

ComponentOne

Bitmap for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Bitmap for UWP 2

Help with UWP Edition 2

Key Features 3

Object Model Summary 4

Quick Start 5-7

Features 8

Loading and Saving an Image 8-10

Applying Transformations 10

Clipping an Image 10-12

Flipping an Image 12-13

Rotating an Image 13-15

Scaling an Image 15-16

Working with Bitmap 17

Applying Direct2D Effects 17-25

Bitmap Samples 26

Bitmap for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Bitmap for UWP
ComponentOne Studio introduces Bitmap for UWP, a class library designed to load, save, and transform images.
Using Bitmap, you can scale, clip, flip, or rotate the image, change the pixel format, or apply any arbitrary
combination of these transformations on an image. Bitmap allows you to change the pixel format of an image, and
supports various container formats such as BMP, PNG, JPG, etc. to cater diverse image processing needs.

Help with UWP Edition
For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces, and
creating a project with the controls, please visit Getting Started with ComponentOne Studio UWP Edition.

Bitmap for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/

Key Features
Bitmap provides number of supported features for handling images. Besides simple image display and save, you can
use Bitmap for various purposes listed below:

Load Images
Bitmap loads or imports image with a variety of container formats including BMP, PNG, JPEG, JPEG-XR, TIFF,
ICO, and GIFF (Single frame). The image can be loaded from a file, stream, from another bitmap object, or
imported from a byte array. Bitmap also allows loading several images, one by one, into the same instance of
C1Bitmap.

Save Images
As with loading, the image from C1Bitmap can be saved to a StorageFile or IOutputStream and to
System.IO.Stream. C1Bitmap provides a specific SaveAs method for each of the supported container formats,
such as BMP, PNG, JPEG, JPEG-XR, TIFF, and GIFF (Single frame) except ICO as saving an image in this format is
not supported.

Transform Images
With Bitmap, you can apply various transformations on an image. For instance, you can easily clip, crop, rotate,
scale in and scale out an image by applying transformation in code using Transform method.

Apply Direct2D Effects
Bitmap allows you to apply Direct2D effects on an image for superior imaging effects.

Convert to/from Platform-Specific Bitmap Objects
One of the key ability of Bitmap is its support for conversion to/from the platform-specific bitmap objects. For
example, in a Windows Store app you can easily convert C1Bitmap to a WriteableBitmap or
SoftwareBitmap. Also, you can import, for example, a WriteableBitmap as fragment into the existing
C1Bitmap or create a new C1Bitmap from the given instance of SoftwareBitmap.

Bitmap for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Object Model Summary
Bitmap comes with a rich object model, providing various classes, objects, collections, associated methods and
properties for processing images. The following table lists some of these objects and their properties.

C1Bitmap

Properties: ContainerFormat, HasImage, HasMetadata, ImagingFactory, IsDisposed, NativeBitmap, PixelFormat,
PixelHeight, PixelWidth
Methods: Dispose, Import, Load, LoadAsync, LoadMetadata, Save, SaveAsBmp, SaveAsGif, SaveAsJpeg, SaveAsPng,
SaveAsTiff, SaveAsync, ToSoftwareBitmap, ToWritableBitmap, Transform

Clipper

Property: ImageRect

FlipRotator

Property: TransformOptions

FormatConverter

Properties: DestinationFormat, Palette, PaletteTranslate

Scaler

Properties: DestinationHeight, DestinationWidth, InterpolationMode

Bitmap for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Quick Start
The quick start guide familiarizes you with loading an image in Bitmap. You begin with creating a UWP application in
Visual Studio, adding C1.UWP.Bitmap reference (dll), Image control, and a button to load an image from stream in
C1Bitmap object.

To create a simple UWP application for loading an image in C1Bitmap object, follow these steps:

1. Setting up the Application
2. Loading an Image into C1Bitmap

The following image shows how the application displays an image loaded from a stream into C1Bitmap:

Setting up the Application

To set up the application, follow these steps:

1. Create a new project and select Blank App (Universal Windows) in Visual Studio.
2. Add the following references to the application.

C1.UWP.Bitmap
C1.UWP.DX

3. In the Solution Explorer, right click your project name and select Add | New Folder. Name the newly added
folder. In our case, we have named the new folder as Resources.

4. Add a sample image to the Resources folder and set its Build Action property to Embedded Resource from
the Properties window.

5. Add a standard Button control for loading a sample image and Image control, named img, for displaying the
sample image.

6. Set the Content property of the button as Load Image.

Back to Top

Bitmap for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Loading an Image into C1Bitmap

To load the image in C1Bitmap, follow these steps:

1. Switch to the code view and add the following import statements in the code.

2. Create the following class objects.

3. Add the following code in the class constructor to initialize bitmap and SoftwareBitmapSource.

4. Add the following code to the btnLoad_Click event to load the image in C1Bitmap using stream:

Imports C1.Xaml.Bitmap
Imports System.Reflection
Imports Windows.Graphics.Imaging

Visual Basic

using C1.Xaml.Bitmap;
using System.Reflection;
using System.Threading.Tasks;
using Windows.Graphics.Imaging;
using Windows.UI.Xaml.Media.Imaging;

C#

Dim btmp As C1Bitmap
Dim sb As SoftwareBitmap
Dim sbs As SoftwareBitmapSource

Visual Basic

C1Bitmap btmp;
SoftwareBitmap sb;
SoftwareBitmapSource sbs;

C#

btmp = New C1Bitmap()
sbs = New SoftwareBitmapSource()

Visual Basic

btmp = new C1Bitmap();
sbs = new SoftwareBitmapSource();

C#

Dim asm As Assembly = GetType(MainPage).GetTypeInfo().Assembly
Using stream As Stream =
asm.GetManifestResourceStream("BitmapUWP_VB.GrapeCity.jpg")
 btmp.Load(stream, New FormatConverter(PixelFormat.Format32bppPBGRA))
End Using
Await UpdateImageSource()

Visual Basic

Assembly asm = typeof(MainPage).GetTypeInfo().Assembly;
using (Stream stream =
asm.GetManifestResourceStream("BitmapUWP.Resources.GrapeCity.jpg"))
{

C#

Bitmap for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: To call an asynchronous method on an event, we have used async keyword and await operator.

5. Create a method, named UpdateImageSource, to create a SoftwareBitmap, set the source SoftwareBitmap
and assign it to the image source:

Back to Top

 btmp.Load(stream, new FormatConverter(PixelFormat.Format32bppPBGRA));
}
await UpdateImageSource();

Private Async Function UpdateImageSource() As Task
 sb = btmp.ToSoftwareBitmap()
 Await sbs.SetBitmapAsync(sb)
 img.Source = sbs
End Function

Visual Basic

private async Task UpdateImageSource()
{
 sb = btmp.ToSoftwareBitmap();
 await sbs.SetBitmapAsync(sb);
 img.Source = sbs;
}

C#

Bitmap for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Features
Bitmap Features comprises all the features available in Bitmap control.

Loading and Saving an Image
Learn how to implement loading and saving in code.

Applying Transformations
Learn how to apply different transformations in code.

Loading and Saving an Image
Bitmap allows loading an image in C1Bitmap object using the Load method of the C1Bitmap class. With Load
and LoadAsync method overloads, the image can be loaded from StorageFile or IInputStream, or from
System.IO.Stream. Bitmap also allows loading image metadata, which can be used to determine size of the image, its
resolution (DPI), or pixel format. Additionally, several images can be loaded or imported, one by one, into the same
instance of C1Bitmap.

Like loading, the image from C1Bitmap can be saved to a StorageFile or IOutputStream, and to System.IO.Stream. The
Bitmap provides general Save methods in C1Bitmap class, that accept the container format as an argument. It also
provides a specific SaveAs method for each of the supported container formats which has the corresponding
encoder.

Here, we discuss loading an arbitrary image from a file. To load an image from a stream, refer to Quick Start.

The following steps illustrate loading an arbitrary image from a file. This code uses LoadAsync method to load an
image from a StorageFile.

1. Create and initialize the following class objects.

2. Add the following code to load an image from a StorageFile.

Dim btmp As New C1Bitmap()
Dim sb As SoftwareBitmap
Dim sbs As SoftwareBitmapSource

Visual Basic

C1Bitmap btmp = new C1Bitmap();
SoftwareBitmap sb;
SoftwareBitmapSource sbs;

C#

Dim picker = New FileOpenPicker()

picker.FileTypeFilter.Add(".ico")
picker.FileTypeFilter.Add(".bmp")
picker.FileTypeFilter.Add(".gif")
picker.FileTypeFilter.Add(".png")
picker.FileTypeFilter.Add(".jpg")
picker.FileTypeFilter.Add(".jpeg")
picker.FileTypeFilter.Add(".jxr")
picker.FileTypeFilter.Add(".tif")
picker.FileTypeFilter.Add(".tiff")

Dim file As StorageFile = Await picker.PickSingleFileAsync()

Visual Basic

Bitmap for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: To call an asynchronous method on an event, we have used async keyword and await operator.

3. Create a method, named UpdateImageSource, to create a SoftwareBitmap, set the source SoftwareBitmap and
assign it to the image source.

4. Save the loaded arbitrary image using the following code. The SaveAsPngAsync method is used here to save
the image to a StorageFile in PNG format.

If file IsNot Nothing Then
 Await btmp.LoadAsync(file, New
FormatConverter(PixelFormat.Format32bppPBGRA))
 Await UpdateImageSource()
End If

var picker = new FileOpenPicker();

picker.FileTypeFilter.Add(".ico");
picker.FileTypeFilter.Add(".bmp");
picker.FileTypeFilter.Add(".gif");
picker.FileTypeFilter.Add(".png");
picker.FileTypeFilter.Add(".jpg");
picker.FileTypeFilter.Add(".jpeg");
picker.FileTypeFilter.Add(".jxr");
picker.FileTypeFilter.Add(".tif");
picker.FileTypeFilter.Add(".tiff");

StorageFile file = await picker.PickSingleFileAsync();

if (file != null)
{
 await btmp.LoadAsync(file, new
FormatConverter(PixelFormat.Format32bppPBGRA));
 await UpdateImageSource();
}

C#

Private Async Function UpdateImageSource() As Task
 sb = btmp.ToSoftwareBitmap()
 sbs = New SoftwareBitmapSource()
 Await sbs.SetBitmapAsync(sb)
 img.Source = sbs
End Function

Visual Basic

async Task UpdateImageSource()
{
 sb = btmp.ToSoftwareBitmap();
 sbs = new SoftwareBitmapSource();
 await sbs.SetBitmapAsync(sb);
 img.Source = sbs;
}

C#

Dim picker = New FileSavePicker()
picker.FileTypeChoices.Add("png", New List(Of String)() From {
 ".png"
})

Visual Basic

Bitmap for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

picker.DefaultFileExtension = ".png"

Dim file As StorageFile = Await picker.PickSaveFileAsync()

If file IsNot Nothing Then
 Await btmp.SaveAsPngAsync(file, Nothing)
 Dim md As New MessageDialog("Your file have been saved.")

 Await md.ShowAsync()
End If

btmp.Dispose()

var picker = new FileSavePicker();
picker.FileTypeChoices.Add("png", new List<string> { ".png" });
picker.DefaultFileExtension = ".png";

StorageFile file = await picker.PickSaveFileAsync();

if (file != null)
{
 await btmp.SaveAsPngAsync(file, null);
 MessageDialog md = new MessageDialog("Your file have been saved.");
 await md.ShowAsync();
}
btmp.Dispose();

C#

Applying Transformations
Bitmap allows you to apply various transformations on images, such as clipping, flipping, scaling, and rotating. Learn
about these transformations and how they can be implemented.

Clipping an Image
Learn how to implement clipping in code.

Flipping an Image
Learn how to implement flipping in code.

Rotating an Image
Learn how to implement rotating in code.

Scaling an Image
Learn how to implement scaling in code.

Clipping an Image
Clipping is cropping a portion of an image. Bitmap allows clipping an image with the Clipper class. To clip the source
image and load a small fragment instead of the whole image, You can pass the Clipper transformation using the
Clipper class.

The GIF given below shows clipping an image.

Bitmap for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following code implements clipping of an image on a button's click event. The example uses the sample created
in Quick Start.

Private Async Function UpdateImageSource() As Task
 sb = btmp.ToSoftwareBitmap()
 sbs = New SoftwareBitmapSource()
 Await sbs.SetBitmapAsync(sb)
 img.Source = sbs

 img.Width = btmp.PixelWidth
 img.Height = btmp.PixelHeight
End Function

Private Async Function ApplyTransform(t As BaseTransform) As Task
 Dim bm = btmp.Transform(t)
 btmp.Dispose()
 btmp = bm

 Await UpdateImageSource()
End Function

Private Async Sub btnCrop_Click(sender As Object, e As RoutedEventArgs)
 Dim cropRect As New ImageRect(150, 100, 300, 250)
 Await ApplyTransform(New Clipper() With {.ImageRect = cropRect})
End Sub

Visual Basic

private async Task UpdateImageSource()
{
 sb = btmp.ToSoftwareBitmap();

C#

Bitmap for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

 sbs = new SoftwareBitmapSource();
 await sbs.SetBitmapAsync(sb);
 img.Source = sbs;

 img.Width = btmp.PixelWidth;
 img.Height = btmp.PixelHeight;
}

private async Task ApplyTransform(BaseTransform t)
{
 var bm = btmp.Transform(t);
 btmp.Dispose();
 btmp = bm;

 await UpdateImageSource();
}

private async void btnClip_Click(object sender, RoutedEventArgs e)
{
 Rect select;
 var cropRect = ((RectD)select).Round();
 await ApplyTransform(new Clipper { ImageRect = new ImageRect(150, 100, 300, 250)
});
}

Flipping an Image
Flipping is creating a mirror image of the original image, vertically or horizontally. Bitmap allows both, flipping an
image horizontally as well as vertically, using the TransformOptions property of the FlipRotator class. The
TransformOptions property accepts value from the TransformOptions enum to set the transformation options.

The image given below shows a horizontally flipped image.

Bitmap for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following code implements flipping on an image horizontally on a button's click event. This example uses the
sample created in the Quick Start.

Similarly, you can flip an image vertically using FlipVertical value of the TransformOptions enum.

Private Async Function UpdateImageSource() As Task
 Dim sb As SoftwareBitmap = btmp.ToSoftwareBitmap()
 Await sbs.SetBitmapAsync(sb)
 img.Source = sbs
End Function

Private Async Function ApplyTransform(t As BaseTransform) As Task
 Dim bm = btmp.Transform(t)
 btmp.Dispose()
 btmp = bm
 Await UpdateImageSource()
End Function
Private Async Sub btnFlip_Click(sender As Object, e As RoutedEventArgs)
 Await ApplyTransform(New FlipRotator(TransformOptions.FlipHorizontal))
End Sub

Visual Basic

private async Task ApplyTransform(BaseTransform t)
{
 var bm = btmp.Transform(t);
 btmp.Dispose();
 btmp = bm;
 await UpdateImageSource();
}

private async void btnFlip_Click(object sender, RoutedEventArgs e)
{
 await ApplyTransform(new FlipRotator(TransformOptions.FlipHorizontal));
}

C#

Rotating an Image
Bitmap provides the flexibility to rotate images to different angles, 90 degrees, 180 degrees, and 270 degrees in
clockwise direction. TransformOptions property of FlipRotator class provided by C1Bitmap can be used to rotate an
image. The TransformOptions property accepts value from the TransformOptions enum to set the transformation
options.

The image given below shows an image rotated by 180 degrees in clockwise direction.

Bitmap for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following code implements rotating on an image by 180 degrees in clockwise direction on a button's click event.
This example uses the sample created in the Quick Start.

Private Async Function UpdateImageSource() As Task
 Dim sb As SoftwareBitmap = btmp.ToSoftwareBitmap()
 Await sbs.SetBitmapAsync(sb)
 img.Source = sbs
End Function

Private Async Function ApplyTransform(t As BaseTransform) As Task
 Dim bm = btmp.Transform(t)
 btmp.Dispose()
 btmp = bm
 Await UpdateImageSource()
End Function

Private Async Sub btnRotate_Click(sender As Object, e As RoutedEventArgs)
 Await ApplyTransform(New FlipRotator(TransformOptions.Rotate180))
End Sub

Visual Basic

private async Task ApplyTransform(BaseTransform t)
{
 var bm = btmp.Transform(t);
 btmp.Dispose();
 btmp = bm;
 await UpdateImageSource();
}

private async void btnRotate_Click(object sender, RoutedEventArgs e)

C#

Bitmap for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

{
 await ApplyTransform(new FlipRotator(TransformOptions.Rotate180));

}

Scaling an Image
Scaling helps in resizing (reducing and enlarging the size) of an image by changing the number of pixels in the image.
Bitmap provides Scaler class for scaling an image. The Scaler class requires three properties to scale an image, which
are as follows:

DestinationWidth: The destination width.
DestinationHeight: The destination height.
InterpolationMode: The interpolation mode to use when scaling.

The GIF given below shows scaling in and out of an image.

The following code implements scaling in on a button click event and scaling out on another button's click event. The
example uses the sample created in Quick Start.

Private Async Function UpdateImageSource() As Task
 Dim sb As SoftwareBitmap = btmp.ToSoftwareBitmap()
 sbs = New SoftwareBitmapSource()
 Await sbs.SetBitmapAsync(sb)
 img.Source = sbs

 img.Width = btmp.PixelWidth
 img.Height = btmp.PixelHeight
End Function

Visual Basic

Bitmap for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

Private Async Function ApplyTransform(t As BaseTransform) As Task
 Dim bm = btmp.Transform(t)
 btmp.Dispose()
 btmp = bm
 Await UpdateImageSource()
End Function

Private Async Sub btnScale_Click(sender As Object, e As RoutedEventArgs)
 Dim px As Integer = btmp.PixelWidth * 1.6F + 0.5F
 Dim py As Integer = btmp.PixelHeight * 1.6F + 0.5F
 Await ApplyTransform(New Scaler(px, py, InterpolationMode.HighQualityCubic))
End Sub

Private Async Sub btnScaleOut_Click(sender As Object, e As RoutedEventArgs)
 Dim px As Integer = btmp.PixelWidth * 0.625F + 0.5F
 Dim py As Integer = btmp.PixelHeight * 0.625F + 0.5F
 If px > 0 AndAlso py > 0 Then
 Await ApplyTransform(New Scaler(px, py, InterpolationMode.HighQualityCubic))
 End If
End Sub

private async Task UpdateImageSource()
{
 SoftwareBitmap sb = btmp.ToSoftwareBitmap();
 sbs = new SoftwareBitmapSource();
 await sbs.SetBitmapAsync(sb);
 img.Source = sbs;

 img.Width = btmp.PixelWidth;
 img.Height = btmp.PixelHeight;
}

private async Task ApplyTransform(BaseTransform t)
{
 var bm = btmp.Transform(t);
 btmp.Dispose();
 btmp = bm;
 await UpdateImageSource();
}

private async void btnScale_Click(object sender, RoutedEventArgs e)
{
 int px = (int)(btmp.PixelWidth * 1.6f + 0.5f);
 int py = (int)(btmp.PixelHeight * 1.6f + 0.5f);
 await ApplyTransform(new Scaler(px, py, InterpolationMode.HighQualityCubic));
}

private async void btnScaleOut_Click(object sender, RoutedEventArgs e)
{
 int px = (int)(btmp.PixelWidth * 0.625f + 0.5f);
 int py = (int)(btmp.PixelHeight * 0.625f + 0.5f);
 if (px > 0 && py > 0)
 {
 await ApplyTransform(new Scaler(px, py,
InterpolationMode.HighQualityCubic));
 }
}

C#

Bitmap for UWP 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with Bitmap
Working with Bitmap section assumes that you are familiar with the basics and features of the Bitmap control and
know how to use it in general. The following section provides information on auxiliary functionality offered by Bitmap.

Applying Direct2D Effects
Learn how to apply Direct2D effects in code.

Applying Direct2D Effects
Direct2D is a 2D graphics API designed by Microsoft that offers a range of built-in and custom effects for
manipulating images. The API provides high quality and fast rendering for bitmaps, 2D geometries, and text.

Bitmap allows you to use the Direct2D effects and apply them on images. Following is a list of image effects that can
be applied to an image using Bitmap:

Gaussian Blur
Sharpen
Horizontal Smear
Shadow
Displacement Map
Emboss
Edge Detect
Sepia

Let us take one of these effects and apply it on an image. The following image shows one of the built-in 2D effects,
shadow, presenting the use of Direct2D in Bitmap.

Bitmap for UWP 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the code, Bitmap is converted to a Direct2D bitmap. Direct2D is then used to manipulate the image by applying the
built-in effect, shadow, using interoperation with Direct3D API. After all the manipulations, the image is loaded back
from Direct2D bitmap to C1Bitmap.

To apply the shadow effect on an image, you can use the properties of Shadow, AffineTransform2D, and Composite
classes, members of C1.Util.DX.Direct2D.Effects namespace.

The following steps illustrate applying the 2D shadow effect on an image. This example uses the sample created in the
Quick Start.

1. Add the following namespaces.

2. Create the following class objects.

Imports D2D = C1.Util.DX.Direct2D
Imports D3D = C1.Util.DX.Direct3D11
Imports DXGI = C1.Util.DX.DXGI
Imports DW = C1.Util.DX.DirectWrite
Imports C1.Util.DX

Visual Basic

using D2D = C1.Util.DX.Direct2D;
using D3D = C1.Util.DX.Direct3D11;
using DXGI = C1.Util.DX.DXGI;
using DW = C1.Util.DX.DirectWrite;
using C1.Util.DX;

C#

Bitmap for UWP 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Declare the following constant integers and enumeration.

4. Load the image in C1Bitmap using stream. For details, see Quick Start.

Private imgSource As SurfaceImageSource
Private sisNative As DXGI.ISurfaceImageSourceNative
Private btmp As C1Bitmap

' device-independent resources
Private d2dF As D2D.Factory2
Private dwF As DW.Factory

' device resources
Private dxgiD As DXGI.Device
Private d2dC As D2D.DeviceContext1

' Direct2D built-in effects
Private shadow As D2D.Effects.Shadow
Private affineT As D2D.Effects.AffineTransform2D
Private compst As D2D.Effects.Composite

Visual Basic

SurfaceImageSource imgSource;
DXGI.ISurfaceImageSourceNative sisNative;
C1Bitmap btmp;

// device-independent resources
D2D.Factory2 d2dF;
DW.Factory dwF;

// device resources
DXGI.Device dxgiD;
D2D.DeviceContext1 d2dC;

// Direct2D built-in effects
D2D.Effects.Shadow shadow;
D2D.Effects.AffineTransform2D affineT;
D2D.Effects.Composite compst;

C#

Const marginLT As Integer = 20
Const marginRB As Integer = 36

Private Enum ImageEffect
 Original
 Shadow
End Enum

Visual Basic

const int marginLT = 20;
const int marginRB = 36;

enum ImageEffect
{
 Original,
 Shadow
}

C#

Bitmap for UWP 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Add the following code to create resources, image source, and associate the image source with the image.

6. Add the following code to apply the 2D shadow effect.

' create Direct2D and DirectWrite factories
d2dF = D2D.Factory2.Create(D2D.FactoryType.SingleThreaded)
dwF = DW.Factory.Create(DW.FactoryType.[Shared])

' create GPU resources
CreateDeviceResources()

' create the image source
imgSource = New SurfaceImageSource(marginLT + btmp.PixelWidth + marginRB,
 marginLT + btmp.PixelHeight + marginRB, False)

' obtain the native interface for the image source
sisNative = ComObject.QueryInterface _
 (Of DXGI.ISurfaceImageSourceNative)(imgSource)
sisNative.SetDevice(dxgiD)

' draw the image to SurfaceImageSource
UpdateImageSource(ImageEffect.Original)

' associate the image source with the Image
img.Source = imgSource

Visual Basic

// create Direct2D and DirectWrite factories
d2dF = D2D.Factory2.Create(D2D.FactoryType.SingleThreaded);
dwF = DW.Factory.Create(DW.FactoryType.Shared);

// create GPU resources
CreateDeviceResources();

Unloaded += MainPage_Unloaded;

// create the image source
imgSource = new SurfaceImageSource(marginLT + btmp.PixelWidth + marginRB,
 marginLT + btmp.PixelHeight + marginRB, false);

// obtain the native interface for the image source
sisNative = ComObject.QueryInterface<DXGI.ISurfaceImageSourceNative>
(imgSource);
sisNative.SetDevice(dxgiD);

// draw the image to SurfaceImageSource
UpdateImageSource(ImageEffect.Original);

// associate the image source with the Image
img.Source = imgSource;

C#

Private Sub btnShadow_Click(sender As Object, e As RoutedEventArgs) _
Handles btnShadow.Click
 UpdateImageSource(ImageEffect.Shadow)
End Sub

Private Sub CreateDeviceResources()

Visual Basic

Bitmap for UWP 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ' create the Direct3D device
 Dim actualLevel As D3D.FeatureLevel
 Dim d3dContext As D3D.DeviceContext = Nothing
 Dim d3dDevice = New D3D.Device(IntPtr.Zero)
 Dim result = HResult.Ok
 For i As Integer = 0 To 1
 ' use WARP if hardware is not available
 Dim dt = If(i = 0, D3D.DriverType.Hardware, D3D.DriverType.Warp)
 result = D3D.D3D11.CreateDevice(Nothing, dt, IntPtr.Zero,
 D3D.DeviceCreationFlags.BgraSupport Or
 D3D.DeviceCreationFlags.SingleThreaded,
 Nothing, 0, D3D.D3D11.SdkVersion, d3dDevice,
 actualLevel, d3dContext)
 Next
 result.CheckError()
 d3dContext.Dispose()

 'store the DXGI device (for trimming
 'when the Application Is being suspended)
 dxgiD = d3dDevice.QueryInterface(Of DXGI.Device)()
 d3dDevice.Dispose()

 ' create a RenderTarget (DeviceContext for Direct2D drawing)
 Dim d2dDevice = D2D.Device1.Create(d2dF, dxgiD)
 Dim rt = D2D.DeviceContext1.Create(d2dDevice,
 D2D.DeviceContextOptions.None)
 d2dDevice.Dispose()
 rt.SetUnitMode(D2D.UnitMode.Pixels)
 d2dC = rt

 ' create built-in effects
 shadow = D2D.Effects.Shadow.Create(rt)
 affineT = D2D.Effects.AffineTransform2D.Create(rt)
 compst = D2D.Effects.Composite.Create(rt)
End Sub

Private Sub DiscardDeviceResources()
 shadow.Dispose()
 affineT.Dispose()
 compst.Dispose()

 dxgiD.Dispose()
 d2dC.Dispose()
End Sub

Private Sub UpdateImageSource(imageEffect__1 As ImageEffect)
 Dim w As Integer = btmp.PixelWidth + marginLT + marginRB
 Dim h As Integer = btmp.PixelHeight + marginLT + marginRB
 Dim surfaceOffset As Point2L = Point2L.Empty
 Dim dxgiSurface As DXGI.Surface = Nothing
 Dim hr = HResult.Ok

 ' receive the target DXGI.Surface and offset for drawing
 For i As Integer = 0 To 1
 hr = sisNative.BeginDraw(New RectL(w, h),
 surfaceOffset, dxgiSurface)
 If (hr <> DXGI.ResultCode.DeviceRemoved _
 AndAlso hr <> DXGI.ResultCode.DeviceReset) _
 OrElse i > 0 Then
 Exit For
 End If

Bitmap for UWP 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ' try to recreate the device resources
 ' if the old GPU device was removed
 DiscardDeviceResources()
 CreateDeviceResources()
 sisNative.SetDevice(dxgiD)
 Next
 hr.CheckError()

 ' the render target object
 Dim rt = d2dC

 ' create the target Direct2D bitmap for the given DXGI.Surface
 Dim bpTarget = New D2D.BitmapProperties1(New D2D.PixelFormat(
 DXGI.Format.B8G8R8A8_UNorm, D2D.AlphaMode.Premultiplied),
 CSng(btmp.DpiX), CSng(btmp.DpiY),
 D2D.BitmapOptions.Target Or D2D.BitmapOptions.CannotDraw)

 Dim targetBmp = D2D.Bitmap1.Create(rt, dxgiSurface, bpTarget)
 dxgiSurface.Dispose()

 ' associate the target bitmap with render target
 rt.SetTarget(targetBmp)
 targetBmp.Dispose()

 ' start drawing
 rt.BeginDraw()

 ' clear the target bitmap
 rt.Clear(Nothing)

 ' convert C1Bitmap image to Direct2D image
 Dim d2dBitmap = btmp.ToD2DBitmap1(rt, D2D.BitmapOptions.None)
 surfaceOffset.Offset(marginLT, marginLT)

 ' apply the effect
 Select Case imageEffect__1
 Case ImageEffect.Original
 rt.DrawImage(d2dBitmap, surfaceOffset.ToPoint2F())
 Exit Select
 Case ImageEffect.Shadow
 rt.DrawImage(ApplyShadow(d2dBitmap), surfaceOffset.ToPoint2F())
 Exit Select
 End Select

 d2dBitmap.Dispose()

 ' finish drawing (all drawing commands are executed at that moment)
 rt.EndDraw()

 ' detach and actually dispose the target bitmap
 rt.SetTarget(Nothing)

 ' complete drawing on SurfaceImageSource
 sisNative.EndDraw()
End Sub

Private Function ApplyShadow(bitmap As D2D.Bitmap1) As D2D.Effect
 shadow.SetInput(0, bitmap)
 shadow.BlurStandardDeviation = 5.0F
 affineT.SetInputEffect(0, shadow)
 affineT.TransformMatrix = Matrix3x2.Translation(20.0F, 20.0F)
 compst.SetInputEffect(0, affineT)

Bitmap for UWP 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

 compst.SetInput(1, bitmap)
 Return compst
End Function

Private Sub MainPage_Unloaded(sender As Object, e As RoutedEventArgs)
 DiscardDeviceResources()

 btmp.Dispose()
 d2dF.Dispose()
 dwF.Dispose()

 img.Source = Nothing
 sisNative.Dispose()
 sisNative = Nothing
End Sub

private void btnShadow_Click(object sender, RoutedEventArgs e)
{
 UpdateImageSource(ImageEffect.Shadow);
}

void CreateDeviceResources()
{
 // create the Direct3D device
 D3D.FeatureLevel actualLevel;
 D3D.DeviceContext d3dContext = null;
 var d3dDevice = new D3D.Device(IntPtr.Zero);
 var result = HResult.Ok;
 for (int i = 0; i <= 1; i++)
 {
 // use WARP if hardware is not available
 var dt = i == 0 ? D3D.DriverType.Hardware : D3D.DriverType.Warp;
 result = D3D.D3D11.CreateDevice(null, dt, IntPtr.Zero,
 D3D.DeviceCreationFlags.BgraSupport |
 D3D.DeviceCreationFlags.SingleThreaded,
 null, 0, D3D.D3D11.SdkVersion, d3dDevice,
 out actualLevel, out d3dContext);
 if (result.Code != unchecked((int)0x887A0004))//DXGI_ERROR_UNSUPPORTED
 {
 break;
 }
 }
 result.CheckError();
 d3dContext.Dispose();

 // store the DXGI device (for trimming
 // when the application is being suspended)
 dxgiD = d3dDevice.QueryInterface<DXGI.Device>();
 d3dDevice.Dispose();

 // create a RenderTarget (DeviceContext for Direct2D drawing)
 var d2dDevice = D2D.Device1.Create(d2dF, dxgiD);
 var rt = D2D.DeviceContext1.Create(d2dDevice,
D2D.DeviceContextOptions.None);
 d2dDevice.Dispose();
 rt.SetUnitMode(D2D.UnitMode.Pixels);
 d2dC = rt;

 // create built-in effects

C#

Bitmap for UWP 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

 shadow = D2D.Effects.Shadow.Create(rt);
 affineT = D2D.Effects.AffineTransform2D.Create(rt);
 compst = D2D.Effects.Composite.Create(rt);
}

void DiscardDeviceResources()
{
 shadow.Dispose();
 affineT.Dispose();
 compst.Dispose();

 dxgiD.Dispose();
 d2dC.Dispose();
}

void UpdateImageSource(ImageEffect imageEffect)
{
 int w = btmp.PixelWidth + marginLT + marginRB;
 int h = btmp.PixelHeight + marginLT + marginRB;
 Point2L surfaceOffset = Point2L.Empty;
 DXGI.Surface dxgiSurface = null;
 var hr = HResult.Ok;

 // receive the target DXGI.Surface and offset for drawing
 for (int i = 0; i <= 1; i++)
 {
 hr = sisNative.BeginDraw(new RectL(w, h),
 out surfaceOffset, out dxgiSurface);
 if ((hr != DXGI.ResultCode.DeviceRemoved &&
 hr != DXGI.ResultCode.DeviceReset) || i > 0)
 {
 break;
 }

 // try to recreate the device resources
 // if the old GPU device was removed
 DiscardDeviceResources();
 CreateDeviceResources();
 sisNative.SetDevice(dxgiD);
 }
 hr.CheckError();

 // the render target object
 var rt = d2dC;

 // create the target Direct2D bitmap for the given DXGI.Surface
 var bpTarget = new D2D.BitmapProperties1(new D2D.PixelFormat(
 DXGI.Format.B8G8R8A8_UNorm, D2D.AlphaMode.Premultiplied),
 (float)btmp.DpiX, (float)btmp.DpiY,
 D2D.BitmapOptions.Target | D2D.BitmapOptions.CannotDraw);

 var targetBmp = D2D.Bitmap1.Create(rt, dxgiSurface, bpTarget);
 dxgiSurface.Dispose();

 // associate the target bitmap with render target
 rt.SetTarget(targetBmp);
 targetBmp.Dispose();

 // start drawing
 rt.BeginDraw();

 // clear the target bitmap

Bitmap for UWP 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 rt.Clear(null);

 // convert C1Bitmap image to Direct2D image
 var d2dBitmap = btmp.ToD2DBitmap1(rt, D2D.BitmapOptions.None);
 surfaceOffset.Offset(marginLT, marginLT);

 // apply the effect
 switch (imageEffect)
 {
 case ImageEffect.Original:
 rt.DrawImage(d2dBitmap, surfaceOffset.ToPoint2F());
 break;
 case ImageEffect.Shadow:
 rt.DrawImage(ApplyShadow(d2dBitmap), surfaceOffset.ToPoint2F());
 break;
 }

 d2dBitmap.Dispose();

 // finish drawing (all drawing commands are executed at that moment)
 rt.EndDraw();

 // detach and actually dispose the target bitmap
 rt.SetTarget(null);

 // complete drawing on SurfaceImageSource
 sisNative.EndDraw();
}

D2D.Effect ApplyShadow(D2D.Bitmap1 bitmap)
{
 shadow.SetInput(0, bitmap);
 shadow.BlurStandardDeviation = 5f;
 affineT.SetInputEffect(0, shadow);
 affineT.TransformMatrix = Matrix3x2.Translation(20f, 20f);
 compst.SetInputEffect(0, affineT);
 compst.SetInput(1, bitmap);
 return compst;
}

private void MainPage_Unloaded(object sender, RoutedEventArgs e)
{
 DiscardDeviceResources();

 btmp.Dispose();
 d2dF.Dispose();
 dwF.Dispose();

 img.Source = null;
 sisNative.Dispose();
 sisNative = null;
}

Bitmap for UWP 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

Bitmap Samples
With the C1Studio installer, you get Bitmap samples that help you understand the implementation of the product. The
C# and VB samples are available at the default installation folder - Documents\ComponentOne
Samples\UWP\C1.UWP.Bitmap.

The C# samples available at the default installation location is as follows:

Sample Description

BitmapSamples This sample shows how to display an animated gif using BitmapImage, use C1Bitmap to crop an
image, use C1Bitmap and vertex shader to distort an image, and to use various transformation,
such as cropping, scaling, rotation, and flipping on a bitmap image.

Direct2DEffects This sample loads an image in C1Bitmap, converts it to Direct2D bitmap, applies various effects and
draws to SurfaceImageSource. When the user clicks the Export button the image is converted to
Direct2D bitmap, then used as the source for a Direct2D effect. The result is imported into another
instance of C1Bitmap, then stored to a file.

The VB samples available at the default installation location is as follows:

Sample Description

BitmapSamples This sample shows how to display an animated gif using BitmapImage, use C1Bitmap to crop an
image, use C1Bitmap and vertex shader to distort an image, and to use various transformation,
such as cropping, scaling, rotation, and flipping on a bitmap image.

Direct2DEffects This sample loads an image in C1Bitmap, converts it to Direct2D bitmap, applies various effects and
draws to SurfaceImageSource. When the user clicks the Export button the image is converted to
Direct2D bitmap, then used as the source for a Direct2D effect. The result is imported into another
instance of C1Bitmap, then stored to a file.

Bitmap for UWP 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Bitmap for UWP
	Help with UWP Edition

	Key Features
	Object Model Summary
	Quick Start
	Features
	Loading and Saving an Image
	Applying Transformations
	Clipping an Image
	Flipping an Image
	Rotating an Image
	Scaling an Image

	Working with Bitmap
	Applying Direct2D Effects

	Bitmap Samples

