescriptions.Add(new C1.Xaml.PropertyGroupDescription("Country"));

Note: If the collection implements INotifyCollectionChanged any changes to the data will be applied to the
grouping even after it’s been set.

The C1FlexGrid control supports grouping on C1CollectionView for you. If you are grouping with any other control
you will need to define a GroupStyle to control the appearance of each group.

For example, here is a GroupStyle defined for a standard ListBox control:

Markup

BasicLibrary for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://our.componentone.com/samples/UWPxaml-filter

<ListBox
 Name="_listBox"
 ItemsSource="{Binding Customers}">
 <ListBox.GroupStyle>
 <GroupStyle>
 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding}" />
 </DataTemplate>
 </GroupStyle.HeaderTemplate>
 </GroupStyle>
 </ListBox.GroupStyle>
</ListBox>

Custom Grouping
Consider a scenario where you want to group by a number. Unless you have a short list of clean integers, the group of
unique values will be unmanageable. You would instead want to apply a custom grouping action that groups items
into ranges like "between 0 and 100" and "over 5,000", etc. To do this you would perform a custom grouping passing
an IValueConverter to the PropertyGroupDescription parameter.

For example, the following code will group our Customer collection by Country listing each group as a letter of the
alphabet (such as: Countries: A, Countries: B, Countries: C and so on). The Countries: A group would include all items
belonging to Algeria, Argentina, and Austria. Modify the previous code snippet to the following:

Visual Basic

_view.GroupDescriptions.Add(New C1.Xaml.PropertyGroupDescription("Country", New
GroupByCountryAtoZConverter()))

C#

_view.GroupDescriptions.Add(new C1.Xaml.PropertyGroupDescription("Country", new
GroupByCountryAtoZConverter()));

And add the following GroupByCountryAtoZConverter class to your project:

Visual Basic

Public Class GroupByCountryAtoZConverter
 Implements IValueConverter
 Public Function Convert(value As Object, targetType As Type, parameter As
Object, culture As String) As Object
 If value IsNot Nothing Then
 Return value.ToString()(0)
 End If
 Return "Undefined"
 End Function

 Public Function ConvertBack(value As Object, targetType As Type, parameter As
Object, culture As String) As Object

BasicLibrary for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Throw New NotImplementedException()
 End Function
End Class

C#

public class GroupByCountryAtoZConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter, string
culture)
 {
 if (value != null)
 {
 return value.ToString()[0];
 }
 return "Undefined";
 }

 public object ConvertBack(object value, Type targetType, object parameter, string
culture)
 {
 throw new NotImplementedException();
 }
}

DropDown for UWP
Create drop-downs for any type of custom input with DropDown for UWP. The C1DropDown control helps you make
custom drop-down editors without having to mess with popups and flyouts. Use it to create that specialized drop-
down for anything imaginable such as a color picker, an autocomplete textbox, or even a hierarchical combobox.

DropDown for UWP Key Features
DropDown for UWP's key features include the following:

Can host any UI as drop-down content

The C1DropDown control gives you complete control to create specialized drop-down editors with ease. Fully
design you own drop-down content, and configure which value to display in the header portion. For example,
you could place a C1TreeView in the drop-down portion to create a hierarchical combobox that displays the
selected node in the header.

Automatic closing and opening bounds detection

Configure the drop-down direction preference to above or below the header portion. If there is not enough
room on the page, the C1DropDown control will automatically display in the other direction. With the
AutoClose property you can determine if the drop-down automatically closes when the control loses focus.

C1DropDown Quick Start
The following quick start guide is intended to get you up and running with the C1DropDown control. In this quick

BasicLibrary for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

start you'll start in Visual Studio and create a new project, add C1DropDown to your application, and customize the
appearance and behavior of the control.

Step 1 of 3: Creating an Application with a C1DropDown
Control
In this step, you'll create a UWP application in Visual Studio using DropDown for UWP.

1. In Visual Studio 2013 Select File | New | Project.
2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,

select Blank App (Universal Windows). Enter a Name and click OK to create your project.
3. Open MainPage.xaml if it isn't already open.
4. Edit your opening <Page> tag to add the following namespace:

Markup

xmlns:Xaml="using:C1.Xaml"

5. Locate the <Grid> </Grid> tags on your page and insert the following to define your Grid rows:

Markup

<Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
 </Grid.RowDefinitions>

6. Directly below the row definitions, add a CheckBox using the following markup:

Markup

<CheckBox Content="AutoClose - determines if C1DropDown will automatically close
when focus is lost." IsChecked="{Binding ElementName=c1DropDown1,
Path=AutoClose, Mode=TwoWay}" Margin="10"/>

7. Use the following markup to add a C1DropDownButton control:

Markup

<Xaml:C1DropDownButton Grid.Row="1" Background="White" x:Name="c1DropDown1"
Padding="2" Width="150" HorizontalAlignment="Center" VerticalAlignment="Center"
> </Xaml:C1DropDownButton>

8. Next, we'll add some Header content to customize the C1DropDownButton.Header:

Markup

<Xaml:C1DropDownButton.Header>
 <Border x:Name="dropDownBorder" Background="White" />
</Xaml:C1DropDownButton.Header>

What You've Accomplished

In this step, you created a new Visual Studio Universal Windows application, added a CheckBox control, and

BasicLibrary for UWP 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

added and began customizing a C1DropDown control.

Step 2 of 3: Adding Content to the C1DropDown Control
In this step, you'll add some content to the C1DropDown control you added in the preceding step.

1. Add the following markup directly below the <Xaml:C1DropDownButton.Header>. This will allow you to add
any content to your C1DropDown control:

Markup

<Xaml:C1DropDownButton.Content>
</Xaml:C1DropDownButton.Content>

2. Place your cursor between the <Xaml:C1DropDownButton.Content> </Xaml:C1DropDown.Content> tags.

3. Locate the C1TileListBox control in the Visual Studio ToolBox. Double-click the control to add it to the page.

4. Edit the opening <Xaml:C1TileListBox> tag so that it resembles the following:

Markup

<Xaml:C1TileListBox x:Name="colorListBox"
 Height="180"
 Orientation="Horizontal"
 ItemTapped="colorListBox_ItemTapped"
 SelectionMode="None"
 BorderBrush="{StaticResource
ComboBoxPopupBorderThemeBrush}"
 BorderThickness="{StaticResource
ComboBoxPopupBorderThemeThickness}"
 Background="{StaticResource
ComboBoxPopupBackgroundThemeBrush}">

5. Place your cursor between the <Xaml:C1TileListBox> </Xaml:C1TileListBox> tags and add the following
markup. This will allow you to change the background color of the C1DropDownButton control at runtime:

Markup

<Border Background="Black" BorderBrush="White" BorderThickness="1"/>
 <Border Background="DarkGray"/>
 <Border Background="White" BorderBrush="Black"
BorderThickness="1"/>
 <Border Background="DarkBlue" />
 <Border Background="Blue" />
 <Border Background="Cyan" />
 <Border Background="Teal" />
 <Border Background="Green" />
 <Border Background="Lime" />
 <Border Background="SaddleBrown"/>
 <Border Background="Orange" />
 <Border Background="Yellow" />
 <Border Background="Maroon" />

BasicLibrary for UWP 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Border Background="Red" />
 <Border Background="Magenta" />

6. Right-click your page and select View Code from the list. Add the following namespace at the top of the page:

C#

using C1.Xaml;

7. Add the following code to handle the colorListBox_ItemTapped event:

C#

private void colorListBox_ItemTapped(object sender, C1TappedEventArgs e)
 {
 C1ListBoxItem item = sender as C1ListBoxItem;
 if (item != null)
 {
 Border b = item.Content as Border;
 if (b != null)
 {
 dropDownBorder.Background = b.Background;
 }
 }
 c1DropDown1.IsDropDownOpen = false;
 }

 What You've Accomplished

In this step, you added content to the C1DropDownButton control. In the next step, you'll run your
application.

Step 3 of 3: Running the C1DropDown Application
1. Press F5 or start debugging to run your application. It should resemble the following image:

BasicLibrary for UWP 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. When you tap or click the drop-down button, the C1DropDownButton control will resemble the following image:

3. And when you select a color from the C1TileListBox, the C1DropDownButton will resemble the following image:

What You've Accomplished

In this Quick Start, you created a new Universal Windows application, added a C1DropDownButton control to the
application, and added a C1TileListBox to the content area of the C1DropDownButton.

BasicLibrary for UWP 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with DropDown for UWP
DropDown for UWP includes the C1DropDown control, a simple drop-down box control that acts as a container,
allowing you to add controls, images, and more to an interactive input box. When you add the C1DropDown control
to a XAML window it exists as a fully function input control that can be customized and include added content.

C1DropDown Elements
The C1DropDown control consists of two parts: a header area and a content area. The header appears visible when
the drop-down box is not open; the content is what is visible when the drop-down area is clicked. In the image below,
the two sections are identified:

You can add content to neither, either, or both the header and content areas. You can customize the C1DropDown
control in XAML by adding content to the header and content areas. For example, the following markup creates a
drop-down control similar to the one pictured above:

Markup

<Xaml:C1DropDownButton Grid.Row="1" Background="White" x:Name="c1DropDown1"
Padding="2" Width="150" HorizontalAlignment="Center" VerticalAlignment="Center"
Xaml:C1NagScreen.Nag="True">
 <Xaml:C1DropDownButton.Header>
 <Border x:Name="dropDownBorder" Background="White" />
 </Xaml:C1DropDownButton.Header>
 <Xaml:C1DropDownButton.Content>
 <Xaml:C1TileListBox x:Name="colorListBox"
 Height="180"
 Orientation="Horizontal"
 ItemTapped="colorListBox_ItemTapped"
 SelectionMode="None"
 BorderBrush="{StaticResource
ComboBoxPopupBorderThemeBrush}"
 BorderThickness="{StaticResource
ComboBoxPopupBorderThemeThickness}"
 Background="{StaticResource
ComboBoxPopupBackgroundThemeBrush}">
 <Border Background="Black" BorderBrush="White"
BorderThickness="1"/>
 <Border Background="DarkGray"/>
 <Border Background="White" BorderBrush="Black"
BorderThickness="1"/>

BasicLibrary for UWP 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Border Background="DarkBlue" />
 <Border Background="Blue" />
 <Border Background="Cyan" />

 <Border Background="Teal" />
 <Border Background="Green" />
 <Border Background="Lime" />

 <Border Background="SaddleBrown"/>
 <Border Background="Orange" />
 <Border Background="Yellow" />

 <Border Background="Maroon" />
 <Border Background="Red" />
 <Border Background="Magenta" />
 </Xaml:C1TileListBox>
 </Xaml:C1DropDownButton.Content>
 </Xaml:C1DropDownButton>

Note that the <Xaml:C1DropDown.Header> and <Xaml:C1DropDown.Content> tags are used to define header and
content. You can add controls and content within these tags.

C1DropDown Interaction
Users can interact with items in the drop-down box, or with the C1DropDown control itself at run time. By default
users can interact with controls placed within the drop-down box. For example, if you place a button or drop-down
box within the C1DropDown control, it will be clickable by users at run time.

You can control the C1DropDown control's drop-down direction using the DropDownDirection property. You can see
Drop-Down Box Direction for more information. You can choose if the C1DropDown box appears with the drop-
down box automatically open using the IsDropDownOpen property. You can also set whether or not the drop-down
box automatically closes when the users click outside of it – this can be set using the AutoClose property.

Drop-Down Box Direction
By default, when the user clicks the C1DropDown control's drop-down arrow at run-time the color picker will appear
below the control, and, if that is not possible, above the control. However, you can customize where you would like
the color picker to appear by setting the DropDownDirection property.

You can set the DropDownDirection property to one of the following options:

Event Description

BelowOrAbove (default) Tries to open the drop-down box below the header. If it is not possible
tries to open above it.

AboveOrBelow Tries to open the drop-down box above the header. If it is not possible
tries to open below it.

ForceBelow Forces the drop-down box to open below the header.

BasicLibrary for UWP 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

ForceAbove Forces the drop-down box to open above the header.

 For more information and an example, see Changing the Drop-Down Direction.

Additional Controls
In addition to the full-featured C1DropDown control, DropDown for UWP includes parts of the C1DropDown
control and the C1DropDownButton that allow you to further customize your application.

C1DropDown is similar to a traditional drop-down control allowing you to choose from a selection of items and
C1DropDownButton works like a drop-down control but looks like a button.

C1DropDownButton Elements
The C1DropDownButton control is similar to the C1DropDown control and consists of two parts: a header area and a
content area. The header appears visible when the drop-down box is not open; the content is what is visible when the
drop-down area is clicked. For example, in the below image the content area concludes a structured menu:

You can add content to neither, either, or both the header and content areas. You can customize the C1DropDown
control in XAML by adding content to the header and content areas. For example the following markup creates a
drop-down control similar to the one pictured above:

Markup

<Xaml:C1DropDownButton x:Name="ddl" Header="Click Here to open the menu"
HorizontalAlignment="Left" Xaml:C1NagScreen.Nag="True" Margin="451,301,0,391"
Grid.Row="1">
 <Xaml:C1MenuList>
 <Xaml:C1MenuItem Header="Menu 1">
 <Xaml:C1MenuItem Header="Menu 1.1" />
 </Xaml:C1MenuItem>
 <Xaml:C1MenuItem Header="Menu 2" />
 <Xaml:C1MenuItem Header="Menu 3" />
 <Xaml:C1MenuItem Header="Menu 4" />
 </Xaml:C1MenuList>
 </Xaml:C1DropDownButton>

Note that the header text is defined in the <c1:C1DropDownButton> tag and the content is placed within the
<c1:C1DropDownButton></c1:C1DropDownButton> tags.

DropDown for UWP Task-Based Help

BasicLibrary for UWP 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following task-based help topics assume that you are familiar with Visual Studio and know how to use
the C1DropDown control in general. If you are unfamiliar with the DropDown for UWP product, please see
the DropDown for UWP Quick Start first.

Each topic in this section provides a solution for specific tasks using the DropDown for UWP product. Most task-
based help topics also assume that you have created a new Universal Windows application and added a
C1DropDown control to the project – for information about creating the control, see Creating a DropDown.

Creating a DropDown
You can easily create a C1DropDown control at design time in XAML and in code. Note that if you create a
C1DropDown control as in the following steps, it will appear empty. You will need to add items to the control. For an
example, see Adding Content to C1DropDown.

In XAML

To create a C1DropDown control using XAML markup, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the context
menu choose Add Reference, select the C1.UWP.dll assembly, and click OK.

2. Add a XAML namespace to your project by adding xmlns:Xaml="using:C1.Xaml" to the initial <Page> tag. It will
appear similar to the following:

Markup

<Page xmlns:Xaml="using:C1.Xaml"
 x:Class="DropDownTest.MainPage"
 xmlns=http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:DropDownTest"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

3. Set the name of Grid to LayoutRoot and add a <Xaml:C1DropDown> tag to your project within the <Grid> tag
to create a C1DropDown control. The markup will appear similar to the following:

Markup

<Grid x:Name="LayoutRoot" Background="{ThemeResource
ApplicationPageBackgroundThemeBrush}">
 <Xaml:C1DropDown Name="c1dropdown1" />
</Grid>

This markup will create an empty C1DropDown control named "c1dropdown1" and set the control's size.

In Code

To create a C1DropDown control in code, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the context
menu choose Add Reference, select the C1.Xaml.dll assembly, and click OK.

2. Right-click within the MainPage.xaml window and select View Code to switch to Code view

3. Add the following import statement to the top of the page:

BasicLibrary for UWP 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

using C1.Xaml;

4. Add code to the page's constructor to create the C1DropDown control. It will look similar to the following:

C#

C1DropDown c1dropdown1 = new C1DropDown();
c1dropdown1.Height = 30;
c1dropdown1.Width = 100;
LayoutRoot.Children.Add(c1dropdown1);

This code will create an empty C1DropDown control named "c1dropdown1", set the control's size, and add the
control to the page.

 What You've Accomplished

You've created a C1DropDown control. Note that when you create a C1DropDown control as in the above
steps, it will appear empty. You can add items to the control that can be interacted with at run time. For an
example, see Adding Content to C1DropDown.

Adding Content to C1DropDown
You can add any sort of arbitrary content to a C1DropDown control. This includes text, images, and other standard
and 3rd-party controls. In this example, you'll add a Button control to a C1DropDown control, but you can customize
the steps to add other types of content instead.

In XAML

For example, to add a Button control to the drop-down add <Button Height="30" Name="button1"
Width="100">Hello World!</Button> within the <Xaml:C1DropDown> tag so that it appears similar to the following:

Markup

<Xaml:C1DropDown HorizontalAlignment="Center" VerticalAlignment="Top" Width="100">
 <Xaml:C1DropDown.Content>
 <Button Height="30" Name="button1" Width="100">Hello World!</Button>
 </Xaml:C1DropDown.Content>
</Xaml:C1DropDown>

In Code

For example, to add a Button control to the drop-down box, add code to the page's constructor so it appears like the
following:

C#

public MainPage()
 {
 this.InitializeComponent();
 C1DropDown c1dropdown1 = new C1DropDown();
 c1dropdown1.Height = 30;

BasicLibrary for UWP 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 c1dropdown1.Width = 100;
 LayoutRoot.Children.Add(c1dropdown1);

 Button c1button1 = new Button();
 c1button1.Content = "Hello World!";
 c1dropdown1.Content = c1button1;
 }

 What You've Accomplished

You've added a button control to the C1DropDown control. Run the application and click the drop-down
arrow. Observe that the Button control has been added to the drop-down box. Note that to add multiple items
to the C1DropDown control, add a Grid or other panel to the C1DropDown control, and add items to that
panel.

Changing the Drop-Down Direction
By default, when the user clicks the C1DropDown control's drop-down arrow at run-time the drop-down box will
appear below the control, and if that is not possible, above the control. However, you can customize where you would
like the color picker to appear. For more information about the drop-down arrow direction, see Drop-Down Box
Direction.

To change the drop-down direction add DropDownDirection="ForceAbove" to the <Xaml:C1DropDown> tag so that
it appears similar to the following:

In XAML

Markup

<Xaml:C1DropDown Height="30" Name="c1dropdown1" Width="100"
DropDownDirection="ForceAbove"/>

In Code

To change the drop-down box direction, add the following code to your project:

C#

c1dropdown1.DropDownDirection = DropDownDirection.ForceAbove;

Hiding the Drop-Down Arrow
By default, when you add the C1DropDown control to an application, the drop-down arrow, the ToggleButton, is
visible. However, if you choose you can hide the drop-down arrow by setting the ShowButton property as in the
following steps.

In XAML

To hide the drop-down arrow, add ShowButton="False" to the <Xaml:C1DropDown> tag so that it appears similar to
the following:

Markup

<XamlC1DropDown Height="30" Name="c1dropdown1" Width="100" ShowButton="False" />

BasicLibrary for UWP 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

In Code

To hide the drop-down arrow, add the following code to your project:

C#

c1dropdown1.ShowButton = false;

Opening the Drop-Down on MouseOver
By default, the C1DropDown control's drop-down box only opens when users click on the drop-down arrow at run
time. In this topic you'll set the drop-down box to open when users mouse over the control at run-time instead. Note
that this topic assumes you have already added a C1DropDown control which contains content to the application.

Complete the following steps:

1. Click once on the C1DropDown control to select it.

2. Navigate to the Properties window and click on the Events lightning bolt button to view events associated with
the control.

3. Double-click the box next to the IsMouseOverChanged item to switch to Code view and create the
C1DropDown_IsMouseOverChanged event handler.

4. In Code view, add the following import statement to the top of the page:

C#

using C1.Xaml;

5. Add code to the C1DropDown_IsMouseOver event handler so that it looks like the following:

C#

private void C1DropDown_IsMouseOverChanged(object sender,
PropertyChangedEventArgs<bool> e)
 {
 if (c1dropdown1.IsMouseOver == true)
 {
 c1dropdown1.IsDropDownOpen = true;
 }
 else
 {
 c1dropdown1.IsDropDownOpen = false;
 }
 }

 What You've Accomplished

In this topic you added code so that the drop-down box opens when moused over at run time using
the IsDropDownOpen property. Run the application and move the mouse over the control. Notice that the
drop-down box opens. Move the mouse away from the control and observe that the drop-down box closes.

BasicLibrary for UWP 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating a Hierarchical C1DropDown
You can easily create a C1DropDown application that contains a C1TreeView control, giving you a hierarchical drop-
down.

Follow these steps to create a hierarchical C1DropDown control:

1. Edit the markup for your C1DropDown control so that it resembles the following:

Markup

<Xaml:C1DropDownButton x:Name="soccerCountries" HorizontalAlignment="Center"
VerticalAlignment="Center" Padding="2" AutoClose="False" Width="150"
DropDownWidth="200">

2. Add some C1DropDown.Header content to your control. This will add a TextBlock control to your
C1DropDown header:

Markup

<Xaml:C1DropDownButton.Header>
 <TextBlock x:Name="selection" Text="« Pick one »" Padding="7 0 0
0" Foreground="Black" TextAlignment="left"/>
 </Xaml:C1DropDownButton.Header>

3. Place your cursor below the </Xaml:C1DropDownButton.Header> tag. Locate the C1TreeView control in your
Visual Studio ToolBox and double-click to add it to your application. Edit the markup of the opening tag to
reflect the following:

Markup

<Xaml:C1TreeView x:Name="treeSelection" Header="Soccer World Cups Winners"
KeyDown="C1TreeView_KeyDown" ItemClick="C1TreeView_ItemClicked"
AllowDragDrop="False" Padding="5" BorderBrush="{StaticResource
ComboBoxPopupBorderThemeBrush}" BorderThickness="{StaticResource
ComboBoxPopupBorderThemeThickness}" Background="{StaticResource
ComboBoxPopupBackgroundThemeBrush}">

 Note that in the markup above you've added two Events: KeyDown and ItemClick.

4. Next, we'll add some content to the C1TreeView control:

Markup

<Xaml:C1TreeViewItem Header="South America">
 <Xaml:C1TreeViewItem Header="Argentina" />
 <Xaml:C1TreeViewItem Header="Brasil" />
 <Xaml:C1TreeViewItem Header="Uruguay" />
</Xaml:C1TreeViewItem>
<Xaml:C1TreeViewItem Header="Europe">
 <Xaml:C1TreeViewItem Header="England" />
 <Xaml:C1TreeViewItem Header="France" />
 <Xaml:C1TreeViewItem Header="Germany" />
 <Xaml:C1TreeViewItem Header="Italy" />
 <Xaml:C1TreeViewItem Header="Spain" />

BasicLibrary for UWP 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

</Xaml:C1TreeViewItem>

5. Now that you've finished creating the markup for your application, right-click the page and select View Code
from the list. Your Code view will open.

6. Add the following import statement to the top of your page:

C#

using C1.Xaml;

7. Add the following KeyDown event after the closing bracket of the InitializeComponent method:

C#

private void C1TreeView_KeyDown(object sender, KeyRoutedEventArgs e)
 {
 if (e.Key == VirtualKey.Enter)
 {
 UpdateSelection();
 e.Handled = true;
 }
 }

8. The UpdateSelection() method comes next:

C#

private void UpdateSelection()
 {
 if (treeSelection.SelectedItem != null)
 {
 selection.Text = treeSelection.SelectedItem.Header.ToString();
 }
 else
 {
 selection.Text = "« Pick one »";
 }
 soccerCountries.IsDropDownOpen = false;
 }

9. Next, create the C1TreeView_ItemClicked event:

C#

private void C1TreeView_ItemClicked(object sender, SourcedEventArgs e)
 {
 UpdateSelection();
 }

10. Last, add the MouseLeftButtonDown event:

C#

private void ContentControl_MouseLeftButtonDown(object sender, EventArgs e)

BasicLibrary for UWP 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 soccerCountries.IsDropDownOpen = true;
 }

11. Press F5 or start debugging to run your application. When you click the drop-down button, your C1DropDown
control should resemble the following. Note that you can select one of the continents to reveal the available
countries:

 What You've Accomplished

In this topic, you created a hierarchical C1DropDown control using XAML markup and code.

GridSplitter for UWP
Redistribute space between columns and rows with the GridSplitter for UWP.

GridSplitter for UWP Quick Start
In this Quick Start, you create a new Universal Windows application in Visual Studio, set up a Grid, and add
the C1GridSplitter control to your application.

Complete these steps:

1. Create a new Universal Windows application in Visual Studio:
1. Select File | New | Project from the File menu. The New Project dialog box will open.
2. Select Templates | Visual C# | Windows | Universal. From the templates list, select Blank App (Universal

Windows).
3. Give your project a Name, and select OK. Your new project will open.

2. Locate the References folder in the Solution Explorer. Right-click the folder and select Add Reference.
1. In the Reference Manager, expand Universal Windows and select Extensions; you should see the UWP

assemblies in the center pane.
2. Select C1.UWP.dll from the center pane.
3. Select OK to add the reference to your application.

3. Locate the <Grid> </Grid> tags in your MainPage.xaml file.
4. Add the following Grid.RowDefinitions and Grid.ColumnDefinitions to your application. The XAML markup

should resemble the following:

BasicLibrary for UWP 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

XAML

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Grid.RowDefinitions>
 <RowDefinition Height="100"/>
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="160"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

</Grid>

5. Place your cursor below the closing </Grid.ColumnDefinition> tag. Locate the C1GridSplitter control in your
Visual Studio Toolbox, and add two C1GridSplitter controls to your application.

6. Edit your GridSplitter controls so that they resemble the following XAML markup:

XAML

<c1:C1GridSplitter Grid.Row="1" Grid.ColumnSpan="2" VerticalAlignment="Top"
Height="16" ShowsPreview="True" />
<c1:C1GridSplitter Grid.RowSpan="2" Grid.Column="1" HorizontalAlignment="Left"
Width="16" />

Note that you set the Grid Row and Column positions and the Vertical or Horizontal Alignment.

7. Directly below the second C1GridSplitter control, add a general Rectangle control from your Toolbox and set
the Fill property to "Red":

XAML

<Rectangle Fill="Red"/>

8. Press F5 or start debugging to run your application. Moving the horizontal and vertical GridSplitters will
enlarge or minimize the red Rectangle:

BasicLibrary for UWP 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

Layout Panels for UWP
Control the flow and positioning of the content on your UWP app with Layout Panels for UWP. Wrap content
vertically or horizontally using C1WrapPanel. Dock content along the edges of the panel with C1DockPanel. Display
content in a grid using C1UniformGrid.

Layout Panels for UWP Features
Layout Panels for UWP includes the following key features:

Create Flowing Layouts

Create flow type layouts that wrap content vertically or horizontally using the C1WrapPanel control. This can be
very useful for handling flow of items when the user rotates your app into portrait orientation.

Create Docked Layouts

Dock content along the top, left, right and bottom edges of the screen with the C1DockPanel control. Child
elements are positioned in the dock panel in the order that they are declared in XAML.

Create Uniform Grid Layouts

Neatly display child elements in columns and rows with the C1UniformGrid control. By setting the
ColumnSpan property you can span columns. Or, span rows by setting the RowSpan property. This resembles
the built-in Microsoft Grid. Using C1UniformGrid you can also show or hide an entire column or row.

Layout Panels for UWP Quick Starts
A quick start has been created for each control in Layout Panels for UWP. In each quick start, you'll begin by creating
a UWP application and then you will add styles for the controls. For WrapPanel, you will wrap several
HyperlinkButtons. For DockPanel, you will create the panel with several elements inside, demonstrating the four
docking options for C1DockPanel. For UniformGrid, you will create a grid with three columns and two empty cells in
the first row.

BasicLibrary for UWP 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

Choose one of the following quick starts to get started:

WrapPanel for UWP Quick Start
DockPanel for UWP Quick Start
UniformGrid for UWP Quick Start

WrapPanel for UWP Quick Start
The following quick start guide is intended to get you up and running with WrapPanel for UWP. In this quick start,
you'll create a new project in Visual Studio, add styled HyperlinkButtons that can be wrapped, and change the
orientation for the buttons.

Step 1 of 3: Creating an Application
In this step you'll begin in Visual Studio to create a UWP-style application using WrapPanel for UWP.

To set up your project, complete the following steps:

1. In Visual Studio, Select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open.

In the next step, you'll add, style, and wrap several HyperlinkButtons.

Step 2 of 3: Adding a C1WrapPanel to the Application
We're going to use simple HyperlinkButtons to show how content can be wrapped vertically or horizontally. This is
the typical scenario to create a TagCloud view; very commonly used in Web applications.

Complete the following steps:

1. First, remove the Grid tags from your project.

2. Drag and drop C1WrapPanel control on the page. This adds the panel and a reference to the page.

3. Edit the <Xaml:C1WrapPanel> tags and add the HyperlinkButtons so the markup looks like the following:

Markup

 <Xaml:C1WrapPanel>
 <HyperlinkButton Content="Example Text" FontSize="25" />
 <HyperlinkButton Content="Longer sentences can be used for wrapping
scenarios." />
 <HyperlinkButton Content="Let's insert a break." />
 <HyperlinkButton Xaml:C1WrapPanel.BreakLine="After" Content="Break
After" />
 <HyperlinkButton Content="C1WrapPanel" />
 <HyperlinkButton Content="Wrap Vertically" />
 <HyperlinkButton Content="Wrap Horizontally" FontSize="20" />
 <HyperlinkButton Xaml:C1WrapPanel.BreakLine="Before" Content="Break
Before" />

BasicLibrary for UWP 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <HyperlinkButton Content="Controls" FontSize="8" />
 <HyperlinkButton Content="UWP" />
 <HyperlinkButton Content="Components" FontSize="18" />
 <HyperlinkButton Xaml:C1WrapPanel.BreakLine="AfterAndBefore"
Content="Break After and Before" />
 <HyperlinkButton Content="Create flow type layouts that wrap content
vertically or horizontally." />
 <HyperlinkButton Content="Small font size is not recommended."
FontSize="6" />
 <HyperlinkButton Content="The End" FontSize="24" />
 </Xaml:C1WrapPanel>

In the next step, you'll run the application.

Step 3 of 3: Running the Application
Now you're ready to run the application. Complete the following steps:

1. From the Debug menu, select Start Debugging. Your application will look similar to the following:

2. Click the Stop Debugging button to close the application.

3. Go back to MainPage.xaml. In the <Xaml:C1WrapPanel> tag, set the Orientation property to Vertical; the
XAML will look like the following:

Markup

<Xaml:C1WrapPanel Orientation="Vertical">

4. Click Start Debugging again in the Debug menu. Your application will now look like this:

BasicLibrary for UWP 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

Notice how the buttons are stacked vertically.

Congratulations! You have successfully completed the WrapPanel for UWP quick start.

DockPanel for UWP Quick Start
The following quick start guide is intended to get you up and running with DockPanel for UWP. In this quick start,
you'll create a new project in Visual Studio, and add elements docked on the top, bottom, left, and right of
the C1DockPanel.

Step 1 of 3: Creating an Application
In this step you'll begin in Visual Studio to create a UWP-style application using DockPanel for UWP.

To set up your project, complete the following steps:

1. Select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open.

In the next step, you'll add and style C1DockPanels.

Step 2 of 3: Adding a C1DockPanel to the Application
In this step you'll add and style several C1DockPanels.

Complete the following steps:

1. First, remove the Grid tags from your project.

2. Drag and drop C1DockPanel control on the page. This adds the panel and a reference to the page.

3. Edit the <Xaml:C1DockPanel> tags to add docked borders on the left, right, top, and bottom of the screen so
the markup looks like the following:

Markup

<Xaml:C1DockPanel Background="White" Width="400" Height="250">

BasicLibrary for UWP 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Border Xaml:C1DockPanel.Dock="Top" Height="50" Background="Red">
 <TextBlock Text="Top" />
 </Border>
 <Border Xaml:C1DockPanel.Dock="Bottom" Height="50" Background="Blue">
 <TextBlock Text="Bottom" />
 </Border>
 <Border Xaml:C1DockPanel.Dock="Right" Width="50" Background="Yellow">
 <TextBlock Text="Right" />
 </Border>
 <Border Xaml:C1DockPanel.Dock="Left" Width="50" Background="Green">
 <TextBlock Text="Left" />
 </Border>
</Xaml:C1DockPanel>

In the next step, you'll run the application.

Step 3 of 3: Running the Application
Now you're ready to run the application. From the Debug menu, select Start Debugging. Your application will look
similar to the following, with four borders docked on the top, right, left, and bottom of the C1DockPanel control:

Congratulations! You have successfully completed the DockPanel for UWP quick start.

UniformGrid for UWP Quick Start
The following quick start guide is intended to get you up and running with UniformGrid for UWP. In this quick start,
you'll create a new project in Visual Studio, add a C1UniformGrid to your application, set
the C1UniformGrid.Columns, C1UniformGrid.FirstColumn, and Width properties, and then run the application.

Step 1 of 3: Creating a UWP Application
In this step you'll begin in Visual Studio to create a UWP-style application using UniformGrid for UWP.

BasicLibrary for UWP 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/br208751

To set up your project, complete the following steps:

1. Select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open.

In the next step, you'll add, style, and wrap several border blocks.

Step 2 of 3: Adding the C1UniformGrid control to the
Application
In this step you'll add a C1UniformGrid.

Complete the following steps:

1. First, remove the Grid tags from your project.

2. Drag and drop C1UniformGrid control on the page. This adds the panel and a reference to the page.

3. Edit the <Xaml:C1UniformGrid> tags to size the grid and add child elements to the grid (numbered cells in
this case) so the markup looks like the following:

Markup

<Xaml:C1UniformGrid Width="300" Height="300">
 <Border Background="#FF005B84" >
 <TextBlock Text="0" />
 </Border>
 <Border Background="#FF008B9C" >
 <TextBlock Text="1" />
 </Border>
 <Border Background="#FF00ADD6" >
 <TextBlock Text="2" />
 </Border>
 <Border Background="#FF497331" >
 <TextBlock Text="3" />
 </Border>
 <Border Background="#FF0094D6" >
 <TextBlock Text="4" />
 </Border>
 <Border Background="#FF9DCFC3" >
 <TextBlock Text="5" />
 </Border>
 <Border Background="#FFA5DDFE" >
 <TextBlock Text="6" />
 </Border>
 <Border Background="#FFE0EEEF" >
 <TextBlock Text="7" />
 </Border>
 <Border Background="CornflowerBlue" >
 <TextBlock Text="8" />

BasicLibrary for UWP 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </Border>
 <Border Background="LightYellow" >
 <TextBlock Text="9" />
 </Border>
 </Xaml:C1UniformGrid>

In this step you added content to the C1UniformGrid panel. In the next step you'll run the application and edit some
additional properties of the grid.

Step 3 of 3: Running the Application
Now you're ready to run the application. Complete the following steps:

1. From the Debug menu, select Start Debugging. Your application will look similar to the following:

2. Click the Stop Debugging button to close the application.

3. Go back to MainPage.xaml and place your cursor in the <Xaml:C1UniformGrid> tag.

4. Set the C1UniformGrid.Columns and C1UniformGrid.FirstColumn properties using the following XAML markup:

Markup

 <Xaml:C1UniformGrid Width="300" Height="300" Columns="3" FirstColumn="2" >

The C1UniformGrid.Columns will set the number of columns in the grid, the Width property will set the width,
in pixels, and the C1UniformGrid.FirstColumn property will determine how many empty cells will appear in the
first row.

5. From the Debug menu, select Start Debugging. Your application will look similar to the following:

BasicLibrary for UWP 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

Notice the two empty cells in the first row, as specified with the C1UniformGrid.FirstColumn property.

Congratulations! You have successfully completed the UniformGrid for UWP quick start.

Layout Panels for UWP Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use the
Layout Panels in general. If you are unfamiliar with the Layout Panels for UWP product, please see the Layout Panels
for UWP Quick Starts first.

Each topic in this section provides a solution for specific tasks using the Layout Panels for UWP product.

Each task-based help topic also assumes that you have created a new UWP project.

Wrapping and Formatting Items with C1WrapPanel
You can wrap items using the C1WrapPanel.BreakLine Attached property. In this example, HyperlinkButtons are
used. Complete the following steps:

1. In your project, drag a C1WrapPanel control from the Toolbox and place it before the closing </Grid> tag in
the .xaml page.

2. Place your cursor in between the <Xaml:C1WrapPanel> tags and press ENTER.

3. Add the following XAML to wrap HyperlinkButtons:

Markup

<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Orange">
 <HyperlinkButton Foreground="White" Content="Example Text" FontSize="25" />
</Border>
<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Green"
Xaml:C1WrapPanel.BreakLine="After">
 <HyperlinkButton Foreground="White" Content="Break After" />
</Border>
<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Blue">
 <HyperlinkButton Foreground="White" Content="C1WrapPanel" FontSize="16"/>
</Border>
<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Red">
 <HyperlinkButton Foreground="White" Content="Wrap Vertically" />
</Border>

BasicLibrary for UWP 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Purple">
 <HyperlinkButton Foreground="White" Content="Wrap Horizontally"
FontSize="20" />
</Border>

Notice the C1WrapPanel.BreakLine property is set to After for the second HyperlinkButton. This will add a
break after the button.

4. Run your project. The C1WrapPanel will resemble the following image:

Notice there is a break after the second HyperlinkButton.

Wrapping Items Vertically with C1WrapPanel
By default, items are wrapped horizontally. However, in some cases you may need them to wrap vertically. You can set
the C1WrapPanel.Orientation property to specify vertical wrapping. In this example, HyperlinkButtons are used.
Complete the following steps:

1. In your project, drag a C1WrapPanel control from the Toolbox and place it before the closing </Grid> tag in
the .xaml page.

2. In the <Xaml:C1WrapPanel> tag, set the Orientation property to Vertical; the XAML will look like the
following:

Markup

<Xaml:C1WrapPanel Orientation="Vertical">

3. Place your cursor in between the <Xaml:C1WrapPanel> tags and press ENTER.

4. Add the following XAML to wrap HyperlinkButtons:

Markup

<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Orange">
 <HyperlinkButton Foreground="White" Content="Example Text" FontSize="25" />
</Border>
<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Green"
Xaml:C1WrapPanel.BreakLine="After">
 <HyperlinkButton Foreground="White" Content="Break After" />
</Border>

BasicLibrary for UWP 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Blue">
 <HyperlinkButton Foreground="White" Content="C1WrapPanel" FontSize="16"/>
</Border>
<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Red">
 <HyperlinkButton Foreground="White" Content="Wrap Vertically" />
</Border>
<Border Margin="2" BorderBrush="Black" BorderThickness="2" Background="Purple">
 <HyperlinkButton Foreground="White" Content="UWP" FontSize="20"/>
</Border>

5. Run your project. The C1WrapPanel will resemble the following image:

ListBox for UWP
Get two high performance controls for displaying lists of bound data with ListBox for UWP. Display lists with tile
layouts or with optical zoom using the C1ListBox and C1TileListBox controls. These controls support UI virtualization
so they are blazing-fast while able to display thousands of items with little-to-no loss of performance.

ListBox for UWP Key Features
ListBox for UWP's key features include the following:

Horizontal or Vertical Orientation

The ListBox controls support both horizontal and vertical orientation, allowing for more layout scenarios.

Display Items as Tiles

The C1TileListBox can arrange its items in both rows and columns creating tile displays. Specify the size and
template of each item and select the desired orientation.

Optical Zoom

The C1ListBox control supports optical zoom functionality so users can manipulate the size of the items
intuitively through pinch gestures. The zooming transformation is smooth and fluid so the performance of your
application is not sacrificed.

UI Virtualization

The ListBox controls support UI virtualization so they are blazing-fast while able to display thousands of items
with virtually no loss of performance. You can determine how many items are rendered in each layout pass by
setting the ViewportGap and ViewportPreviewGap properties. These properties can be adjusted depending on

BasicLibrary for UWP 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

the scenario.

Preview State

In order to have the highest performance imaginable, the ListBox controls can render items outside the
viewport in a preview state. Like the standard ItemTemplate, the Preview template defines the appearance of
items when they are in a preview state, such as zoomed out or during fast scroll. The controls will then switch
to the full item template when the items have stopped scrolling or zooming.

C1ListBox Quick Start
The following quick start guide is intended to get you up and running with the C1ListBox control. In this quick start
you'll start in Visual Studio and create a new project, add C1ListBox to your application, and customize the appearance
and behavior of the control.

Step 1 of 3: Creating an Application with a C1ListBox
Control
In this step, you'll create a UWP application in Visual Studio using ListBox for UWP.

Complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Right-click the project name in the Solution Explorer and select Add Reference.

4. In the Reference Manager dialog box, expand Universal Windows and select Extensions; you should see the
UWP assemblies in the center pane. Select the C1.UWP and C1.UWP.Tile assemblies and click OK.

5. Open MainPage.xaml if it isn't already open, and add the following markup within the <Page> tag:

Markup

xmlns:c1="using:C1.Xaml"
xmlns:c1tile="using:C1.Xaml.Tile"

6. Place the cursor between the <Grid> and </Grid> tags, and click once.

7. Add the following <StackPanel> markup between the <Grid> and </Grid> tags to add a StackPanel
containing a TextBlock and ProgressBar:

Markup

<StackPanel x:Name="loading" VerticalAlignment="Center">
 <TextBlock Text="Retrieving data from Flickr..." TextAlignment="Center"/>
 <ProgressBar IsIndeterminate="True" Width="200" Height="4"/>
</StackPanel>

The TextBlock and ProgressBar will indicate that the C1ListBox is loading.

BasicLibrary for UWP 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Navigate to the Toolbox and double-click the C1ListBox icon to add the control to the grid. This will add the
reference and XAML namespace automatically.

9. Edit the <Xaml:C1ListBox> tag to customize the control:

Markup

<c1:C1ListBox x:Name="listBox" ItemsSource="{Binding}" Background="Transparent"
Visibility="Collapsed" ItemWidth="800" ItemHeight="600"
RefreshWhileScrolling="False"></c1:C1ListBox>

This gives the control a name and customizes the binding, background, visibility, size, and refreshing ability of
the control.

10. Add the following markup between the <Xaml:C1ListBox> and </Xaml:C1ListBox> tags:

Markup

<c1:C1ListBox.PreviewItemTemplate>
 <DataTemplate>
 <Grid Background="Gray">
 <Image Source="{Binding Thumbnail}" Stretch="UniformToFill" />
 </Grid>
 </DataTemplate>
</c1:C1ListBox.PreviewItemTemplate>
<c1:C1ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Image Source="{Binding Content}" Stretch="UniformToFill" />
 <TextBlock Text="{Binding Title}" Foreground="White" Margin="4 0 0 4"
VerticalAlignment="Bottom" />
 </Grid>
 </DataTemplate>
</c1:C1ListBox.ItemTemplate>

This markup adds data templates for the C1ListBox control's content. Note that you'll complete binding the
control in code.

What You've Accomplished

You've successfully created a UWP style application containing a C1ListBox control. In the next step, Step 2 of 3:
Adding Data to the ListBox, you will add the data for C1ListBox.

Step 2 of 3: Adding Data to the ListBox
In the last step, you added the C1ListBox control to the application. In this step, you will add code to display images
from a photo stream.

Complete the following steps to add data to the control programmatically:

1. Select the Page, navigate to the Properties window, click the lightning bolt Events button to view events, and
scroll down and double-click the area next to the Loaded event.

This will open the Code Editor and add the Page_Loaded event.

BasicLibrary for UWP 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Add the following imports statements to the top of the page:

Visual Basic

Imports C1.Xaml
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Net
Imports System.Xml.Linq
Imports Windows.UI.Popups
Imports Windows.UI.Xaml
Imports Windows.UI.Xaml.Controls

C#

using C1.Xaml;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Xml.Linq;
using Windows.UI.Popups;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

3. Add the following code inside the Page_Loaded event handler:

Visual Basic

LoadPhotos()

C#

LoadPhotos();

4. Add the following code below the Page_Loaded event within the MainPage class:

Visual Basic

Private Async Function LoadPhotos() As Task
 Dim flickrUrl = "http://api.flickr.com/services/feeds/photos_public.gne"
 Dim AtomNS = "http://www.w3.org/2005/Atom"

 Dim photos = New List(Of Photo)()
 Dim client = WebRequest.CreateHttp(New Uri(flickrUrl))
 Dim response = Await client.GetResponseAsync()

 Try
 '#Region "** parse data"
 Dim doc = XDocument.Load(response.GetResponseStream())
 For Each entry As XElement In doc.Descendants(XName.[Get]("entry",
AtomNS))
 Dim title = entry.Element(XName.[Get]("title", AtomNS)).Value

BasicLibrary for UWP 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Dim enclosure = entry.Elements(XName.[Get]("link",
AtomNS)).Where(Function(elem) elem.Attribute("rel").Value =
"enclosure").FirstOrDefault()
 Dim contentUri = enclosure.Attribute("href").Value
 photos.Add(New Photo() With { _
 .Title = title, _
 .Content = contentUri, _
 .Thumbnail = contentUri.Replace("_b", "_m") _
 })
 Next
 '#End Region

 listBox.ItemsSource = photos
 loading.Visibility = Visibility.Collapsed
 listBox.Zoom = C1ZoomUnit.Fill
 listBox.Visibility = Visibility.Visible
 Catch
 Dim dialog = New MessageDialog("There was an error when attempting
to download data from Flickr.")
 async dialog.ShowAsync()
 End Try
 End Function

C#

private async void LoadPhotos()
 {
 var flickrUrl =
"http://api.flickr.com/services/feeds/photos_public.gne";
 var AtomNS = "http://www.w3.org/2005/Atom";

 var photos = new List<Photo>();
 var client = WebRequest.CreateHttp(new Uri(flickrUrl));
 var response = await client.GetResponseAsync();

 try
 {
 #region ** parse data
 var doc = XDocument.Load(response.GetResponseStream());
 foreach (var entry in doc.Descendants(XName.Get("entry",
AtomNS)))
 {
 var title = entry.Element(XName.Get("title", AtomNS)).Value;

 var enclosure = entry.Elements(XName.Get("link",
AtomNS)).Where(elem => elem.Attribute("rel").Value ==
"enclosure").FirstOrDefault();
 var contentUri = enclosure.Attribute("href").Value;
 photos.Add(new Photo() { Title = title, Content =
contentUri, Thumbnail = contentUri.Replace("_b","_m") });
 }

BasicLibrary for UWP 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

 #endregion

 listBox.ItemsSource = photos;
 loading.Visibility = Visibility.Collapsed;
 listBox.Zoom = C1ZoomUnit.Fill;
 listBox.Visibility = Visibility.Visible;
 }
 catch
 {
 var dialog = new MessageDialog("There was an error when
attempting to download data from Flickr.");
 async dialog.ShowAsync();
 }
 }

5. The code above pulls images from Flickr's public photo stream and binds the C1ListBox to the list of images.

4. Add the following code just below the MainPage class:

Visual Basic

Public Class Photo
 Public Property Title() As String
 Get
 Return m_Title
 End Get
 Set(value As String)
 m_Title = Value
 End Set
 End Property
 Private m_Title As String
 Public Property Thumbnail() As String
 Get
 Return m_Thumbnail
 End Get
 Set(value As String)
 m_Thumbnail = Value
 End Set
 End Property
 Private m_Thumbnail As String
 Public Property Content() As String
 Get
 Return m_Content
 End Get
 Set(value As String)
 m_Content = Value
 End Set
 End Property
 Private m_Content As String
 End Class

C#

BasicLibrary for UWP 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

public class Photo
 {
 public string Title { get; set; }
 public string Thumbnail { get; set; }
 public string Content { get; set; }
 }

What You've Accomplished

You have successfully added data to C1TileListBox. In the next step, Step 3 of 3: Running the ListBox Application, you'll
examine the ListBox for UWP features.

Step 3 of 3: Running the ListBox Application
Now that you've created a UWP style application and customized the application's appearance and behavior, the only
thing left to do is run your application. To run your application and observe ListBox for UWP's run-time behavior,
complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

The application will appear, displaying an image.

2. Use the scroll bar on the right of the control, to scroll through the image stream.

3. If you have touch capabilities, try pinching to zoom an image.

What You've Accomplished

Congratulations! You've completed the ListBox for UWP quick start and created an application using the C1ListBox
control and viewed some of the run-time capabilities of your application.

C1TileListBox Quick Start
The following quick start guide is intended to get you up and running with the C1TileListBox control. In this quick start
you'll start in Visual Studio and create a new project, add C1TileListBox to your application, and customize the
appearance and behavior of the control.

Step 1 of 3: Creating an Application with a C1TileListBox
Control
In this step, you'll create a UWP application in Visual Studio using TileListBox for UWP.

Complete the following steps:

1. In Visual Studio select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and </Grid> tags, and click
once.

4. Add the following <StackPanel> markup between the <Grid> and </Grid> tags to add a StackPanel

BasicLibrary for UWP 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

containing a TextBlock and ProgressBar:

Markup

<StackPanel x:Name="loading" VerticalAlignment="Center">
 <TextBlock Text="Retrieving data from YouTube..." TextAlignment="Center"/>
 <ProgressBar IsIndeterminate="True" Width="200" Height="4"/>
 </StackPanel>

The TextBlock and ProgressBar will indicate that the C1TileListBox is loading.

5. Navigate to the Toolbox and double-click the C1TileListBox icon to add the control to the grid. This will add the
reference and XAML namespace automatically.

6. Edit the <Xaml:C1TileListBox> tag to customize the control:

Markup

<Xaml:C1TileListBox x:Name="tileListBox" ItemsSource="{Binding}"
Background="Transparent" Visibility="Collapsed" ItemWidth="800" ItemHeight="600"
RefreshWhileScrolling="False"></Xaml:C1TileListBox>

This gives the control a name and customizes the binding, background, visibility, size, and refreshing ability of
the control.

7. Add the following markup between the <Xaml:C1TileListBox> and </Xaml:C1TileListBox> tags:

Markup

<Xaml:C1TileListBox.PreviewItemTemplate>
 <DataTemplate>
 <Grid Background="Gray"/>
 </DataTemplate>
 </Xaml:C1TileListBox.PreviewItemTemplate>
 <Xaml:C1TileListBox.ItemTemplate>
 <DataTemplate>
 <Grid Background="LightBlue">
 <Image Source="{Binding Thumbnail}" Stretch="UniformToFill"/>
 <TextBlock Text="{Binding Title}" Foreground="White" Margin="4 0 0
4" VerticalAlignment="Bottom"/>
 </Grid>
 </DataTemplate>
 </Xaml:C1TileListBox.ItemTemplate>

This markup adds data templates for the C1TileListBox control's content. Note that you'll complete binding the
control in code.

What You've Accomplished

You've successfully created a UWP style application containing a C1TileListBox control. In the next step, Step 2 of 3:
Adding Data to the TileListBox, you will add the data for C1TileListBox.

Step 2 of 3: Adding Data to the TileListBox

BasicLibrary for UWP 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the last step, you added the C1TileListBox control to the application. In this step, you will add code to display
images from a photo stream.

Complete the following steps to add data to the control programmatically:

1. Select the Page, navigate to the Properties window, click the lightning bolt Events button to view events, and
scroll down and double-click the area next to the Loaded event.

This will open the Code Editor and add the Page_Loaded event.

2. Add the following imports statements to the top of the page:

Visual Basic

Imports C1.Xaml
Imports System
Imports System.Collections.Generic
Imports System.Linq
Imports System.Net
Imports System.Xml.Linq
Imports Windows.UI.Popups
Imports Windows.UI.Xaml
Imports Windows.UI.Xaml.Controls

C#

using C1.Xaml;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Xml.Linq;
using Windows.UI.Popups;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

3. Add the following code inside the Page_Loaded event handler:

Visual Basic

LoadVideos()

C#

LoadVideos();

4. Add the following code below the Page_Loaded event within the MainPage class:

Visual Basic

Private Async Function LoadVideos() As Task
Dim youtubeUrl = "https://gdata.youtube.com/feeds/api/videos?q=windows+8&max-
results=50"
Dim AtomNS = "http://www.w3.org/2005/Atom"
Dim MediaNS = "http://search.yahoo.com/mrss/"

BasicLibrary for UWP 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

Dim videos = New List(Of Video)()
Dim client = WebRequest.CreateHttp(New Uri(youtubeUrl))
Dim response = Await client.GetResponseAsync()

Try
 #Region "** parse you tube data"
 Dim doc = XDocument.Load(response.GetResponseStream())
 For Each entry As var In doc.Descendants(XName.[Get]("entry", AtomNS))
 Dim title = entry.Element(XName.[Get]("title", AtomNS)).Value
 Dim thumbnail = ""
 Dim group = entry.Element(XName.[Get]("group", MediaNS))
 Dim thumbnails = group.Elements(XName.[Get]("thumbnail", MediaNS))
 Dim thumbnailElem = thumbnails.FirstOrDefault()
 If thumbnailElem IsNot Nothing Then
 thumbnail = thumbnailElem.Attribute("url").Value
 End If
 Dim alternate = entry.Elements(XName.[Get]("link",
AtomNS)).Where(Function(elem) elem.Attribute("rel").Value =
"alternate").FirstOrDefault()
 Dim link = alternate.Attribute("href").Value
 videos.Add(New Video() With { _
 Key .Title = title, _
 Key .Link = link, _
 Key .Thumbnail = thumbnail _
 })
 Next
 #End Region

 tileListBox.ItemsSource = videos
 loading.Visibility = Visibility.Collapsed
 tileListBox.Visibility = Visibility.Visible
Catch
 Dim dialog = New MessageDialog("There was an error when attempting to
download data from you tube.")
 dialog.ShowAsync()
End Try
End Function

C#

private async void LoadVideos()
 {
 var youtubeUrl = "https://gdata.youtube.com/feeds/api/videos?
q=windows+8&max-results=50";
 var AtomNS = "http://www.w3.org/2005/Atom";
 var MediaNS = "http://search.yahoo.com/mrss/";

 var videos = new List<Video>();
 var client = WebRequest.CreateHttp(new Uri(youtubeUrl));
 var response = await client.GetResponseAsync();

 try

BasicLibrary for UWP 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 #region ** parse you tube data
 var doc = XDocument.Load(response.GetResponseStream());
 foreach (var entry in doc.Descendants(XName.Get("entry",
AtomNS)))
 {
 var title = entry.Element(XName.Get("title", AtomNS)).Value;
 var thumbnail = "";
 var group = entry.Element(XName.Get("group", MediaNS));
 var thumbnails = group.Elements(XName.Get("thumbnail",
MediaNS));
 var thumbnailElem = thumbnails.FirstOrDefault();
 if (thumbnailElem != null)
 thumbnail = thumbnailElem.Attribute("url").Value;
 var alternate = entry.Elements(XName.Get("link",
AtomNS)).Where(elem => elem.Attribute("rel").Value ==
"alternate").FirstOrDefault();
 var link = alternate.Attribute("href").Value;
 videos.Add(new Video() { Title = title, Link = link,
Thumbnail = thumbnail });
 }
 #endregion

 tileListBox.ItemsSource = videos;
 loading.Visibility = Visibility.Collapsed;
 tileListBox.Visibility = Visibility.Visible;
 }
 catch
 {
 var dialog = new MessageDialog("There was an error when
attempting to download data from you tube.");
 dialog.ShowAsync();
 }
}

5. The code above pulls images from YouTube and binds the C1TileListBox to the list of videos.

6. Add the following code below the code you just added within the MainPage class:

Visual Basic

Private Sub tileListBox_ItemClick(sender As Object, e As EventArgs)
 Dim video = TryCast(TryCast(sender, C1ListBoxItem).Content, Video)
 NavigateUrl(video.Link)
End Sub
#Region "** public properties"

Public Property Orientation() As Orientation
 Get
 Return tileListBox.Orientation
 End Get

BasicLibrary for UWP 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Set
 tileListBox.Orientation = value
 End Set
End Property

Public Property ItemWidth() As Double
 Get
 Return tileListBox.ItemWidth
 End Get
 Set
 tileListBox.ItemWidth = value
 End Set
End Property

Public Property ItemHeight() As Double
 Get
 Return tileListBox.ItemHeight
 End Get
 Set
 tileListBox.ItemHeight = value
 End Set
End Property

C#

private void tileListBox_ItemClick(object sender, EventArgs e)
 {
 var video = (sender as C1ListBoxItem).Content as Video;
 NavigateUrl(video.Link);
 }

 #region ** public properties

 public Orientation Orientation
 {
 get
 {
 return tileListBox.Orientation;
 }
 set
 {
 tileListBox.Orientation = value;
 }
 }

 public double ItemWidth
 {
 get
 {
 return tileListBox.ItemWidth;
 }

BasicLibrary for UWP 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

 set
 {
 tileListBox.ItemWidth = value;
 }
 }

 public double ItemHeight
 {
 get
 {
 return tileListBox.ItemHeight;
 }
 set
 {
 tileListBox.ItemHeight = value;
 }
}

7. Add the following code just below the MainPage class:

Visual Basic

Public Class Video
 Public Property Title() As String
 Get
 Return m_Title
 End Get
 Set
 m_Title = Value
 End Set
 End Property
 Private m_Title As String
 Public Property Thumbnail() As String
 Get
 Return m_Thumbnail
 End Get
 Set
 m_Thumbnail = Value
 End Set
 End Property
 Private m_Thumbnail As String
 Public Property Link() As String
 Get
 Return m_Link
 End Get
 Set
 m_Link = Value
 End Set
 End Property
 Private m_Link As String
End Class

BasicLibrary for UWP 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

public class Video
 {
 public string Title { get; set; }
 public string Thumbnail { get; set; }
 public string Link { get; set; }
 }

What You've Accomplished

You have successfully added data to C1TileTileListBox. In the next step, Step 3 of 3: Running the TileListBox
Application, you'll examine the TileListBox for UWP features.

Step 3 of 3: Running the TileListBox Application
Now that you've created a UWP style application and customized the application's appearance and behavior, the only
thing left to do is run your application. To run your application and observe TileListBox for UWP's run-time behavior,
complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

The application will appear, displaying an image.

2. Use the scroll bar on the right of the control, to scroll through the video images.

If your device have touch capabilities, try pinching to zoom an image.

What You've Accomplished

Congratulations! You've completed the TileListBox for UWP quick start and created an application using
the C1TileListBox control and viewed some of the run-time capabilities of your application.

Top Tips
These tips will help you maximize your performance while using any of the ListBox controls.

Use PreviewTemplate

In order to avoid making the layout heavier, the PreviewTemplate can be used to render a lighter template
during preview states, such as while zooming and scrolling fast. For example you could display a thumbnail
image in the PreviewTemplate and display the larger image in the full ItemTemplate.

C#

<Xaml:C1ListBox x:Name="listBox"
 ItemsSource="{Binding}"
 RefreshWhileScrolling="False">
 <Xaml:C1ListBox.PreviewItemTemplate>
 <DataTemplate>
 <Grid Background="Gray">
 <Image Source="{Binding Thumbnail}" Stretch="UniformToFill"/>
 </Grid>
 </DataTemplate>
 </Xaml:C1ListBox.PreviewItemTemplate>

BasicLibrary for UWP 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Xaml:C1ListBox.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Image Source="{Binding Content}" Stretch="UniformToFill"/>
 </Grid>
 </DataTemplate>
 </Xaml:C1ListBox.ItemTemplate>
</Xaml:C1ListBox>

Adjust the ViewportGap and ViewportPreviewGap Properties

These coefficient values determine what size of items outside the viewport to render in advance. The larger the
value the more quickly off-screen items will appear to render, but the slower the control will take on each
layout pass. For example, if set to 0.5 the view port will be enlarged to take up a half screen more at both sides
of the original view port.

Set RefreshWhileScrolling to False

Determines whether the view port is refreshed while scrolling. If set to false items will appear blank or say
“Loading” while the user scrolls real fast until they stop and allow items to render.

Working with ListBox for UWP
ListBox for UWP includes the C1ListBox and C1TileListBox controls. C1ListBox is similar to the standard ListBox
control but it includes additional functionality, such as zooming. C1TileListBox allows you to create tiled lists of items.
Display lists with tile layouts or with optical zoom using the C1ListBox and C1TileListBox controls.

Basic Properties
ListBox for UWP includes several properties that allow you to set the functionality of the control. Some of the more
important properties are listed below.

The following properties let you customize the C1ListBox control:

BasicLibrary for UWP 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

Property Description

C1ListViewer.ActualMaxZoom Gets the actual maximum zoom.

C1ListViewer.ActualMinZoom Gets the actual minimum zoom.

C1ListViewer.ActualZoom Gets the actual zoom.

C1ListViewer.IsScrolling Gets a value indicating whether the list is scrolling.

C1ListViewer.IsZooming Gets a value indicating whether this list is zooming.

C1ListViewer.ItemHeight Gets or sets the height of each item.

Items Gets the collection used to generate the content of the
control.

(Inherited from ItemsControl.)

ItemsPanel Gets or sets the template that defines the panel that
controls the layout of items.

(Inherited from ItemsControl.)

ItemsSource Gets or sets a collection used to generate the content of
the ItemsControl.

(Inherited from ItemsControl.)

ItemTemplate Template applied to all the items of the list.

(Inherited from C1ItemsControl.)

ItemTemplateSelector Template selector used to specify different templates
applied to items of the same type.

(Inherited from C1ItemsControl.)

C1ListViewer.ItemWidth Gets or sets the width of each item.

C1ListViewer.MaxZoom Gets or sets the maximum zoom available.

C1ListViewer.MinZoom Gets or sets the minimum zoom available.

C1ListViewer.Orientation Gets or sets the orientation in which the list is displayed.

C1ListViewer.Panel Gets the panel associated with this items control.

C1ListViewer.PreviewItemTemplate Gets or sets the template used for previewing an item.

C1ListViewer.RefreshWhileScrolling Gets or sets a value indicating whether the viewport must
be refreshed while the scroll is running.

C1ListViewer.ScrollViewer Gets the scroll viewer template part belonging to this items
control.

C1ListViewer.ViewportGap Gets or sets a coeficient which will determine in each
layout pass the size of the viewport. If zero is specified the
size of the viewport will be equal to the scrollviewer
viewport. If 0.5 is specified the size of the viewport will be
enlarged to take up half screen more at both sides of the
original viewport.

C1ListViewer.ViewportPreviewGap Gets or sets a coeficient which will determine in each
layout pass the size of the viewport to render items in

BasicLibrary for UWP 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

preview mode.

C1ListViewer.Zoom Gets or set the zoom applied to this list.

C1ListViewer.ZoomMode Gets or sets whether the zoom is enabled or disabled.

The following properties let you customize the C1ListBoxItem:

Description

C1ListViewerItem.PreviewContent Gets or sets the content of the preview state.

C1ListViewerItem.PreviewContentTemplate Gets or sets the DataTemplate used when in preview
state.

C1ListViewerItem.State Gets or sets the state of the item, which can be
Preview or Full.

Optical Zoom
The ListBox for UWP controls support optical zoom functionality so users can manipulate the size of the items
intuitively through pinch gestures. The zooming transformation is smooth and fluid so the performance of your
application is not sacrificed.

You can customize the zoom using the ZoomMode and Zoom properties. The ZoomMode property gets or sets
whether the zoom is enabled or disabled. The Zoom property gets or sets the Zoom value applied to the control.
The ZoomChanged event is triggered when the zoom value of the control is changed.

UI Virtualization
The ListBox controls support UI virtualization so they are blazing-fast while able to display thousands of items with
virtually no loss of performance. You can determine how many items are rendered in each layout pass by setting
the ViewportGap and ViewportPreviewGap properties. These properties can be adjusted depending on the scenario.

The ViewportGap property gets or sets a coefficient which will determine in each layout pass the size of the viewport.
If zero is specified, the size of the viewport will be equal to the scrollviewer viewport. If 0.5 is specified, the size of the
viewport will be enlarged to take up half screen more at both sides of the original viewport.

The ViewportPreviewGap property gets or sets a coefficient which will determine in each layout pass the size of the
viewport to render items in preview mode.

Orientation
The ListBox controls support both horizontal and vertical orientation, allowing for more layout scenarios. To set the
orientation of the control, set the Orientation property to Horizontal or Vertical.

Preview State
In order to have the highest performance imaginable, the ListBox controls can render items outside the viewport in a
preview state. Like the standard ItemTemplate, the Preview template defines the appearance of items when they are
in a preview state, such as zoomed out or during fast scroll. The controls will then switch to the full item template

BasicLibrary for UWP 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

when the items have stopped scrolling or zooming.

Input for UWP
Provide smarter input for phone numbers, zip codes, percentages and more. With Input for UWP you get two
controls for masked and numeric input. Quickly gather valid input while displaying formatted text automatically.

Input for UWP includes the following controls:

NumericBox for UWP

NumericBox for UWP provides a text box for displaying and editing formatted numeric values such as
currencies and percentages. The control comes complete with smart input and increment buttons.

MaskedTextBox for UWP

Provide input mask validation with MaskedTextBox for UWP. The C1MaskedTextBox control provides a text
box with a mask that prevents users from entering invalid characters.

The following topics will get you started with Input for UWP.

Input for UWP Key Features
Input for UWP allows you to create customized, rich applications. Make the most of Input for UWP by taking
advantage of the following key features:

Standard Format Strings

Provide instant formatting on user input using the Mask or Format properties. The C1MaskedTextBox
and C1NumericBox controls support the standard formatting strings defined by Microsoft and uses the same
syntax as the classic Windows Forms controls. The Format property enables you to use the familiar .NET format
strings to display numbers in several formats with support for decimal places. Supported formats include fixed-
point (F), number (N), general (G), currency (C), exponential (E), hexadecimal (X), and percent (P).

Include Prompts and Literals

Choose whether or not to show prompt characters and literals in the C1MaskedTextBox control by simply
setting one property. The prompt character indicates to the user that text can be entered (such as _ or *).
Literals are non-mask characters that will appear as themselves within the mask (such as / or -).

Numeric Range

With the C1NumericBox control you can restrict input to a specific numeric range by setting the Minimum
and Maximum properties.

Watermark Support

Using the Watermark property you can provide contextual clues of what value users should enter. The
watermark is displayed in the control while no text has been entered.

Input for UWP Quick Starts
The following quick start guides will get you up and running with Input for UWP.

BasicLibrary for UWP 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

NumericBox for UWP Quick Start
In this quick start you'll create an application that includes five C1NumericBox controls. The controls will function as a
lock and when the correct code number has been entered in each, the controls will become locked and inactive and a
button will appear directing users to a Web site.

Step 1 of 4: Creating an Application with NumericBox
Control
In this step you'll create a UWP-style application using NumericBox for UWP. When you add a C1NumericBox
control to your application, you'll have a complete, functional numeric editor. You can further customize the control to
your application.

To set up your project, complete the following steps:

1. Select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and </Grid> tags, and click
once.

4. Navigate to the Toolbox and double-click the StackPanel icon to add the panel to MainPage.xaml.

5. Add x:Name="sp1" Width="Auto" Height="Auto" Orientation="Vertical" HorizontalAlignment="Center"
VerticalAlignment="Center" to the <StackPanel> tag so that it appears similar to the following:

Markup

<StackPanel x:Name="sp1" Width="Auto" Height="Auto" Orientation="Vertical"
HorizontalAlignment="Center" VerticalAlignment="Center"></StackPanel>

Elements in the panel will now appear centered and vertically positioned.

6. In the XAML window of the project, place the cursor between the <StackPanel> and </StackPanel> tags.

7. Navigate to the Visual Studio Toolbox and double-click the standard TextBlock control to it to your project.

8. Name the TextBlock and add content to it by adding x:Name="tb1" Text="Enter Combination" Margin="5"
FontSize="24" to the <TextBlock> tag so that it appears similar to the following:

Markup

<TextBlock x:Name="tb1" Text="Enter Combination" Margin="5" FontSize="24"/>

9. Navigate to the Toolbox and double-click the StackPanel icon to add the panel to the existing StackPanel just
below the TextBlock.

10. Add x:Name="sp2" Width="Auto" Height="Auto" Orientation="Vertical" HorizontalAlignment="Center"
VerticalAlignment="Center" to the <StackPanel> tag so that it appears similar to the following:

Markup

<StackPanel x:Name="sp2" Width="Auto" Height="Auto" Orientation="Vertical"

BasicLibrary for UWP 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

HorizontalAlignment="Center" VerticalAlignment="Center"></StackPanel>

Elements in the panel will now appear centered and horizontally positioned.

11. Place the cursor between the first </StackPanel> tag and the second </StackPanel> tag and add the following
markup to create a second label:

Markup

<TextBlock x:Name="tb2" Text="Invalid Combination" Foreground="Red" Margin="5"
FontSize="18"/>

12. Place the cursor between the <TextBlock> tag and the second </StackPanel> tag and add the following
markup to create a hidden button:

Markup

<Button x:Name="btn1" Content="Enter" Height="60" Visibility="Collapsed"
Click="btn1_Click" Margin="5"></Button>

You will add the btn1_Click event handler later in code.

You've successfully created a UWP-style application, set up the application's user interface, and added controls to the
application. In the next step you'll add C1NumericBox controls and complete setting up the application.

Step 2 of 4: Adding C1NumericBox Controls
In the previous step you created a new UWP-style project and added five controls to the application. In this step you'll
continue by adding C1NumericBox controls to customize the application.

Complete the following steps:

1. In the XAML window of the project, place the cursor between the <StackPanel x:Name="sp2"> and
</StackPanel> tags.

2. Navigate to the Toolbox and double-click the C1NumericBox icon to add the control to the StackPanel. The
XAML markup will now look similar to the following:

Markup

<Xaml:C1NumericBox></Xaml:C1NumericBox>

Note that the C1.Xaml namespace and <Xaml:C1NumericBox></Xaml:C1NumericBox> tags have been added
to the project.

3. Give your control a name by adding x:Name="c1nb1" to the <Xaml:C1NumericBox> tag so that it appears
similar to the following:

Markup

<Xaml:C1NumericBox x:Name="c1nb1">

By giving it a unique identifier, you'll be able to access the control in code.

4. Add a margins by adding Margin="5" to the <Xaml:C1NumericBox> tag so that it appears similar to the
following:

BasicLibrary for UWP 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

Markup

<Xaml:C1NumericBox x:Name="c1nb1" Margin="2">

Controls will now appear spaced on the page.

5. Set your control's limits by adding Minimum="0" Maximum="9" to the <Xaml:C1NumericBox> tag so that it
appears similar to the following:

Markup

<Xaml:C1NumericBox x:Name="c1nb1" Margin="2" Minimum="0" Maximum="9">

The C1NumericBox.Minimum and C1NumericBox.Maximum properties will set the minimum and maximum
values that are allowed in the control. Users will not be able to enter values outside of that range providing
built-in data validation.

6. Add ValueChanged="c1nb1_ValueChanged" to the <Xaml:C1NumericBox> tag so that it appears similar to the
following:

Markup

<Xaml:C1NumericBox x:Name="c1nb1" Margin="2" Minimum="0" Maximum="9"
ValueChanged="c1nb1_ValueChanged">

You will add code for the c1nb1_ValueChanged event handler in a later step.

7. Add the following XAML just below the existing <Xaml:C1NumericBox x:Name="c1nb1">
</Xaml:C1NumericBox> tags:

Markup

<Xaml:C1NumericBox x:Name="c1nb2" Minimum="0" Maximum="9" Margin="5"
ValueChanged="c1nb2_ValueChanged"></Xaml:C1NumericBox>
<Xaml:C1NumericBox x:Name="c1nb3" Minimum="0" Maximum="9" Margin="5"
ValueChanged="c1nb3_ValueChanged"></Xaml:C1NumericBox>
<Xaml:C1NumericBox x:Name="c1nb4" Minimum="0" Maximum="9" Margin="5"
ValueChanged="c1nb4_ValueChanged"></Xaml:C1NumericBox>
<Xaml:C1NumericBox x:Name="c1nb5" Minimum="0" Maximum="9" Margin="5"
ValueChanged="c1nb5_ValueChanged"></Xaml:C1NumericBox>

This will add four additional C1NumericBox controls so that you have a total of five controls on the page.

You've successfully added C1NumericBox controls to the application and customized those controls. In the next step
you'll add code to the application.

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added C1NumberBox, TextBlock, and Button
controls to your application. In this step you'll add code to your application to finalize it.

Complete the following steps:

1. Select View | Code to switch to Code view.

2. Add the following imports statements to the top of the page:

BasicLibrary for UWP 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Imports Windows.UI.Xaml.Media
Imports Windows.UI.Xaml.Navigation
Imports Windows.UI
Imports C1.Xaml

C#

using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;
using Windows.UI;
using C1.Xaml;

3. Initialize the following global variables just inside the MainPage class:

Visual Basic

Dim nb1 As Integer = 5
Dim nb2 As Integer = 2
Dim nb3 As Integer = 3
Dim nb4 As Integer = 7
Dim nb5 As Integer = 9

C#

int nb1 = 5;
int nb2 = 2;
int nb3 = 3;
int nb4 = 7;
int nb5 = 9;

These numbers will be used as the correct 'code' in the application. When the user enters the correct
combination of numbers at run time the button will appear.

4. Add code to the Button1_Click event handler so that it appears like the following:

Visual Basic

Private Sub btn1_Click(ByVal sender As System.Object, ByVal e As
System.Windows.RoutedEventArgs) Handles btn1.Click
 DefaultLaunch()
End Sub

C#

private void btn1_Click(object sender, RoutedEventArgs e)
{
 DefaultLaunch();
}

5. Add the following code just below the Button1_Click event handler:

Visual Basic

BasicLibrary for UWP 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

async Sub DefaultLaunch()
 ' The URI to launch
 Dim uri As New Uri("www.componentone.com")
 ' Launch the URI
 Dim success = await Windows.System.Launcher.LaunchUriAsync(uri)

 If success Then
 ' URI launched
 Else
 ' URI launch failed
 End If
End Sub

C#

async void DefaultLaunch()
{
 // The URI to launch
 string uriToLaunch = @"http://www.componentone.com/";
 var uri = new Uri(uriToLaunch);
 // Launch the URI
 var success = await Windows.System.Launcher.LaunchUriAsync(uri);

 if (success)
 {
 // URI launched
 }
 else
 {
 // URI launch failed
 }
}

When the button is pressed at run time it will open the ComponentOne Web site.

6. Next add the following custom NBValidation event to your code:

Visual Basic

Private Sub NBValidation()
 If Me.c1nb1.Value = nb1 And Me.c1nb2.Value = nb2 And Me.c1nb3.Value = nb3
And Me.c1nb4.Value = nb4 And Me.c1nb5.Value = nb5 Then
 Me.tb2.Foreground = New SolidColorBrush(Colors.Green)
 Me.tb2.Text = "Combination Valid"
 Me.c1nb1.IsReadOnly = True
 Me.c1nb2.IsReadOnly = True
 Me.c1nb3.IsReadOnly = True
 Me.c1nb4.IsReadOnly = True
 Me.c1nb5.IsReadOnly = True
 Me.btn1.Visibility = Visibility.Visible
 End If
End Sub

BasicLibrary for UWP 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

private void NBValidation()
{
 if (this.c1nb1.Value == nb1 & this.c1nb2.Value == nb2 & this.c1nb3.Value ==
nb3 & this.c1nb4.Value == nb4 & this.c1nb5.Value == nb5)
 {
 this.tb2.Foreground = new SolidColorBrush(Colors.Green);
 this.tb2.Text = "Combination Valid";
 this.c1nb1.IsReadOnly = true;
 this.c1nb2.IsReadOnly = true;
 this.c1nb3.IsReadOnly = true;
 this.c1nb4.IsReadOnly = true;
 this.c1nb5.IsReadOnly = true;
 this.btn1.Visibility = Visibility.Visible;
 }
}

When the user enters the correct numbers (as indicated in step 3 above) the C1NumericBox controls will be set
to read only and will no longer be editable, the text of the label below the controls will change to indicate the
correct code has been entered, and a button will appear allowing users to enter the ComponentOne Web site.

7. Add C1NumericBox_ValueChanged event handlers to initialize NBValidation. The code will look like the
following:

Visual Basic

Private Sub c1nb1_ValueChanged(ByVal sender As System.Object, ByVal e As
C1.Xaml.PropertyChangedEventArgs(Of System.Double)) Handles c1nb1.ValueChanged
 NBValidation()
End Sub
Private Sub c1nb2_ValueChanged(ByVal sender As System.Object, ByVal e As
C1.Xaml.PropertyChangedEventArgs(Of System.Double)) Handles c1nb2.ValueChanged
 NBValidation()
End Sub
Private Sub c1nb3_ValueChanged(ByVal sender As System.Object, ByVal e As
C1.Xaml.PropertyChangedEventArgs(Of System.Double)) Handles c1nb3.ValueChanged
 NBValidation()
End Sub
Private Sub c1nb4_ValueChanged(ByVal sender As System.Object, ByVal e As
C1.Xaml.PropertyChangedEventArgs(Of System.Double)) Handles c1nb4.ValueChanged
 NBValidation()
End Sub
Private Sub c1nb5_ValueChanged(ByVal sender As System.Object, ByVal e As
C1.Xaml.PropertyChangedEventArgs(Of System.Double)) Handles c1nb5.ValueChanged
 NBValidation()
End Sub

C#

private void c1nb1_ValueChanged(object sender, PropertyChangedEventArgs<double>
e)
{

BasicLibrary for UWP 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

 NBValidation();
}
private void c1nb2_ValueChanged(object sender, PropertyChangedEventArgs<double>
e)
{
 NBValidation();
}
private void c1nb3_ValueChanged(object sender, PropertyChangedEventArgs<double>
e)
{
 NBValidation();
}
private void c1nb4_ValueChanged(object sender, PropertyChangedEventArgs<double>
e)
{
 NBValidation();
}
private void c1nb5_ValueChanged(object sender, PropertyChangedEventArgs<double>
e)
{
 NBValidation();
}

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 4 of 4: Running the Application
Now that you've created a UWP-style application and customized the application's appearance and behavior, the only
thing left to do is run your application. To run your application and observe NumericBox for UWP's run-time
behavior, complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

2. Click the + button in the first C1NumericBox control until 5 is displayed. Note that the number increased by 1

BasicLibrary for UWP 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

each time you click the button, this is because the C1NumericBox.Increment property is set to 1 by default.

3. Click inside the second C1NumericBox, highlight the "0" value, and type "2" to replace it.

4. Try clicking the - button in the third C1NumericBox control and notice that the number does not change. This
is because the C1NumericBox.Minimum property was set to 0 and so the control will not accept values less
than zero. Click the + button until 3 is displayed.

5. In the fourth C1NumericBox control, place the cursor in front of the 0 and click. Enter "5" so that "50" is
displayed.

6. Click inside the last C1NumericBox control. Notice that the 50 inside the fourth C1NumericBox was reset to
9. That's because the C1NumericBox.Maximum property was set to 9 so the control will not accept values
greater than nine.

7. Enter 9 in the last C1NumericBox control.

8. Click the - button of the fourth C1NumericBox control twice so 7 is displayed. Note that the text of the second
Label changed and the button is now visible.

9. Try typing inside a C1NumericBox control or clicking its + or - buttons, notice that you cannot. That is
because the C1NumericBox.IsReadOnly property was set to True when the correct number sequence was
entered and the controls are now locked from editing.

10. Click the now-visible Enter button to navigate to the ComponentOne Web site.

Congratulations! You've completed the NumericBox for UWP quick start and created a NumericBox for UWP
application, customized the appearance and behavior of the controls, and viewed some of the run-time capabilities of
your application.

MaskedTextBox for UWP Quick Start
The following quick start guide is intended to get you up and running with MaskedTextBox for UWP. In this quick
start you'll create a new application in Visual Studio, add MaskedTextBox controls, and customize the appearance
and behavior of the controls in the application.

You will create a simple form using several C1MaskedTextBox controls that will demonstrate the difference between
the Text and Value properties. The controls will include various masks and different appearance and behavior settings
so that you can explore the possibilities of using MaskedTextBox for UWP.

Step 1 of 4: Setting up the Application
In this step you'll begin in Visual Studio to create a UWP-style application using MaskedTextBox for UWP. When you
add a C1MaskedTextBox control to your application, you'll have a complete, functional input editor. You can further
customize the control to your application.

To set up your project and add C1MaskedTextBox controls to your application, complete the following steps:

1. In Visual Studio select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and </Grid> tags, and click
once.

BasicLibrary for UWP 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Navigate to the Toolbox and double-click the StackPanel icon to add it to the page.

5. Add x:Name="sp1" Width="Auto" Height="Auto" Orientation="Vertical" HorizontalAlignment="Center"
VerticalAlignment="Center" to the <StackPanel> tag so that it appears similar to the following:

Markup

<StackPanel x:Name="sp1" Width="Auto" Height="Auto" Orientation="Vertical"
HorizontalAlignment="Center" VerticalAlignment="Center"></StackPanel>

Elements in the panel will now appear centered and vertically positioned.

You've successfully created a UWP-style application. In the next step you'll add and customize TextBlock and
C1MakedTextBox controls and complete setting up the application.

Step 2 of 4: Customizing the Application
In the previous step you created a new UWP-style project and added a StackPanel to the application. In this step
you'll continue by adding and customizing TextBlock and C1MaskedTextBox controls.

Complete the following steps:

1. In the XAML window of the project, place the cursor between the <StackPanel x:Name="sp1"> and
</StackPanel> tags.

2. Add the following markup within the StackPanel to add two standard TextBlock controls:

Markup

<TextBlock Margin="2,2,2,10" Name="tb1" Text="Employee Information" />
<TextBlock FontSize="16" Margin="2,2,2,0" Text="Employee ID" />

3. Place the cursor just below the makrup you just added , navigate to the Toolbox and double-click the
C1MaskedTextBox icon to add the control to the StackPanel. This will add the reference and XAML namespace
automatically. The XAML markup resembles the following:

Markup

<Xaml:C1MaskedTextBox x:Name="c1MaskedTextBox" Text="C1MaskedTextBox"/>

4. Inside the Grid, initialize the C1MaskedTextBox control and give it a name by adding Name="c1mtb1"
VerticalAlignment="Top" Margin="2" Mask="000-00-0000" TextChanged="c1mtb1_TextChanged" to the
<Xaml:C1MaskedTextBox/> tag so that it appears similar to the following:

Markup

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Xaml:C1MaskedTextBox Name="c1mtb1" VerticalAlignment="Top" Margin="2"
Mask="000-00-0000" TextChanged="c1mtb1_TextChanged"/>
</Grid>

Notice that this markup adds a name, sets the margin and alignment, and sets a mask for the content of the
box. Note that you'll add code for the event handler you added in a later step.

5. Place the cursor just after the <Xaml:C1MaskedTextBox> tag and add the following XAML to add additional
C1MaskedTextBox and TextBlock controls to the StackPanel:

BasicLibrary for UWP 66

Copyright © 2017 GrapeCity, inc. All rights reserved.

Markup

<TextBlock x:Name="tb2" FontSize="16" Margin="2" />
<TextBlock FontSize="16" Margin="2,2,2,0" Text="Name"/>
<Xaml:C1MaskedTextBox Name="c1mtb2" VerticalAlignment="Top" Margin="2"
TextChanged="c1mtb2_TextChanged"></Xaml:C1MaskedTextBox>
<TextBlock x:Name="tb3" FontSize="16" Margin="2"/>
<TextBlock FontSize="16" Margin="2" Text="Hire Date"/>
<Xaml:C1MaskedTextBox Name="c1mtb3" VerticalAlignment="Top" Margin="2"
Mask="00/00/0000" TextChanged="c1mtb3_TextChanged"></Xaml:C1MaskedTextBox>
<TextBlock x:Name="tb4" FontSize="16" Margin="2"/>
<TextBlock FontSize="16" Margin="2,2,2,0" Text="Phone Number"/>
<Xaml:C1MaskedTextBox Name="c1mtb4" VerticalAlignment="Top" Margin="2" Mask="
(999) 000-0000" TextChanged="c1mtb4_TextChanged"></Xaml:C1MaskedTextBox>
<TextBlock x:Name="tb5" FontSize="16" Margin="2"/>

You've successfully set up your application's user interface. In the next step you'll add code to your application.

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added controls to your application. In this step
you'll add code to your application to add additional functionality.

Complete the following steps:

1. Select View | Code to switch to Code view.

2. In Code view, add the following import statement to the top of the page:

Visual Basic

Imports C1.Xaml

C#

using C1.Xaml;

3. Add the following C1MaskedTextBox_TextChanged event handlers to the project:

Visual Basic

Private Sub c1mtb1_TextChanged(ByVal sender As System.Object, ByVal e As
System.Windows.Controls.TextChangedEventArgs) Handles c1mtb1.TextChanged
 Me.tb2.Text = "Mask: " & Me.c1mtb1.Mask & " Value: " & Me.c1mtb1.Value & "
Text: " & Me.c1mtb1.Text
End Sub
Private Sub c1mtb2_TextChanged(ByVal sender As System.Object, ByVal e As
System.Windows.Controls.TextChangedEventArgs) Handles c1mtb2.TextChanged
 Me.tb3.Text = "Mask: " & Me.c1mtb2.Mask & " Value: " & Me.c1mtb2.Value & "
Text: " & Me.c1mtb2.Text
End Sub
Private Sub c1mtb3_TextChanged(ByVal sender As System.Object, ByVal e As
System.Windows.Controls.TextChangedEventArgs) Handles c1mtb3.TextChanged

BasicLibrary for UWP 67

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Me.tb4.Text = "Mask: " & Me.c1mtb3.Mask & " Value: " & Me.c1mtb3.Value & "
Text: " & Me.c1mtb3.Text
End Sub
Private Sub c1mtb4_TextChanged(ByVal sender As System.Object, ByVal e As
System.Windows.Controls.TextChangedEventArgs) Handles c1mtb4.TextChanged
 Me.tb5.Text = "Mask: " & Me.c1mtb4.Mask & " Value: " & Me.c1mtb4.Value & "
Text: " & Me.c1mtb4.Text
End Sub

C#

private void c1mtb1_TextChanged(object sender, TextChangedEventArgs e)
{
 this.tb2.Text = "Mask: " + this.c1mtb1.Mask + " Value: " + this.c1mtb1.Value
+ " Text: " + this.c1mtb1.Text;
}
private void c1mtb2_TextChanged(object sender, TextChangedEventArgs e)
{
 this.tb3.Text = "Mask: " + this.c1mtb2.Mask + " Value: " + this.c1mtb2.Value
+ " Text: " + this.c1mtb2.Text;
}
private void c1mtb3_TextChanged(object sender, TextChangedEventArgs e)
{
 this.tb4.Text = "Mask: " + this.c1mtb3.Mask + " Value: " + this.c1mtb3.Value
+ " Text: " + this.c1mtb3.Text;
}
private void c1mtb4_TextChanged(object sender, TextChangedEventArgs e)
{
 this.tb5.Text = "Mask: " + this.c1mtb4.Mask + " Value: " + this.c1mtb4.Value
+ " Text: " + this.c1mtb4.Text;
}

4. Add code to the page's constructor so that it appears like the following:

Visual Basic

Public Sub New()
 InitializeComponent()
 Me.c1mtb1_TextChanged(Nothing, Nothing)
 Me.c1mtb2_TextChanged(Nothing, Nothing)
 Me.c1mtb3_TextChanged(Nothing, Nothing)
 Me.c1mtb4_TextChanged(Nothing, Nothing)
End Sub

C#

public MainPage()
{
 InitializeComponent();
 this.c1mtb1_TextChanged(null, null);
 this.c1mtb2_TextChanged(null, null);
 this.c1mtb3_TextChanged(null, null);
 this.c1mtb4_TextChanged(null, null);

BasicLibrary for UWP 68

Copyright © 2017 GrapeCity, inc. All rights reserved.

}

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 4 of 4: Running the Application
Now that you've created a UWP-style application and customized the application's appearance and behavior, the only
thing left to do is run your application. To run your application and observe MaskedTextBox for UWP's run-time
behavior, complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time. It will
appear similar to the following:

2. Enter a number in the first C1MaskedTextBox control.

The label below the control displays the mask, current value, and current text.

3. Enter a string in the second C1MaskedTextBox control.

Notice that there was no mask added to this control – if you chose, you could type numbers or other
characters in the control.

4. Try entering a string in the third C1MaskedTextBox control. Notice that you cannot – that is because
the C1MaskedTextBox.Mask property was set to only accept numbers. Enter a numeric value instead – notice
that this does work.

5. Enter numbers in each of the remaining controls.

Notice that the C1MaskedTextBox.Value property displayed under each C1MaskedTextBox control does not
include literal characters, while the Text property does.

Congratulations! You've completed the MaskedTextBox for UWP quick start and created a MaskedTextBox
for UWP application, customized the appearance and behavior of the controls, and viewed some of the run-time

BasicLibrary for UWP 69

Copyright © 2017 GrapeCity, inc. All rights reserved.

capabilities of your application.

Working with Input for UWP
The following topics will introduce some of the features and functionality found in the C1NumericBox and
C1MaskedTextBox controls.

Working with C1NumericBox
NumericBox for UWP includes the C1NumericBox control, a simple control which provides numeric input and
editing. When you add the C1NumericBox control to a XAML window, it exists as a completely functional numeric
editor. By default, the control's interface looks similar to the following image:

It consists of the following elements:

+ and - Buttons

The +(Up) and -(Down) buttons allow users to change the value displayed in the control. Each time a button is
pressed the C1NumericBox.Value changes by the amount indicated by the C1NumericBox.Increment property
(by default 1). By default the + and - buttons are visible; to hide the buttons set
the C1NumericBox.ShowButtons property to False.

Number Display/Edit Area

The current C1NumericBox.Value is displayed in the number display/editing area. Users can type in the box to
change the C1NumericBox.Value property. By default users can edit this number; to lock the control from
editing set C1NumericBox.IsReadOnly to True.

Number Formatting
You can change how the number displayed in the C1NumericBox control will appear by setting
the C1NumericBox.Format property. NumericBox for UWP supports the standard number formatting strings defined
by Microsoft. For more information, see MSDN.

The C1NumericBox.Format string consists of a letter or a letter and number combination defining the format. By
default, the C1NumericBox.Format property is set to "F0". The letter indicates the format type, here "F" for fixed-
point, and the number indicates the number of decimal places, here none.

The following formats are available:

Format Specifier Name Description

C or c Currency The number is converted to a string that represents a
currency amount. The conversion is controlled by the
currency format information of the current

BasicLibrary for UWP 70

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx

NumberFormatInfo object.

The precision specifier indicates the desired number of
decimal places. If the precision specifier is omitted, the
default currency precision given by the current
NumberFormatInfo object is used.

D or d Decimal This format is supported only for integral types. The
number is converted to a string of decimal digits (0-9),
prefixed by a minus sign if the number is negative.

The precision specifier indicates the minimum number of
digits desired in the resulting string. If required, the
number is padded with zeros to its left to produce the
number of digits given by the precision specifier.

The following example formats an Int32 value with the
Decimal format specifier.

E or e Scientific
(exponential)

The number is converted to a string of the form "-d.ddd…
E+ddd" or "-d.ddd…e+ddd", where each 'd' indicates a
digit (0-9). The string starts with a minus sign if the
number is negative. One digit always precedes the
decimal point.

The precision specifier indicates the desired number of
digits after the decimal point. If the precision specifier is
omitted, a default of six digits after the decimal point is
used.

The case of the format specifier indicates whether to
prefix the exponent with an 'E' or an 'e'. The exponent
always consists of a plus or minus sign and a minimum of
three digits. The exponent is padded with zeros to meet
this minimum, if required.

F or f Fixed-point The number is converted to a string of the form "-
ddd.ddd…" where each 'd' indicates a digit (0-9). The
string starts with a minus sign if the number is negative.

The precision specifier indicates the desired number of
decimal places. If the precision specifier is omitted, the
default numeric precision is given by the
NumberDecimalDigits property of the current
NumberFormatInfo object.

G or g General The number is converted to the most compact of either
fixed-point or scientific notation, depending on the type
of the number and whether a precision specifier is
present. If the precision specifier is omitted or zero, the
type of the number determines the default precision, as
indicated by the following list.

· Byte or SByte: 3

· Int16 or UInt16: 5

· Int32 or UInt32: 10

BasicLibrary for UWP 71

Copyright © 2017 GrapeCity, inc. All rights reserved.

· Int64: 19

· UInt64: 20

· Single: 7

· Double: 15

· Decimal: 29

Fixed-point notation is used if the exponent that would
result from expressing the number in scientific notation is
greater than -5 and less than the precision specifier;
otherwise, scientific notation is used. The result contains
a decimal point if required and trailing zeroes are
omitted. If the precision specifier is present and the
number of significant digits in the result exceeds the
specified precision, then the excess trailing digits are
removed by rounding.

The exception to the preceding rule is if the number is a
Decimal and the precision specifier is omitted. In that
case, fixed-point notation is always used and trailing
zeroes are preserved.

If scientific notation is used, the exponent in the result is
prefixed with 'E' if the format specifier is 'G', or 'e' if the
format specifier is 'g'. The exponent contains a minimum
of two digits. This differs from the format for scientific
notation produced by the 'E' or 'e' format specifier, which
includes a minimum of three digits in the exponent.

N or n Number The number is converted to a string of the form "-
d,ddd,ddd.ddd…", where '-' indicates a negative number
symbol if required, 'd' indicates a digit (0-9), ',' indicates
a thousand separator between number groups, and '.'
indicates a decimal point symbol. The actual negative
number pattern, number group size, thousand separator,
and decimal separator are specified by the
NumberNegativePattern, NumberGroupSizes,
NumberGroupSeparator, and NumberDecimalSeparator
properties, respectively, of the current
NumberFormatInfo object.

The precision specifier indicates the desired number of
decimal places. If the precision specifier is omitted, the
default numeric precision is given by the
NumberDecimalDigits property of the current
NumberFormatInfo object.

P or p Percent The number is converted to a string that represents a
percent as defined by the
NumberFormatInfo.PercentNegativePattern property if
the number is negative, or the
NumberFormatInfo.PercentPositivePattern property if the
number is positive. The converted number is multiplied
by 100 in order to be presented as a percentage.

BasicLibrary for UWP 72

Copyright © 2017 GrapeCity, inc. All rights reserved.

The precision specifier indicates the desired number of
decimal places. If the precision specifier is omitted, the
default numeric precision given by the current
NumberFormatInfo object is used.

R or r Round-trip This format is supported only for the Single and Double
types. The round-trip specifier guarantees that a numeric
value converted to a string will be parsed back into the
same numeric value. When a numeric value is formatted
using this specifier, it is first tested using the general
format, with 15 spaces of precision for a Double and 7
spaces of precision for a Single. If the value is
successfully parsed back to the same numeric value, it is
formatted using the general format specifier. However, if
the value is not successfully parsed back to the same
numeric value, then the value is formatted using 17 digits
of precision for a Double and 9 digits of precision for a
Single.

Although a precision specifier can be present, it is
ignored. Round trips are given precedence over precision
when using this specifier.

X or x Hexadecimal This format is supported only for integral types. The
number is converted to a string of hexadecimal digits.
The case of the format specifier indicates whether to use
uppercase or lowercase characters for the hexadecimal
digits greater than 9. For example, use 'X' to produce
"ABCDEF", and 'x' to produce "abcdef".

The precision specifier indicates the minimum number of
digits desired in the resulting string. If required, the
number is padded with zeros to its left to produce the
number of digits given by the precision specifier.

Any other single
character

(Unknown
specifier)

(An unknown specifier throws a FormatException at
runtime.)

Input Validation
You can use the C1NumericBox.Minimum and C1NumericBox.Maximum properties to set a numeric range that users
are limited to at run time. If the C1NumericBox.Minimum and C1NumericBox.Maximum properties are set, users
will not be able to pick a number larger than the C1NumericBox.Minimum or smaller than
the C1NumericBox.Maximum.

When setting the C1NumericBox.Minimum and C1NumericBox.Maximum properties, the C1NumericBox.Minimum
should be smaller than the C1NumericBox.Maximum. Also be sure to set the C1NumericBox.Value property to a
number within the C1NumericBox.Minimum and C1NumericBox.Maximum range.

You can also choose a mode for range validation using the C1NumericBox.RangeValidationMode property. This
property controls when the entered number is validated. You can set C1NumericBox.RangeValidationMode to one
of the following options:

Option Description

BasicLibrary for UWP 73

Copyright © 2017 GrapeCity, inc. All rights reserved.

Always This mode does not allow users to enter out of range values.

AlwaysTruncate This mode does not allow users to enter out of range values.
The value will be truncated if the limits are exceeded.

OnLostFocus This mode truncates the value when the control loses focus.

Working with C1MaskTextBox
MaskedTextBox for UWP includes the C1MaskedTextBox control, a simple control which provides a text box with a
mask that automatically validates entered input. When you add the C1MaskedTextBox control to a XAML window, it
exists as a completely functional text box which you can further customize with a mask.

The C1MaskedTextBox control appears like a text box and includes a basic text input area which can be customized.

Mask Formatting
You can provide input validation and format how the content displayed in the C1MaskedTextBox control will appear
by setting the C1MaskedTextBox.Mask property. MaskedTextBox for UWP supports the standard number formatting
strings defined by Microsoft and the C1MaskedTextBox.Mask property uses the same syntax as the standard
MaskedTextBox control in WinForms. This makes it easier to re-use masks across applications and platforms.

By default, the C1MaskedTextBox.Mask property is not set and no input mask is applied. When a mask is applied,
the C1MaskedTextBox.Mask string should consist of one or more of the masking elements. Other elements that may
be displayed in the control are literals and prompts which may also be used if allowed by
the C1MaskedTextBox.TextMaskFormat property.

The following table lists some example masks:

Mask Behavior

00/00/0000 A date (day, numeric month, year) in international date format. The "/" character is a
logical date separator, and will appear to the user as the date separator appropriate to
the application's current culture.

00->L<LL-
0000

A date (day, month abbreviation, and year) in United States format in which the three-
letter month abbreviation is displayed with an initial uppercase letter followed by two
lowercase letters.

(999)-000-
0000

United States phone number, area code optional. If users do not want to enter the
optional characters, they can either enter spaces or place the mouse pointer directly at
the position in the mask represented by the first 0.

$999,999.00 A currency value in the range of 0 to 999999. The currency, thousandth, and decimal
characters will be replaced at run time with their culture-specific equivalents.

You can set the C1MaskedTextBox.TextMaskFormat property to one of the following elements to define what is
included in the mask:

Option Description

IncludePrompt Return text input by the user as well as any instances of the prompt

BasicLibrary for UWP 74

Copyright © 2017 GrapeCity, inc. All rights reserved.

character.

IncludeLiterals Return text input by the user as well as any literal characters defined in
the mask.

IncludePromptAndLiterals Return text input by the user as well as any literal characters defined in
the mask and any instances of the prompt character.

ExcludePromptAndLiterals Return only text input by the user.

The following topics detail mask, literal, and prompt elements that can be used or displayed.

Mask Elements
MaskedTextBox for UWP supports the standard number formatting strings defined by Microsoft.
The C1MaskedTextBox.Mask string should consist of one or more of the masking elements as detailed in the following
table:

Element Description

0 Digit, required. This element will accept any single digit between 0 and 9.

9 Digit or space, optional.

Digit or space, optional. If this position is blank in the mask, it will be rendered as a
space in the Text property. Plus (+) and minus (-) signs are allowed.

L Letter, required. Restricts input to the ASCII letters a-z and A-Z. This mask element is
equivalent to [a-zA-Z] in regular expressions.

? Letter, optional. Restricts input to the ASCII letters a-z and A-Z. This mask element is
equivalent to [a-zA-Z]? in regular expressions.

& Character, required.

C Character, optional. Any non-control character.

A Alphanumeric, optional.

a Alphanumeric, optional.

. Decimal placeholder. The actual display character used will be the decimal symbol
appropriate to the format provider.

, Thousands placeholder. The actual display character used will be the thousands
placeholder appropriate to the format provider.

: Time separator. The actual display character used will be the time symbol appropriate
to the format provider.

/ Date separator. The actual display character used will be the date symbol appropriate
to the format provider.

$ Currency symbol. The actual character displayed will be the currency symbol
appropriate to the format provider.

< Shift down. Converts all characters that follow to lowercase.

> Shift up. Converts all characters that follow to uppercase.

BasicLibrary for UWP 75

Copyright © 2017 GrapeCity, inc. All rights reserved.

| Disable a previous shift up or shift down.

\ Escape. Escapes a mask character, turning it into a literal. "\\" is the escape sequence
for a backslash.

All other
characters

Literals. All non-mask elements will appear as themselves within C1MaskedTextBox.
Literals always occupy a static position in the mask at run time, and cannot be moved
or deleted by the user.

The decimal (.), thousandths (,), time (:), date (/), and currency ($) symbols default to displaying those symbols as
defined by the application's culture.

Literals
In addition to the mask elements defined in the Mask Formatting topic, other characters can be included in the mask.
These characters are literals. Literals are non-mask elements that will appear as themselves within C1MaskedTextBox.
Literals always occupy a static position in the mask at run time, and cannot be moved or deleted by the user.

For example, if the C1MaskedTextBox.Mask property has been set to "(999)-000-0000" to define a phone number, the
mask characters include the "9" and "0" elements. The remaining characters, the dashes and parentheses, are literals.
These characters will appear as they in the C1MaskedTextBox control.

Note that the C1MaskedTextBox.TextMaskFormat property must be set to IncludeLiterals or
IncludePromptAndLiterals for literals to be used. If you do not want literals to be used, set
C1MaskedTextBox.TextMaskFormat to IncludePrompt or ExcludePromptAndLiterals.

Prompts
You can choose to include prompt characters in the C1MaskedTextBox control. The prompt character defined that text
that will appear in the control to prompt the user to enter text. The prompt character indicates to the user that text
can be entered, and can be used to detail the type of text allowed. By default the underline "_" character is used.

Note that the C1MaskedTextBox.TextMaskFormat property must be set to IncludePrompt or IncludePromptAndLiterals
for prompt characters to be used. If you do not want prompt characters to be used,
set C1MaskedTextBox.TextMaskFormat to IncludeLiterals or ExcludePromptAndLiterals.

Watermark
Using the Watermark property you can provide contextual clues of what value users should enter in a
C1MaskedTextBox control. The watermark is displayed in the control while not text has been entered. To add a
watermark, add the text Watermark="Watermark Text" to the <Xaml:C1MaskedTextBox> tag in the XAML markup for
any C1MaskedTextBox control.

So, for example, enter Watermark="Enter Text" to the <Xaml:C1MaskedTextBox> tag so that appears similar to the
following:

Markup

<Xaml:C1MaskedTextBox Height="23" Width="120" Name="C1MaskedTextBox1"
Watermark="Enter Text" />

If you click within the control and enter text, you will notice that the watermark disappears.

BasicLibrary for UWP 76

Copyright © 2017 GrapeCity, inc. All rights reserved.

Input for UWP Task-Based Help
The following task-based help topics assume that you are familiar with programming with UWP and know how to use
the C1NumericBox and C1MaskedTextBox controls in general. Each topic in this section provides a solution for specific
tasks using the Input for UWP product.

Each task-based help topic also assumes that you have created a new UWP project.

C1NumericBox Task-Based Help
Each topic in this section provides a solution for specific tasks using the C1NumericBox control.

Setting the Start Value
The C1NumericBox.Value property determines the currently selected number. By default the C1NumericBox control
starts with its C1NumericBox.Value set to 0 but you can customize this number.

At Design Time

To set the C1NumericBox.Value property, complete the following steps:

1. Click the C1NumericBox control once to select it.
2. Navigate to the Properties tab, and enter a number, for example "123", in the text box next to the

C1NumericBox.Value property.

This will set the C1NumericBox.Value property to the number you chose.

In XAML

For example, to set the C1NumericBox.Value property addValue="123" to the <Xaml:C1NumericBox> tag so that it
appears similar to the following:

Markup

<Xaml:C1NumericBox x:Name="C1NumericBox1" Value="123"></Xaml:C1NumericBox>

In Code

For example, to set the C1NumericBox.Value property add the following code to your project:

Visual Basic

C1NumericBox1.Value = 123

C#

c1NumericBox1.Value = 123;

Run your project and observe:

Initially 123 (or the number you chose) will appear in the control.

Setting the Increment Value

BasicLibrary for UWP 77

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1NumericBox.Increment property determines by how much the C1NumericBox.Value property changes when the
Up or Down button is pressed at run time. By default the C1NumericBox control starts with
its C1NumericBox.Increment set to 1 but you can customize this number.

At Design Time

To set the C1NumericBox.Increment property, complete the following steps:

1. Click the C1NumericBox control once to select it.
2. Navigate to the Properties tab, and enter a number, for example "20", in the text box next to

the C1NumericBox.Increment property.

This will set the C1NumericBox.Increment property to the number you chose.

In XAML

For example, to set the C1NumericBox.Increment property to 20 addIncrement="20" to the <Xaml:C1NumericBox>
tag so that it appears similar to the following:

Markup

<Xaml:C1NumericBox x:Name="C1NumericBox1" Increment="20"></Xaml:C1NumericBox>

In Code

For example, to set the C1NumericBox.Increment property to 20 add the following code to your project:

Visual Basic

C1NumericBox1.Increment = 20

C#

c1NumericBox1.Increment = 20;

Run your project and observe:

Press the Up and then the Down button a few times. Notice that the C1NumericBox.Value changes in steps of 20.
You can still edit the value directly by selecting the text box and entering a number that falls between that step.

Setting the Minimum and Maximum Values
You can use the C1NumericBox.Minimum and C1NumericBox.Maximum properties to set a numeric range that users
are limited to at run time. If the C1NumericBox.Minimum and C1NumericBox.Maximum properties are set, users
will not be able to pick a number larger than the C1NumericBox.Minimum or smaller than
the C1NumericBox.Maximum.

When setting the C1NumericBox.Minimum and C1NumericBox.Maximum properties,
the C1NumericBox.Minimum should be smaller than the C1NumericBox.Maximum. Also be sure to set
the C1NumericBox.Value property to a number within the C1NumericBox.Minimum
and C1NumericBox.Maximum range. In the following example, the default value 0 falls within the range chosen.

At Design Time

To set the C1NumericBox.Minimum and C1NumericBox.Maximum, complete the following steps:

1. Click the C1NumericBox control once to select it.

BasicLibrary for UWP 78

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Navigate to the Properties tab, and enter a number, for example 500, next to the C1NumericBox.Maximum
property.

3. In the Properties tab, enter a number, for example -500, next to the C1NumericBox.Minimum property.

This will set C1NumericBox.Minimum and C1NumericBox.Maximum values.

In XAML

To set the C1NumericBox.Minimum and C1NumericBox.Maximum in XAML addMaximum="500" Minimum="-
500" to the <Xaml:C1NumericBox> tag so that it appears similar to the following:

Markup

<Xaml:C1NumericBox x:Name="C1NumericBox1" Maximum="500" Minimum="-500">
</Xaml:C1NumericBox>

In Code

To set the C1NumericBox.Minimum and C1NumericBox.Maximum add the following code to your project:

Visual Basic

C1NumericBox1.Minimum = -500
C1NumericBox1.Maximum = 500

C#

c1NumericBox1.Minimum = -500;
c1NumericBox1.Maximum = 500;

Run your project and observe:

Users will be limited to the selected range at run time.

Hiding the Up and Down Buttons
By default buttons are visible in the C1NumericBox control to allow users to increment and decrement the value in the
box by one step. You can choose to hide the Up and Down buttons in the C1NumericBox control at run time. To
hide the Up and Down buttons you can set the C1NumericBox.ShowButtons property to False.

At Design Time

To hide the Up and Down buttons, complete the following steps:

1. Click the C1NumericBox control once to select it.
2. Navigate to the Properties tab, and uncheck the C1NumericBox.ShowButtons check box.

This will set the C1NumericBox.ShowButtons property to False.

In XAML

To hide the Up and Down buttons in XAML addShowButtons="False" to the <Xaml:C1NumericBox> tag so that it
appears similar to the following:

Markup

<Xaml:C1NumericBox x:Name="C1NumericBox1" Width="40" Height="25" ShowButtons="False">
</Xaml:C1NumericBox>

BasicLibrary for UWP 79

Copyright © 2017 GrapeCity, inc. All rights reserved.

In Code

To hide the Up and Down buttons add the following code to your project:

Visual Basic

C1NumericBox1.ShowButtons = False

C#

c1NumericBox1.ShowButtons = false;

Run your project and observe:

The Up and Down buttons will not be visible.

Locking the Control from Editing
By default the C1NumericBox control's C1NumericBox.Value property is editable by users at run time. If you want to
lock the control from being edited, you can set the C1NumericBox.IsReadOnly property to True.

At Design Time

To lock the C1NumericBox control from run-time editing, complete the following steps:

1. Click the C1NumericBox control once to select it.
2. Navigate to the Properties tab, and check the C1NumericBox.IsReadOnly check box.

This will set the C1NumericBox.IsReadOnly property to False.

In XAML

To lock the C1NumericBox control from run-time editing in XAML add IsReadOnly="True" to the
<Xaml:C1NumericBox> tag so that it appears similar to the following:

Markup

<Xaml:C1NumericBox x:Name="C1NumericBox1" IsReadOnly="True"></Xaml:C1NumericBox>

In Code

To lock the C1NumericBox control from run-time editing add the following code to your project:

Visual Basic

C1NumericBox1.IsReadOnly = True

C#

c1NumericBox1.IsReadOnly = true;

Run your project and observe:

The control is locked from editing; notice that the Up and Down buttons are grayed out and inactive.

BasicLibrary for UWP 80

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1MaskedTextBox Task-Based Help
Each topic in this section provides a solution for specific tasks using the C1MaskedTextBox control.

Setting the Value
The C1MaskedTextBox.Value property determines the currently visible text. By default the C1MaskedTextBox control
starts with its C1MaskedTextBox.Value not set but you can customize this.

At Design Time

To set the C1MaskedTextBox.Value property, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.
2. Navigate to the Properties tab and enter a number, for example "123", in the text box next to

the C1MaskedTextBox.Value property.

This will set the C1MaskedTextBox.Value property to the number you chose.

In XAML

To set the C1MaskedTextBox.Value property add Value="123" to the <Xaml:C1MaskedTextBox> tag so that it appears
similar to the following:

Markup

<Xaml:C1MaskedTextBox Height="23" Width="120" Name="C1MaskedTextBox1" Value="123">
</Xaml:C1MaskedTextBox>

In Code

To set the C1MaskedTextBox.Value property, add the following code to your project:

Visual Basic

C1MaskedTextBox1.Value = "123"

C#

c1MaskedTextBox1.Value = "123";

Run your project and observe:

Initially 123 (or the number you chose) will appear in the control.

Adding a Mask for Currency
You can easily add a mask for currency values using the C1MaskedTextBox.Mask property. By default
the C1MaskedTextBox control starts with its C1MaskedTextBox.Mask not set but you can customize this. For more
details about mask characters, see Mask Elements.

At Design Time

To set the C1MaskedTextBox.Mask property, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.

BasicLibrary for UWP 81

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Navigate to the Properties tab and enter "$999,999.00" in the text box next to the C1MaskedTextBox.Mask
property.

This will set the C1MaskedTextBox.Mask property to the number you chose.

In XAML

To set the C1MaskedTextBox.Mask property add Mask="$999,999.00" to the <Xaml:C1MaskedTextBox> tag so that
it appears similar to the following:

Markup

<Xaml:C1MaskedTextBox Height="23" Width="120" Name="C1MaskedTextBox1"
Mask="$999,999.00"></Xaml:C1MaskedTextBox>

In Code

To set the C1MaskedTextBox.Mask property add the following code to your project:

Visual Basic

C1MaskedTextBox1.Mask = "$999,999.00"

C#

c1MaskedTextBox1.Mask = "$999,999.00";

Run your project and observe:

The mask will appear in the control. Enter a number; notice that the mask is filled.

Changing the Prompt Character
The C1MaskedTextBox.PromptChar property sets the characters that are used to prompt users in
the C1MaskedTextBox control. By default the C1MaskedTextBox.PromptChar property is set to an underline
character ("_") but you can customize this. For more details about the C1MaskedTextBox.PromptChar property, see
Prompts.

At Design Time

To set the C1MaskedTextBox.PromptChar property, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.
2. Navigate to the Properties tab and enter "0000" in the text box next to the C1MaskedTextBox.Mask property

to set a mask.
3. In the properties window, enter "#" (the pound character) in the text box next to the

C1MaskedTextBox.PromptChar property

In XAML

To set the C1MaskedTextBox.PromptChar property add Mask="0000" PromptChar="#" to the
<Xaml:C1MaskedTextBox> tag so that it appears similar to the following:

Markup

<Xaml:C1MaskedTextBox Height="23" Name="C1MaskedTextBox1" Width="120" Mask="0000"
PromptChar="#"></Xaml:C1MaskedTextBox>

BasicLibrary for UWP 82

Copyright © 2017 GrapeCity, inc. All rights reserved.

In Code

To set the C1MaskedTextBox.PromptChar property add the following code to your project:

Visual Basic

Dim x As Char = "#"c
C1MaskedTextBox1.Mask = "0000"
C1MaskedTextBox1.PromptChar = x

C#

char x = '#';
this.c1MaskedTextBox1.Mask = "0000";
this.c1MaskedTextBox1.PromptChar = x;

Run your project and observe:

The pound character will appear as the prompt in the control. In the following image, the number 32 was entered in
the control:

Changing Font Type and Size
You can change the appearance of the text in the grid by using the text properties.

At Design Time

To change the font of the grid to Arial 10pt, complete the following:

1. Click the C1MaskedTextBox control once to select it.
2. Navigate to the Properties tab, and set FontFamily property to "Arial" (or a font of your choice).
3. In the Properties window, set the FontSize property to 10.

This will set the control's font size and style.

In XAML

For example, to change the font of the control to Arial 10pt in XAML add FontFamily="Arial" FontSize="10" to the
<Xaml:C1MaskedTextBox> tag so that it appears similar to the following:

Markup

<Xaml:C1MaskedTextBox Height="23" Name="C1MaskedTextBox1" Width="120" FontSize="10"
FontFamily="Arial"></Xaml:C1MaskedTextBox>

In Code

For example, to change the font of the grid to Arial 10pt add the following code to your project:

Visual Basic

C1MaskedTextBox1.FontSize = 10
C1MaskedTextBox1.FontFamily = New System.Windows.Media.FontFamily("Arial")

BasicLibrary for UWP 83

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

c1MaskedTextBox1.FontSize = 10;
c1MaskedTextBox1.FontFamily = new System.Windows.Media.FontFamily("Arial");

Run your project and observe:

The control's content will appear in Arial 10pt font.

Locking the Control from Editing
By default the C1MaskedTextBox control's C1MaskedTextBox.Value property is editable by users at run time. If you
want to lock the control from being edited, you can set the IsReadOnly property to True.

At Design Time

To lock the C1MaskedTextBox control from run-time editing, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.
2. Navigate to the Properties tab and check the IsReadOnly check box.

This will set the IsReadOnly property to False.

In XAML

To lock the C1MaskedTextBox control from run-time editing in XAML add IsReadOnly="True" to the
<Xaml:C1MaskedTextBox> tag so that it appears similar to the following:

Markup

<Xaml:C1MaskedTextBox Height="23" Name="C1MaskedTextBox1" Width="120"
IsReadOnly="True"></Xaml:C1MaskedTextBox>

In Code

To lock the C1MaskedTextBox control from run-time editing add the following code to your project:

Visual Basic

C1MaskedTextBox1.IsReadOnly = True

C#

c1MaskedTextBox1.IsReadOnly = true;

Run your project and observe:

The control is locked from editing. Try to click the cursor within the control – notice that the text insertion point (the
blinking vertical line) will not appear in the control.

Menu for UWP
Add touch-friendly context menus and classic "File" menu systems to your Universal Windows apps with Menu
for UWP. The C1Menu and C1ContextMenu controls give you a real desktop look-and-feel with traditional looking
menus that support deep nested items and vertical orientation.

BasicLibrary for UWP 84

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1ContextMenu

The C1ContextMenu provides a pop-up menu that provides frequently used commands that are associated
with the selected object.

C1Menu

The C1Menu is a control that allows hierarchical organization of elements associated with event handlers.

Menu for UWP Key Features
Menu for UWP allows you to create customized, rich applications with the C1Menu and C1ContextMenu controls.
Make the most of Menu for UWP by taking advantage of the following key features:

Display Holding Indicator

With the C1ContextMenu control, a holding indicator can display when the user holds down on the parent
control. This mimics the Windows desktop context menu experience on touch devices.

Page Boundaries Detection

Drop-down menus are positioned automatically and always stay within the page bounds. Long menus will
show scroll buttons to indicate there are more menu items out of view.

Icons and Custom Content

Display icons or any custom content for each menu item.

Horizontal or Vertical Orientation

BasicLibrary for UWP 85

Copyright © 2017 GrapeCity, inc. All rights reserved.

Set the Orientation to Horizontal or Vertical. Use the C1Menu control with the C1DockPanel control to dock
it to any edge of the page.

Checked Items

C1MenuItem can be checked to show toggled state of features.

Easily Change Colors with ClearStyle

The C1Menu control supports ClearStyle technology which allows you to easily change control brushes
without having to override templates. By just setting a few brush properties in Visual Studio you can quickly
style each part of the control.

Menu for UWP Quick Start
The following quick start guide is intended to get you up and running with Menu for UWP for UWP. In this quick
start, you'll create a new project with the C1Menu and C1ContextMenu controls. You will also add menu items,
submenus, and a context menu to the control.

Step 1 of 4: Creating a Universal Windows Application
In this step, you'll create a Universal Windows application using the C1Menu and C1ContextMenu controls.

Complete the following steps:

1. In Visual Studio select File | New | Project.

2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,
select Blank App (Universal Windows). Enter a Name and click OK to create your project.

3. Right-click the project name in the Solution Explorer and select Add Reference.

4. In the Reference Manager dialog box, expand Universal Windows and select Extensions; you should see the
UWP assemblies in the center pane. Select C1.UWP and click OK.

BasicLibrary for UWP 86

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Open the MainPage.xaml.cs (or MainPage.xaml.vb) code file and add the following reference to the top of
the page:

Visual Basic

Imports C1.Xaml

C#

using C1.Xaml;

6. Open MainPage.xaml and add the following markup within the <Page> tag:

Markup

xmlns:C1="using:C1.Xaml"

7. Add the following markup within the <Page> and </Page> tags:

Markup

<Page.Resources>
 <Style TargetType="Image" x:Key="MenuIcon">
 <Setter Property="Width" Value="16"/>
 <Setter Property="Height" Value="16"/>
 <Setter Property="Margin" Value="5 0 0 0"/>
 </Style>
 <Style TargetType="TextBlock" x:Key="TextIconStyle">
 <Setter Property="FontSize" Value="20" />
 <Setter Property="FontFamily" Value="Segoe UI Symbol" />
 <Setter Property="FontWeight" Value="Normal" />
 <Setter Property="Foreground" Value="{StaticResource
AppBarItemForegroundThemeBrush}" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 <Setter Property="Margin" Value="5,-1,0,0"/>
 </Style>
 <Style TargetType="C1:C1MenuItem">
 <Setter Property="ItemContainerTransitions">
 <Setter.Value>
 <TransitionCollection>
 <RepositionThemeTransition/>
 <EntranceThemeTransition/>
 </TransitionCollection>
 </Setter.Value>
 </Setter>
 <Setter Property="ItemContainerTransitions">
 <Setter.Value>
 <TransitionCollection>
 <RepositionThemeTransition/>
 <EntranceThemeTransition/>

BasicLibrary for UWP 87

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </TransitionCollection>
 </Setter.Value>
 </Setter>
 </Style>
 </Page.Resources>

This markup adds style resources.

8. Add the following markup within the <Grid> and </Grid> tags:

Markup

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>

This markup adds row definitions to the grid.

You have completed the first step of the Menu for UWP quick start. In this step, you created a Universal Windows
project. In the next step, you will add tabs and tab pages to the control.

Step 2 of 4: Adding C1Menu to the Application
In the last step, you created a Universal Windows application. In this step, you will add a C1Menu control.

1. Place the cursor between the <Grid> and </Grid> tags in MainPage.xaml, and click once.

2. Add markup for a C1DockPanel control:

Markup

<C1:C1DockPanel Grid.Row="1" LastChildFill="False"></C1:C1DockPanel>

You’ll add the C1Menu within this control.

3. Add markup for a TextBlock just after the </C1:C1DockPanel> tag:

Markup

<TextBlock x:Name="txt" Foreground="Red" Text="" FontSize="16"
VerticalAlignment="Bottom" HorizontalAlignment="Center" Margin="10" />

The name of any menu item you select will be displayed in the TextBlock at run time.

4. Add the following markup within the <C1:C1DockPanel> tags:

Markup

<C1:C1Menu x:Name="VisualStudioMenu" C1:C1DockPanel.Dock="Top"
DetectBoundaries="True" MinWidth="200" ItemClick="Menu_ItemClick">
 <C1:C1Menu.ItemContainerTransitions>
 <TransitionCollection>
 <EntranceThemeTransition/>

BasicLibrary for UWP 88

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </TransitionCollection>
 </C1:C1Menu.ItemContainerTransitions>
</C1:C1Menu>

This adds a C1Menu control.

5. Add the following markup just before the </c1:C1Menu> tag:

Markup

<C1:C1MenuItem Header="File">
<C1:C1MenuItem Header="New">
 <C1:C1MenuItem Header="Project..." IsCheckable="True" IsChecked="True" >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Web Site..." >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Team Project..." >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="File..." >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Open">
 <C1:C1MenuItem Header="Project..." >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Web Site..." >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="File..." >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
</C1:C1MenuItem>
<C1:C1Separator />
<C1:C1MenuItem Header="Close" />

BasicLibrary for UWP 89

Copyright © 2017 GrapeCity, inc. All rights reserved.

<C1:C1MenuItem Header="Close Solution">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1Separator />
<C1:C1MenuItem Header="Save" >
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Save All" />
<C1:C1Separator />
<C1:C1MenuItem Header="Page Setup">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Print">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="⎙" Style="{StaticResource TextIconStyle}"
FontWeight="ExtraBold" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1Separator />
<C1:C1MenuItem Header="Exit"/>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Edit">
<C1:C1MenuItem Header="Undo">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Redo">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1Separator />
<C1:C1MenuItem Header="Cut">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Copy">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Paste">
 <C1:C1MenuItem.Icon>

BasicLibrary for UWP 90

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Delete" Width="100">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </C1:C1MenuItem.Icon>
</C1:C1MenuItem>
</C1:C1MenuItem>
<C1:C1MenuItem Header="Window">
<C1:C1MenuItem Header="Document 1" IsCheckable="True" IsChecked="True" />
<C1:C1MenuItem Header="Document 2" IsCheckable="True" IsChecked="True" />
<C1:C1MenuItem Header="Document 3" IsCheckable="True" />
<C1:C1MenuItem Header="Document 4" IsCheckable="True" />
<C1:C1Separator />
<C1:C1MenuItem Header="Exclusive 1" GroupName="Exclusives" IsCheckable="True"
IsChecked="True" />
<C1:C1MenuItem Header="Exclusive 2" GroupName="Exclusives" IsCheckable="True"
IsChecked="True" />
<C1:C1MenuItem Header="Exclusive 3" GroupName="Exclusives" IsCheckable="True" />
</C1:C1MenuItem>
<C1:C1MenuItem Header="Deep">
<C1:C1MenuItem Header="Deep1">
 <C1:C1MenuItem Header="Deep2">
 <C1:C1MenuItem Header="Deep3">
 <C1:C1MenuItem Header="Deep4">
 <C1:C1MenuItem Header="Deep5">
 </C1:C1MenuItem>
 </C1:C1MenuItem>
 </C1:C1MenuItem>
 </C1:C1MenuItem>
</C1:C1MenuItem>
</C1:C1MenuItem>

The above markup adds markup for menu structure.

6. Open the MainPage.xaml.cs (or MainPage.xaml.vb) page and add the following Click event handler to the
project:

Visual Basic

Private Sub Menu_ItemClick(sender As Object, e As C1.Xaml.SourcedEventArgs)
 txt.Text = "Item Clicked: " & DirectCast(e.Source,
C1.Xaml.C1MenuItem).Header.ToString()
End Sub

C#

private void Menu_ItemClick(object sender, C1.Xaml.SourcedEventArgs e)
 {
 txt.Text = "Item Clicked: " +
((C1.Xaml.C1MenuItem)e.Source).Header.ToString();
 }

BasicLibrary for UWP 91

Copyright © 2017 GrapeCity, inc. All rights reserved.

In this step, you added a C1Menu control. In the next step, you will add a C1ContextMenu control to the application.

Step 3 of 4: Adding a C1ContextMenu to the C1Menu
Control
In the last step, you added submenus to the C1Menu control's menu items. In this step, you will add
a C1ContextMenu control to the C1Menu control. This context menu will have one item that, when clicked, will add
submenu items to the C1Menu control's top-level "Added Items" top-level menu item that you created in Step 2.

Complete the following steps:

1. In XAML view, place the following XAML markup right before the </C1:C1Menu> tag:

Markup

<C1:C1ContextMenuService.ContextMenu>
 <C1:C1ContextMenu x:Name="contextMenu" ItemClick="Menu_ItemClick">
 <C1:C1ContextMenu.ItemContainerTransitions>
 <TransitionCollection>
 <EntranceThemeTransition FromVerticalOffset="10"
FromHorizontalOffset="0" IsStaggeringEnabled="False"/>
 </TransitionCollection>
 </C1:C1ContextMenu.ItemContainerTransitions>
 <C1:C1MenuItem Header="Add">
 <C1:C1MenuItem.ItemContainerTransitions>
 <TransitionCollection>
 <EntranceThemeTransition FromVerticalOffset="10"
FromHorizontalOffset="0" IsStaggeringEnabled="False"/>
 </TransitionCollection>
 </C1:C1MenuItem.ItemContainerTransitions>
 <C1:C1MenuItem Header="New Item">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Existing Item"/>
 <C1:C1MenuItem Header="Folder"/>
 <C1:C1Separator />
 <C1:C1MenuItem Header="Class"/>
 </C1:C1MenuItem>
 <C1:C1Separator />
 <C1:C1MenuItem Header="Exclude From Project"/>
 <C1:C1Separator />
 <C1:C1MenuItem Header="Cut">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Copy">

BasicLibrary for UWP 92

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Paste">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Delete">
 <C1:C1MenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </C1:C1MenuItem.Icon>
 </C1:C1MenuItem>
 <C1:C1MenuItem Header="Rename"/>
 <C1:C1Separator/>
 <C1:C1MenuItem Header="Properties"/>
 </C1:C1ContextMenu>
</C1:C1ContextMenuService.ContextMenu>

The above markup adds a C1ContextMenu control to the C1Menu control using the C1ContextMenuService
helper class. Note that the C1ContextMenu control contains one C1MenuItem that is attached to the Click
event named "Menu_ItemClick".

2. Add x:Name="AddedItems" to the <c1:C1MenuItem Header="Added Items"/> tag. This gives the
item a unique identifier so that you can call it in code.

In this step, you added a C1ContextMenu control to the C1Menu control. In the next step, you will run the project and
see the result of the Menu for UWP quick start.

Step 4 of 4: Running the Project
Now that you have created a Universal Windows project with a C1Menu control, the only thing left to do is run the
project and observe the results of your work.

Complete the following steps:

1. Select Debug | Start Debugging to run the project.

2. Click File and observe that a submenu appears.

3. Hover your cursor over New and observe that another submenu appears.

4. Click Window and click Document 4.

The Window submenu closes and the name of the item appears in the text box.

5. Right-click the menu and notice that the context menu appears.

6. Select and item in the context menu and observe that the name of the item appears in the TextBlock on the
screen.

BasicLibrary for UWP 93

Copyright © 2017 GrapeCity, inc. All rights reserved.

Congratulations! You have completed the Menu for UWP Quick Start.

Radial Menu for UWP
Add an attractive radial menu system to your Universal Windows apps with RadialMenu for UWP. Modeled after
popular Microsoft apps, the C1RadialMenu control gives you a unique and touch-friendly alternative to the traditional
context menu.

Radial Menu for UWP Key Features
RadialMenu for UWP allow you to create customized, rich applications. Make the most of RadialMenu for UWP by
taking advantage of the following key features:

Nested Menus

The radial menus can be nested to any depth that you desire, and you can add as many items to the radial
menu as you need to add. The C1RadialMenu control will automatically create the sectors based on the
number of items your control contains.

Flexible Positioning

You can specify the exact position of each item within the C1RadialMenu control and you can even specify the
angle at which the items begin.

Automatic Selection

Each menu item can contain any number of submenu items, and the C1RadialMenu control will show a
selected item for each submenu. You can specify which submenu item is selected or allow the control to
automatically select items based on the user's previous actions. So a frequently selected menu item that is not
the default will be displayed on the main menu, allowing faster selection.

Automatic Collapsing

By default, the C1RadialMenu control and its submenus will remain open even when a user clicks outside the
radial menu. However, you can change this behavior by enabling the automatic collapsing feature. This will
allow users to close a radial menu by clicking outside the control's boundaries.

Checkable Menu Items

You can make any C1RadialMenuItem a checkable menu item by setting its IsCheckable property to True. In
the C1RadialMenu, a checked item is marked similarly to a highlighted item instead of with a typical check
mark.

Easily Change Colors with ClearStyle

The C1RadialMenu control supports ComponentOne's ClearStyle technology that allows you to easily change
control brushes without having to override templates. By just setting a few brush properties in Visual Studio
you can quickly style each part of the control.

Radial Menu for UWP Quick Start
The following quick start guide is intended to get you up and running with RadialMenu for UWP. In this quick start,
you'll use Visual Studio to create a new project with the C1RadialMenu control.

BasicLibrary for UWP 94

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 1 of 3: Creating a C1RadialMenu Application
In this step, you'll create a Universal Windows application using the C1RadialMenu control.

Complete the following steps:

1. In Visual Studio select File | New | Project.
2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,

select Blank App (Universal Windows). Enter a Name and click OK to create your project.
3. Right-click the project name in the Solution Explorer and select Add Reference.
4. In the Reference Manager dialog box, expand Universal Windows and select Extensions; you should see the

UWP assemblies in the center pane. Select C1.UWP and click OK.
5. Open MainPage.xaml if it isn't already open, and add the following markup within the <Page> tag:

Markup

xmlns:Xaml="using:C1.Xaml"

This adds the required references in the project.

6. Add the following markup within the <Page> and </Page> tags:

Markup

<Page.Resources>
 <Style TargetType="TextBlock" x:Key="TextIconStyle">
 <Setter Property="Margin" Value="-10" />
 <Setter Property="FontSize" Value="20" />
 <Setter Property="FontFamily" Value="Segoe UI Symbol" />
 <Setter Property="FontWeight" Value="Normal" />
 <Setter Property="Foreground" Value="#333333" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 </Page.Resources>

This markup adds style resources that define the layout of our menu items content. We will add the menu
items to C1RadialMenu in the next step. Each of our menu items will contain an Image and a TextBlock label

7. Add the following markup within the <Grid> and </Grid> tags:

Markup

<Border Background="LemonChiffon" MinHeight="40" BorderBrush="#969696"
BorderThickness="1" Padding="5" HorizontalAlignment="Stretch"
VerticalAlignment="Stretch">
</Border >

This markup adds border definition to the application.

You have completed the first step of the RadialMenu for UWP quick start. In this step, you created a Universal
Windows project. In the next step, you will add a RadialMenu control and menu items.

Step 2 of 3: Adding RadialMenu Items to the Control

BasicLibrary for UWP 95

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the last step, you created a UWP project. In this step, you will add a C1RadialMenu control.

1. Place the cursor between the <Grid> and </Grid> tags in MainPage.xaml, and click once.
2. Add markup for a C1ContextMenuService.ContextMenu attached property:

Markup

<Xaml:C1ContextMenuService.ContextMenu>
</Xaml:C1ContextMenuService.ContextMenu>

The C1ContextMenuService enables C1RadialMenu to act as the context menu for any control. It will
automatically appear when you right-click or right-tap on the parent control. In this case, the parent control is
a Grid. Next, You’ll add the C1RadialMenu within this control.

Note: If you prefer to show the C1RadialMenu control programmatically, you can
skip C1ContextMenuService and simply call the C1RadialMenu.Show method in code.

3. Add the following markup within the <Xaml:C1ContextMenuService.ContextMenu > tags:

Markup

<Xaml:C1RadialMenu x:Name="contextMenu" Offset="-130,0"
ItemClick="contextMenu_ItemClick" ItemOpened="contextMenu_ItemOpened" >
 </Xaml:C1RadialMenu>

This adds a C1RadialMenu control.

4. Add the following markup within the <Xaml:C1RadialMenu> </Xaml:C1RadialMenu> tags:

Markup

<Xaml:C1RadialMenuItem Header="UndoRedo" SelectedIndex="0"
ShowSelectedItem="True" Command="{Binding UndoCommand, ElementName=page}">
 <Xaml:C1RadialMenuItem Header="Undo" >
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Redo" >
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem ToolTip="Clear Text Formatting" DisplayIndex="7">
 <Xaml:C1RadialMenuItem.Header>
 <TextBlock TextWrapping="Wrap" MaxWidth="50"
TextAlignment="Center">Clear Format</TextBlock>
 </Xaml:C1RadialMenuItem.Header>
 </Xaml:C1RadialMenuItem>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem AutoSelect="True" ShowSelectedItem="True"
Header="Clipboard" SectorCount="8">
 <Xaml:C1RadialMenuItem Header="Cut">
 <Xaml:C1RadialMenuItem.Icon>

BasicLibrary for UWP 96

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Copy">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Paste">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Add" SectorCount="6">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 <Xaml:C1RadialMenuItem Header="New" ToolTip="New Item">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Existing" ToolTip="Existing
Item">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Folder">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Class">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Exclude" ToolTip="Exclude From
Project" >
 <Xaml:C1RadialMenuItem.Icon>

BasicLibrary for UWP 97

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Delete">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Rename">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Properties">
 <Xaml:C1RadialMenuItem.Icon>
 <TextBlock Text="" Style="{StaticResource
TextIconStyle}" />
 </Xaml:C1RadialMenuItem.Icon>
 </Xaml:C1RadialMenuItem>

The above markup adds menu items to the RadialMenu.

5. Add the following markup directly below the </Xaml:C1ContextMenuService.ContextMenu> tags:

Markup

<TextBlock Text="Press the context-menu button over this text (right-click in
Windows)." Foreground="Sienna" FontSize="16" TextWrapping="Wrap"
HorizontalAlignment="Center" VerticalAlignment="Center"/>
</Border>
<TextBlock x:Name="txt" Foreground="Red" Text="" FontSize="16"
VerticalAlignment="Bottom" HorizontalAlignment="Center" Margin="10" />

This will add two general TextBlock controls to the application, one before the </Border> tag, and one after it.
The first TextBlock will contain the directions for how to display the C1RadialMenu. The second TextBlock will
display the C1RadialMenuItem you have tapped or clicked, or opened.

6. Open the MainPage.xaml.cs page and add the following Click event handlers to the project:

C#

private void contextMenu_ItemClick(object sender, C1.Xaml.SourcedEventArgs e)
 {
 txt.Text = "Item Clicked: " +
((C1.Xaml.C1RadialMenuItem)e.Source).Header.ToString();
 }
 private void contextMenu_ItemOpened(object sender,
C1.Xaml.SourcedEventArgs e)
 {
 txt.Text = "Item Opened: " +

BasicLibrary for UWP 98

Copyright © 2017 GrapeCity, inc. All rights reserved.

((C1.Xaml.C1RadialMenuItem)e.Source).Header.ToString();
 }

In this step, you added a C1RadialMenu control. In the next step, you will run the project and see the result of the
RadialMenu for UWP quick start.

Step 3 of 3: Running the Project
Now that you have created a Universal Windows project with a C1RadialMenu control, the only thing left to do is run
the project and observe the results of your work.

Complete the following steps:

1. Select Debug | Start Debugging to run the project. When you right tap or right click on the page, the
Navigation Button will appear as in the following image:

2. Tap or click the Navigation Button to display the radial menu:

3. Tap the ExpandArea above the Cut C1RadialMenuItem and observe that the Clipboard menu appears:

BasicLibrary for UWP 99

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. To go back to the main radial menu, tap the purple arrow in the center of the C1RadialMenu control.

Congratulations! You have completed the RadialMenu for UWP quick start.

WorkingwithC1Radial Menu
The following topics outline the basics of working with the C1RadialMenu control. In this section, you will find outlines
of the controls' elements and descriptions of some of the controls' most popular features.

C1RadialMenu Elements
The C1RadialMenu is a control that allows radial organization of elements. The radial menus can be nested to any
depth that you desire, and you can add as many items to the radial menu as you need to add.

The following image diagrams the elements of the C1RadialMenu control.

BasicLibrary for UWP 100

Copyright © 2017 GrapeCity, inc. All rights reserved.

The elements of the C1RadialMenu control can be described as follows:

C1RadialMenu

The main radial menu is a circular, top-level context menu control. It is comprised of first-
level C1RadialMenuItems and can hold any feature available to C1RadialMenuItems.

C1RadialMenuItem

Radial menu items are represented by the C1RadialMenuItem class. C1RadialMenuItems can have a Header
and an Icon, and you can also set them as Checkable. Each radial menu item might be associated with
a Command, which is invoked when the button is pressed. A C1RadialMenuItem that contains child items will
also have an Expand Area.

Sectors

The C1RadialMenu is split into sectors. The C1RadialMenu control will automatically create the sectors based
on the number of C1RadialMenuItem your control contains, but you can customize the number of sectors
using the SectorCount property.

Navigation Button

When a user right taps the application, the Navigation Button will appear. Tap the Navigation Button to show
or hide the C1RadialMenu. This button will turn into a back arrow when a user navigates to a submenu.

Icon

Using the C1RadialMenuItem.Icon property, you can customize the icons that appear on your C1RadialMenu.

BasicLibrary for UWP 101

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1RadialMenuItem and C1RadialPanel Elements
There are a few properties that are used to draw the geometrical paths in the C1RadialMenuItem default control
template. By default, these properties are set by the C1RadialPanel, but you can use them to create custom control
templates by setting them explicitly in the C1RadialPanel.

C1RadialMenuItem Elements

The C1RadialMenuItem elements are set by the C1RadialPanel by default. They draw the geometric paths in
the C1RadialMenuItem control. The default control template uses them, and you can also use them in custom control
templates.

CenterPoint

The CenterPoint property gets the coordinates of the circle's center. This can be used to draw the circle sector
in XAML, representing the current C1RadialMenuItem.

CheckArc

The CheckArc property gets the definition of the check arc segment.

ExpandArc

The ExpandArc property gets the definition of the expand area arc segment.

OuterArc

The OuterArc property gets the definition of the outer arc segment. This can be used to draw the circle sector
in XAML, representing the current C1RadialMenuItem.

C1RadialPanel Elements

The C1RadialPanel is created in the default C1RadialMenu style. It's used by the C1RadialMenuItemsPresenter as an
ItemsPanel. The C1RadialPanel makes use of all 360 degrees available to it so that radial menu items are arranged

BasicLibrary for UWP 102

Copyright © 2017 GrapeCity, inc. All rights reserved.

within the circle. If you need to change the StartAngle or EndAngle, then you can use XAML like the following to
redefine the default style and use custom settings:

Markup

<Setter Property="ItemsPanel">
 <Setter.Value>
 <ItemsPanelTemplate>
 <c1:C1RadialPanel StartAngle="-180" EndAngle="180" />
 </ItemsPanelTemplate>
 </Setter.Value>
 </Setter>

StartAngle

The StartAngle defines the place where the first C1RadialMenuItem should be located. In the sample above, -
180 corresponds to 9 o'clock on a clock face. This is the default StartAngle.

EndAngle

The EndAngle defines the place where the last C1RadialMenuItem should be located. In the sample above, 180
corresponds to 9 o'clock on a clock face. This is the default EndAngle. Starting and ending the sweep of the
angle at a similar point ensures that the menu items will be arranged properly around the C1RadialMenu.

C1RadialMenu Features

Automatic Collapsing
By default, the C1RadialMenu control and its submenus will remain open even when a user clicks outside of the radial
menu. The only way users can close the radial menu is if they click the Navigation Button in the center of
the C1RadialMenu control. However, you can change this behavior by enabling the automatic collapsing feature,
which will allow users to close a radial menu by clicking outside of the control's boundaries. To turn on automatic
collapsing, set the AutoCollapse property to True.

Checkable Radial Menu Items
You can make any C1RadialMenuItem a checkable RadialMenu item by setting its IsCheckable property to True.

In the C1RadialMenu, a checked item is marked similarly to a highlighted item instead of with a typical check mark.
You can see the Insert Above option checked in the image below. Note that the check is thinner than the highlight
you can see in the C1RadialMenu Elements topic:

BasicLibrary for UWP 103

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can create a group of mutually exclusive checkable items by setting the GroupName property of each item you
wish to add to the group. For example, the XAML below will create a group of four mutually exclusive checkable items.

Markup

 <Xaml:C1RadialMenu SectorCount="8" >
 <Xaml:C1RadialMenuItem Header="Insert" SectorCount="8" AutoSelect="True"
ShowSelectedItem="True" IsCheckable="True" >
 <Xaml:C1RadialMenuItem Header="Insert Left" IsCheckable="True"
GroupName="MutuallyExclusiveGroup"/>
 <Xaml:C1RadialMenuItem Header="Insert Above" DisplayIndex="2" IsCheckable="True"
GroupName="MutuallyExclusiveGroup"/>
 <Xaml:C1RadialMenuItem Header="Insert Right" DisplayIndex="4" IsCheckable="True"
GroupName="MutuallyExclusiveGroup"/>
 <Xaml:C1RadialMenuItem Header="Insert Below" DisplayIndex="6" IsCheckable="True"
GroupName="MutuallyExclusiveGroup" />
 </Xaml:C1RadialMenuItem>
</Xaml:C1RadialMenu>

A mutually exclusive group will only allow one C1RadialMenuItem to be checked at one time.

Navigation Button
The C1RadialMenu's Navigation Button is the first thing a user will see when they right tap the application. You can
customize the Navigation Button with the C1RadialMenu's Icon property and NavigationButtonRelativeSize
property. The NavigationButtonRelativeSize property allows you to set the Navigation Button's size relative to the size
of the C1RadialMenu. By default, this property is set to 0.15.

For example, this is the default Navigation Button, with the NavigationButtonRelativeSize set to 0.15:

BasicLibrary for UWP 104

Copyright © 2017 GrapeCity, inc. All rights reserved.

Here's the Navigation Button when you set the NavigationButtonRelativeSize property to 0.45:

You can also change the Icon property. By default, the Icon property is set to "A".

Here's the default Navigation Button with the Icon property changed, and the NavigationButtonRelativeSize property
set to 0.25:

Nested Submenus
The C1RadialMenu control can hold submenus. These submenus are created when C1RadialMenuItems are nested
within the tags of other C1RadialMenuItems. For example, placing the following XAML markup

Markup

<c1:C1RadialMenuItem Header="First">
 <c1:C1RadialMenuItem Header="Second">
 <c1:C1RadialMenuItem Header="Third">
 <c1:C1RadialMenuItem Header="Fourth">
 <c1:C1RadialMenuItem Header="Fifth"/>
</c1:C1RadialMenuItem>

between the opening and closing tags of a C1RadialMenu would create the following:

BasicLibrary for UWP 105

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can have as many nested radial menus as you want, although it's best not to have more than two or three
submenus in a hierarchy for usability purposes.

For task-based help on creating a nested submenu for a C1RadialMenu control, see Creating a Submenu.

Positioning Items
By default, C1RadialMenuItems will be positioned to equally fill the 360 degree menu. If, for example, a
C1RadialMenu has three items, they would be positioned so that each item takes up a third of the C1RadialMenu:

But if you have a C1RadialMenu with 8 items, it will resemble the following image:

BasicLibrary for UWP 106

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note that each item takes up an eighth of the radial menu. Each C1RadialMenuItem is positioned inside a sector. You
can customize the number of sectors with the SectorCount property. This property can be set for both the
main C1RadialMenu and for any C1RadialMenuItem that contains child items.

The SectorCount property, if used with the DisplayIndex property, allows you to fully customize C1RadialMenuItem
positioning. The DisplayIndex property uses zero-based indexing to define how the C1RadialMenuItems are displayed.
For example, in a C1RadialMenu with the SectorCount set to "8", the display indices would be as follows:

Note that the indices begin at the center left side of the C1RadialMenu and continue around the menu in a clockwise
direction.

For example, the following C1RadialMenu will display just two C1RadialMenuItems at index 3 and index 4:

Markup

<Xaml:C1RadialMenu SectorCount=8>
 <Xaml:C1RadialMenuItem DisplayIndex="3" />

BasicLibrary for UWP 107

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Xaml:C1RadialMenuItem DisplayIndex="4" />
 </Xaml:C1RadialMenu>

You can also use the SectorCount property and the DisplayIndex property to display items at four different positions:

Markup

<Xaml:C1RadialMenu SectorCount="8">
 <Xaml:C1RadialMenuItem Header="Insert Left"/>
 <Xaml:C1RadialMenuItem Header="Insert Above" DisplayIndex="2" />
 <Xaml:C1RadialMenuItem Header="Insert Right" DisplayIndex="4" />
 <Xaml:C1RadialMenuItem Header="Insert Below" DisplayIndex="6" />
 </Xaml:C1RadialMenu>

The markup above will create a C1RadialMenu control like the one in the following image:

Selecting Items
C1RadialMenuItems can have any number of child items. You can control which item is shown as the selected item by
setting the SelectedIndex property, but by default, the C1RadialMenuItem will show the first child item in its collection
as the selected item. You can also set the AutoSelect property to true to have the same effect.

The C1RadialMenu control supports selection memory, as well, through the ShowSelectedItem property. This
property allows you to show the last selected item rather than the preset one. You must set the AutoSelect property
to True when you are using the ShowSelectedItem property.

So, if you have a user who right-aligns text frequently, it would be best to show the item that was selected last rather
than the default align-left option or the align-center option. You can set the ShowSelectedItem property to True so
that it will always show the item that a user selected last, rather than the preset item or the first selected item.

Here's the markup to create a simple C1RadialMenu with two submenus:

Markup

<Xaml:C1RadialMenu SectorCount="8" >
 <Xaml:C1RadialMenuItem Header="Insert" SectorCount="8" AutoSelect="True"
ShowSelectedItem="True" >

BasicLibrary for UWP 108

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Xaml:C1RadialMenuItem Header="Insert Left" />
 <Xaml:C1RadialMenuItem Header="Insert Above" DisplayIndex="2" />
 <Xaml:C1RadialMenuItem Header="Insert Right" DisplayIndex="4" />
 <Xaml:C1RadialMenuItem Header="Insert Below" DisplayIndex="6" />
 </Xaml:C1RadialMenuItem>
 <Xaml:C1RadialMenuItem Header="Align" AutoSelect="True" SectorCount="8"
DisplayIndex="4" ShowSelectedItem="True">
 <Xaml:C1RadialMenuItem Header="Align Right" />
 <Xaml:C1RadialMenuItem Header="Align Left" />
 <Xaml:C1RadialMenuItem Header="Align Center" />
 </Xaml:C1RadialMenuItem>
</Xaml:C1RadialMenu>

When you run the application, it will resemble the following image:

When you tap the Expand Area above the Align Right option, you will see the following menu:

BasicLibrary for UWP 109

Copyright © 2017 GrapeCity, inc. All rights reserved.

Tap Align Center, and then the Back arrow. Your main menu will now resemble the following image:

Note that Align Right has been replaced by the last-selected Align Center.

Radial Menu for UWP Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use
the C1RadialMenu control in general. If you are unfamiliar with the Radial Menu for UWP product, please see
the Radial Menu for UWP Quick Start first.

Each topic in this section provides a solution for specific tasks using the C1RadialMenu control.

Each task-based help topic also assumes that you have created a new Universal Windows project.

Creating Radial Menus

Creating a Top-Level Menu
In this topic, you will learn how to create a top-level radial menu for the C1RadialMenu control.

Complete the following steps:

1. Place the following XAML between the <Grid> and </Grid> tags:

Markup

<Xaml:C1ContextMenuService.ContextMenu>
 <Xaml:C1RadialMenu >
 </Xaml:C1RadialMenu>
 </Xaml:C1ContextMenuService.ContextMenu>

BasicLibrary for UWP 110

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Place the following XAML between the <Xaml:C1RadialMenu> and </Xaml:C1RadialMenu> tags:

Markup

<Xaml:C1RadialMenuItem Header="RadialMenuItem1" />
<Xaml:C1RadialMenuItem Header="RadialMenuItem2" />
<Xaml:C1RadialMenuItem Header="RadialMenuItem3" />

3. Run the program and observe the following:

Right tap or right-click the page. In this case, this is the element to which the C1RadialMenu is attached.
Observe that the Navigation Button appears.
Tap or click the Navigation Button to open the radial menu. Observe that the C1RadialMenu contains
three C1RadialMenuItems.

This topic illustrates the following:

Creating a Submenu
In this topic, you will create a submenu that's attached to one of a C1RadialMenu's items. This topic assumes that you
have created a top-level radial menu (see Creating a Top-Level Menu) with at least one C1RadialMenuItem.

Complete the following steps:

1. Place the following XAML between the <Xaml:C1RadialMenu> and </Xaml:C1RadialMenu> tags.

Markup

<Xaml:C1RadialMenuItem Header="Tap Here" >
 <Xaml:C1RadialMenuItem Header="Item 1" />
 <Xaml:C1RadialMenuItem Header="Item 2" />
 <Xaml:C1RadialMenuItem Header="Item 3" />
</Xaml:C1RadialMenuItem>

2. Run the program.

BasicLibrary for UWP 111

Copyright © 2017 GrapeCity, inc. All rights reserved.

Right tap or right-click the page to display the Navigation Button. Tap or click the Navigation Button to display
the main C1RadialMenu.
Tap the Tap Here item and observe that the submenu you created appears.

This Topic Illustrates the Following:

This is the C1RadialMenu control after you tap the Tap Here item:

Creating a Color Picker Menu
The C1RadialColorItem allows you to create a color picker using the C1RadialMenu control. In this topic, you'll create
a C1RadialMenu application and add C1RadialColorItems to the C1RadialMenu control. You'll use both XAML markup and
code to create the application.

Complete the following steps:

1. Locate the <Grid> </Grid> tags on your page and replace them with the following markup to create the framework for
your application:

Example Title

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Border Background="LemonChiffon" MinHeight="40" BorderBrush="#969696"
 BorderThickness="1" Padding="5" HorizontalAlignment="Stretch"
VerticalAlignment="Stretch">
 <Xaml:C1ContextMenuService.ContextMenu>

 </Xaml:C1ContextMenuService.ContextMenu>

 <Xaml:C1ListViewer x:Name="text" Foreground="Sienna"
HorizontalAlignment="Stretch" VerticalAlignment="Center" Height="75"
ZoomMode="Disabled" Xaml:C1NagScreen.Nag="True">
 <TextBlock Text="Touch: hold down for a few seconds until the
indicator displays.
Keyboard: press the context-menu button over this
text.
Mouse: right-click over this text."
 FontSize="16" TextWrapping="Wrap" />

BasicLibrary for UWP 112

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </Xaml:C1ListViewer>
 </Border>
 <TextBlock x:Name="txt" Foreground="Red" Text="" FontSize="16"
VerticalAlignment="Bottom" HorizontalAlignment="Center" Margin="10" />
 </Grid>

2. Locate the <Xaml:C1ContextMenuService.ContextMenu> </Xaml:C1ContextMenuService.ContextMenu> tags within
the markup you just added. Place your cursor between the tags.

3. Locate the C1RadialMenu control in the Visual Studio ToolBox and double-click it to add it to your application.
4. Edit the opening <C1RadialMenu> tag so that it resembles the following:

Markup

<Xaml:C1RadialMenu x:Name="contextMenu" Offset="-130,0"
ItemClick="contextMenu_ItemClick" >

5. Add the following markup between the <C1RadialMenu> </C1RadialMenu> tags to add three C1RadialColorItems to
your application:

Markup

<Xaml:C1RadialColorItem x:Name="rainbowItem" ShowSelectedItem="True" AutoSelect="True"
IsSelectable="False" >
</Xaml:C1RadialColorItem>
<Xaml:C1RadialColorItem x:Name="greenItem" SelectedIndex="5" ShowSelectedItem="True"
AutoSelect="True" IsSelectable="False" >
</Xaml:C1RadialColorItem>
<Xaml:C1RadialColorItem x:Name="blueItem" SelectedIndex="0" ShowSelectedItem="True"
AutoSelect="True" IsSelectable="False" >
</Xaml:C1RadialColorItem>

6. Select the C1RadialColorItem named "rainbowItem" and insert the following markup between the opening and
closing tags. This will add SolidColorBrush submenu items:

Markup

<SolidColorBrush Color="Red"/>
<SolidColorBrush Color="Orange"/>
<SolidColorBrush Color="Yellow"/>
<SolidColorBrush Color="Green"/>
<SolidColorBrush Color="Blue"/>
<SolidColorBrush Color="Indigo"/>
<SolidColorBrush Color="Violet"/>

7. Select the "greenItem" C1RadialColorItem and insert the following markup between the opening and closing tags. This
will add C1RadialColorItem submenu items in shades of green:

Markup

<Xaml:C1RadialColorItem x:Name="greenItem" SelectedIndex="5"
 ShowSelectedItem="True" AutoSelect="True"
IsSelectable="False" Xaml:C1NagScreen.Nag="True">
 <Xaml:C1RadialColorItem ToolTip="Lime" Brush="#FF92D050"
GroupName="Green"/>
 <Xaml:C1RadialColorItem ToolTip="Light Green"
Brush="#FFC6EFCE" GroupName="Green"/>
 <Xaml:C1RadialColorItem ToolTip="Green" Brush="#FF00FF00"
GroupName="Green"/>

BasicLibrary for UWP 113

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Xaml:C1RadialColorItem ToolTip="Dark Green" Brush="#FF1D421E"
GroupName="Green"/>
 <Xaml:C1RadialColorItem ToolTip="Dark Green" Brush="#FF1D5A2D"
GroupName="Green"/>
 <Xaml:C1RadialColorItem ToolTip="Dark Green" Brush="Green"
GroupName="Green"/>
 <Xaml:C1RadialColorItem ToolTip="Dark Green" Brush="#FF008000"
GroupName="Green"/>
 <Xaml:C1RadialColorItem ToolTip="Dark Green" Brush="#FF00B050"
GroupName="Green"/>
 </Xaml:C1RadialColorItem>

8. Select the "blueItem" C1RadialColorItem and insert the following markup between the opening and closing tags. This
will add C1RadialColorItem submenu items in shades of blue:

Markup

<Xaml:C1RadialColorItem x:Name="blueItem" SelectedIndex="0"
 ShowSelectedItem="True" AutoSelect="True"
IsSelectable="False" Xaml:C1NagScreen.Nag="True">
 <Xaml:C1RadialColorItem ToolTip="Blue" Brush="Blue"
GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Slate Blue"
Brush="MediumSlateBlue" GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Turquoise" Brush="Turquoise"
GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Aqua" Brush="Aqua"
GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Sky Blue" Brush="SkyBlue"
GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Purple" Brush="#FFAC38AC"
AccentBrush="#FF801C80" GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Dark Purple" Brush="Purple"
GroupName="Blue"/>
 <Xaml:C1RadialColorItem ToolTip="Dark Blue" Brush="DarkBlue"
GroupName="Blue"/>
 </Xaml:C1RadialColorItem>

9. Right-click the page and select View Code from the list.
10. Add the following using statement to the top of the page:

C#

 using C1.Xaml;

11. Add the following ItemClick event to the page. This will allow the text you added to your main page to change color
when you select one of the colors from the C1RadialMenu:

C#

private void contextMenu_ItemClick(object sender, SourcedEventArgs e)
 {
 C1RadialMenuItem item = e.Source as C1RadialMenuItem;
 if (item is C1RadialColorItem)
 {
 this.text.Foreground = ((C1RadialColorItem)item).Brush;
 txt.Text = "Item Clicked: " +

BasicLibrary for UWP 114

Copyright © 2017 GrapeCity, inc. All rights reserved.

((C1RadialColorItem)item).Color.ToString();
 }
 else
 {
 txt.Text = "Item Clicked: " + (item.Header ?? item.Name).ToString();
 }
 }

12. Press F5 or start debugging to run your application. When you right-click or right-tap the application and open the
C1RadialMenu, it should resemble the following image:

13. When you select the green submenu, your C1RadialMenu will resemble the following image:

Note that you can return to the main menu by selecting one of the interior colors.

14. Select a color. Note that the text on your application page has changed color.

BasicLibrary for UWP 115

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating a Numeric Radial Menu
The C1RadialMenu control allows you to create a radial numeric slider menu. This is especially useful for applications
where you might want users to select a font size for an application. You'll use both XAML markup and code to create
the application.

1. Locate the <Grid> </Grid> tags on your page and replace them with the following markup to create the
framework for your application:

Markup

<Page.Resources>
 <Style TargetType="TextBlock" x:Key="TextIconStyle">
 <Setter Property="Margin" Value="-10" />
 <Setter Property="FontSize" Value="20" />
 <Setter Property="FontFamily" Value="Segoe UI Symbol" />
 <Setter Property="FontWeight" Value="Normal" />
 <Setter Property="Foreground" Value="#333333" />
 <Setter Property="HorizontalAlignment" Value="Center" />
 <Setter Property="VerticalAlignment" Value="Center" />
 </Style>
 <Style TargetType="Image" x:Key="MenuIcon">
 <Setter Property="Width" Value="16"/>
 <Setter Property="Height" Value="16"/>
 <Setter Property="Margin" Value="0"/>
 </Style>
 </Page.Resources>

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Xaml:C1ContextMenuService.ContextMenu>

 </Xaml:C1ContextMenuService.ContextMenu>

 <Xaml:C1ListViewer x:Name="text" Foreground="Sienna"
HorizontalAlignment="Stretch" VerticalAlignment="Center" Height="75"
ZoomMode="Disabled" FontSize="16" Xaml:C1NagScreen.Nag="True">
 <TextBlock Text="Touch: hold down for a few seconds until the
indicator displays.
Keyboard: press the context-menu button over this
text.
Mouse: right-click over this text."
 TextWrapping="Wrap" />
 </Xaml:C1ListViewer>

 <TextBlock x:Name="txt" Foreground="Red" Text="" FontSize="16"
VerticalAlignment="Bottom" HorizontalAlignment="Center" Margin="10" />

 </Grid>

2. Locate the <Xaml:C1ContextMenuService.ContextMenu> </Xaml:C1ContextMenuService.ContextMenu> tags
within the markup you just added. Place your cursor between the tags.

3. Locate the C1RadialMenu control in the Visual Studio ToolBox and double-click it to add it to your application.
4. Edit the opening <C1RadialMenu> tag so that it resembles the following:

BasicLibrary for UWP 116

Copyright © 2017 GrapeCity, inc. All rights reserved.

Markup

<Xaml:C1RadialMenu Xaml:C1NagScreen.Nag="True" x:Name="contextMenu" Offset="-
130,0" Opened="contextMenu_Opened" AccentBrush="ForestGreen"
 ItemClick="contextMenu_ItemClick"
ItemOpened="contextMenu_ItemOpened" BorderBrush="#FFC6DEC4">

5. Add the following markup between the <C1RadialMenu> </C1RadialMenu> tags to add one
C1RadialNumericItems to your application. Note that you are also adding several subitems and a custom item
icon:

Markup

<Xaml:C1RadialNumericItem Header="Font Size" Minimum="9" Maximum="72"
MarkStartAngle="-128" MarkEndAngle="231" x:Name="fontSize" Value="11">
 <Xaml:C1RadialNumericItem.Icon>
 <TextBlock Style="{StaticResource TextIconStyle}" FontFamily="Segoe UI"
FontSize="18">
 <Run Text="A"/>
 <Run Text="{Binding Value, ElementName=fontSize}"
Typography.Variants="Superscript"/>
 </TextBlock>
 </Xaml:C1RadialNumericItem.Icon>
 <x:Double>9</x:Double>
 <x:Double>11</x:Double>
 <x:Double>13</x:Double>
 <x:Double>16</x:Double>
 <x:Double>20</x:Double>
 <x:Double>36</x:Double>
 <x:Double>72</x:Double>
</Xaml:C1RadialNumericItem>

6. Right-click the page and select View Code from the list.

7. Add the following using statement to the top of the page:

C#

using C1.Xaml;

8. Add the following ItemClick event to the page. This will allow the size of the text in the TextBox control to
change size depending on the item selected:

C#

private void contextMenu_ItemClick(object sender, SourcedEventArgs e)
 {
 C1RadialMenuItem item = e.Source as C1RadialMenuItem;

if (item is C1RadialNumericItem)
 {
 txt.FontSize = ((C1RadialNumericItem)item).Value;
 txt.Text = "Item Clicked: " +
((C1RadialNumericItem)item).Value.ToString();

BasicLibrary for UWP 117

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }
 else
 {
 txt.Text = "Item Clicked: " + (item.Header ??
item.Name).ToString();
 }
 }

9. Then, add two more events. This code will control the ItemOpened and Opened events:

C#

private void contextMenu_ItemOpened(object sender, SourcedEventArgs e)
 {
 C1RadialMenuItem item = e.Source as C1RadialMenuItem;
 txt.Text = "Item Opened: " + (item.Header ?? item.Name).ToString();
 }
 private void contextMenu_Opened(object sender, EventArgs e)
 {
 // expand menu immediately, as in this sample we don't have
underlying editable controls
 contextMenu.Expand();
 }

10. Press F5 or start debugging to run your application. Your C1RadialMenu control should resemble the
following:

11. When you click on the Font Size option, the C1NumericRadialItems will be displayed:

BasicLibrary for UWP 118

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with Checkable Radial Menu Items
In the following topics, you will learn how to create standalone and mutually exclusive checkable radial menu items.

Creating a Checkable C1RadialMenuItem
In this topic, you will create a checkable C1RadialMenuItem that can be selected or cleared by a user. In order to
complete this topic, you must have a C1RadialMenu control that holds at least one item or a C1RadialMenu control
with at least one submenu.

In XAML

Complete the following steps:

1. Locate the <Xaml:C1RadialMenuItem> tag for the C1RadialMenuItem you wish to make checkable and
then add IsCheckable="True" to the tag so that the XAML resembles the following:

Markup

<Xaml:C1RadialMenuItem Header="C1RadialMenuItem" IsCheckable="True"/>

2. Run the project.

In Code

Complete the following steps:

1. In Source view, locate the <Xaml:C1RadialMenuItem> tag for the item you wish to make checkable and add
Name="CheckableRadialMenuItem" to it. This will give the item a unique identifier that you can use in
code.

2. Enter Code View and add the following code beneath the InitializeComponent() method:

Visual Basic

CheckableRadialMenuItem.IsCheckable = True

BasicLibrary for UWP 119

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

CheckableRadialMenuItem.IsCheckable = true;

3. Run the program

This Topic Illustrates the Following:

Once the program is run, open the C1RadialMenu. To add a check mark, click the C1RadialMenuItem.

The graphic below illustrates a checkable C1RadialMenuItem.

Creating Mutually Exclusive Checkable Radial Menu Items
In this topic, you learn how to create a list of checkable C1RadialMenuItems that are grouped together so that only
one item can be checked at a time.

In XAML

Complete the following steps:

1. Add IsCheckable="True" and GroupName="CheckableGroup" to the <c1:C1RadialMenuItem> tag
of each C1RadialMenuItem you wish to add to the group of mutually exclusive checkable items.

2. Run the program and click the first item in the group. Observe that the C1RadialMenuItem is highlighted.
Now click the second item in the group and observe that the highlight is removed from the first item and then
added to the second item.

In Code

1. Complete the following steps:
2. Set the Name property of each C1RadialMenuItem you wish to add to the group of mutually exclusive

checkable items.
3. Open the MainPage.xaml.cs page.
4. Set the IsCheckable and GroupName property of each C1RadialMenuItem, replacing "ItemName" with the

value of the C1RadialMenuItem's Name property.

Visual Basic

ItemName.IsCheckable = True

BasicLibrary for UWP 120

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

ItemName.IsCheckable = true;

4. Run the program and tap the first item in the group.

Observe that a check that resembles a thinner highlight is added to the C1RadialMenuItem.
Now tap the second item in the group and observe that the check is removed from the first item and then
added to the second item.

Customizing the C1RadialMenu's Appearance
You can quickly and easily customize the C1RadialMenu's appearance using just a few properties.

Complete the following steps:

1. Add the following properties to the <Xaml: C1RadialMenu> tag:

AccentBrush="#FF28B01A"
Background="#FFC3D5FB"
BorderBrush="#FF3652B4"
Foreground="#FF4210EE"

2. Run your application.

This Topic Illustrates the Following:

When you run your application, it should resemble the following image:

Enabling Automatic Menu Collapsing
Automatic menu collapsing allows users to collapse the C1RadialMenu by clicking outside of the menu area. To
enable automatic menu collapsing, set the AutoCollapse property to True.

In XAML

BasicLibrary for UWP 121

Copyright © 2017 GrapeCity, inc. All rights reserved.

Complete the following steps:

1. Add AutoCollapse="True" to the <Xaml:C1RadialMenu> tag.

2. Run the program.

In Code

Complete the following steps:

1. In Source view locate the <Xaml:C1RadialMenuItem> tag for the item you wish to make checkable and add
Name="C1RadialMenu1" to it. This will give the item a unique identifier that you can use in code.

2. Enter Code view and add the following code beneath the InitializeComponent() method:

Visual Basic

C1RadialMenu1.AutoCollapse = True

C#

C1RadialMenu1.AutoCollapse = true;

3. Run the program.

This Topic Illustrates the Following:

After you've run the project, right tap the page to view the Navigation Button. Tap the Navigation Button to open the
C1RadialMenu. With the radial menu open, click outside of the menu and observe that the C1RadialMenu closes.

Adding a Separator Between Radial Menu Items
In this topic, you will learn how to add separators between radial menu items. The separator appears as a blank sector
between two C1RadialMenuItems. There are two ways to include a separator between C1RadialMenuItems, either by
placing an empty C1RadialMenuItem between the existing menu items, or by setting the C1RadialMenu SectorCount
property and the DisplayIndex of each C1RadialMenuItem.

In XAML

Complete one of the following:

Inserting a C1RadialMenuItem

To add a separator by placing an empty C1RadialMenuItem between other menu items, place
<Xaml:C1RadialMenuItem /> between two <Xaml:C1RadialMenuItem> tags:

Markup

 <Xaml:C1RadialMenuSectorCount="8">
 <Xaml:C1RadialMenuItemHeader="Item 1"/>
 <Xaml: C1RadialMenuItem/>
 <Xaml:C1RadialMenuItemHeader="Item 2" />
 <Xaml: C1RadialMenuItem/>
 <Xaml:C1RadialMenuItemHeader="Item 3" />
 </Xaml:C1RadialMenu>

Setting the SectorCount and the DisplayIndex

If you want to add separators to your application by setting the C1RadialMenu SectorCount and

BasicLibrary for UWP 122

Copyright © 2017 GrapeCity, inc. All rights reserved.

the DisplayIndex of each C1RadialMenuItem, your XAML markup will resemble the following:

Markup

<Xaml:C1RadialMenu SectorCount="8" >
 <Xaml:C1RadialMenuItem Header="Item 1" />
 <Xaml:C1RadialMenuItem Name="C1RadialMenuItem1" Header="Item 2"
 DisplayIndex="2" />
 <Xaml:C1RadialMenuItem Header="Item 3" DisplayIndex="4" />
</Xaml:C1RadialMenu>

 This Topic Illustrates the Following:

Either markup sample will result in the following image:

For contrast, the same markup with no separators will result in a C1RadialMenu that resembles the following image:

BasicLibrary for UWP 123

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding an Icon to a Radial Menu Item
In this step, you will learn how to add an icon to a C1RadialMenuItem|tag=C1RadialMenuItem_Class.

In XAML

Complete the following steps:

1. Add an icon image to your Universal Windows project. A 12x12 pixel image is best.
2. Add the following XAML markup between the <Xaml:C1RadialMenuItem> and

</Xaml:C1RadialMenuItem> tags, replacing the value of the Source property with your image's name:

Markup

<Xaml:C1RadialMenuItem.Icon>
 <Image Source="YourImage.png" Height="12" Width="12" Margin="5,0,0,0"/>
</Xaml:C1RadialMenuItem.Icon>

3. Run the project.

This Topic Illustrates the Following:

The following image depicts a C1RadialMenuItem with a 12x12 pixel icon.

RangeSlider for UWP
Add smooth numeric data selection to your UWP applications. RangeSlider for UWP extends the basic slider control
and provides two thumb elements instead of one, allowing users to select ranges instead of single values.

Make the most of RangeSlider for UWP by taking advantage of the following key features:

Horizontal or Vertical Orientation

Change the orientation with one simple property. Create vertical or horizontal range sliders.

Set Min and Max Values

Control the minimum and maximum values of the range slider.

Customizable Thumbs

BasicLibrary for UWP 124

Copyright © 2017 GrapeCity, inc. All rights reserved.

Customize the thumbs of C1RangeSlider to create custom zooming controls.

RangeSlider for UWP Quick Start

Step 1 of 4: Setting Up the Application
In this step, you will create a new Universal Windows application using RangeSlider for UWP.

1. In Visual Studio, select File | New Project.
2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal.
3. From the templates list, select Blank App (Universal Windows) and give your project a Name, and select OK.
4. Add the following assembly to your application by right-clicking the References folder and selecting Add

Reference:
C1.UWP.dll

5. In Design view, click once within the Grid in your application.
6. Navigate to the Toolbox and double-click the Rectangle icon to add the standard control to the Grid.
7. In the Design pane, move and resize rectangle1 to fill the center of the Grid.
8. Switch to XAML view and add a Fill to the <Rectangle> tag so it appears similar to the following:

XAML

<Rectangle Name="rectangle1">
 <Rectangle.Fill>
 <LinearGradientBrush x:Name="colors">
 <GradientStop x:Name="goldcol" Color="Gold" Offset="0" />
 <GradientStop x:Name="blackcol" Color="Black" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

9. Run your application now and observe that it looks similar to the following:

BasicLibrary for UWP 125

Copyright © 2017 GrapeCity, inc. All rights reserved.

You've successfully created a Universal Windows application and customized the Rectangle control. In the next step
you'll add and customize the C1RangeSlider control.

Step 2 of 4: Adding a C1RangeSlider Control
In the previous step you created a new Universal Windows project and added a Rectangle control with a gradient to the
application. In this step you'll continue by adding a C1RangeSlider control that will control the gradient fill in the
Rectangle.

Complete the following steps:

1. In the XAML window of the project, place the cursor between the </Rectangle> and </Grid> tags and click
once.

2. Navigate to the Toolbox and double-click the C1RangeSlider icon to add the control to the application on top
of the Rectangle.

3. Give your control a name by adding x:Name="c1rs1" to the <Xaml:C1RangeSlider> tag so that it appears
similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" />

By giving it a unique identifier, you'll be able to access the control in code.

4. Add a margin by adding Margin="50" to the <c1:C1RangeSlider> tag so that it appears similar to the
following:

BasicLibrary for UWP 126

Copyright © 2017 GrapeCity, inc. All rights reserved.

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" Margin="50">

This will set each edge the same distance away from the grid's border.

5. Set the Orientation property to Vertical by adding Orientation="Vertical" to the <Xaml:C1RangeSlider> tag so
that it appears similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" Margin="50" Orientation="Vertical">

By default Orientation is Horizontal and the control appears across the page.

6. Set the UpperValue property to 1 by adding UpperValue="1" to the <Xaml:C1RangeSlider> tag so that it
appears similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" Margin="50" Orientation="Vertical"
UpperValue="1">

The upper thumb will now begin at 1.

7. Set the Maximum property to 1 by adding Maximum="1" to the <Xaml:C1RangeSlider> tag so that it appears
similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" Margin="50" Orientation="Vertical"
UpperValue="1" Maximum="1">

Users will now not be able to select a value greater than 1.

8. Set the ValueChange property to 0.1 by adding ValueChange="0.1" to the <Xaml:C1RangeSlider> tag so that
it appears similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" Margin="50" Orientation="Vertical"
UpperValue="1" Maximum="1" ValueChange="0.1">

When you click on the slider track at run time, the slider thumb will now move by 0.1 units.

9. Set the Opacity property to "0.8" by adding Opacity="0.8" to the <Xaml:C1RangeSlider> tag so that it
appears similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" Margin="50" Orientation="Vertical"
UpperValue="1" Maximum="1" ValueChange="0.1" Opacity="0.8">

By default this property is set to 1 and the control appears completely opaque. Changing this to a lower number
will make the control appear slightly transparent.

10. Indicate event handlers by adding LowerValueChanged="c1rs1_LowerValueChanged"
UpperValueChanged="c1rs1_UpperValueChanged" to the <Xaml:C1RangeSlider> tag so that it appears

BasicLibrary for UWP 127

Copyright © 2017 GrapeCity, inc. All rights reserved.

similar to the following:

XAML

<Xaml:C1RangeSlider x:Name="c1rs1" HorizontalAlignment="Left"
Margin="671,10,0,90" Orientation="Vertical" UpperValue="1" Maximum="1"
ValueChange="0.1" Opacity="0.8" LowerValueChanged="c1rs1_LowerValueChanged"
UpperValueChanged="c1rs1_UpperValueChanged" />

You'll add code for these event handlers in a later step.

11. Run your application now and observe that it looks similar to the following:

 You've successfully set up your application's user interface, but right now the slider will do nothing if you move it. In the
next step you'll add code to your application to add functionality.

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added controls to your application. In this step
you'll add code to your application to finalize it.

Complete the following steps:

1. Select View | Code to switch to Code view.
2. In Code view, add the following import statement to the top of the page:

C#

using C1.Xaml;

3. Create a MainPage_Loaded event handler and add it below the page constructor:

BasicLibrary for UWP 128

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

private void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 UpdateGradient();
 }

4. Add the following code just after the MainPage_Loaded event handler to update the gradient values:

C#

private void UpdateGradient()
 {
 if (c1rs1 != null)
 {
 this.goldcol.Offset = this.c1rs1.LowerValue;
 this.blackcol.Offset = this.c1rs1.UpperValue;
 }
 }

5. Add code to the c1rs1_LowerValueChanged event handler so that it appears like the following:

C#

private void c1rs1_LowerValueChanged(object sender, EventArgs e)
 {
 UpdateGradient();
 }

6. Add code to the c1rs1_UpperValueChanged event handler so that it appears like the following:

C#

c1rs1_UpperValueChanged(object sender, EventArgs e)
{
 UpdateGradient();
}

 In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 4 of 4: Running the Application
Now that you've created a UWP application and customized the application's appearance and behavior, the only thing
left to do is run your application.

To run your application and observe RangeSlider for UWP's run-time behavior, complete the following steps:

1. Select Debug | Start Debugging from the menu, or press F5.

The application will appear similar to the following:

BasicLibrary for UWP 129

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Move the top slider thumb down. Notice that the gradient's appearance changes:

3. Move the bottom thumb up, notice that the gradient effect appears less diffused:

BasicLibrary for UWP 130

Copyright © 2017 GrapeCity, inc. All rights reserved.

Congratulations!

You've completed the RangeSlider for UWP quick start and created a RangeSlider for UWP application, customized
the appearance and behavior of the controls, and viewed some of the run-time capabilities of your application.

RangeSlider Elements
RangeSlider for UWP includes the C1RangeSlider control, a simple input control that moves beyond the typical slider
and includes two thumbs for selecting a range of values. When you add the C1RangeSlider control to a XAML
window, it exists as a completely functional slider control which you can further customize. The control's interface
looks similar to the following image:

RangeSlider Features

Minimum and Maximum
The Minimum and Maximum properties set the possible range of values allowable in the C1RangeSlider control. There
are some restrictions on setting values on the RangeSlider control:

BasicLibrary for UWP 131

Copyright © 2017 GrapeCity, inc. All rights reserved.

The LowerValue thumb, the thumb with the smaller number, cannot be set to a value lower than the
set Minimum.
The UpperValue thumb, the thumb with the higher number, cannot be set to a value higher than the set
Maximum.

By default, the Minimum property is set to 0, and the Maximum property is set to 100.

Thumb Values and Range
The C1RangeSlider's value range is determined by the difference between the UpperValue property and
the LowerValue property. These two properties are connected to the thumbs used to select the range of values:

Setting the Thumb Values

The C1RangeSlider control includes two thumbs for selecting a range of values. The UpperValue and the LowerValue
thumbs move along the slider track. By default, the UpperValue property is set to 100 and the LowerValue property
is set to 0.

Using one of the following methods, you can customize the thumb values.

In XAML
To set the UpperValue and LowerValue properties add UpperValue="90" LowerValue="10" to the
<Xaml:C1RangeSlider> tag so that it appears similar to the following:

XAML

<Xaml:C1RangeSlider Name="C1RangeSlider1" Width="26" Height="18" UpperValue="90"
LowerValue="10" />

In Code
For example, to set the UpperValue and LowerValue properties add the following code to your project:

Visual Basic

Me.C1RangeSlider1.LowerValue = 10
Me.C1RangeSlider1.UpperValue = 90

C#

this.c1RangeSlider1.LowerValue = 10;
this.c1RangeSlider1.UpperValue = 90;

At Design Time

BasicLibrary for UWP 132

Copyright © 2017 GrapeCity, inc. All rights reserved.

To set the UpperValue and LowerValue properties at Design time, complete the following steps:

1. Click the C1RangeSlider control once to select it.
2. Navigate to the Properties window, and enter a number, for example "10", in the text box next to the

LowerValue property.
3. Still in the Properties window, enter a number, for example "90", in the text box next to the UpperValue

property.

This will set the UpperValue and LowerValue properties to the values you chose.

Setting the ValueChange Property

The ValueChange property determines by what value the UpperValue and the LowerValue thumbs move along the
slider track when the track is clicked, note that if the tack is clicked between the UpperValue and LowerValue thumbs
(in the range) the thumbs will not move.

The UpperValue property cannot be less than the Maximum property and the LowerValue cannot be less than
the Minimum property.

Using any of the following methods, when you click the track of the C1RangeSlider control, the closest thumb will
move by 5 units.

In XAML
To set the ValueChange property add ValueChange="5" to the <Xaml:C1RangeSlider> tag so that it appears
similar to the following:

XAML

<Xaml:C1RangeSlider Name="C1RangeSlider1" Height="18" Width="26" ValueChange="5" />

In Code
To set the ValueChange property add the following code to your project:

Visual Basic

Me.C1RangeSlider1.ValueChange = 5

C#

this.c1RangeSlider1.ValueChange = 5;

At Design Time
To set the ValueChange property at Design time, complete the following steps:

1. Click the C1RangeSlider control once to select it.
2. Navigate to the Properties window and enter a number, for example "5", in the text box next to the

ValueChange property.

This will set the ValueChange property to the value you chose.

BasicLibrary for UWP 133

Copyright © 2017 GrapeCity, inc. All rights reserved.

RangeSlider Orientation
C1RangeSlider includes the ability to orient the control either horizontally or vertically using the Orientation property.
By default the control initially appears with a horizontal orientation when added to the application, as in the following
image:

You can easily change the orientation from the Properties window, in XAML, and in code using the Orientation
property:

In XAML
To set the Orientation property to Vertical add Orientation="Vertical" to the <Xaml:C1RangeSlider> tag so that it
appears similar to the following:

XAML

<Xaml:C1RangeSlider Name="C1RangeSlider1" Width="26" Orientation="Vertical" />

In Code
To set the Orientation property to Vertical, add the following code to your project:

Visual Basic

Me.C1RangeSlider1.Orientation = Orientation.Vertical

C#

this.c1RangeSlider1.Orientation = Orientation.Vertical;

At Design Time
To set the Orientation property to Vertical at Design time, complete the following steps:

1. Click the C1RangeSlider control once to select it.
2. Navigate to the Properties window and locate the Orientation property.
3. Click the drop-down arrow next to the Orientation property and choose Vertical.

This will change the Orientation property so that the control appears vertically.

Run the application and observe:

The C1RangeSlider control will be shown vertically:

BasicLibrary for UWP 134

Copyright © 2017 GrapeCity, inc. All rights reserved.

TabControl for UWP
Organize and navigate content as tabs with TabControl for UWP. Tabs help utilize available space while letting the
user see all available items to select. Tabs can be positioned to the top, bottom, left, or right of a page and support
several different shapes and built-in features.

TabControl for UWP Key Features
TabControl for UWP allows you to create customized, rich applications. Make the most of TabControl for UWP by
taking advantage of the following key features:

Modern Tab Styles

You can modify the shape of the tab headers using one of the four built-in shapes: Rounded, Rectangle,
Ribbon and Sloped. Or use no shape outline for a clean, modern look.

Position Tabs to Any Edge

Tabs can be positioned to the top, bottom, left or right. Just set the TabStripPlacement property.

Overlap Tabs

The overlap between tab items headers can be customized to show jagged tabs, for example (like the
Documents tab in Microsoft Visual Studio). Just set the TabStripOverlap property. Define if the tab items are
overlapped with the right-most in the back or the left-most in the back using the TabStripOverlapDirection
property. The selected item is always on top.

Closeable Tabs

Control whether the user can close tabs and where to show the close button. Display the close button inside
each tab item or in a global location outside the tab strip, just like Visual Studio does in its Documents tab.

Menu Tabs

You can show all the items in a menu (like the Documents tab in Visual Studio). This is useful when the items
don't fit in the available space, so the end-user can quickly access all the elements.

BasicLibrary for UWP 135

Copyright © 2017 GrapeCity, inc. All rights reserved.

Scrollable Elements

If the tab items cannot fit in the current available space, the C1TabControl shows Next/Previous buttons just
like Microsoft Internet Explorer.

TabControl for UWP Quick Start
The following quick start guide is intended to get you up and running with TabControl for UWP. In this quick start,
you'll create a new project with the C1TabControl control. You will also customize the C1TabControl control, add tabs
pages filled with content, and then observe some of the run-time features of the control.

Step 1 of 3: Creating a C1TabControl Application
In this step, you'll create a Universal Windows application using TabControl for UWP.

Complete the following steps:

1. In Visual Studio select File | New | Project.
2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,

select Blank App (Universal Windows).
3. Right-click the project name in the Solution Explorer and select Add Reference.
4. In the Reference Manager dialog box, expand Universal Windows and select Extensions; you should see the

UWP assemblies in the center pane. Select C1.UWP and click OK.
5. Open MainPage.xaml if it isn't already open, and add the following markup within the <Page> tag:

Markup

xmlns:c1="using:C1.Xaml"

This adds required references to the project.

You have completed the first step of the TabControl for UWP quick start. In this step, you created a Universal
Windows project. In the next step, you will add tabs and tab pages to the control.

Step 2 of 3: Adding C1TabControl to the Application
In the last step, you created a Universal Windows project. In this step, you'll add a C1TabControl to the application.

Complete the following steps:

1. Place the cursor between the <Grid> and </Grid> tags in MainPage.xaml, and click once.
2. Add the following markup within the <Grid> and </Grid> tags:

Markup

<c1:C1TabControl x:Name="tabControl" TabStripOverlapDirection="Left"
TabStripOverlap="8" TabItemShape="Sloped" TabItemClose="InEachTab"
TabStripPlacement="Bottom" TabStripMenuVisibility="Visible">
</c1:C1TabControl>

This markup adds a C1TabControl to the project. This sets the following properties:

The TabStripOverlapDirection property is set to Left and TabStripOverlap is set to 8 indicating the overlapping

BasicLibrary for UWP 136

Copyright © 2017 GrapeCity, inc. All rights reserved.

allowed between the tabs.
The TabItemClose property is set to InEachTab. This will add close buttons to each tab.
The TabItemShape property is set to Sloped. This will change the shape of the tab items so that they resemble
tabs on an office folder.
The TabStripMenuVisibility property is set to Visible.
The TabStripPlacement property is set to Bottom. This will place the tabstrip at the bottom of the control.

You’ll also need to add C1TabItems within the C1TabControl.

3. Add the following markup within the <c1:C1TabControl> and </c1:C1TabControl> tags:

Markup

<c1:C1TabItem Header="Notes" CanUserPin="True">
 <RichEditBox HorizontalAlignment="Left" Height="680" VerticalAlignment="Top"
Width="1330"/>
</c1:C1TabItem>
<c1:C1TabItem Header="Tasks">
 <RichEditBox HorizontalAlignment="Left" Height="680" VerticalAlignment="Top"
Width="1330"/>
</c1:C1TabItem>
<c1:C1TabItem Header="Reminders">
 <RichEditBox HorizontalAlignment="Left" Height="680" VerticalAlignment="Top"
Width="1330"/>
</c1:C1TabItem>
<c1:C1TabItem Header="Topics" CanUserPin="True">
 <RichEditBox HorizontalAlignment="Left" Height="680" VerticalAlignment="Top"
Width="1330"/>
</c1:C1TabItem>

This adds C1TabItems, each containing a RichEditBox. Note that in two of the C1TabItems, CanUserPin is set
to True allowing the tabs to be pinned at run time.

In this step, you added and customized the C1TabControl control. In the next step, you will run the program and
observe what you've accomplished during this quick start.

Step 3 of 3: Running the Project
In the previous steps, you created a project with a C1TabControl control, added tab pages to the control, and
modified the control's appearance and behaviors. In this step, you will run the program and observe all of the changes
you made to the C1TabControl control.

Complete the following steps:

1. Select Debug | Start Debugging to run the project. Observe that the C1TabControl control's tabstrip runs
along the bottom of the control and features sloped tabs.

2. Enter content in the first tab’s RichEditBox.
3. Click the second tab, notice that the focus changes to this tab.
4. Click the Close button on the tab and observe that the tab closes.

Congratulations!

You have completed all four steps of the TabControl for UWP quick start. In this quick start, you created a project
with a fully customized C1TabControl.

BasicLibrary for UWP 137

Copyright © 2017 GrapeCity, inc. All rights reserved.

TreeView for UWP
Get a hierarchical view of your data items with TreeView for UWP. The familiar TreeView UI is now available for
Windows 8 applications. Supports collapsible nodes, hierarchical templates, check box nodes, editing, and drag-and-
drop operations (mouse only in Beta version).

TreeView for UWP Key Features
TreeView for UWP allows you to create customized, rich applications. Make the most of TreeView for UWP by
taking advantage of the following key features:

Customizable Nodes

Node headers are content elements, so they can host any type of element. Add images, check boxes, or
whatever your application requires. Provide editing functionality using the customizable EditTemplate property.

Show Connecting Lines

Show connected lines in C1TreeView by simply setting the ShowLines property. This gives the appearance of a
classic windows treeview. Adjust the appearance of the lines with several simple properties
(LineThickness/LineStroke).

Hierarchical Templates

You can use different templates for different node types without having to subclass the C1TreeViewItem class.

Drag-and-drop Nodes

C1TreeView supports drag-and-drop operations within the tree. Simply set the AllowDragDrop property to
true and users will be able to reorder nodes within the tree by dragging them with the mouse. Note that drag-
and-drop functionality is only supported via keyboard and mouse in the beta version.

TreeView for UWP Quick Start
The following quick start guide is intended to get you up and running with TreeView for UWP. In this quick start,
you'll start in Visual Studio to create a new project, add a C1TreeView control to your application, and then add
content to the C1TreeView control's content area.

Step 1 of 3: Creating an Application with a C1TreeView
Control
In this step, you'll begin in Visual Studio to create a UWP application using TreeView for UWP.

Complete the following steps:

1. Select File | New | Project.
2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,

select Blank App (Universal Windows). Enter a Name and click OK to create your project.
3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and </Grid> tags, and click

once.
4. Navigate to the Toolbox and double-click the C1TreeView icon to add the treeview control to

MainPage.xaml. The XAML markup will now look similar to the following:

BasicLibrary for UWP 138

Copyright © 2017 GrapeCity, inc. All rights reserved.

Markup

<Page xmlns:Xaml="using:C1.Xaml" x:Class="C1TreeViewQuickStart.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:C1TreeViewQuickStart"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Xaml:C1TreeView />
 </Grid>
</Page>

Note that the C1.Xaml namespace and <Xaml:C1TreeView /> tag have been added to the project.

5. Give your grid a name by adding x:Name="Tree" to the <Xaml:C1TreeView> tag and add a closing tag so that
it appears similar to the following:

Markup

<Xaml:C1TreeView x:Name="Tree"></Xaml:C1TreeView>

By giving the control a unique identifier, you'll be able to access the C1TreeView control in code.

You've successfully created a Universal Windows application containing a C1TreeView control. In the next step, you
will customize the appearance and behavior of the C1TreeView control.

Step 2 of 3: Adding C1TreeView Items toC1TreeView
This lesson will show you how to add static C1TreeView items to the C1TreeView control. To add
static C1TreeViewItems to the C1TreeView control in the XAML, complete the following steps:

1. Add the C1TreeViewItem to create the top-level node called "Book List". Within the <Xaml:C1TreeViewItem>
tag add Header="Book List". This will create a top-level node that at run time. The XAML markup appears as
follows:

Markup

<Xaml:C1TreeViewItem Header="Book List"></Xaml:C1TreeViewItem>

2. Add two child C1TreeViewItems below the <Xaml:C1TreeViewItem> tag to create two child nodes beneath
the Book List node and add Header="Language Books". In the second child node add Header="Security
Books". The XAML markup appears as follows:

Markup

<Xaml:C1TreeViewItem Header="Language Books"/>
<Xaml:C1TreeViewItem Header="Security Books"/>

3. Add another <Xaml:C1TreeViewItem> tag to create a new top level node that will hold two child nodes. The
XAML markup appears as follows:

Markup

BasicLibrary for UWP 139

Copyright © 2017 GrapeCity, inc. All rights reserved.

<Xaml:C1TreeViewItem Header="Classic Books">
<Xaml:C1TreeViewItem Header="Catch-22"/>
<Xaml:C1TreeViewItem Header="The Great Gatsby"/>

4. Add two closing <Xaml:C1TreeViewItem> tags to close the Book List node and Classic Books node. You
should have all of the following XAML markup now included in your MainPage.xaml:

Markup

<Page xmlns:Xaml="using:C1.Xaml" x:Class="C1TreeViewQuickStart.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="using:C1TreeViewQuickStart"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d">
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
<Xaml:C1TreeView x:Name="Tree">
 <Xaml:C1TreeViewItem Header="Book List">
 <Xaml:C1TreeViewItem Header="Language Books"/>
 <Xaml:C1TreeViewItem Header="Security Books"/>
 <Xaml:C1TreeViewItem Header="Classic Books">
 <Xaml:C1TreeViewItem Header="Catch-22"/>
 <Xaml:C1TreeViewItem Header="The Great Gatsby"/>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeViewItem>
</Xaml:C1TreeView>
 </Grid>
</Page>

5. Run the project and notice that the Book node is not expanded. You can expand it by clicking on the arrow
image.

In this step, you added several C1TreeViewItems to the C1TreeView control. In the next step, you will customize the
behavior and appearance of the C1TreeView control.

Step 3 of 3: Customizing TreeView’sAppearance and
Behavior
In the previous step you worked in Visual Studio to create C1TreeViewItems in XAML markup. In this step you'll
customize the C1TreeView control's appearance and behavior in using XAML code.

To customize TreeView for UWP, complete the following steps:

1. Place your cursor within the <Xaml:C1TreeView> tag. Within the <Xaml:C1TreeView> tag add
SelectionMode="Extended". This will create a top-level node that you will be able to select multiple tree items
by holding the shift and control keys. The XAML markup appears as follows:

Markup

<Xaml:C1TreeView x:Name="Tree" SelectionMode="Extended">

2. Place your cursor within the first <Xaml:C1TreeViewItem> tag. Within the <Xaml:C1TreeViewItem> add

BasicLibrary for UWP 140

Copyright © 2017 GrapeCity, inc. All rights reserved.

IsExpanded="True" IsSelected="True". This will create a top-level node that appears selected and expanded at
run time. The XAML markup appears as follows:

Markup

<Xaml:C1TreeViewItem Header="Book List" IsExpanded="True" IsSelected="True">

3. Locate the tag that reads <Xaml:C1TreeViewItem Header="Language Books">. Add Foreground="Fuchsia"
within the <Xaml:C1TreeViewItem Header="Language Books"> tag. The "Classic Books" tree item text will now
appear fuchsia-colored. The XAML markup will resemble the following:

Markup

<Xaml:C1TreeViewItem Header="Language Books" Foreground="Fuchsia"/>

4. From the Debug menu, select Start Debugging to view how your application will appear at run time.

It will appear similar to the following image:

Observe the following behavioral and appearance changes for C1TreeView:

The C1TreeView appears expanded.
The first C1TreeViewItem appears selected.
The second C1TreeViewItem has fuchsia-colored text.
You can select multiple C1TreeViewItems holding down the CTRL or SHIFT keys while selecting items.

Congratulations!

You've successfully completed the TreeView for UWP quick start. In this quick start, you created and customized a
TreeView for UWP application, added static C1TreeViewItems, and observed several of the control's run-time
behavior.

C1TreeView Structure
The C1TreeView class is a StackPanel with two elements:

A header that represents the actual node, with a button to collapse and expand the children.
A body that is another StackPanel and contains other nodes.

You can add images to a node by grabbing its first child (the header), casting that to a StackPanel, and inserting an
image element at whatever position you prefer. For example:

Visual Basic

Dim nodeHeader As StackPanel = TryCast(TreeNode.Children(0), StackPanel)
nodeHeader.Children.Insert(0, myImage)

BasicLibrary for UWP 141

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

StackPanel nodeHeader = TreeNode.Children[0] as StackPanel;
nodeHeader.Children.Insert(0, myImage);

TreeView Creation
C1TreeViewItems can be added to the C1TreeView control as static items defined either in the XAML markup or in the
code behind or can be defined on your page or user control by using any of the following methods:

Static creation using XAML syntax or programmatically through the code behind file
Dynamic creation using a constructor to create new instances of the C1TreeViewItem class.
Data source creation through binding C1TreeView to a SiteMapDataSource, XMLDataSource, or an
AccessDataSource.

Static TreeView Creation
Each node in the Tree is represented by a name/value pair, defined by the text and value properties of treenode,
respectively. The text of a node is rendered, whereas the value of a node is not rendered and is typically used as
additional data for handling postback events.

A static menu is the simplest way to create the treeview structure.

To display static C1TreeViewItems using XAML syntax, first nest opening and closing <Xaml:C1TreeViewItem> tags
between opening and closing tags of the C1TreeView control. Next, create the treeview structure by nesting
<Xaml:C1TreeViewItem> elements between opening and closing <Xaml:C1TreeViewItem> tags. Each
<Xaml:C1TreeViewItem> element represents a node in the control and maps to a C1TreeViewItem object.

Declarative syntax can be used to define the C1TreeViewItems inline on your page.

For example:

Markup

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Xaml:C1TreeView x:Name="Tree">
 <Xaml:C1TreeViewItem Header="Book List" IsExpanded="True" IsSelected="True">
 <Xaml:C1TreeViewItem Header="Language Books"/>
 <Xaml:C1TreeViewItem Header="Security Books"/>
 <Xaml:C1TreeViewItem Header="Classic Books">
 <Xaml:C1TreeViewItem Header="Catch-22"/>
 <Xaml:C1TreeViewItem Header="The Great Gatsby"/>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeView>
</Grid>

Dynamic TreeView Creation
Dynamic treeviews can be created on the server side or client side. When creating a dynamic treeview on the server
side, use a constructor to dynamically create a new instance of the C1TreeView class. For example:

BasicLibrary for UWP 142

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Namespace TreeViewQuickStart
 Public Partial Class MainPage
 Inherits UserControl
 Public Sub New()
 InitializeComponent()

 InitializeTreeView()
 End Sub
 Private Sub InitializeTreeView()

 ' Remove items that were added at design time

 Tree.Items.Clear()

 Dim booklist As New C1TreeViewItem()
 booklist.Header = "Book List"
 Tree.Items.Add(booklist)

 ' Adding child items
 Dim language As New C1TreeViewItem()
 language.Header = "Language Books"
 booklist.Items.Add(language)

 ' Adding child items
 Dim security As New C1TreeViewItem()
 security.Header = "Security Books"
 booklist.Items.Add(security)

 ' Adding child items
 Dim classic As New C1TreeViewItem()
 classic.Header = "Classic Books"
 booklist.Items.Add(classic)

 ' Adding child items
 Dim subclassic As New C1TreeViewItem()
 subclassic.Header = "Catch-22"
 classic.Items.Add(subclassic)
 Dim subclassic2 As New C1TreeViewItem()
 subclassic2.Header = "The Great Gatsby"
 classic.Items.Add(subclassic2)
 End Sub
 End Class
End Namespace

C#

namespace TreeViewQuickStart
{
 public partial class MainPage : UserControl
 {

BasicLibrary for UWP 143

Copyright © 2017 GrapeCity, inc. All rights reserved.

 public MainPage()
 {
 InitializeComponent();
 InitializeTreeView();

 }
 void InitializeTreeView()
 {

 // Remove items that were added at design time

 Tree.Items.Clear();

 C1TreeViewItem booklist = new C1TreeViewItem();
 booklist.Header = "Book List";
 Tree.Items.Add(booklist);
 // Adding child items
 C1TreeViewItem language = new C1TreeViewItem();
 language.Header = "Language Books";
 booklist.Items.Add(language);

 // Adding child items
 C1TreeViewItem security = new C1TreeViewItem();
 security.Header = "Security Books";
 booklist.Items.Add(security);

 // Adding child items
 C1TreeViewItem classic = new C1TreeViewItem();
 classic.Header = "Classic Books";
 booklist.Items.Add(classic);

 // Adding child items
 C1TreeViewItem subclassic = new C1TreeViewItem();
 subclassic.Header = "Catch-22";
 classic.Items.Add(subclassic);
 C1TreeViewItem subclassic2 = new C1TreeViewItem();
 subclassic2.Header = "The Great Gatsby";
 classic.Items.Add(subclassic2);
}
 }
}

Data Source TreeView Creation
TreeView items can be created from a hierarchal datasource control such as an XMLDataSource or
SiteMapDataSource. This allows you to update the treeview items without having to edit code.

When using multi-level data as ItemsSource for the C1TreeView, you need to specify a C1HierarchicalDataTemplate
for the items.

The template will tell the C1TreeView where to find the next level of data; this is done through the ItemsSource
property of the C1HierarchicalDataTemplate.

BasicLibrary for UWP 144

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/br242828

C1TreeView Templates
One of the main advantages to using a UWP control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for UWP applications, you can provide your
own UI for data managed by TreeView for UWP. Extensible Application Markup Language (XAML; pronounced
"Zammel"), an XML-based declarative language, offers a simple approach to designing your UI without having to write
code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1TreeView control and, in the menu,
selecting Edit Template. Select Edit a Copy to create an editable copy of the current template or Create Empty, to
create a new blank template.

Once you've created a new template, the template will appear in the Objects and Timeline window. Note that you
can use the Template property to customize the template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's
property. If you manually create a template in XAML you will have to link the appropriate template property to the
template you've created.

Additional Templates

In addition to the default template, the C1TreeView control includes a few additional templates. These additional
templates can also be accessed in Microsoft Expression Blend – in Blend select the C1TreeView control and, in the
menu, select Edit Additional Templates. Choose a template, and select Create Empty:

TreeView Behavior

BasicLibrary for UWP 145

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/br209465

Drag-and-Drop Nodes
You can drag-and-drop C1TreeViewItems on nodes, in between nodes, or from one tree to another tree when the
C1TreeView.AllowDragDrop property is set to True.

The following image shows a C1TreeViewItem being dragged from one C1TreeView to another C1TreeView. An arrow
or vertical line can be used as a visual cue to show you where the C1TreeViewItem is going to be dropped when
either the C1TreeView.DragDropArrowMarker or C1TreeView.DragDropLineMarker properties are applied.

Load on Demand
Instead of fully populating each node when the application starts, you can use a technique called delayed loading,
where nodes are populated on demand when the user expands them. This allows the application to load faster and
use resources more efficiently

To implement the delayed loading nodes, use the following code:

Visual Basic

Public Sub New()
 InitializeComponent()
 ' No changes here.
 ' ...
 ' Initialize the C1TreeView
 InitializeTreeView()
End Sub
Private Sub InitializeTreeView()
 ' Remove items that were added at design time
 _tv.Items.Clear()

 ' Scan every type in the assembly

BasicLibrary for UWP 146

Copyright © 2017 GrapeCity, inc. All rights reserved.

 For Each t As Type In _tv.[GetType]().Assembly.GetTypes()
 If t.IsPublic AndAlso Not t.IsSpecialName AndAlso Not t.IsAbstract Then
 ' Add node for this type
 Dim node As New C1TreeViewItem()
 node.Header = t.Name
 node.FontWeight = FontWeights.Bold
 _tv.Items.Add(node)
 ' Add subnodes for properties, events, and methods
 node.Items.Add(CreateMemberNode("Properties", t, MemberTypes.
[Property]))
 node.Items.Add(CreateMemberNode("Events", t, MemberTypes.[Event]))
 node.Items.Add(CreateMemberNode("Methods", t, MemberTypes.Method))
 End If
 Next
End Sub
Private Function CreateMemberNode(header As String, memberTypes As MemberTypes) As
C1TreeViewItem
 ' Create the node
 Dim node As New C1TreeViewItem()
 node.Header = header
 node.Foreground = New SolidColorBrush(Colors.DarkGray)
 ' Hook up event hander to populate the node before expanding it
 AddHandler node.Expanding, AddressOf node_Expanding
 ' Save information needed to populate the node
 node.Tag = memberTypes
 ' Add a dummy node so this node can be expanded
 node.Items.Add(New C1TreeViewItem())
 node.IsExpanded = False
 ' Finish
 Return node
End Function
'populate the node
Private Sub node_Expanding(sender As Object, e As RoutedEventArgs)
 ' Get the node that fired the event
 Dim node As C1TreeViewItem = TryCast(sender, C1TreeViewItem)
 ' Unhook event handler (we'll populate the node and be done with it)
 RemoveHandler node.Expanding, AddressOf node_Expanding
 ' Remove dummy node
 node.Items.Clear()
 ' Populate the node
 Dim type As Type = DirectCast(node.Parent.Tag, Type)
 Dim memberTypes As MemberTypes = DirectCast(node.Tag, MemberTypes)
 Dim bf As BindingFlags = BindingFlags.[Public] Or BindingFlags.Instance
 For Each mi As MemberInfo In type.GetMembers(bf)
 If mi.MemberType = memberTypes Then
 If Not mi.Name.StartsWith("get_") AndAlso Not
mi.Name.StartsWith("set_") Then
 Dim item As New C1TreeViewItem()
 item.Header = mi.Name
 item.FontSize = 12
 node.Items.Add(item)

BasicLibrary for UWP 147

Copyright © 2017 GrapeCity, inc. All rights reserved.

 End If
 End If
 Next
End Sub

C#

public Page()
{
 InitializeComponent();
 // No changes here.
 // ...
 // Initialize the C1TreeView
 InitializeTreeView();
}
void InitializeTreeView()
{
 // Remove items that were added at design time
 _tv.Items.Clear();

 // Scan every type in the assembly
 foreach (Type t in _tv.GetType().Assembly.GetTypes())
 {
 if (t.IsPublic && !t.IsSpecialName && !t.IsAbstract)
 {
 // Add node for this type
 C1TreeViewItem node = new C1TreeViewItem();
 node.Header = t.Name;
 node.FontWeight = FontWeights.Bold;
 _tv.Items.Add(node);
 // Add subnodes for properties, events, and methods
 node.Items.Add(CreateMemberNode("Properties", t, MemberTypes.Property));
 node.Items.Add(CreateMemberNode("Events", t, MemberTypes.Event));
 node.Items.Add(CreateMemberNode("Methods", t, MemberTypes.Method));
 }
 }
}
C1TreeViewItem CreateMemberNode(string header, MemberTypes memberTypes)
{
 // Create the node
 C1TreeViewItem node = new C1TreeViewItem();
 node.Header = header;
 node.Foreground = new SolidColorBrush(Colors.DarkGray);
 // Hook up event hander to populate the node before expanding it
 node.Expanding += node_Expanding;
 // Save information needed to populate the node
 node.Tag = memberTypes;
 // Add a dummy node so this node can be expanded
 node.Items.Add(new C1TreeViewItem());
 node.IsExpanded = false;
 // Finish
 return node;

BasicLibrary for UWP 148

Copyright © 2017 GrapeCity, inc. All rights reserved.

}
//populate the node
void node_Expanding(object sender, RoutedEventArgs e)
{
 // Get the node that fired the event
 C1TreeViewItem node = sender as C1TreeViewItem;
 // Unhook event handler (we'll populate the node and be done with it)
 node.Expanding -= node_Expanding;
 // Remove dummy node
 node.Items.Clear();
 // Populate the node
 Type type = (Type)node.Parent.Tag;
 MemberTypes memberTypes = (MemberTypes)node.Tag;
 BindingFlags bf = BindingFlags.Public | BindingFlags.Instance;
 foreach (MemberInfo mi in type.GetMembers(bf))
 {
 if (mi.MemberType == memberTypes)
 {
 if (!mi.Name.StartsWith("get_") && !mi.Name.StartsWith("set_"))
 {
 C1TreeViewItem item = new C1TreeViewItem();
 item.Header = mi.Name;
 item.FontSize = 12;
 node.Items.Add(item);
 }
 }
 }
}

This implementation hooks up an event hander for the Expanding event, so we can populate the node when the user
tries to expand it. We also save the information we will need to populate the node in the Tag property. Finally, we add
a dummy child node so the user will be able to expand this node and trigger the Expanding event that will populate
the node.

Note that instead of using the Tag property, we could also have derived a custom class from C1TreeViewItem and
built all the delay-load logic into that class. This would be a more elegant approach, but unfortunately UWP doesn't
support template inheritance. If you derive a class from a class that has a template (such as Button or
C1TreeViewItem), the template is not inherited, and you have to provide a template yourself or your derived class
will be just an empty control.

Node Selection
When you click on a node at run time it is automatically marked as selected. Clicking a node will raise the
C1TreeView.SelectionChanged event to provide custom functionality. To have the nodes marked as selected without
clicking them you can enable the C1TreeViewItem.IsSelected property.

When the user selects a new item, the C1TreeView fires the C1TreeView.SelectionChanged event. You can then
retrieve the item that was selected using the C1TreeView.SelectedItem property.

There're several ways to do this. One is to assign additional data to the Tag property of each C1TreeViewItem as you
create them. Later, you can inspect the Tag property to retrieve the information. For example:

Visual Basic

BasicLibrary for UWP 149

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/br208745

' Create a node and assign some data to its Tag property
Dim item As New C1TreeViewItem()
item.Header = "Beverages"
item.Tag = beveragesID

C#

// Create a node and assign some data to its Tag property
C1TreeViewItem item = new C1TreeViewItem();
item.Header = "Beverages";
item.Tag = beveragesID;

Later, use the information in whatever way you see fit:

Visual Basic

Dim item As C1TreeViewItem = _tv.SelectedItem
 ' Handle beverages node
If TypeOf item.Tag Is Integer AndAlso CInt(item.Tag) = beveragesID Then
End If

C#

C1TreeViewItem item = _tv.SelectedItem;
if (item.Tag is int && (int)item.Tag == beveragesID)
{
 // Handle beverages node
}

If the C1TreeView.SelectionMode property is set to Multiple then multiple nodes can be selected at one time by
holding down the control key while mouse clicking multiple nodes. To unselect a node, click on it again.

The nodes are marked as selected in the following C1TreeView:

Node Navigation
C1TreeView supports mouse and keyboard navigation.

Navigating C1TreeViewItems using the mouse

The following table describes the actions and corresponding mouse commands when navigating through the
C1TreeViewItems:

Action Mouse Command

Expand a node Click on the plus sign at the left of the node's name.

BasicLibrary for UWP 150

Copyright © 2017 GrapeCity, inc. All rights reserved.

Collapse a node Click on the minus sign at the left of the node's name.

Select a node Click on the node's name.

Navigating C1TreeViewItems using the keyboard

The following table describes the actions and their associated keys to use when navigating through
C1TreeViewItems:

Action Keyboard Command

Expand a node + KEY

Collapse a node - KEY

Move up a node UP ARROW KEY

Move down a down DOWN ARROW KEY

Select multiple nodes MOUSE + CTRL KEY

TreeView for UWP Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use
the C1TreeView control in general. If you are unfamiliar with the TreeView for UWP product, please see the TreeView
for UWP Quick Start first.

Each topic in this section provides a solution for specific tasks using the TreeView for UWP product.

Each task-based help topic also assumes that you have created a new Windows Store project.

Adding C1TreeViewItems using Code
To add static C1TreeView items to the C1TreeView control in the code behind file, edit the code in your application
so it appears like the following:

Visual Basic

Imports C1.Xaml
Class MainPage
 Public Sub New()
 InitializeComponent()
 InitializeTreeView()
 End Sub
 Private Sub InitializeTreeView()
 ' Remove items that were added at design time
 Tree.Items.Clear()
 Dim booklist As New C1TreeViewItem()
 booklist.Header = "Book List"
 Tree.Items.Add(booklist)

 ' Adding child items
 Dim language As New C1TreeViewItem()
 language.Header = "Language Books"

BasicLibrary for UWP 151

Copyright © 2017 GrapeCity, inc. All rights reserved.

 booklist.Items.Add(language)

 ' Adding child items
 Dim security As New C1TreeViewItem()
 security.Header = "Security Books"
 booklist.Items.Add(security)

 ' Adding child items
 Dim classic As New C1TreeViewItem()
 classic.Header = "Classic Books"
 booklist.Items.Add(classic)

 ' Adding child items
 Dim subclassic As New C1TreeViewItem()
 subclassic.Header = "Catch-22"
 classic.Items.Add(subclassic)
 Dim subclassic2 As New C1TreeViewItem()
 subclassic2.Header = "The Great Gatsby"
 classic.Items.Add(subclassic2)
 End Sub
End Class

C#

using C1.Xaml;
public MainPage()
{
 InitializeComponent();
 InitializeTreeView();
}
void InitializeTreeView()
{
 // Remove items that were added at design time
 Tree.Items.Clear();
 C1TreeViewItem booklist = new C1TreeViewItem();
 booklist.Header = "Book List";
 Tree.Items.Add(booklist);

 // Adding child items
 C1TreeViewItem language = new C1TreeViewItem();
 language.Header = "Language Books";
 booklist.Items.Add(language);

 // Adding child items
 C1TreeViewItem security = new C1TreeViewItem();
 security.Header = "Security Books";
 booklist.Items.Add(security);

 // Adding child items
 C1TreeViewItem classic = new C1TreeViewItem();
 classic.Header = "Classic Books";
 booklist.Items.Add(classic);

BasicLibrary for UWP 152

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // Adding child items
 C1TreeViewItem subclassic = new C1TreeViewItem();
 subclassic.Header = "Catch-22";
 classic.Items.Add(subclassic);
 C1TreeViewItem subclassic2 = new C1TreeViewItem();
 subclassic2.Header = "The Great Gatsby";
 classic.Items.Add(subclassic2);
}

Getting the Text or Value of the SelectedItem in a TreeView
The Header property will return the values contained in your C1TreeViewItems, you can get the string value using the
following code:

Visual Basic

Dim item As C1TreeViewItem = _tree.SelectedItem
_textBlock.Text = item.Header.ToString()

C#

C1TreeViewItem item = _tree.SelectedItem;
_textBlock.Text = item.Header.ToString();

What You've Accomplished

Run your application and observe that the Header property will return the values contained in your
C1TreeViewItems.

Adding Check Boxes to the TreeView
You can easily add check boxes to the C1TreeView control, check boxes can appear before text and allow users to
select a tree view item. The following XAML markup adds check boxes to the C1TreeView:

Markup

<Xaml:C1TreeView Name="C1TreeView1" Height="300" Width="200" >
 <Xaml:C1TreeViewItem IsExpanded="True" Margin="10">
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Desktop" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="User" />
 </CheckBox.Content>

BasicLibrary for UWP 153

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Public" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Favorites" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Public Downloads" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Public Music" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Public Pictures" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>

BasicLibrary for UWP 154

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <TextBlock Text="Public Videos" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem IsExpanded="True">
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Computer" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 <Xaml:C1TreeViewItem IsExpanded="True">
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Local Disk (C:)" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Program Files" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Users" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Windows" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>

BasicLibrary for UWP 155

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="DVD Drive (D:)" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Network" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Control Panel" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem>
 <Xaml:C1TreeViewItem.Header>
 <CheckBox>
 <CheckBox.Content>
 <TextBlock Text="Recycle Bin" />
 </CheckBox.Content>
 </CheckBox>
 </Xaml:C1TreeViewItem.Header>
 </Xaml:C1TreeViewItem>
 </Xaml:C1TreeViewItem>
</Xaml:C1TreeView>

Enabling Drag-and-Drop
C1TreeView supports drag-and-drop behavior. For more information see the Drag-and-Drop Nodes topic. To enable
drag-and-drop behavior, set the C1TreeView.AllowDragDrop property to True:

Visual Basic

C1TreeView.AllowDragDrop = True

C#

BasicLibrary for UWP 156

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1TreeView.AllowDragDrop = true;

To enable visual drag-and-drop indicators you can set the C1TreeView.DragDropArrowMarker
and C1TreeView.DragDropLineMarker properties.

BasicLibrary for UWP 157

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	UWP Edition Basic Library
	Getting Started with UWP Edition
	Help with UWP Edition

	CollectionView for UWP
	CollectionView for UWP Key Features
	Getting Started with C1CollectionView
	C1CollectionView Versus CollectionViewSource
	Sorting C1CollectionView
	Filtering C1CollectionView
	Grouping C1CollectionView
	Custom Grouping

	DropDown for UWP
	DropDown for UWP Key Features
	C1DropDown Quick Start
	Step 1 of 3: Creating an Application with a C1DropDown Control
	Step 2 of 3: Adding Content to the C1DropDown Control
	Step 3 of 3: Running the C1DropDown Application

	Working with DropDown for UWP
	C1DropDown Elements
	C1DropDown Interaction
	Drop-Down Box Direction
	Additional Controls
	C1DropDownButton Elements

	DropDown for UWP Task-Based Help
	Creating a DropDown
	Adding Content to C1DropDown
	Changing the Drop-Down Direction
	Hiding the Drop-Down Arrow
	Opening the Drop-Down on MouseOver
	Creating a Hierarchical C1DropDown

	GridSplitter for UWP
	GridSplitter for UWP Quick Start

	Layout Panels for UWP
	Layout Panels for UWP Features
	Layout Panels for UWP Quick Starts
	WrapPanel for UWP Quick Start
	Step 1 of 3: Creating an Application
	Step 2 of 3: Adding a C1WrapPanel to the Application
	Step 3 of 3: Running the Application

	DockPanel for UWP Quick Start
	Step 1 of 3: Creating an Application
	Step 2 of 3: Adding a C1DockPanel to the Application
	Step 3 of 3: Running the Application

	UniformGrid for UWP Quick Start
	Step 1 of 3: Creating a UWP Application
	Step 2 of 3: Adding the C1UniformGrid control to the Application
	Step 3 of 3: Running the Application

	Layout Panels for UWP Task-Based Help
	Wrapping and Formatting Items with C1WrapPanel
	Wrapping Items Vertically with C1WrapPanel

	ListBox for UWP
	ListBox for UWP Key Features
	C1ListBox Quick Start
	Step 1 of 3: Creating an Application with a C1ListBox Control
	Step 2 of 3: Adding Data to the ListBox
	Step 3 of 3: Running the ListBox Application

	C1TileListBox Quick Start
	Step 1 of 3: Creating an Application with a C1TileListBox Control
	Step 2 of 3: Adding Data to the TileListBox
	Step 3 of 3: Running the TileListBox Application

	Top Tips
	Working with ListBox for UWP
	Basic Properties
	Optical Zoom
	UI Virtualization
	Orientation
	Preview State

	Input for UWP
	Input for UWP Key Features
	Input for UWP Quick Starts
	NumericBox for UWP Quick Start
	Step 1 of 4: Creating an Application with NumericBox Control
	Step 2 of 4: Adding C1NumericBox Controls
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	MaskedTextBox for UWP Quick Start
	Step 1 of 4: Setting up the Application
	Step 2 of 4: Customizing the Application
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	Working with Input for UWP
	Working with C1NumericBox
	Number Formatting
	Input Validation

	Working with C1MaskTextBox
	Mask Formatting
	Mask Elements
	Literals
	Prompts

	Watermark

	Input for UWP Task-Based Help
	C1NumericBox Task-Based Help
	Setting the Start Value
	Setting the Increment Value
	Setting the Minimum and Maximum Values
	Hiding the Up and Down Buttons
	Locking the Control from Editing

	C1MaskedTextBox Task-Based Help
	Setting the Value
	Adding a Mask for Currency
	Changing the Prompt Character
	Changing Font Type and Size
	Locking the Control from Editing

	Menu for UWP
	Menu for UWP Key Features
	Menu for UWP Quick Start
	Step 1 of 4: Creating a Universal Windows Application
	Step 2 of 4: Adding C1Menu to the Application
	Step 3 of 4: Adding a C1ContextMenu to the C1Menu Control
	Step 4 of 4: Running the Project

	Radial Menu for UWP
	Radial Menu for UWP Key Features
	Radial Menu for UWP Quick Start
	Step 1 of 3: Creating a C1RadialMenu Application
	Step 2 of 3: Adding RadialMenu Items to the Control
	Step 3 of 3: Running the Project

	WorkingwithC1Radial Menu
	C1RadialMenu Elements
	C1RadialMenuItem and C1RadialPanel Elements
	C1RadialMenu Features
	Automatic Collapsing
	Checkable Radial Menu Items
	Navigation Button
	Nested Submenus
	Positioning Items
	Selecting Items

	Radial Menu for UWP Task-Based Help
	Creating Radial Menus
	Creating a Top-Level Menu
	Creating a Submenu
	Creating a Color Picker Menu
	Creating a Numeric Radial Menu

	Working with Checkable Radial Menu Items
	Creating a Checkable C1RadialMenuItem
	Creating Mutually Exclusive Checkable Radial Menu Items

	Customizing the C1RadialMenu's Appearance
	Enabling Automatic Menu Collapsing
	Adding a Separator Between Radial Menu Items
	Adding an Icon to a Radial Menu Item

	RangeSlider for UWP
	RangeSlider for UWP Quick Start
	Step 1 of 4: Setting Up the Application
	Step 2 of 4: Adding a C1RangeSlider Control
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	RangeSlider Elements
	RangeSlider Features
	Minimum and Maximum
	Thumb Values and Range
	RangeSlider Orientation

	TabControl for UWP
	TabControl for UWP Key Features
	TabControl for UWP Quick Start
	Step 1 of 3: Creating a C1TabControl Application
	Step 2 of 3: Adding C1TabControl to the Application
	Step 3 of 3: Running the Project

	TreeView for UWP
	TreeView for UWP Key Features
	TreeView for UWP Quick Start
	Step 1 of 3: Creating an Application with a C1TreeView Control
	Step 2 of 3: Adding C1TreeView Items toC1TreeView
	Step 3 of 3: Customizing TreeView’sAppearance and Behavior

	C1TreeView Structure
	TreeView Creation
	Static TreeView Creation
	Dynamic TreeView Creation

	Data Source TreeView Creation
	C1TreeView Templates
	TreeView Behavior
	Drag-and-Drop Nodes
	Load on Demand
	Node Selection
	Node Navigation

	TreeView for UWP Task-Based Help
	Adding C1TreeViewItems using Code
	Getting the Text or Value of the SelectedItem in a TreeView
	Adding Check Boxes to the TreeView
	Enabling Drag-and-Drop

