
ComponentOne

Extended Library for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Extended Library for UWP 3

Book for UWP 3

Getting Started 3

Help with UWP Edition 3

Book for UWP Key Features 3-4

Book Quick Reference 4

Book for UWP Quick Start 4

Step 1 of 4: Creating the Book Application 4-5

Step 2 of 4: Adding Content to the Book Control 5-9

Step 3 of 4: Adding Files to the Application 9-11

Step 4 of 4: Running the Book Application 11-12

Working with Book for UWP 12-13

Book Zones 13-15

Page Fold Size 15-16

Page Fold Visibility 16-17

Page Turning Options 17

First Page Display 17-18

Book Navigation 18-19

Book for UWP Task-Based Help 19

Creating a Book 19-20

Adding Items to a Book 20-21

Clearing Items in a Book 21-22

Displaying the First Page on the Right 22

Setting the Current Page 22-23

Navigating the Book with Code 23-29

ColorPicker for UWP 29

Color Picker Key Features 29-31

Visual Elements 31-33

ColorPicker Quick Reference 33-34

Quick Start 34

Step 1: Setting Up the Application 34-35

Step 2: Adding C1ColorPicker Controls 35-36

Step 3: Adding Code to the Application 36-38

Step 4: Running the Application 38-40

Extended Library for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Features 41

Setting the Palette 41-42

Customizing the Palette 42-44

Implementing Background Color 44-45

Changing Drop-Down Window Direction 45-46

Hiding Recent Colors Tab in Basic Mode 46-47

Extended Library for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

Extended Library for UWP
The extended library consists of the following controls:

Book for UWP

Book for UWP allows you to present UI elements as the pages in a real book or magazine. A page-turning
book control for innovative navigation, the control provides an interactive and unique way to visualize items
and turn pages with gestures.

ColorPicker for UWP

ColorPicker for UWP provides a rich and interactive color selection interface. The control enables you to select
colors from professionally-designed palettes and build custom palette based on your selection. You can work
with the Basic color palette with standard color options and the Advanced color palette to customize your
selection.

Book for UWP
Present information using a familiar book metaphor with Book for UWP, a page-turning book control for innovative
navigation. With Book for UWP you can present UIElement objects as if they were pages in a regular paper book.
You can see two elements at a time, turn pages with gestures, and more with Book for UWP.

Getting Started

Help with UWP Edition
Getting Started

For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with ComponentOne Studio UWP Edition.

Book for UWP Key Features
Book for UWP allows you to create customized, rich applications. Make the most of Book for UWP by taking
advantage of the following key features:

Familiar Book Metaphor

C1Book enables you to present information innovatively using a familiar mental model – that of a book. But
Book for UWP is not a typical static book, it's dynamic and interactive.

Real Book-like Visuals

C1Book enables you to customize the look and feel of the book pages; for example, show page folds. It not
only looks like a book, but can be interacted with like a book.

Flexible Data Binding

C1Book is an ItemsControl, so you can bind it to any data source. Each item in the data source can be a
UIElement or a generic object that gets converted into a UIElement using templates.

Extended Library for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/

Gesture-based Navigation

C1Book allows users to navigate with gestures. Use tap, swipe, and slide gestures to turn pages.

Book Quick Reference
This topic is dedicated to providing a quick overview of the XAML used to create a C1Book control with five items and
its current page set to 3 (page 4, since this is on a zero-based index). For more information, see the Book for UWP
Task-Based Help section.

Markup

<Extended:C1Book x:Name="c1book1" Height="300" Width="450" CurrentPage="3">
<TextBlock Text="Hello World! 1"/>
<TextBlock Text="Hello World! 2"/>
<TextBlock Text="Hello World! 3"/>
<TextBlock Text="Hello World! 4"/>
<TextBlock Text="Hello World! 5"/>
</Extended:C1Book>

Book for UWP Quick Start
The following quick start guide is intended to get you up and running with Book for UWP. In this quick start you'll
create a new project, add a C1Book control to your application, and customize the appearance and behavior of the
control.

Step 1 of 4: Creating the Book Application
In this step you'll create a new Universal Windows Application in Visual Studio. When you add a C1Book control to
your application, you'll have a complete, functional book-like interface to which you can add images, controls, and
other elements. To set up your project and add C1Book controls to your application, complete the following steps:

1. In Visual Studio select File | New | Project.
2. In the New Project dialog box, expand a language in the left pane

1. Under the language, select Windows Store.
2. In the templates list, select Blank App (XAML).
3. Enter a Name and click OK to create your project.

3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and </Grid> tags, and click
once.

4. Navigate to the Toolbox and double-click the C1Book icon to add the control to the grid. This will add the
reference and XAML namespace automatically. The XAML markup resembles the following:

Markup

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Extended:C1Book />
</Grid>

5. Click once on the C1Book control in design view, navigate to the Properties window and set the following

Extended Library for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

properties:

Set Name to "book" to give the control a name so it is accessible in code.
Set Width to "450" and Height to "300".
Set IsFirstPageOnTheRight to "true."

The XAML will appear similar to the following:

Markup

<Grid>
 <Extended:C1Book x:Name="book" Height="450" Width="600">
 </Extended: C1Book>
</Grid>

You've successfully set up your application's user interface, but C1Book control currently contains no content. In the
next step you'll add content to the C1Book control, and then you'll add code to your application to add functionality
to the control.

Step 2 of 4: Adding Content to the Book Control
In this step you'll add content to the C1Book control in design-time, XAML markup, and code to create a virtual book
with several pages that can be turned. To customize your project and add content to the C1Book control in your
application, complete the following steps:

1. Edit the markup so that it resembles the following:

Markup

<Border Grid.Row="1">
 <Grid>
 <Extended:C1Book x:Name="book" Height="450" Width="600">
 </Extended:C1Book>
 </Grid>
</Border>

2. Within the <Extended: C1Book> </Extended: C1Book> tags, add the following XAML markup. This will add
several templates to the markup:

Markup

<Extended:C1Book.LeftPageTemplate>
 <ControlTemplate TargetType="ContentControl">
 <Border Background="WhiteSmoke" BorderBrush="WhiteSmoke"
BorderThickness="10 10 0 10">
 <ContentPresenter Content="{TemplateBinding
Content}" ContentTemplate="{TemplateBinding ContentTemplate}" Margin="
{TemplateBinding Padding}" />
 </Border>
 </ControlTemplate>
 </Extended:C1Book.LeftPageTemplate>
 <Extended:C1Book.RightPageTemplate>
 <ControlTemplate TargetType="ContentControl">

Extended Library for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Border Background="WhiteSmoke" BorderBrush="WhiteSmoke"
BorderThickness="10 10 0 10">
 <ContentPresenter Content="{TemplateBinding
Content}" ContentTemplate="{TemplateBinding ContentTemplate}" Margin="
{TemplateBinding Padding}" />
 </Border>
 </ControlTemplate>
 </Extended:C1Book.RightPageTemplate>
 <Extended:C1Book.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.Background>
 <LinearGradientBrush EndPoint="1,1"
StartPoint="0,0">
 <GradientStop Color="#FFE2E8EB"
Offset="0.2"/>
 <GradientStop Color="#FFEEF4F7"
Offset="0.3"/>
 <GradientStop Color="#FFE2E8EB"
Offset="0.4"/>
 </LinearGradientBrush>
 </Grid.Background>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*"/>
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Image Source="{Binding Path=CoverUri}"
Stretch="Uniform" HorizontalAlignment="Center" VerticalAlignment="Center"
Grid.Row="1"/>
 <TextBlock Text="{Binding Path=Title}"
TextWrapping="Wrap" TextAlignment="Left" FontSize="11" FontWeight="Bold"
Margin="10,7,10,10" Foreground="#FF22445F"/>
 <Grid HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Grid.Row="2" Grid.RowSpan="1" Margin="10,7,10,10">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Text="{Binding Path=Price}" TextWrapping="NoWrap"
Grid.ColumnSpan="1" Grid.Row="1" Grid.Column="1" FontSize="11"
Foreground="#FF086C8E" FontWeight="Bold"/>
 <TextBlock HorizontalAlignment="Stretch"
VerticalAlignment="Stretch" Text="{Binding Path=Id}" Grid.ColumnSpan="1"
Grid.Column="1" TextWrapping="NoWrap" FontSize="11" Foreground="#FF383838"/>
 <TextBlock Text="Book Code:"

Extended Library for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

TextWrapping="NoWrap" FontSize="11" Foreground="#FF383838"/>
 <TextBlock Text="Price:" TextWrapping="NoWrap"
Grid.Row="1" Margin="0,4,0,2" FontSize="11" Foreground="#FF383838"/>
 </Grid>
 </Grid>
 </DataTemplate>
 </Extended:C1Book.ItemTemplate>

3. In Code view, add the following import statements to the top of the page:

C#

using C1.Xaml.Extended;

4. Add the following code just after the page's constructor. This code will allow you to call data from a separate
code file:

C#

InitDataSource();
 }

 private void InitDataSource()
 {
 // load book descriptions from xml
 string peopleXMLPath =
Path.Combine(Package.Current.InstalledLocation.Path, "Amazon.xml");
 XDocument doc = XDocument.Load(peopleXMLPath);

 //XDocument doc = XDocument.Load(@"..\..\..\Amazon.xml");
 var books = from reader in doc.Descendants("book")
 select new AmazonBookDescription
 {
 Title = reader.Attribute("title").Value,
 CoverUri = reader.Attribute("coverUri").Value,
 Id = reader.Attribute("id").Value,
 Price = reader.Attribute("price").Value,
 StockAmount =
int.Parse(reader.Attribute("stockAmount").Value)
 };

 // set the book's item source
 book.ItemsSource = books;
 }
 #region Object Model

 public Orientation Orientation
 {
 get
 {
 return book.Orientation;
 }
 set

Extended Library for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 book.Orientation = value;
 }
 }

 public bool IsFirstPageOnTheRight
 {
 get
 {
 return book.IsFirstPageOnTheRight;
 }
 set
 {
 book.IsFirstPageOnTheRight = value;
 }
 }

 public PageFoldVisibility ShowPageFold
 {
 get
 {
 return book.ShowPageFold;
 }
 set
 {
 book.ShowPageFold = value;
 }
 }

 public PageFoldAction PageFoldAction
 {
 get
 {
 return book.PageFoldAction;
 }
 set
 {
 book.PageFoldAction = value;
 }
 }

 public double FoldSize
 {
 get
 {
 return book.FoldSize;
 }
 set
 {
 book.FoldSize = value;
 }

Extended Library for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }

 public int CurrentPage
 {
 get
 {
 return book.CurrentPage;
 }
 set
 {
 book.CurrentPage = value;
 }
 }

 #endregion

In this step you added templates to the C1Book control and added code to call the content from a separate file. In
the next step you'll add files to the application.

Step 3 of 4: Adding Files to the Application
You've added templates and some code to the C1Book control. In this step, you'll add files to the application. These
content files are the ones that the code calls in order to display the data.

1. Right-click your project name and select Add | New Item from the menu.
2. In the Add New Item window, select XML File. Name the file Amazon.xml. The file should open automatically.
3. Add the following markup to the Amazon.xml file:

Markup

<books>
 <book id="0672328917" coverUri="http://www.coverbrowser.com/image/bestsellers-
2007/1943-1.jpg" price="$49.99" title="Windows Presentation Foundation Unleashed
(WPF) (Unleashed)" stockAmount="1" />
 <!--
 <book id="073562528X"
coverUri="http://borntolearn1.mslearn.net/images/2009/06/9780735625730f.jpg"
price="$34.99" title="Introducing Microsoft Silverlight 3.0" stockAmount="200"
/>
 <book id="0596510373" coverUri="http://ecx.images-
amazon.com/images/I/51DF0boY5fL.jpg" price="$49.99" title="Programming WPF"
stockAmount="30" />
 -->
 <book id="0596527438" coverUri="http://www.coverbrowser.com/image/oreilly-
books/97-1.jpg" price="$49.99" title="Programming C# 3.0 (Programming)"
stockAmount="5" />
 <book id="0596519982" coverUri="http://ecx.images-
amazon.com/images/I/51U9eZeXhuL._SL500_.jpg" price="$34.99" title="Essential
Silverlight 2 Up-to-Date (Up-To-Date)" stockAmount="8" />
 <book id="1590599594" coverUri="http://ecx.images-
amazon.com/images/I/51DedRUoZGL.jpg" price="$44.99" title="Beginning Web

Extended Library for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

Development, Silverlight, and ASP.NET AJAX: From Novice to Professional
(Beginning from Novice to Professional)" stockAmount="178" />
 <book id="059651509X" coverUri="http://www.coverbrowser.com/image/oreilly-
books/30-1.jpg" price="$44.99" title="Painting the Web" stockAmount="1" />
 <book id="0672330075" coverUri="http://vig-
fp.pearsoned.co.uk/bigcovers/0672330075.jpg" price="$39.99" title="Silverlight
1.0 Unleashed" stockAmount="1" />
 <book id="0672329689" coverUri="http://images.pearsoned-
ema.com/jpeg/large/9780672329685.jpg" price="$34.99" title="Creating Vista
Gadgets: Using HTML, CSS and JavaScript with Examples in RSS, Ajax, ActiveX
(COM) and Silverlight" stockAmount="1" />
 <book id="1590599764" coverUri="http://knowfree.net/wp-
content/uploads/2008/05/159059976401l-250x299.jpg" price="$39.99"
title="Foundation Expression Blend 2: Building Applications in WPF and
Silverlight (Foundation)" stockAmount="13" />
 <!--
 <book id="1590599497" coverUri="http://i39.tinypic.com/dqhnoi.jpg"
price="$44.99" title="Pro Silverlight 2 in C# 2008 (Windows.Net)"
stockAmount="1" />
 <book id="159059939X"
coverUri="http://www.sql163.com/UploadFile/Book_Image/2009-
3/Sql163_2009329192012.jpg" price="$14.99" title="Silverlight and ASP.NET
Revealed" stockAmount="1" />
 -->
</books>

4. Right-click your project name again and select Add | New Item from the list. When the Add New Item
window opens, choose Code File and name it AmazonBookDescription.cs.

5. The new code file should open automatically. Add the following code to the file:

C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Input;

namespace BookTest
{
 public class AmazonBookDescription
 {
 public string Title { get; set; }
 public string CoverUri { get; set; }
 public string Id { get; set; }
 public string Price { get; set; }
 public int StockAmount { get; set; }
 }
}

Extended Library for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

In this step, you added two files to your application. In the next step, you will run your application.

Step 4 of 4: Running the Book Application
Now that you've created an application the only thing left to do is run your application. To run your application and
observe Book for UWP's run-time behavior, complete the following steps:

1. From the Project menu, select Run Project to view how your application will appear at run time.

The application will appear similar to the following:

You set the C1Book.IsFirstPageOnTheRight property so that only one page is initially visible. Notice that when
you hover over the lower or upper-right corner of the C1Book control the page folds back slightly to prompt
you to turn the page; see Book Zones for more information.

2. Tap the upper-right corner of the page and notice that the page turns and the second and third pages are

Extended Library for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

visible:

Congratulations!

You've completed the Book for UWP quick start and created a simple application, added and customized a Book for
UWP control, and viewed some of the run-time capabilities of the control.

Working with Book for UWP
Book for UWP includes the C1Book control, a simple book control that acts as a container, allowing you to add
controls, images, and more in a familiar book format. When you add the C1Book control to a XAML window, it exists
as a container, similar to a panel, that can be customized and include added content.

The control's interface looks similar to the following image:

Extended Library for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Book Zones
The C1Book control includes several zones. These zones let you customize what happens when users interact with
various sections of the control. You can use the C1Book.CurrentZone property to get the user's current zone and you
can use the C1Book.CurrentZoneChanged event to customize what happens when users move to a different zone.

There are six separate zones in the C1Book control. For an illustration of each zone, note the mouse's position in each
of the images in the following table:

Zone Description Example

Out Specifies the zone
outside the borders
of the book.

Extended Library for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

BottomLeft Specifies bottom
left fold zone.

TopLeft Specifies top left
fold zone.

Center Specifies the center
of the book (no fold
zone).

Extended Library for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

TopRight Specifies top right
fold zone.

BottomRight Specifies bottom
right fold zone.

Page Fold Size
One way to customize the appearance of the book as users flip pages is by setting the size of the page fold using
the C1Book.FoldSize property. Page folds appear when you hover the mouse over certain book zones, which serves as
a cue that a page can be turned.

When you set the C1Book.FoldSize property, you will be setting the size of the page fold for all the pages – this
includes the right top and bottom folds and the left top and bottom folds. For example, when C1Book.FoldSize is set
to 40, all the page folds will appear similar to the following image:

Extended Library for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

If set to a higher number, the folds will appear more prominent. For example, when C1Book.FoldSize is set to 80, all
the page folds will appear similar to the following image:

Page Fold Visibility
C1Book allows you to set the page fold visibility. By default, users will see a page fold when their mouse is over certain
book zones. If you choose to, you can change the page fold visibility. You can set the C1Book.ShowPageFold property
to any of the values from PageFoldVisibility to determine how users interact with the C1Book control:

Extended Library for UWP 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Value Description

OnMouseOver

The fold will be visible when the user drags the mouse over the
edge of the page. This is the default setting.

Never The fold will not be visible.

Always The fold will always be visible.

Page Turning Options
When users tap once on a page fold the book turns the current page to the previous or next page. This is the default
behavior of C1Book. However, you can customize how pages turn by using the C1Book.PageFoldAction property. For
example you can set C1Book.PageFoldAction so that users must double-tap on the page fold to turn the page, or
you can prevent page turning on mouse click altogether, requiring that users perform a slide operation on the page
fold to turn a page.

You can set the C1Book.PageFoldAction property to any of the following values from PageFoldAction to determine
how users interact with the C1Book control:

 Value Description

TurnPageOnClick Turn the page when the user clicks the page fold.

TurnPageOnDoubleClick Turn the page when the user double clicks the page fold.

None Turn page when user drags the page fold across the book.

First Page Display
By default, the first page in the C1Book control is displayed on the left hand side. This makes it appear as if the book
is open:

Extended Library for UWP 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can also change the display of the first page to appear on the right by setting the C1Book.IsFirstPageOnTheRight
property to True. When the first page is set to display on the right side, it will appear similar to a cover, as if the book
is closed:

Book Navigation
At run time users can navigate through the C1Book control using gestures. Users can tap on one of the book zones or
perform a slide operation to turn the page. The C1Book control includes navigation-related methods, properties, and
events to make it easier for you to determine what page a user is currently viewing, and to set the application's
actions as users navigate through a book.

Extended Library for UWP 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1Book.CurrentPage: Gets or sets the page that is currently displayed at run time.

Note: When you turn a page, the page displayed on the left of the two-page spread will be
the C1Book.CurrentPage. Page numbering begins with 0 and page 0 is always displayed on the left. So
if C1Book.IsFirstPageOnTheRight property is set to True, the first initial page of the book displayed on the
right side will be page 1 with a hidden page 0 on the left side.

C1Book.TurnPage: This method turns book pages forward or back one page. This method can be used to
change the current page at run time.

C1Book.CurrentPageChanged: This event will specify actions that happen when the current page is changed.

C1Book.DragPageStarted and C1Book.DragPageFinished: These events specify actions to take when the user
turns the page using a slide operation.

Book for UWP Task-Based Help
The following task-based help topics assume that you are familiar with Visual Studio and know how to use
the C1Book control in general. If you are unfamiliar with the Book for UWP product, please see the Book for UWP
Quick Start first.

Each topic in this section provides a solution for specific tasks using the Book for UWP product. Most task-based
help topics also assume that you have created a new blank Windows Store App and added the appropriate references
and a C1Book control to the project – for information about creating the control, see Creating a Book.

Creating a Book
You can easily create a C1Book control at design time in XAML and in Code.

If you create a C1Book control as in the following steps, it will appear as an empty container. You will need to
add items to the control for it to appear as a book at run time. For an example, see Adding Items to a Book.

In XAML

To create a C1Book control using XAML markup, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the context
menu choose Add Reference, select UWP Edition, and click OK.

2. Place your cursor between the <Grid> and </Grid> tags. Double-click the C1Book control in the Visual Studio
Toolbox to add it to your application. This will also add the following namespace to the <Page> tag:

Markup

xmlns:Extended="using:C1.Xaml.Extended"

3. Add the following to the <Extended: C1Book> tag:

Name="c1book1"
Height="300"
Width="450"

This markup will create an empty C1Book control named "c1book1" and set the control's size.

In Code

Extended Library for UWP 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

To create a C1Book control in code, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the context
menu choose Add Reference, select UWP Edition, and click OK.

2. In the MainPage.xaml window, place your cursor within the <Grid> tag and add the following:

Name="Grid1"

3. Right-click within the MainPage.xaml window and select View Code to switch to Code view.
4. Add the following import statements to the top of the page:

Visual Basic

Imports C1.Xaml.Extended

C#

using C1.Xaml.Extended;

5. Add code to the page's constructor to create the C1Book control. It will look similar to the following:

Visual Basic

Public Sub New()
 InitializeComponent()
 Dim c1book1 as New C1Book
 c1book1.Height = 300
 c1book1.Width = 450
 Grid1.Children.Add(c1book1)
End Sub

C#

public MainPage()
{
 this.InitializeComponent();
 C1Book c1book1 = new C1Book();
 c1book1.Height = 300;
 c1book1.Width = 450;
 Grid1.Children.Add(c1book1);
}

This code will create an empty C1Book control named "c1book1", set the control's size, and add the control to
the page.

What You've Accomplished

You've created a C1Book control. When you create a C1Book control as in the above steps, it will appear as an
empty container. You will need to add items to the control for it to appear as a book at run time. For an example,
see Adding Items to a Book.

Adding Items to a Book
You can add any sort of arbitrary content to a C1Book control. This includes text, images, layout panels, and other
standard and 3rd-party controls. In this example, you'll add a TextBlock control to a C1Book control, but you can

Extended Library for UWP 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

customize the steps to add other types of content instead.

In XAML

For example, to add a TextBlock control to the book add <TextBlock Text="Hello World!"/> within the
<Extended:C1Book> tag so that it appears similar to the following:

Markup

<Extended:C1Book Name="c1book1" Height="300" Width="450">
 <TextBlock Text="Hello World!"/>
</Extended:C1Book>

In Code

For example, to add a TextBlock control to the book, add code to the page's constructor so it appears like the
following:

Visual Basic

Public Sub New()
 InitializeComponent()
Dim c1book1 as New C1Book
 c1book1.Height = 300
 c1book1.Width = 450
 Grid1.Children.Add(c1book1)
 Dim txt1 as New TextBlock
 txt1.Text = "Hello World!"
 c1book1.Items.Add(txt1)
End Sub

C#

public MainPage()
{
 this.InitializeComponent();
 C1Book c1book1 = new C1Book();
 c1book1.Height = 300;
 c1book1.Width = 450;
 Grid1.Children.Add(c1book1);

 TextBlock txt1 = new TextBlock();
 txt1.Text = "Hello World!";
 c1book1.Items.Add(txt1);
}

What You've Accomplished

You've added a control to the C1Book control. Run the application and observe that the TextBlock control has been
added to the C1Book control. You can similarly add other content and controls.

Clearing Items in a Book
You may choose to allow users to clear all items from the C1Book control at run time, or you may need to clear the
items collection when binding and then rebinding the control to another data source.

Extended Library for UWP 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

For example, to clear the book's content, add the following code to your project:

Visual Basic

c1book1.Items.Clear()

C#

c1book1.Items.Clear();

What You've Accomplished

The control's content will be cleared. If you run the application, you will observe that the book is blank.

Displaying the First Page on the Right
The C1Book.IsFirstPageOnTheRight property defines how the first page is displayed, whether it is on the right side or
the left side. See First Page Display for more information. By default the C1Book control starts with the first page
displayed on the left and two pages displayed, but you can customize this by setting
the C1Book.IsFirstPageOnTheRight property in XAML and in code.

In XAML

For example, to set the C1Book.IsFirstPageOnTheRight property, add IsFirstPageOnTheRight="True" to the
<Extended:C1Book> tag so that it appears similar to the following:

Markup

<Extended:C1Book Name="c1book1" Height="300" Width="450"
IsFirstPageOnTheRight="True">

In Code

For example, to set the C1Book.IsFirstPageOnTheRight property, add the following code to your project in the
page's constructor:

Visual Basic

c1book1.IsFirstPageOnTheRight = True

C#

c1book1.IsFirstPageOnTheRight = true;

What You've Accomplished

You've set the first page to appear on the right. If you run the application, the first page will appear as a single page,
like the book's cover:

Setting the Current Page
The C1Book.CurrentPage property gets or sets the value of the C1Book control's current page. By default
the C1Book control starts with the first page displayed, but you can customize this by setting
the C1Book.CurrentPage property in XAML and in code.

In XAML

Extended Library for UWP 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

For example, to set the C1Book.CurrentPage property to 3, add CurrentPage="3" to the <Extended:C1Book> tag so
that it appears similar to the following:

Markup

<Extended:C1Book x:Name="c1book1" Height="300" Width="450" CurrentPage="3">

In Code

For example, to set the C1Book.CurrentPage property to 3, add the following code to your project:

Visual Basic

c1book1.CurrentPage = 3

C#

c1book1.CurrentPage = 3;

What You've Accomplished

You've changed the book's initial starting page. If you run the application, the initial page that appears will be page 3.

Navigating the Book with Code
You can set the displayed page using the C1Book.CurrentPage property, but you can also use the C1Book.TurnPage
method to change the current page at run time. For more information, see Book Navigation. In this topic you'll add
two buttons to your application, one that will turn to the previous page and one that will turn to the next page of the
book.

To add additional navigation to your book, complete the following steps:

1. Set the name of the C1Book control as c1book1 and add the following XAML markup between the
<Extended:C1Book> and </Extended:C1Book> tags. This will add six pages that look like checkerboards to
your application:

Markup

<Grid Name="checkers" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="3" Margin="5" />

Extended Library for UWP 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="3" Margin="5" />
</Grid>
<Grid Name="checkers2" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="3" Margin="5" />
</Grid>
<Grid x:Name="checkers3" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>

Extended Library for UWP 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="3" Margin="5" />
</Grid>
<Grid Name="checkers4" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="3" Margin="5" />

Extended Library for UWP 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

</Grid>
<Grid x:Name="checkers5" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="3" Margin="5" />
</Grid>
<Grid Name="checkers6" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 <RowDefinition Height=".25*" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 <ColumnDefinition Width=".25*" />
 </Grid.ColumnDefinitions>
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="0" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="0" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="1" Grid.Column="2" Margin="5" />

Extended Library for UWP 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Rectangle Fill="Red" Grid.Row="1" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="2" Grid.Column="3" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="0" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="1" Margin="5" />
 <Rectangle Fill="Black" Grid.Row="3" Grid.Column="2" Margin="5" />
 <Rectangle Fill="Red" Grid.Row="3" Grid.Column="3" Margin="5" />
</Grid>

2. Navigate to the Toolbox and double-click the Button item twice to add two Button controls to your
application.

3. Select the first button, navigate to the Properties window and set the following properties:

Set Name to "btn_last".
Set Content to "<".
Set Height and Width to "48"

4. Select the second button, navigate to the Properties window and set the following properties:

Set Name to "btn_next".
Set Content to ">".
Set Height and Width to "48"

5. Relocate the buttons by placing the btn_last button to the left of the book, and the btn_next button to the
right of the book.

6. Double-click the left button to create the Click event.
7. Return to Design view and repeat the previous step with the right button so each button has a Click event

specified.

The XAML markup will appear similar to the following:

Markup

<Button x:Name="btn_last" HorizontalAlignment="Left" Margin="49,223,0,229"
Width="48" Height="48" Content="<" Click="btn_last_Click"/>
<Button x:Name="btn_next" HorizontalAlignment="Right" Margin="0,224,49,228"
Width="48" Height="48" Content=">" Click="btn_next_Click"/>

The page should now look similar to the following:

Extended Library for UWP 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Switch to Code view and add the following import statements to the top of the page:

Visual Basic

Imports C1.Xaml.Extended

C#

using C1.Xaml;
using C1.Xaml.Extended;

9. Add code to the Click event handlers so they look like the following:

Visual Basic

Private Sub btn_next_Click(ByVal sender as Object, ByVal e as
System.Windows.RoutedEventArgs)
 c1book1.TurnPage(True)
End Sub
Private Sub btn_last_Click(ByVal sender as Object, ByVal e as
System.Windows.RoutedEventArgs)
 c1book1.TurnPage(False)
End Sub

C#

 public MainPage()
 {
 private void btn_next_Click(object sender, System.Windows.RoutedEventArgs e)
 {
 c1book1.TurnPage(true);
}

Extended Library for UWP 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

private void btn_last_Click(object sender, System.Windows.RoutedEventArgs e)
{
 c1book1.TurnPage(false);
 }}

This code will turn the book a page forward or back depending on the button tapped.

What You've Accomplished

You've customized navigation in the book. To view the book's navigation, run the application and tap the right button.
Notice that the page turns to the next page with a page turning animation:

Tap the left button and observe that the book returns to the previous page.

ColorPicker for UWP
ColorPicker for UWP is a color input editor designed for providing an interactive and rich color selection interface to
users. You can select colors from professionally-designed palettes or custom colors based on your selection. With
ColorPicker for UWP, you can choose to use a Basic color palette with standard color options, an Advanced palette
that enables users to customize their color selection, or both.

The C1ColorPicker class also includes C1SpectrumColorPicker, Hexadecimal Color, and RGB color support to provide
an enhanced visual color input interface.

Color Picker Key Features
ColorPicker for UWP enables you to create customized, visually-advanced applications enriched with multi-color
palettes. ColorPicker for UWP provides well-defined large buttons and icons to make them easy to use in supported
devices.

20+ Professionally-Designed Color Palettes to Choose from

C1ColorPicker includes more than 20 predefined color palettes that match the themes available in Microsoft
Office suite. Colors available in each palette go well with each other and let you create polished, professional
applications.

Extended Library for UWP 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

Built-In Color Editor for Custom Color Selection

C1ColorPicker also includes a color editor. This allows users to create custom colors that are not available on
standard color palette. The editor uses RGB models, and other features such as transparency and opacity for
customizing color selection. These features can be viewed in Visual Studio project within Properties window
for C1ColorPicker under Background property.

Modes

C1ColorPicker supports Basic and Advanced modes for color selection at run-time.

Composable Parts

C1ColorPicker includes three additional controls namely C1SpectrumColorPicker, C1HexColorBox
and C1CheckeredBorder to support customization while selecting colors. The C1SpectrumColorPicker
control provides access to advanced color picking functionality, while C1HexColorBox control is used for data

Extended Library for UWP 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

validation of hexadecimal code entries. The C1CheckeredBorder is simply added to display colors with
varying transparency.

Visual Elements
ColorPicker for UWP allows users to create customized, visually-advanced applications enriched with multi-
color palettes. The following illustrations show various elements of a C1ColorPicker.

Basic Mode

The Mode property of C1ColorPicker allows users to either choose colors from a preselected color palette or
customize their own palette as per their choice. C1ColorPicker supports three modes provided by C1ColorPickerMode,
namely Basic, Advanced and Both. By default, the Mode property is set to Both with Basic as well as Advanced color
palettes visible to users.

Basic Mode: By default, C1ColorPicker opens with Basic tab open when the control's drop-down arrow is clicked. The
Basic Tab appears similar to the following image.

The Basic tab includes:

Drop-Down Arrow: Click the drop-down arrow to open C1ColorPicker's window.
Selected Color: The currently selected color appears the ColorPicker's window.
Picked Color: The currently picked color appears with a highlighted border in the list of colors.
Palette Color: Palette colors reflect the currently selected color palette. You can choose a palette by setting
the Palette property.
Header Palette: These colors are the basic colors available in the selected palette. The expanded list of palette
colors are simply variations of these basic color tones.
Standard Colors: Lists out ten standard colors, including dark brick red, red, orange, yellow, light green, green,
sky blue, blue, navy blue and purple.
Recent Colors: Lists up to ten recently used colors. You can choose to hide recent colors by setting
the ShowRecentColors property to False.

Extended Library for UWP 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

Advanced Mode

The Advanced mode appears in the Advanced tab, which is placed on the right side of the Basic tab.
This mode enables users to customize the color palette by selecting various color tones available with every single
color. This mode also supports RGB Colors, which can be viewed in C1ColorPicker's Properties window in
Design view. The Advanced tab appears similar to the following image.

 The Advanced tab mainly includes:

Drop-Down Arrow: Click the drop-down arrow to open C1ColorPicker's window.
Color Slider: Color slider lets you select color from the color spectrum. Move the Color Slider to pick a
general color and then fine tune your selection in the Color Field.
Color Field/Picked Color: The Color Field enables you to select a color tone. The Picked Color indicates the
currently selected color.
Transparency Slider: This slider allows you to set the color's transparency, which can be set to opaque or
partially/completely transparent.
Color Preview: This component enables you to preview the selected color.
OK Button: Once you are satisfied with the color choice, click the OK button to close the drop down and set it
as the selected color.

Extended Library for UWP 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

Additional Controls

C1SpectrumColorPicker: Colorpicker for UWP includes C1SpectrumColorPicker control that allows you to
access the advanced color picking functionality. The C1SpectrumColorPicker appears similar to the following

image.

The C1SpectrumColorPicker control includes:

Color Field: The Color Field enables you to select a color tone.
Color Slider: Color slider lets you select color from the color spectrum. Move the Color Slider to pick a
general color and then fine tune your selection in the Color Field.
Transparency Slider: This slider allows you to set the color's transparency, which can be set to opaque or
partially/completely transparent. This slider is visible only when the ShowAlphaChannel property is set to
True (default).

C1HexColorBox: Colorpicker for UWP includes C1HexColorBox control for data validation of hexadecimal code
entries. Similar to a regular textbox in appearance, C1HexColorBox control displays an 8-character code, wherein
the first two characters represents the color's transparency level. For instance, FF represents opaque and 00
represents transparent. The remaining 6-characters represent standard hexadecimal color selection.
C1HexColorBox appears similar to the following image.

ColorPicker Quick Reference
This topic is dedicated to providing a quick overview of the XAML code used to create a C1ColorPicker, with select
properties such as DropDownDirection set to AboveOrBelow, Mode to Basic, and Background to Red. For more
information, see Features section.

Extended Library for UWP 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

XAML

<Extended:C1ColorPicker x:Name="C1ColorPicker1" HorizontalAlignment="Left"
VerticalAlignment="Top"
 Margin="100,73,0,0" Height="77" Width="170" DropDownDirection="AboveOrBelow"
Background="Red"
 Mode="Basic"/>

Quick Start
This topic describes how to add and configure a C1ColorPicker control in a UWP application. In this quick start, you
will create a new Visual Studio project, add ColorPicker controls to your application and customize the appearance of
controls. You will also explore select properties and features of C1ColorPicker by adding it on a standard Rectangle
control. The C1ColorPicker will control the gradient applied to the Rectangle, so that choosing colors at runtime will
change the gradient of the rectangle.

Step 1: Setting Up the Application
In this step, you will create a new UWP project and add a standard Rectangle control to it. You will also apply
gradient to the added rectangle control to customize its appearance.

1. Open Visual Studio and select File | New | Project.
2. In New Project dialog box, expand a language in the left pane.

Under the chosen language, select Windows Store.
In the templates list, select Blank App (XAML).
Enter a Name and click OK to create your project.

3. Switch to Design view, navigate to the Toolbox and double-click the Rectangle icon to add standard rectangle
control to the grid.

4. Resize the window and expand the rectangle to fill the window.
5. Switch to XAML view again and add a Fill by replacing the <Rectangle> tag with the following code.

XAML

<Rectangle x:Name="Rectangle1" Stroke="Black">
 <Rectangle.Fill>
 <LinearGradientBrush x:Name="colors">
 <GradientStop x:Name="col1" Color="Black" Offset="0" />
 <GradientStop x:Name="col2" Color="White" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

This adds a black and white linear gradient fill to the rectangle. The design view of the page should now appear
similar to the following image.

Extended Library for UWP 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

With this, you have successfully created a UWP application, added a standard Rectangle control to it and customized
its appearance. In the next step, you will add and customize C1ColorPicker control to your application.

Step 2: Adding C1ColorPicker Controls
In this step, you will continue by adding C1ColorPicker controls to the UWP application created in Step1. You will add
two C1ColorPicker controls in order to control gradient fill in the existing Rectangle control.

1. In Design view, select the rectangle and navigate to the Visual Studio Toolbox.
2. In the Toolbox, locate and double-click C1ColorPicker icon twice to add two ColorPicker controls to

the rectangle.
3. Resize the added C1ColorPicker controls and place them in the middle of the rectangle.
4. In Design view, click the first ColorPicker control, C1ColorPicker1, and navigate to the Properties window to

set its properties as follows:
Set DropDownDirection property to AboveorBelow to control the direction in which the ColorPicker
opens.
Set Mode property to Advanced to open advanced color options
Set SelectedColor property to Black or ("FF000000").

5. After setting these properties, the XAML view should appear similar to the follows:
XAML

<Extended:C1ColorPicker x:Name="C1ColorPicker1" HorizontalAlignment="Left"
VerticalAlignment="Top" DropDownDirection="AboveOrBelow" Mode="Advanced"
Margin="302,285,0,0" Width="275"
SelectedColorChanged="C1ColorPicker1_SelectedColorChanged" Height="85"/>

6. Click on the second ColorPicker control, C1ColorPicker2, and set its SelectedColor property to White,
leaving other properties as default. The page's design view would appear as below.

Extended Library for UWP 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

With this, you have successfully designed the user interface for your UWP application. However, on running the
application, you will only see two C1ColorPicker controls on the output window. These controls will not perform any
function even if you select a color. In the next step, you will add code to your application to provide functionality to
the added ColorPicker controls.

Step 3: Adding Code to the Application
 In this step, you will add code to your UWP application to provide functionality to the added C1ColorPicker controls.
Since you have already designed the user interface for your application in the previous step, complete the following
steps to add functionality.

1. In Design view, click once on the C1ControlPicker1 to select it and navigate to the Properties window.
2. In Properties window, select Events icon, locate SelectedColorChanged event and double-click in the text area.
3. This opens the code view (MainPage.xaml.cs) for the selected control with an event handler created as

C1ColorPicker1_SelectedColorChanged.
4. Ensure that the following import statements are added to the top in the code.

Visual Basic

Imports C1.Xaml
Imports C1.Xaml.Extended

C#

using C1.Xaml;
using C1.Xaml.Extended;

5. To update the gradient values and subscribe SelectedColorChanged event handler for C1ColorPicker1, add
the following code just below the MainPage's constructor in code view (MainPage.xaml.cs).
Visual Basic

Private Sub UpdateGradient()

 If C1ColorPicker1 IsNot Nothing And C1ColorPicker2 IsNot Nothing Then

 Me.col1.Color = Me.C1ColorPicker1.SelectedColor

Extended Library for UWP 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Me.col2.Color = Me.C1ColorPicker2.SelectedColor

 End If

End Sub

Private Sub C1ColorPicker1_SelectedColorChanged(sender As Object,
e As PropertyChangedEventArgs(Of Windows.UI.Color))Handles
C1ColorPicker1.SelectedColorChanged
 UpdateGradient()

End Sub

C#

void UpdateGradient()
{

 if (C1ColorPicker1 != null & C1ColorPicker2 != null)

 {

 this.col1.Color = this.C1ColorPicker1.SelectedColor;

 this.col2.Color = this.C1ColorPicker2.SelectedColor;

 }

}

private void C1ColorPicker1_SelectedColorChanged(object sender,
C1.Xaml.PropertyChangedEventArgs < Windows.UI.Color > e)
{
 UpdateGradient();
}

6. As done above in Step 1, 2 and 3, add and subscribe SelectedColorChanged event for the second ColorPicker
control, C1ColorPicker2. When then event is created, update the gradient values through code as follows:
Visual Basic

Private Sub C1ColorPicker2_SelectedColorChanged(sender As Object,
e As PropertyChangedEventArgs(Of Windows.UI.Color)) Handles
C1ColorPicker2.SelectedColorChanged
 UpdateGradient()

End Sub

C#

private void C1ColorPicker2_SelectedColorChanged(object sender,
PropertyChangedEventArgs < Windows.UI.Color > e)
{
 UpdateGradient();
}

Extended Library for UWP 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

With this, you have completed the addition of code to your UWP application and added functionality to the added
ColorPicker controls. In the next step, you will run the application to see how the controls function at runtime.

Step 4: Running the Application
As you are done with creating a UWP application that adds C1ColorPicker controls and customizes their appearance
and behavior, it is time to run the application and observe the result.

1. In Debug menu, select Start Debugging option to view the output. You will see a black and white window
with two C1ColorPicker controls positioned in the middle of the screen as follows.

2. In the ColorPicker appearing on the left side, click the drop-down arrow to see that the drop-down box
opens below with advanced mode visible, reflecting the changes you made to the control in Step 2.

Extended Library for UWP 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. You can select a color, for instance Red, by various methods and click OK. Notice that the selected color and
rectangle's gradient changes, reflecting your choice.

4. Click the drop-down arrow in the ColorPicker control appearing on the right side, C1ColorPicker2, to observe
that the drop-down box opens in default Basic mode displaying tabs like Color Palette, Standard Colors and
Recent Colors.

Extended Library for UWP 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Pick a color, say Yellow, in the drop-down box to see that the rectangle's gradient changes as per your
selection and would appear as below.

This complete the Quick Start section, wherein you created a simple application to add and customize the appearance
of C1ColorPicker control, and observed some of its key features at runtime.

Extended Library for UWP 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

Features
This section elaborates the key features, properties and other important aspects related to the new ColorPicker for
UWP.

Setting the Palette
ColorPicker for UWP comes with 20 pre-defined color palettes to match with themes available in Microsoft Office
suite. To change the Color Palette, complete the following steps for seting up the Palette property of C1ColorPicker
control for UWP.

1. In Design view, add standard Button control from Toolbox and set its Content property to "Change Palette".
2. Switch to Design view again, and double-click the Button control. This opens the code view with a

Button_Click event handler created for the same.
3. Add the following code to Button_Click event handler.

Visual Basic

Private Sub Button1_Click(sender As Object, e As RoutedEventArgs) Handles
Button1.Click
 Me.C1ColorPicker2.Palette =
ColorPalette.GetColorPalette(Office2007ColorTheme.GrayScale)
End Sub

C#

private void Button1_Click(object sender, RoutedEventArgs e)
{
 this.C1ColorPicker2.Palette =
ColorPalette.GetColorPalette(Office2007ColorTheme.GrayScale);
}

4. To run the application and observe the change in color palette, Select Debug menu and click Start
Debugging.

5. In the runtime environment, click on the drop-down to observe the default palette with standard color options.
6. Now, click the Button visible above the C1Colorpicker and notice that a grayscale palette appears as per the

change implemented in the code.

Extended Library for UWP 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

Customizing the Palette
Bored of using the predefined color palettes in ColorPicker within your application! You can choose to customize the
color palette in ColorPicker for UWP by simply adding a few more lines to your code. Follow the steps given below
to create a custom palette and apply it to the C1ColorPicker through a click of a button.

1. Navigate to the Toolbox, locate Button icon and double-click to add it to Design view in the project.
2. Resize the button and place it above the already added C1ColorPicker control in Design view.
3. Navigate to the Properties window and set button's Content property to "Change Palette".
4. Switch to code view by double-clicking the button in Design view. This automatically creates the Button_Click

event handler in the code.
5. Add the following Imports statements on the top of the code. Ignore in case they are already added.

Visual Basic

Imports C1.Xaml
Imports C1.Xaml.Extended
Imports Windows.UI

C#

using C1.Xaml;
using C1.Xaml.Extended;
using Windows.UI;

6. Add the following code to the Button_Click event to customize the palette.
Visual Basic

Private Sub Button1_Click(sender As Object, e As RoutedEventArgs) Handles
Button1.Click

Extended Library for UWP 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Dim cp1 As New ColorPalette("Pittsburgh")

 cp1.Clear()

 cp1.Add(Color.FromArgb(255, 0, 0, 0))

 cp1.Add(Color.FromArgb(255, 99, 107, 112))

 cp1.Add(Color.FromArgb(255, 255, 255, 255))

 cp1.Add(Color.FromArgb(255, 247, 181, 18))

 cp1.Add(Color.FromArgb(255, 253, 200, 47))

 cp1.Add(Color.FromArgb(255, 43, 41, 38))

 cp1.Add(Color.FromArgb(255, 149, 123, 77))

 cp1.Add(Color.FromArgb(255, 209, 201, 157))

 cp1.Add(Color.FromArgb(255, 0, 33, 71))

 cp1.Add(Color.FromArgb(255, 99, 177, 229))

 C1ColorPicker.Palette = cp1
End Sub

C#

private void Button1_Click(object sender, RoutedEventArgs e)
{
 ColorPalette cp1 = new ColorPalette("Pittsburgh");

 cp1.Clear();

 cp1.Add(Color.FromArgb(255, 0, 0, 0));

 cp1.Add(Color.FromArgb(255, 99, 107, 112));

 cp1.Add(Color.FromArgb(255, 255, 255, 255));

 cp1.Add(Color.FromArgb(255, 247, 181, 18));

 cp1.Add(Color.FromArgb(255, 253, 200, 47));

 cp1.Add(Color.FromArgb(255, 43, 41, 38));

 cp1.Add(Color.FromArgb(255, 149, 123, 77));

 cp1.Add(Color.FromArgb(255, 209, 201, 157));

Extended Library for UWP 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

 cp1.Add(Color.FromArgb(255, 0, 33, 71));

 cp1.Add(Color.FromArgb(255, 99, 177, 229));

 C1ColorPicker1.Palette = cp1;
}

7. Run the application. Observe that on clicking the C1ColorPicker's drop-down arrow, the default palette
appears.

8. Now click the Change Palette button and again click the C1ColorPicker's drop-down arrow. You will find that
the custom color palette appears.

Implementing Background Color
C1ColorPicker's Background property enables users to get or set the control's background color. In UWP applications,
you can implement or change background color either at Design-time or in XAML view.

At Design Time

To implement background color for C1ColorPicker at design time, complete the following steps:

1. Select the C1ColorPicker control in Design view by a single click and navigate to the Properties window.
2. Locate Background property and select a Color, for instance Green, from the underlying Editor tab.

In XAML

Extended Library for UWP 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/br209395

To implement background color for C1ColorPicker through XAML, add Background="Green" to the
<Extended:C1ColorPicker> tag. The XAML view should appear similar to the following:

XAML

<Extended:C1ColorPicker x:Name="C1ColorPicker1" Margin="283,119,883,0" Height="90"
 VerticalAlignment="Top" Background="Green"/>

Run the application and notice that the ColorPicker appears Green.

Changing Drop-Down Window Direction
By default, C1ColorPicker appears below the control when the user clicks the drop-down arrow at runtime. However,
users can change the direction in which the control appears at runtime simply by making some simple changes either
at Design-time, in XAML or in the code.

At Design Time

To change the drop-down window direction at design time:

1. Select the C1ColorPicker by clicking it once in Design view.
2. Navigate to the Properties window and locate the DropDownDirection property.
3. Click the drop-down arrow alongside the DropDownDirection property and select any option, for instance

ForceAbove.

This will set the DropDownDirection property of ColorPicker control as per your selection.

In XAML

Change the drop-down window direction in XAML by adding DropDownDirection="ForceAbove" to the
<Extended:C1ColorPicker> tag. The XAML view should appear similar to the following:

XAML

<Extended:C1ColorPicker x:Name="C1ColorPicker1" HorizontalAlignment="Left"
VerticalAlignment="Top"
 Margin="147,553,0,0" Height="77" DropDownDirection="ForceAbove"/>

In Code

Through code, you can customize the direction in which the drop-down window should appear by adding the
following code below the constructor.

Visual Basic

Me.C1ColorPicker1.DropDownDirection = DropDownDirection.ForceAbove

C#

Extended Library for UWP 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

this.C1ColorPicker2.DropDownDirection = DropDownDirection.ForceAbove;

Run the application. Observe that on clicking the C1ColorPicker's drop-down arrow, the drop-down appears above
the C1ColorPicker control similar to the following image.

Hiding Recent Colors Tab in Basic Mode
In Basic mode, C1ColorPicker displays a Recent Colors tab that displays the recent color icons selected on the
ColorPicker. You can customize the appearance of C1ColorPicker by hiding Recent Colors tab either at Design time, in
XAML or in code.

At Design Time

To hide Recent Colors tab at design time:

1. Select the C1ColorPicker Control by clicking it once in Design view.
2. Navigate to the Properties window and locate the ShowRecentColors property.
3. Check off the ShowRecentColors property to hide Recent Colors tab.

In XAML

To hide Recent Colors tab in XAML, set ShowRecentColors property to false by adding ShowRecentColors="False" in
<Extended:C1ColorPicker> tag. The XAML code should appear similar to the follows:

XAML

<Extended:C1ColorPicker x:Name="C1ColorPicker2" HorizontalAlignment="Left"
 VerticalAlignment="Top" Margin="143,101,0,0" Width="179" Height="84"
ShowRecentColors="False"/>

Extended Library for UWP 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

In Code

In code view, you can hide Recent Colors tab by adding the following code in the MainPage constructor.

Visual Basic

Me.C1ColorPicker1.ShowRecentColors = False

C#

this.C1ColorPicker2.ShowRecentColors = false;

Run the application and notice that Recent Colors tab is no longer visible in the drop-down window.

Extended Library for UWP 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Extended Library for UWP
	Book for UWP
	Getting Started
	Help with UWP Edition

	Book for UWP Key Features
	Book Quick Reference
	Book for UWP Quick Start
	Step 1 of 4: Creating the Book Application
	Step 2 of 4: Adding Content to the Book Control
	Step 3 of 4: Adding Files to the Application
	Step 4 of 4: Running the Book Application

	Working with Book for UWP
	Book Zones
	Page Fold Size
	Page Fold Visibility
	Page Turning Options
	First Page Display
	Book Navigation

	Book for UWP Task-Based Help
	Creating a Book
	Adding Items to a Book
	Clearing Items in a Book
	Displaying the First Page on the Right
	Setting the Current Page
	Navigating the Book with Code

	ColorPicker for UWP
	Color Picker Key Features
	Visual Elements
	ColorPicker Quick Reference
	Quick Start
	Step 1: Setting Up the Application
	Step 2: Adding C1ColorPicker Controls
	Step 3: Adding Code to the Application
	Step 4: Running the Application

	Features
	Setting the Palette
	Customizing the Palette
	Implementing Background Color
	Changing Drop-Down Window Direction
	Hiding Recent Colors Tab in Basic Mode

