

ComponentOne

Excel for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Excel for UWP 2

Getting Started with UWP 2

Help With UWP Edition 2

Key Features 3

Excel for UWP Quick Start 4

Step 1 of 4: Setting up the Project 4

Step 2 of 4: Adding Content to a C1XLBook 4-5

Step 3 of 4: Saving the XLSX File 5-6

Step 4 of 4: Run the Program 6-8

Using Excel for UWP 9

Creating Documents 9-10

Worksheets 10

Rows and Columns 10

Cells 10-11

Styles 11

Excel for UWP Task-Based Help 12

Adding Content to a Workbook 12-14

Formatting Cells 14-17

Adding a Page Break to a Worksheet 17-20

Setting the Calculation Mode for a Workbook 20-23

Creating Subtotals 23-26

Excel for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Excel for UWP
Export your data to Excel with Excel for UWP and for that you don't even need to have Microsoft Excel installed!
Create and load XLS and XLSX files with this easy to use component. Access and modify data in individual sheets as if
they were a simple grid composed of rows, columns and cells.

Getting Started with UWP

Help With UWP Edition
Getting Started

For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with ComponentOne Studio UWP Edition.

Excel for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/

Key Features
The following are some of the main features of Excel for UWP that you may find useful:

Save or load a workbook with one command

Excel for UWP is easy-to-use, allowing you to use a single command to load or save a workbook and
manipulate sheets as if they were grid controls.

Supports CSV, XLS, and XLSX

Excel for UWP works with three file formats: XLS, XLSX (OpenXML format), and CSV (comma separated values).
The OpenXml format allows you to save smaller, compressed files.

Read and write data in individual cells

After loading or creating a C1XLBook, you can access data in individual sheets as if they were a simple grid.
For example:

C#

XLSheet sheet = C1XLBook.Sheets[0];
 sheet[0, 0].Value = DateTime.Now;

Format the data in each cell.

The format associated with each cell is as easy to access as the data stored in the cell. For example:

C#

XLStyle style = new XLStyle(c1XLBook1);
 style.Format = "dd-MM-yyyy";
 style.Font = new Font("Courier New", 14);
 XLSheet sheet = C1XLBook.Sheets[0];
 sheet[0, 0].Value = DateTime.Now;
 sheet[0, 0].Style = style;

Add Cell Formulas

Excel for UWP fully supports cell formulas and binary parsing. The XLCell.Formula property allows you to
specify a formula for the cell.

Grouping and Subtotals

Calculate subtotals for rows and columns. Declare outline level grouping in code to best display totals and
subtotals.

Excel for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Excel for UWP Quick Start
This quick start guide will familiarize you with some of the features of Excel for UWP. In this quick start you will learn
how to add a C1XLBook to the project, add formatted data to the workbook, and save and open the XLS file.

Step 1 of 4: Setting up the Project
In this step you will create a new project and add a reference to the C1.UWP.Excel assembly.

1. Create a new Windows Store project. When the project opens, double-click the MainPage.xaml file to open it.
2. Right-click References in the Solution Explorer and select Add Reference from the list.
3. Browse to find C1.UWP.Excel.dll.
4. Click OK to add the assembly reference to your application.
5. In XAML View, place your cursor between the <Grid> </Grid> tags.
6. Add two standard Button controls and one standard TextBox control to the page.
7. Edit the markup for the first button so that it resembles the following:

Markup

<Button x:Name="HelloButton" Content="Click Hello" />

8. Edit the markup for the second button so that it resembles the following:
Markup

<Button x:Name="SaveButton" Content="Save" />

9. Edit the markup for the TextBox control so that it resembles the following:
Markup

<TextBox
 Name="_tbContent"
 Text="Empty"
 IsReadOnly="True"
 AcceptsReturn="True"
 FontFamily="Courier New"
 Background="White" Margin="465,10,242,722" />

10. Create an event named HelloButton_Click for HelloButton and switch to the code view of MainPage.xaml. This
will also add a HelloButton_Click event to the code.

11. Switch back to Design View and double-click the SaveButton to add a SaveButton_Click event to the code.
12. Add the using (C#) statement to the code at the top of the form so you can use all names within the

C1.Xaml.Excel namespace.
C#

using C1.Xaml.Excel;
using Windows.UI;

Now you can add some content to a C1XLBook.

Step 2 of 4: Adding Content to a C1XLBook
In this step, you will add code to set up your project, and you will edit the HelloButton_Click event.

1. To define the C1XLBook, add the following code directly below the MainPage class:

Excel for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

C1XLBook _book;

2. Add a new C1XLBook and some text to the TextBox control by adding the following code after the
InitializeComponent() method:

C#

_book = new C1XLBook();
_tbContent.Text = "Empty workbook";

3. Add the following to define the RefreshView() method after the MainPage constructor:

C#

void RefreshView()
 {
 }

4. Locate the HelloButton_Click event next. Add the following code to create a new workbook, get the sheet that
was created by default, create some styles for the data, and write some content and format the cells:

C#

// step 1: create a new workbook
 _book = new C1XLBook();

// step 2: get the sheet that was created by default, give it a name
 XLSheet sheet = _book.Sheets[0];
 sheet.Name = "Hello World";

// step 3: create styles for odd and even values
 XLStyle styleOdd = new XLStyle(_book);
 styleOdd.Font = new XLFont("Tahoma", 9, false, true);
 styleOdd.ForeColor = Color.FromArgb(255, 0, 0, 255);
 XLStyle styleEven = new XLStyle(_book);
 styleEven.Font = new XLFont("Tahoma", 9, true, false);
 styleEven.ForeColor = Color.FromArgb(255, 255, 0, 0);

// step 4: write content and format into some cells
 for (int i = 0; i < 100; i++)
 {
 XLCell cell = sheet[i, 0];
 cell.Value = i + 1;
 cell.Style = ((i + 1) % 2 == 0) ? styleEven : styleOdd;
 }
// step 5: allow user to save the file
 _tbContent.Text = "'Hello World' workbook has been created, you can
save it now.";
 RefreshView();

Excel for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 3 of 4: Saving the XLSX File
Add the following code to save the Excel workbook. When you click the SaveButton, you will be able to save the
project you created to any location.

1. Edit the SaveButton_Click event to resemble the following code:

C#

async void SaveButton_Click(object sender, RoutedEventArgs e)
 {

 }

2. Insert the following code into the SaveButton_Click event to handle saving the Excel workbook:

C#

Debug.Assert(_book != null);

var picker = new Windows.Storage.Pickers.FileSavePicker();
picker.SuggestedStartLocation =
Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;
picker.FileTypeChoices.Add("Open XML Excel file", new List < string > ()
{
 ".xlsx"
});
picker.FileTypeChoices.Add("BIFF Excel file", new List < string > ()
{
 ".xls"
});
picker.SuggestedFileName = "New Book";

var file = await picker.PickSaveFileAsync();
if (file != null)
{
 try
 {
 // step 1: save file
 var fileFormat = Path.GetExtension(file.Path).Equals(".xls") ?
FileFormat.OpenXmlTemplate : FileFormat.OpenXml;
 await _book.SaveAsync(file, fileFormat);
 // step 2: user feedback
 _tbContent.Text = string.Format("File has been saved to: {0}.", file.Path);
 RefreshView();
 } catch (Exception x)
 {
 _tbContent.Text = string.Format("EXCEPTION: {0}", x.Message);
 }
}

Excel for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 4 of 4: Run the Program
Press F5 to run the application.

1. Click the Click Hello button to create the Hello Excel file. You should receive a message in the TextBox letting you
know that it's been created:

2. Click the Save button. The Save As screen appears.
3. Enter a file name for your workbook and click Save.
4. Open the book in Excel. It will look similar to the following image.

Excel for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Congratulations! You've completed the Excel for UWP quick start.

Excel for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using Excel for UWP
The following topics explain how to create an XLSX file, as well as describe the main Excel for UWP classes used to
create the components that make up the file, which include worksheets, rows and columns, cells and styles.

Creating Documents
To create a new XLSX file using Excel for UWP, three steps are required:

1. Add a reference to C1UWP.Excel.dll and create a C1XLBook.
2. Add content to the sheets. Each sheet contains cells (XLCell objects) that have a XLCell.Value and a XLCell.Style

property.
3. Save the book to a file using the C1XLBook.SaveAsync method.

The code starts by creating a new workbook, and then getting the XLSheet that is created automatically. The
third step creates the styles that will be applied to even and odd values before content is written and cells are
formatted.

The indexer in the XLSheet object automatically creates cells, if necessary. This makes it easy to fill
worksheets that you create. If you want to find out the sheet dimensions, use the sheet's Rows.Count and
Columns.Count properties.

 The style applied in step three creates a sheet where even numbers are shown in bold red characters and odd
numbers are shown in italic blue.

C#

private void HelloButton_Click(object sender, RoutedEventArgs e)
 {
 // step 1: create a new workbook
 _book = new C1XLBook();

 // step 2: get the sheet that was created by default, give it a name
 XLSheet sheet = _book.Sheets[0];
 sheet.Name = "Hello World";

 // step 3: create styles for odd and even values
 XLStyle styleOdd = new XLStyle(_book);
 styleOdd.Font = new XLFont("Tahoma", 9, false, true);
 styleOdd.ForeColor = Color.FromArgb(255, 0, 0, 255);
 XLStyle styleEven = new XLStyle(_book);
 styleEven.Font = new XLFont("Tahoma", 9, true, false);
 styleEven.ForeColor = Color.FromArgb(255, 255, 0, 0);

 // step 4: write content and format into some cells
 for (int i = 0; i < 100; i++)
 {
 XLCell cell = sheet[i, 0];
 cell.Value = i + 1;
 cell.Style = ((i + 1) % 2 == 0) ? styleEven : styleOdd;
 }
 // step 5: allow user to save the file

Excel for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

 _tbContent.Text = "'Hello World' workbook has been created, you can
save it now.";
 RefreshView();
 }

Worksheets
Worksheets are the individual grids contained in an Excel file. They are represented by XLSheet objects accessible
through the Sheets property in the C1XLBook class. Each sheet has a name and contains a collection of rows and
columns. Individual cells can be accessed using the XLSheet indexer, which takes row and column indices.

The XLSheet.Rows and XLSheet.Columns collections in the XLSheet object extend automatically when you use their
indexers. For example, if you write the following code and the sheet has fewer than 1001 rows, new rows will be
automatically added, and a valid row will be returned. The same applies to XLColumn and XLCell indexers. This is
different from the behavior of most collection indexers in .NET, but it makes it very easy to create and populate
XLSheet objects.

Visual Basic

Dim sheet As XLSheet = book.Sheets(0)
Dim row As XLRow = sheet.Rows(1000)

C#

XLSheet sheet = book.Sheets[0];
XLRow row = sheet.Rows[1000];

Rows and Columns
The XLSheet object contains collections of rows and columns that expose each individual row and column on the
sheet. The exposed XLRow and XLColumn objects allow you to assign the size (column width, row height), visibility,
and style for each row and column on the sheet. If you don't assign any of these values, the sheet's defaults will be
used (see the XLSheet.DefaultRowHeight and XLSheet.DefaultColumnWidth properties).

The default dimensions for XLRow and XLColumn objects are –1, which means use the sheet's default values.

Cells
The XLSheet object also contains cells that can be accessed using an indexer that takes row and column indices. The
cells are represented by XLCell objects that contain the cell value and style.

As with rows and columns, the cell indexer also extends the sheet automatically. For example, write:

Visual Basic

Dim cell As XLCell = sheet(10, 10)

Excel for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

XLCell cell = sheet[10,10];

If the sheet has fewer than 11 rows and 11 columns, rows and columns will be added and a valid XLCell object will be
returned.

Because the sheet expands automatically, this indexer will never return a null reference. If you want to check whether
a particular cell exists on the sheet and you don't want to create the cell inadvertently, use the sheet's XLSheet.GetCell
method instead of the indexer.

XLCell objects have a XLCell.Value property that contains the cell contents. This property is of type object and it may
contain strings, numeric, Boolean, DateTime, or null objects. Other types of objects cannot be saved into Excel files.

XLCell objects also have a XLCell.Style property that defines the appearance of the cell. If the Style property is set to
null, the cell is displayed using the default style. Otherwise, it should be set to an XLStyle object that defines the
appearance of the cell (font, alignment, colors, format, and so on).

Styles
The XLStyle class defines the appearance of a cell, row, or column on a sheet. XLStyle includes properties that specify
style elements such as the font, alignment, colors, and format used to display cell values. Not all style elements need
to be defined in every XLStyle object. For example, if an XLStyle specifies only a format, then the cell is displayed
using the specified format and default settings for the other style elements (font, alignment, and so on).

Excel for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

Excel for UWP Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio. By following the steps outlined
in the Help, you will be able to create projects demonstrating a variety of Excel for UWP features and get a good
sense of what Excel for UWP can do.

Each task-based help topic also assumes that you have created a new Windows Store project and added the
appropriate directives (using C1.Xaml.Excel; for C# and Imports C1.Xaml.Excel for Visual Basic) to the code.

Adding Content to a Workbook
To create a new workbook and add values to the first ten cells, complete the following steps:

In XAML View

1. Right-click References in the Solution Explorer and select Add Reference from the list.

1. Browse to find C1.UWP.Excel.dll.
2. Click OK to add the assembly reference to your application.

2. In XAML View, place your cursor between the <Grid> </Grid> tags.
3. Add two standard Button controls and one standard TextBox control to the page.

1. Edit the markup for the first button so that it resembles the following:

Markup

<Button x:Name="HelloButton" Content="Click Hello" />

2. Edit the markup for the second button so that it resembles the following:

Markup

<Button x:Name="SaveButton" Content="Save" />

3. Edit the markup for the TextBox control so that it resembles the following:

Markup

<TextBox
 Name="_tbContent"
 Text="Empty"
 IsReadOnly="True"
 AcceptsReturn="True"
 FontFamily="Courier New"
 Background="White" Margin="465,10,242,722" />

4. Create an event named HelloButton_Click for HelloButton and switch to the code view of MainPage.xaml. This
will also add a HelloButton_Click event to the code.

5. Switch back to Design View and double-click the SaveButton to add a SaveButton_Click event to the code.
This will open the Code View.

In Code View

1. Add a using statement to the top of the page:

Excel for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

using C1.Xaml.Excel;

2. Add the following code to the MainPage class so that it resembles the following:

C#

public sealed partial class MainPage : Page
 {
 C1XLBook _book;
 }

3. Create a C1XLBook by adding the following code to the InitializeComponent() method:

C#

_book = new C1XLBook();

4. Add the RefreshView() method. You will call this method later in the code:

C#

void RefreshView()
{
}

5. Get the default sheet and name it.
6. Create styles for the odd and even values.
7. Add values to the first ten cells.

C#

// step 1: create a new workbook
 _book = new C1XLBook();

 // step 2: get the sheet that was created by default, give it a name
 XLSheet sheet = _book.Sheets[0];
 sheet.Name = "Hello World";

 // step 3: create styles for odd and even values
 XLStyle styleOdd = new XLStyle(_book);
 styleOdd.Font = new XLFont("Tahoma", 9, false, true);
 styleOdd.ForeColor = Color.FromArgb(255, 0, 0, 255);
 XLStyle styleEven = new XLStyle(_book);
 styleEven.Font = new XLFont("Tahoma", 9, true, false);
 styleEven.ForeColor = Color.FromArgb(255, 255, 0, 0);

 // step 4: write content and format into some cells
 for (int i = 0; i < 100; i++)
 {
 XLCell cell = sheet[i, 0];
 cell.Value = i + 1;
 cell.Style = ((i + 1) % 2 == 0) ? styleEven : styleOdd;

Excel for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

}

8. Save the workbook so that you can open it in Excel.

C#

async void SaveButton_Click(object sender, RoutedEventArgs e)
 {
 Debug.Assert(_book != null);

 var picker = new Windows.Storage.Pickers.FileSavePicker();
 picker.SuggestedStartLocation =
Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;
 picker.FileTypeChoices.Add("Open XML Excel file", new List<string>()
{ ".xlsx" });
 picker.FileTypeChoices.Add("BIFF Excel file", new List<string>() {
".xls" });
 picker.SuggestedFileName = "New Book";

 var file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 try
 {
 // step 1: save file
 var fileFormat = Path.GetExtension(file.Path).Equals(".xls")
? FileFormat.Biff8 : FileFormat.OpenXml;
 await _book.SaveAsync(file, fileFormat);
 // step 2: user feedback
 _tbContent.Text = string.Format("File has been saved to:
{0}.", file.Path);
 RefreshView();
 }
 catch (Exception x)
 {
 _tbContent.Text = string.Format("EXCEPTION: {0}",
x.Message);
 }
 }
 }

Formatting Cells
To format the cells of a book, complete the following steps:

In XAML View

1. Right-click References in the Solution Explorer and select Add Reference from the list.

1. Browse to find C1.UWP.Excel.dll.
2. Click OK to add the assembly reference to your application.

Excel for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. In XAML View, place your cursor between the <Grid> </Grid> tags.

3. Add two standard Button controls and one standard TextBox control to the page.

1. Edit the markup for the first button so that it resembles the following:

Markup

<Button x:Name="HelloButton" Content="Click Hello" />

2. Edit the markup for the second button so that it resembles the following:

Markup

<Button x:Name="SaveButton" Content="Save" />

3. Edit the markup for the TextBox control so that it resembles the following:

Markup

<TextBox
 Name="_tbContent"
 Text="Empty"
 IsReadOnly="True"
 AcceptsReturn="True"
 FontFamily="Courier New"
 Background="White" Margin="465,10,242,722" />

4. Create an event named HelloButton_Click for HelloButton and switch to the code view of MainPage.xaml. This
will also add a HelloButton_Click event to the code.

5. Switch back to Design View and double-click the SaveButton to add a SaveButton_Click event to the code.
This will open the Code View.

In Code View

1. Add a using statement to the top of the page:

C#

using C1.Xaml.Excel;

2. Add the following code to the MainPage class so that it resembles the following:

C#

public sealed partial class MainPage : Page
 {
 C1XLBook _book;
 }

3. Create a C1XLBook by adding the following code to the InitializeComponent() method:

C#

_book = new C1XLBook();

Excel for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Add the RefreshView() method. You will call this method later in the code:

C#

void RefreshView()
 {
 }

5. Get the sheet that was created by default and give it a name.
6. Add some content to the workbook, create a new style and apply the styles to the cells.

C#

private void HelloButton_Click(object sender, RoutedEventArgs e)
 {
 // step 1: create a new workbook
 _book = new C1XLBook();

 // step 2: get the sheet that was created by default, give it a name
 XLSheet sheet = _book.Sheets[0];
 sheet.Name = "Hello World";

 // step 3: set the forecolor and backcolor properties and add some
formatting to the cells.
 XLStyle style1 = new XLStyle(_book);
 style1.ForeColor = Colors.Yellow;
 style1.BackColor = Colors.Blue;
 style1.Format = "$.00";

 // step 4: write content and format into some cells
 int i;
 for (i = 0; i <= 9; i++)
 {
 sheet[i, 0].Value = i + 1;
 sheet[i, 0].Style = style1;
 }

7. Save the workbook.

C#

async void SaveButton_Click(object sender, RoutedEventArgs e)
 {
 Debug.Assert(_book != null);

 var picker = new Windows.Storage.Pickers.FileSavePicker();
 picker.SuggestedStartLocation =
Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;
 picker.FileTypeChoices.Add("Open XML Excel file", new List<string>()
{ ".xlsx" });
 picker.FileTypeChoices.Add("BIFF Excel file", new List<string>() {
".xls" });
 picker.SuggestedFileName = "New Book";

Excel for UWP 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

 var file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 try
 {
 // step 1: save file
 var fileFormat = Path.GetExtension(file.Path).Equals(".xls")
? FileFormat.Biff8 : FileFormat.OpenXml;
 await _book.SaveAsync(file, fileFormat);
 // step 2: user feedback
 _tbContent.Text = string.Format("File has been saved to:
{0}.", file.Path);
 RefreshView();
 }
 catch (Exception x)
 {
 _tbContent.Text = string.Format("EXCEPTION: {0}",
x.Message);
 }
 }

 }

When you open the file you've saved, it should resemble the following image:

Adding a Page Break to a Worksheet
You can easily add page breaks in rows and columns for files in OpenXML (.xlsx) format using
the XLColumn.PageBreak and XLRow.PageBreak properties.

In XAML View

1. Right-click References in the Solution Explorer and select Add Reference from the list.

1. Browse to find C1.UWPl.Excel.dll.
2. Click OK to add the assembly reference to your application.

Excel for UWP 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. In XAML View, place your cursor between the <Grid> </Grid> tags.

3. Add two standard Button controls and one standard TextBox control to the page.

1. Edit the markup for the first button so that it resembles the following:

Markup

<Button x:Name="HelloButton" Content="Click Hello" />

2. Edit the markup for the second button so that it resembles the following:

Markup

<Button x:Name="SaveButton" Content="Save" />

3. Edit the markup for the TextBox control so that it resembles the following:

Markup

<TextBox
 Name="_tbContent"
 Text="Empty"
 IsReadOnly="True"
 AcceptsReturn="True"
 FontFamily="Courier New"
 Background="White" Margin="465,10,242,722" />

4. Create an event named HelloButton_Click for HelloButton and switch to the code view of MainPage.xaml. This
will also add a HelloButton_Click event to the code.

5. Switch back to Design View and double-click the SaveButton to add a SaveButton_Click event to the code.
This will open the Code View.

In Code View

1. Add a using statement to the top of the page:

C#

using C1.Xaml.Excel;

2. Add the following code to the MainPage class so that it resembles the following:

C#

public sealed partial class MainPage : Page
 {
 C1XLBook _book;
 }

3. Create a C1XLBook by adding the following code to the InitializeComponent() method:

C#

_book = new C1XLBook();

Excel for UWP 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/ExcelUWP_API/html/832FC52A.htm

4. Add the RefreshView() method. You will call this method later in the code:

C#

void RefreshView()
 {
 }

5. Add some text values and page breaks.

C#

private void HelloButton_Click(object sender, RoutedEventArgs e)
 {
 // step 1: create a new workbook
 _book = new C1XLBook();

 // add text values and page breaks
 _book.Sheets[0][2, 3].Value = "page1";
 _book.Sheets[0].Rows[2].PageBreak = true;
 _book.Sheets[0][0, 1].Value = "test1";
 _book.Sheets[0][0, 2].Value = "test2";
 _book.Sheets[0].Columns[1].PageBreak = true;
 _book.Sheets[0][3, 3].Value = "page2";

 // step 2: allow user to save the file
 _tbContent.Text = "'Hello World' workbook has been created, you can
save it now.";
 RefreshView();
 }

6. Save the workbook.

C#

async void SaveButton_Click(object sender, RoutedEventArgs e)
 {
 Debug.Assert(_book != null);

 var picker = new Windows.Storage.Pickers.FileSavePicker();
 picker.SuggestedStartLocation =
Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;
 picker.FileTypeChoices.Add("Open XML Excel file", new List<string>()
{ ".xlsx" });
 picker.FileTypeChoices.Add("BIFF Excel file", new List<string>() {
".xls" });
 picker.SuggestedFileName = "New Book";

 var file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 try
 {

Excel for UWP 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // step 1: save file
 var fileFormat = Path.GetExtension(file.Path).Equals(".xls")
? FileFormat.Biff8 : FileFormat.OpenXml;
 await _book.SaveAsync(file, fileFormat);
 // step 2: user feedback
 _tbContent.Text = string.Format("File has been saved to:
{0}.", file.Path);
 RefreshView();
 }
 catch (Exception x)
 {
 _tbContent.Text = string.Format("EXCEPTION: {0}",
x.Message);
 }
 }
 }

When you run your application, you'll be able to save the file you create. In Excel, select the Page Layout tab, and
select the Print checkbox under Gridlines. The worksheet should look similar to the following:

Setting the Calculation Mode for a Workbook
The C1XLBook.CalculationMode property specifies the calculation mode for all formulas in the workbook.
The CalculationMode enumeration provides three options: Manual (you manually perform the calculation), Auto (the
calculation is automatically performed), or AutoNoTable (the calculation is performed except on tables).

In XAML View

1. Right-click References in the Solution Explorer and select Add Reference from the list.

1. Browse to find C1.UWP.Excel.dll.

2. Click OK to add the assembly reference to your application.

2. In XAML View, place your cursor between the <Grid> </Grid> tags.

3. Add two standard Button controls and one standard TextBox control to the page.

1. Edit the markup for the first button so that it resembles the following:

Markup

<Button x:Name="HelloButton" Content="Click Hello" />

2. Edit the markup for the second button so that it resembles the following:

Excel for UWP 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

Markup

<Button x:Name="SaveButton" Content="Save" />

3. Edit the markup for the TextBox control so that it resembles the following:

Markup

<TextBox
 Name="_tbContent"
 Text="Empty"
 IsReadOnly="True"
 AcceptsReturn="True"
 FontFamily="Courier New"
 Background="White" Margin="465,10,242,722" />

4. Create an event named HelloButton_Click for HelloButton and switch to the code view of MainPage.xaml. This
will also add a HelloButton_Click event to the code.

5. Switch back to Design View and double-click the SaveButton to add a SaveButton_Click event to the code.
This will open the Code View.

In Code View

To set the calculation mode, follow these steps:

1. Add a using statement to the top of the page:

C#

using C1.Xaml.Excel;

2. Add the following code to the MainPage class so that it resembles the following:

C#

public sealed partial class MainPage : Page
 {
 C1XLBook _book;
 }

3. Create a C1XLBook by adding the following code to the InitializeComponent() method:

C#

_book = new C1XLBook();

4. Add the RefreshView() method. You will call this method later in the code:

C#

void RefreshView()
 {
 }

5. Add a simple formula to perform a calculation.

Excel for UWP 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

private void HelloButton_Click(object sender, RoutedEventArgs e)
 {
 // step 1: create a new workbook
 _book = new C1XLBook();

 // step 2: get the default sheet and give it a name
 XLSheet sheet = _book.Sheets[0];

 // step 3: add a simple formula
 sheet[7, 0].Value = "Formula: 5!";
 sheet[7, 1].Value = 122;
 sheet[7, 1].Formula = "1*2*3*4*5";
 _book.CalculationMode = CalculationMode.Auto;

 // step 4: allow user to save the file
 _tbContent.Text = "'Hello World' workbook has been created, you can
save it now.";
 RefreshView();
 }[ES5]
6. Save the workbook.
· C#
async void SaveButton_Click(object sender, RoutedEventArgs e)
 {
 Debug.Assert(_book != null);

 var picker = new Windows.Storage.Pickers.FileSavePicker();
 picker.SuggestedStartLocation =
Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;
 picker.FileTypeChoices.Add("Open XML Excel file", new List<string>()
{ ".xlsx" });
 picker.FileTypeChoices.Add("BIFF Excel file", new List<string>() {
".xls" });
 picker.SuggestedFileName = "New Book";

 var file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 try
 {
 // step 1: save file
 var fileFormat = Path.GetExtension(file.Path).Equals(".xls")
? FileFormat.Biff8 : FileFormat.OpenXml;
 await _book.SaveAsync(file, fileFormat);
 // step 2: user feedback
 _tbContent.Text = string.Format("File has been saved to:
{0}.", file.Path);
 RefreshView();
 }
 catch (Exception x)

Excel for UWP 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 _tbContent.Text = string.Format("EXCEPTION: {0}",
x.Message);
 }
 }
 }

Run the project and save and open the Excel file. Notice that the value for the cell in (7,1) is 120, or the total of
1*2*3*4*5, not 122, since we set the CalculationMode to Auto.

Creating Subtotals
The following code provides an example of how to format the cells to get a subtotal or your data.

In XAML View

Complete the following steps to create the XAML View for this topic:

1. Right-click References in the Solution Explorer and select Add Reference from the list.

1. Browse to find C1.UWP.Excel.dll.
2. Click OK to add the assembly reference to your application.

2. In XAML View, place your cursor between the <Grid> </Grid> tags.
3. Add two standard Button controls and one standard TextBox control to the page.

1. Edit the markup for the first button so that it resembles the following:

Markup

<Button x:Name="HelloButton" Content="Click Hello" />

2. Edit the markup for the second button so that it resembles the following:

Markup

<Button x:Name="SaveButton" Content="Save" />

3. Edit the markup for the TextBox control so that it resembles the following:

Markup

<TextBox
 Name="_tbContent"
 Text="Empty"
 IsReadOnly="True"
 AcceptsReturn="True"
 FontFamily="Courier New"
 Background="White" Margin="465,10,242,722" />

4. Create an event named HelloButton_Click for HelloButton and switch to the code view of MainPage.xaml. This
will also add a HelloButton_Click event to the code.

5. Switch back to Design View and double-click the SaveButton to add a SaveButton_Click event to the code.
This will open the Code View.

Excel for UWP 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

In Code View

Complete the following steps to create the Code View for this topic:

1. Add a using statement to the top of the page:

C#

using C1.Xaml.Excel;

2. Add the following code to the MainPage class so that it resembles the following:

C#

public sealed partial class MainPage : Page
 {
 C1XLBook _book;
 }

3. Create a C1XLBook by adding the following code to the InitializeComponent() method:

C#

_book = new C1XLBook();

4. Add the RefreshView() method. You will call this method later in the code:

C#

void RefreshView()
 {
 }

5. Add code to format the cells.

C#

private void HelloButton_Click(object sender, RoutedEventArgs e)
 {
 XLSheet sheet = _book.Sheets[0];
 // create a style
 XLStyle totalStyle = new XLStyle(_book);
 totalStyle.Font = new XLFont("Arial", 12, true, false);
 // create an outline and apply styles
 sheet[2, 1].Value = "Number";
 sheet[2, 2].Value = "ID";
 sheet[3, 1].Value = 12;
 sheet[3, 2].Value = 17;
 sheet.Rows[3].OutlineLevel = 2;
 sheet.Rows[3].Visible = false;
 sheet[4, 1].Value = 12;
 sheet[4, 2].Value = 14;
 sheet.Rows[4].OutlineLevel = 2;
 sheet.Rows[4].Visible = false;
 sheet[5, 1].Value = "12 Total";

Excel for UWP 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 sheet[5, 1].Style = totalStyle;
 sheet[5, 2].Value = 31;
 sheet[5, 2].Formula = "SUBTOTAL(9,C4:C5)";
 sheet.Rows[5].OutlineLevel = 1;
 sheet[6, 1].Value = 34;
 sheet[6, 2].Value = 109;
 sheet.Rows[6].OutlineLevel = 2;
 sheet[7, 1].Value = "34 Total";
 sheet[7, 1].Style = totalStyle;
 sheet[7, 2].Value = 109;
 sheet[7, 2].Formula = "SUBTOTAL(9,C7:C7)";
 sheet.Rows[7].OutlineLevel = 1;
 sheet[8, 1].Value = "Grand Total";
 sheet[8, 1].Style = totalStyle;
 sheet[8, 2].Value = 140;
 sheet[8, 2].Formula = "SUBTOTAL(9,C4:C7)";
 sheet.Rows[8].OutlineLevel = 0;

 // allow user to save the file
 _tbContent.Text = "'Hello World' workbook has been created, you can
save it now.";
 RefreshView();
 }

6. Save the workbook.

C#

async void SaveButton_Click(object sender, RoutedEventArgs e)
 {
 Debug.Assert(_book != null);

 var picker = new Windows.Storage.Pickers.FileSavePicker();
 picker.SuggestedStartLocation =
Windows.Storage.Pickers.PickerLocationId.DocumentsLibrary;
 picker.FileTypeChoices.Add("Open XML Excel file", new List<string>
() { ".xlsx" });
 picker.FileTypeChoices.Add("BIFF Excel file", new List<string>() {
".xls" });
 picker.SuggestedFileName = "New Book";

 var file = await picker.PickSaveFileAsync();
 if (file != null)
 {
 try
 {
 // step 1: save file
 var fileFormat =
Path.GetExtension(file.Path).Equals(".xls") ? FileFormat.Biff8 :
FileFormat.OpenXml;
 await _book.SaveAsync(file, fileFormat);
 // step 2: user feedback

Excel for UWP 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

 _tbContent.Text = string.Format("File has been saved to:
{0}.", file.Path);
 RefreshView();
 }
 catch (Exception x)
 {
 _tbContent.Text = string.Format("EXCEPTION: {0}",
x.Message);
 }
 }
 }

7. Run the program. Save and open the file. The spreadsheet will look similar to the following:

The SUBTOTAL formulas get the sum of the specified rows.

Excel for UWP 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Excel for UWP
	Getting Started with UWP
	Help With UWP Edition

	Key Features
	Excel for UWP Quick Start
	Step 1 of 4: Setting up the Project
	Step 2 of 4: Adding Content to a C1XLBook
	Step 3 of 4: Saving the XLSX File
	Step 4 of 4: Run the Program

	Using Excel for UWP
	Creating Documents
	Worksheets
	Rows and Columns
	Cells
	Styles

	Excel for UWP Task-Based Help
	Adding Content to a Workbook
	Formatting Cells
	Adding a Page Break to a Worksheet
	Setting the Calculation Mode for a Workbook
	Creating Subtotals

