

ComponentOne

FlexChart for UWP

GrapeCity US

GrapeCity
201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206
Tel: 1.800.858.2739 | 412.681.4343
Fax: 412.681.4384
Website: www.grapecity.com
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

mailto:us.sales@grapecity.com

Table of Contents
Overview 6

Getting Started with UWP Edition 6

FlexChart 7

Key Features 7-8

Feature Comparison Matrix 8-16

Quick Start 16

Step 1: Adding FlexChart to the Application 16-17

Step 2: Binding FlexChart to a Data Source 17-20

Step 3: Running the Application 20-21

Understanding FlexChart 21

FlexChart Fundamentals 21-22

Header and Footer 22-23

Legend 23-25

Axes 25-27

Plot Area 27-28

Series 29-30

FlexChart Types 30

Area 30-31

Bar 31-32

Bubble 32-33

Column 33-34

Financial 34

Candlestick 34-35

HighLowOpenClose 35

Floating Bar Chart 35-36

Funnel 36-39

Histogram 39-40

Line 40-41

LineSymbols 41-42

Mixed 42-43

Pareto Chart 43-44

RangedHistogram 44-46

Scatter 46-47

Spline 47-48

FlexChart for UWP 1

Copyright © 2018 GrapeCity, Inc. All rights reserved.

SplineArea 48-49

SplineSymbols 49-50

Step 50-52

Working with FlexChart 52

Data 52

Providing Data 52

Binding Data Using a Data Source 52-55

Plotting Data 55-56

Showing or Hiding a Series 56-57

Interpolating Null Values 57

Appearance 57-58

Colors 58

Choosing Colors Interactively 58

Setting FlexChart Palette 58-64

Specifying RGB Colors 64

Specifying Hue, Saturation, and Brightness 64-65

Using Transparent Colors 65

Font 65

Symbol Styles for Series 65-66

End-User Interaction 66

ToolTips 66-67

Default Tooltip 67

Customizing Tooltip Content 67-68

Formatting Tooltip Content 68-69

Shared Tooltip 69-70

Axis Scrollbar 70-72

Range Selector 72-74

Line Marker 74-76

Hit Test 76-78

FlexChart Elements 78

FlexChart Axis 78-79

Axis Position 79-80

Axis Title 80-81

Axis Tick Marks 81-82

Axis Grid Lines 82-83

Axis Bounds 83-84

FlexChart for UWP 2

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axis Reversing 84-85

Axis Binding 85-86

Multiple Axis 86

FlexChart Axes Labels 86-87

Axes Labels Format 87

Axes Labels Rotation 87-88

Axes Labels Visibility 88

Axes Labels Overlap 88-89

Axis Grouping 89-90

Categorical Axis Grouping 90-91

Numerical Axis Grouping 91-92

DateTime Axis Grouping 92-94

Annotations 94-95

Adding Annotations 95-96

Positioning Annotations 96-97

Customizing Annotations 97-98

Types of Annotations 98-99

Shape Annotations 99-100

Text Annotation 100-101

Image Annotation 101-103

Creating Callouts 103-106

FlexChart Legend 106

Legend Text Wrap 106-108

Legend Grouping 108-110

Custom Legend Icon 110-113

FlexChart Series 113-114

Creating and Adding Series 114-115

Adding Data to Series 115-118

Emphasizing Different Types of Data 118-119

Customizing Series 119-120

Waterfall Series 120-124

Box-and-Whisker 124-129

Error Bar 129-133

Stacked Groups 133

FlexChart Data Labels 133-134

Adding and Positioning Data Labels 134-136

FlexChart for UWP 3

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Formatting Data Labels 136-138

Manage Overlapped Data Labels 138-140

Multiple Plot Areas 140-142

Trend Lines 142-144

Export 144

Export to Image 144-147

FlexPie 148

Quick Start 148-152

FlexPie Fundamentals 152-154

Exploded Pie Chart 154-155

Doughnut Pie Chart 155-156

Header and Footer 156

Legend 156-157

Selection 157

Data Labels 157-158

Adding and Positioning Data Labels 158

Formatting Data Label 158-160

Manage Overlapped Data Labels 160-162

Sunburst Chart 163

Quick Start 163-173

Key Features 173

Legend and Titles 173-175

Selection 175-177

Drilldown 177-178

Data Labels 178

Adding and Positioning Data Labels 178-179

Formatting Data Labels 179-182

Manage Overlapped Data Labels 182-183

FlexRadar 184

Quick Start 184-189

Key Features 189

Chart Types 189-191

Legend and Titles 191-193

TreeMap 194

Key Features 194-195

FlexChart for UWP 4

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Overview
Modern looking, high performance FlexChart and FlexPie for UWP Edition come with powerful and flexible data
binding, and easy-to-use API to configure charts. In addition, they provide several basic to complex charts directly as
chart types for your data visualization needs.

To gain insights into the controls, click the following links and access the comprehensive and useful information.

FlexChart
FlexPie
Sunburst Chart
FlexRadar
TreeMap

Getting Started with UWP Edition
For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces, and
creating a project with the FlexChart control, visit Getting Started with UWP Edition.

FlexChart for UWP 6

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://help.grapecity.com/componentone/NetHelp/c1studiouWP/webframe.html

FlexChart
FlexChart — a powerful data visualization control — lets you add feature-rich and visually appealing charts to your
Universal Windows applications. The control empowers end-users to visualize data that resonates with their
audiences.

The FlexChart control provides you with numerous 2D chart types, built-in tools for chart interactivity, and diversified
formats for chart rendering.

Whether it's storytelling with data or interpreting complex data, FlexChart helps you accomplish everything
seamlessly.

Below is a complete listing of the sections to get you acquainted and started with the FlexChart control.

Key Features
Feature Comparison Matrix
FlexChart Quick Start
Understanding FlexChart
Working with FlexChart

Key Features
FlexChart for UWP is an impeccable data visualization component in terms of performance, presentation, and overall
quality.

1. Automatic Legend generation: Just specify the name of the series and the Legend is displayed automatically.

2. Axis labels automatic rotation: Let long axis labels get rotated automatically, thereby rendering a clean
appearance.

3. Axis Grouping: Group the axis labels while working with any kind of data (categorical, numeric or date time)
for better readability and analysis.

4. Chart export: Export your application to different formats, such as SVG,.png, and PNG.

5. Direct X support: The control supports Direct X rendering engine.

6. Flexible data labels: Set offset, border, and position for data labels. The control also provides various options
to manage overlapping of data labels such as automatic arrangement, hiding overlapped data labels and,
rotation.

7. In-built selection support: Click the chart and select either a single data point or an entire data series.

8. Interpolate nulls: Handle null values in line and area charts effectively by using the InterpolateNulls property.

9. Legend wrapping: Let the Legend items appear in several rows and columns depending upon the available
space.

10. Multiple chart types: Add as many series as you want in a single chart. Set the desired chart type at each
series, and thus integrate multiple chart types in a single chart.

11. Pre-defined and custom palettes: Choose from a number of pre-defined palettes or apply a custom palette
to the chart.

FlexChart for UWP 7

Copyright © 2018 GrapeCity, Inc. All rights reserved.

12. Powerful and flexible data binding: Specify data source either at the series level or the chart level, as per
your requirements. You can combine multiple data sources in a single chart as well.

13. Series toggling: Toggle the visibility of a series in the plot as well as the legend by using the LegendToggle
property.

14. Simple to use: It is simple to work with the FlexChart control due to its clear object model.

15. Stacked or 100% stacked charts: Make a chart stacked or 100% stacked by setting just one property.

16. Support for categorical, numerical, and data or time axis: Bind to different data types ranging from int,
float, and string to DateTime.

17. ToolTip customization: Leverage powerful tooltip customization features.

18. Flexible data labels: Set offset, border, and position for data labels. The control also provides various options
to manage overlapping of data labels such as automatic arrangement, hiding overlapped data labels and,
rotation.

Feature Comparison Matrix
Explore all of the features offered by FlexChart in UWP, WPF, and WinForms. You can download the matrix in PDF.

Chart Types

Chart Types UWP WPF Win

Area ✓ ✓ ✓

StackedArea ✓ ✓ ✓

StackedArea100 ✓ ✓ ✓

SplineArea ✓ ✓ ✓

StackedSplineArea ✓ ✓ ✓

StackedSplineArea100 ✓ ✓ ✓

StepArea ✓ ✓ ✓

Bar ✓ ✓ ✓

StackedBar ✓ ✓ ✓

StackedBar✓00 ✓ ✓ ✓

Bubble ✓ ✓ ✓

CandleStick ✓ ✓ ✓

Column ✓ ✓ ✓

Combination ✓ ✓ ✓

StackedColumn ✓ ✓ ✓

StackedColumn100 ✓ ✓ ✓

FlexChart for UWP 8

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://prerelease.componentone.com/help/UWP/FeatureComparisonMatrix_FlexChart.pdf

Quick Start
This quick start guides you through a step-by-step process of creating a simple FlexChart application and running the
same in Visual Studio.

Perform below-mentioned steps to walk through the FlexChart control quickly.

1. Adding FlexChart to the Application.
2. Binding FlexChart to a Data Source
3. Running the Application.

Step 1: Adding FlexChart to the Application
In this step, we will create a new Visual Studio application, add the appropriate references for the project, and add
XAML markup to create the FlexChart control.

1. Create a new Universal Windows application:
1. Select File | New | Project. The New Project dialog box opens.
2. Select Templates | Visual C# | Windows | Universal. From the templates list, select Blank App

(Universal Windows).
3. Give your application a Name and click OK. Your new application in now created.

2. Open the MainPage.xaml file and drag and drop the FlexChart control. The following references are added to
the project:

C1.UWP.dll
C1.UWP.DX.dll
C1.UWP.FlexChart.dll

If the references do not get added, add them manually - right-click the References folder in the Solution
Explorer and select Add | New Reference.

The necessary namespaces and control markup are added in the MainPage.xaml as shown:

XAML

<Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:App1"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:Chart="using:C1.Xaml.Chart" xmlns:Xaml="using:C1.Xaml"
xmlns:Foundation="using:Windows.Foundation"
 x:Class="App1.MainPage"
 mc:Ignorable="d">
 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Chart:C1FlexChart x:Name="flexChart" HorizontalAlignment="Left"
Height="300" VerticalAlignment="Top" Width="300" Xaml:C1NagScreen.Nag="True">
 <Chart:Series Binding="Y" BindingX="X" SeriesName="Series 1">
 <Chart:Series.ItemsSource>
 <PointCollection>
 <Foundation:Point>1,8</Foundation:Point>
 <Foundation:Point>2,12</Foundation:Point>
 <Foundation:Point>3,10</Foundation:Point>

FlexChart for UWP 16

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <Foundation:Point>4,12</Foundation:Point>
 <Foundation:Point>5,15</Foundation:Point>
 </PointCollection>
 </Chart:Series.ItemsSource>
 </Chart:Series>
 <Chart:Series Binding="Y" BindingX="X" SeriesName="Series 2">
 <Chart:Series.ItemsSource>
 <PointCollection>
 <Foundation:Point>1,10</Foundation:Point>
 <Foundation:Point>2,16</Foundation:Point>
 <Foundation:Point>3,17</Foundation:Point>
 <Foundation:Point>4,15</Foundation:Point>
 <Foundation:Point>5,23</Foundation:Point>
 </PointCollection>
 </Chart:Series.ItemsSource>
 </Chart:Series>
 <Chart:Series Binding="Y" BindingX="X" SeriesName="Series 3">
 <Chart:Series.ItemsSource>
 <PointCollection>
 <Foundation:Point>1,16</Foundation:Point>
 <Foundation:Point>2,19</Foundation:Point>
 <Foundation:Point>3,15</Foundation:Point>
 <Foundation:Point>4,22</Foundation:Point>
 <Foundation:Point>5,18</Foundation:Point>
 </PointCollection>
 </Chart:Series.ItemsSource>
 </Chart:Series>
 </Chart:C1FlexChart>
 </Grid>
</Page>

3. Run the application. You see the FlexChart as shown below.

Step 2: Binding FlexChart to a Data Source

FlexChart for UWP 17

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Public ReadOnly Property Data() As List(Of FruitDataItem)
 Get
 If _fruits Is Nothing Then
 _fruits = DataCreator.CreateFruit()
 End If

 Return _fruits
 End Get
End Property

MainPage.xaml.cs
List<FruitDataItem> _fruits;

public MainPage()
{
 this.InitializeComponent();
}

public List<FruitDataItem> Data
{
 get
 {
 if (_fruits == null)
 {
 _fruits = DataCreator.CreateFruit();
 }

 return _fruits;
 }
}

Step 3: Running the Application
Now that you've created the UWP application and customized the application's behavior, the only thing left to do is
run your application. Press F5 to run the application. The FlexChart looks similar to the following image:

FlexChart for UWP 20

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Understanding FlexChart
To get started with the FlexChart control, you need thorough understanding of all FlexChart fundamentals
and FlexChart types.

The following sections take you through the basics of the control:

FlexChart Fundamentals
FlexChart Types

FlexChart Fundamentals
FlexChart consists of the following elements:

Header and Footer
Legend
Axes
Plot Area
Series

The control has a rich object model that represents these elements in terms of objects and provides relevant

FlexChart for UWP 21

Copyright © 2018 GrapeCity, Inc. All rights reserved.

properties for the same.

The following image displays the various elements:

Header and Footer
Header and Footer are used to display descriptive or relevant information with respect to the chart.

FlexChart for UWP 22

Copyright © 2018 GrapeCity, Inc. All rights reserved.

In FlexChart, these elements are set by using the Header and the Footer property.

Here is the Xaml for setting the property:

XAML

<Chart:C1FlexChart x:Name="flexChart" Header="Fruit Sale Chart" Footer="Random Data">

Legend
The Legend displays an entry for each data series in the chart. It represents the mapping between colors, symbols, and
data series.

FlexChart for UWP 23

Copyright © 2018 GrapeCity, Inc. All rights reserved.

StrokeThickness Sets the stroke thickness.

Here is the Xaml for setting the property:

XAML

<Chart:C1FlexChart.LegendStyle>
<Chart:ChartStyle FontFamily="Arial" FontStyle="Italic" Stroke="#FFC29EC4"/>
</Chart:C1FlexChart.LegendStyle>

Legend Position

You can use the LegendPosition property to position the Legend relative to the Plot Area, as per your requirements.

The LegendPosition property can be set to any of the following values:

Value Description

Auto Positions the legend automatically.

Bottom Positions the legend below the plot.

Left Positions the legend to the left of the plot.

None Hides the legend.

Right (default value) Positions the legend to the right of the plot.

Top Positions the legend above the plot.

Here is the Xaml for setting the property:

XAML

<Chart:C1FlexChart x:Name="flexChart" HorizontalAlignment="Left"
LegendPosition="Top">

Legend Toggle

The LegendToggle property of FlexChart class allows you to toggle the visibility of a series in the plot, when you click
the series item in the legend. The default value of the LegendToggle property is False. To enable series toggling, you
need to set the LegendToggle property to True.

Here is the Xaml for setting the property:

XAML

<Chart:C1FlexChart x:Name="flexChart" HorizontalAlignment="Left" LegendToggle="True">

Axes
In a chart, there are two primary axes: X and Y. There are of course exceptions when you work with pie charts.

FlexChart for UWP 25

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Property Description

GroupNames Sets the group name for the axis labels.

GroupItemsPath Sets the group name for the axis labels in hierarchical data.

GroupSeparator Set the axis group separator.

GroupProvider Sets the axis group provider.

Scaling, Tick Mark, and Gridline Properties

Property Description

MajorGrid Determines whether the axis includes gridlines.

MajorGridStyle Contains properties to control the appearance of the grid lines drawn perpendicular to the
major tickmarks.

MajorTickMarks Sets the location of the axis tickmarks.

Max Sets the maximum value for the axis.

Min Sets the minimum value for the axis.

Origin Sets the value at which an axis crosses the perpendicular axis.

OverlappingLabels Manages the overlapping labels in the chart for any reason.

 Here is the Xaml for setting Axes (Axis X and Axis Y properties) for the chart:

XAML

 <Chart:C1FlexChart.AxisX>
 <Chart:Axis MajorGrid="True" Position="Bottom" Title="Fruits"
MajorTickMarks="Inside"></Chart:Axis>
 </Chart:C1FlexChart.AxisX>
 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Position="Left" MajorUnit="5" Title="Sales in Dollars"
MajorGrid="True"/>
 </Chart:C1FlexChart.AxisY>

For more details on Axes, refer to FlexChart Axes.

Plot Area
The Plot Area contains data plotted against X-axis and Y-axis.

FlexChart for UWP 27

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Series
Series are the groupings of the related points of data inside the Plot Area of the chart. You can set different chart
types for different series of data.

The following image illustrates data series in FlexChart:

Data series in FlexChart are controlled by the Series object that comprises the following properties:

Property Description

AxisX Sets the series X-axis.

AxisY Sets the series Y-axis.

Binding Sets the name of the property that contains Y values for the series.

BindingX Sets the name of the property that contains X values for the series.

ChartType Sets the series chart type.

ItemSource Sets the collection of objects containing the series data.

SeriesName Sets the series text that is displayed in the legend.

Style Sets the style of the series.

SymbolMarker Sets the shape of the marker to be used for each data point of the series. This property applies to
Scatter, LineSymbols, and SplineSymbols chart types only.

SymbolSize Sets the size of the symbols used to render the series.

SymbolStyle Sets the style of the symbols used in the series.

Visibility Determines whether the series is visible and sets the position of the series, if it's visible.

FlexChart for UWP 29

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Here is the Xaml for customizing the setting the properties for chart series:

Example Title

<Chart:C1FlexChart.Series>
 <Chart:Series SeriesName="March" Binding="March" ChartType="Line"/>
 <Chart:Series SeriesName="April" Binding="April"/>
 </Chart:C1FlexChart.Series>

You can also set the properties for chart series from the Series Collection Editor in the Properties window.

For more information on Series, refer to FlexChart Series.

FlexChart Types
FlexChart for UWP offers a comprehensive set of chart types to meet all data visualization requirements of your end-
users.

Below is a full listing of all the chart types offered by the control. Based upon the chart type you would like to use in
your application, click the corresponding link to avail key information on the same.

Area Chart
Bar Chart
Bubble Chart
Column Chart
Financial Charts
Funnel Chart
Floating Bar Chart
Histogram Chart
Line Chart
LineSymbols Chart
Mixed Chart
Pareto Chart
RangedHistogram Chart
Scatter Chart
Spline Chart
SplineArea Chart
SplineSymbols Chart
Step Chart

Area
The Area Chart depicts change in data over a period of time. It represents data series by connecting data points
against Y-axis and filling the area between the series and X-axis. In addition, the chart displays data series in the same
order in which they are added—back-to-front.

To create the Area Chart, you need to set the ChartType property to Area.

You can set the Stacking property to Stacked or Stacked100pc to create the stacking Area Chart.

The following chart displays the Area chart:

FlexChart for UWP 30

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The above chart represents the rise of a stock by plotting the stock values in three months. The three areas for three
different stocks have been rendered using three different colors.

Bar
The Bar Chart compares values across various categories or displays variations in a data series over time. The chart
type displays horizontal bars for data series plotted against X-axis and arranges categories or items on Y-axis.

To create the Bar Chart, you need to set the ChartType property to Bar.

To create the stacking Bar Chart, you need to set the Stacking property either to Stacked or Stacked100pc.

The following chart displays the Bar chart:

FlexChart for UWP 31

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Bubble
The Bubble Chart, which is basically a type of the scatter chart, is used for graphical representation of multi-
dimensional data. It displays an additional data value at each point by changing its size. The chart type represents
data points in the form of bubbles (data markers) whose X and Y coordinates are determined by two data values and
whose size indicates the value of a third variable.

Therefore, in addition to X and Y you must specify a binding for the bubble size. This is done by setting the binding
property to a comma-delimited string that specifies the name of the properties to be used for the Y and size values
for each bubble.
In this example, the chart is bound to a list containing objects with "x", "y", and "size" properties. The chart contains a
single series and its binding property is set to the string "y,size".

FlexChart for UWP 32

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create the Bubble Chart, you need to set the ChartType property to Bubble.

XAML

<Chart:C1FlexChart ItemsSource="{Binding}" ChartType="Bubble" BindingX="X"
Binding="Y,Size" Xaml:C1NagScreen.Nag="True" Margin="0,10,-83,0">
</Chart:C1FlexChart>

Column
The Column Chart, just like the Bar Chart, represents variation in a data series over time or compares different items. It
displays values of one or more items as vertical bars against Y-axis and arranges items or categories on X-axis.

To create the Column Chart, you need to set the ChartType property to Column.

FlexChart for UWP 33

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Financial
Financial charts are used to represent fluctuation in market or stock prices; nonetheless, these charts can also be used
to represent scientific data.

The FlexChart control supports two types of financial charts: Candle Chart and HighLowOpenClose Chart.

To use these chart types, you need to set the ChartType property either to Candlestick or to HighLowOpenClose.

These two types of financial charts are discussed in the following sections:

Candle
HighLowOpenClose

Candlestick
The Candlestick Chart integrates Bar and Line charts to depict a range of values over time. It consists of visual
elements known as candles that are further comprised of three elements: body, wick, and tail.

The body represents the opening and the closing value, while the wick and the tail represent the highest and
the lowest value respectively.
A hollow body indicates a rising stock price (the closing value is greater than the opening value).
A filled body indicates a falling stock price (the opening value is greater than the closing value).

FlexChart for UWP 34

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The Candlestick Chart is appropriate to represent the stock value summary.

HighLowOpenClose
The HighLowOpenClose Chart is generally used in stock analysis. The chart combines four independent values to
supply high, low, open, and close data values for each data point in a series.

Floating Bar Chart

FlexChart for UWP 35

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Floating bar chart provides an interesting way to represent data in charts. In this type of chart, a single or multiple
bars apparently floats between a minimum and maximum value instead of being connected to the axis. It displays
information as a range of data by plotting two Y-values(low and high) per data point. The Y-axis shows the values, and
the X-axis shows the category they belong to. Floating bars can be useful to show highs and lows in a data set, such
as daily high and low temperatures, stock prices, blood pressure readings, etc.

In FlexChart, Floating bar chart can be implemented using the Series class. To begin with, create a new Series object
and specify its properties. Then, use the SymbolRendering event provided by the Series class to plot the data points
on the chart.

To implement Floating bar chart using the FlexChart control, see FloatingBarChart sample. The samples are available
in the default installation folder - Documents\ComponentOne Samples\

Funnel
A funnel chart allows you to represent sequential stages in a linear process. For instance, a sales process that tracks prospects across the stages, such
as Sales Prospects, Qualified Prospects, Price Quotes, Negotiations, and Closed Sales.

In the process, each stage represents a proportion (percentage) of the total. Therefore, the chart takes the funnel shape with the first stage being the largest
and each following stage smaller than the predecessor.

Funnel charts are useful in identifying potential problem areas in processes where it is noticeable at what stages and rate the values decrease.

FlexChart offers the Funnel chart in two forms, as follows.

Trapezoid chart: Contains a pair of parallel sides.
Stacked Bar chart: Places related values on top of one another in the form of horizontal bars.

The following images show both Trapezoid and Stacked Bar charts displaying the number of orders across seven stages of an order fulfillment evaluation
process.

FlexChart for UWP 36

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 </Chart:C1FlexChart>
 </Grid>

</Page>

Code

MainPage.xaml.vb

Partial Public Class MainPage
 Inherits Page
 Private _data As List(Of DataItem)

 Public Sub New()
 InitializeComponent()
 End Sub

 Public ReadOnly Property Data() As List(Of DataItem)
 Get
 If _data Is Nothing Then
 _data = DataCreator.CreateFunnelData()
 End If

 Return _data
 End Get
 End Property
End Class

MainPage.xaml.cs

public partial class MainPage : Page
{
 private List<DataItem> _data;

 public MainPage()
 {
 InitializeComponent();
 }

 public List<DataItem> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateFunnelData();
 }

 return _data;
 }
 }
}

copyCode

copyCode

Histogram
Histogram chart plots the frequency distribution of data against the defined class intervals or bins. These bins
are created by dividing the raw data values into a series of consecutive and non-overlapping intervals. Based on the
number of values falling in a particular bin, frequencies are then plotted as rectangular columns against continuous x-
axis.

Following image illustrates a classic histogram chart, which depicts frequency distribution of scores obtained by
students of a university in half yearly examinations.

FlexChart for UWP 39

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create a histogram, you need to add the Histogram series and set the ChartType property to Histogram. Once you
provide relevant data by setting the BindingX to the original raw data values that are to be plotted on the X-axis,
FlexChart generates frequency distribution for the data and plots the same in histogram. The chart automatically
calculates the intervals in which your data is grouped. However, if required, you can also specify the width of these
intervals by setting the BinWidth property.

The following code snippet demonstrates how to generate Histogram chart for a particular data.

Xaml

<Chart:C1FlexChart x:Name="flexChart"
 ChartType="Histogram"
 ItemsSource="{Binding DataContext.Data}"
 Binding="Y"
 BindingX="X">
 <Chart:C1FlexChart.AxisX>
 <Chart:Axis Format="0.00"></Chart:Axis>
 </Chart:C1FlexChart.AxisX>
 <Chart:Histogram x:Name="histogramSeries" SeriesName="Frequency"/>
</Chart:C1FlexChart>

Note that x-axis of Histogram chart can be shared by other chart series, which can be displayed together with
the classic histogram series.

Back to Top

Line
The Line Chart displays trends over a period of time by connecting different data points in a series with a straight line.
It treats the input as categorical information that is evenly spaced along the X-axis.

You can create the Line Chart by setting the ChartType property to Line.

To create the stacking Line Chart, you need to set the Stacking property to Stacked or Stacked100pc.

FlexChart for UWP 40

Copyright © 2018 GrapeCity, Inc. All rights reserved.

LineSymbols
The LineSymbols Chart is a combination of the Line Chart and the Scatter Chart. The chart displays trends in data at
equal intervals and visualizes relationship between two variables related to the same event. It plots data points by
using symbols and connects the data points by using straight lines.

You need to set the ChartType property to LineSymbols to create the LineSymbols Chart.

You can set the Stacking property to Stacked or Stacked100pc to create the stacking LineSymbols Chart.

FlexChart for UWP 41

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Mixed
FlexChart allows you to create mixed charts that offer two key advantages, as follows:

Combining chart types: Combine two or more chart types in a single chart, for instance, area-bar, bar-line,
bar-scatter etc. Plot different metrics in a chart using different chart types and let the end user interpret data
easily. In FlexChart, specify a chart type for each series to combine several chart types. To specify the chart type
for a series, set the ChartType property of the Series class. Setting this property overrides the ChartType
property set for the chart.
Plotting multiple datasets: Plot data from multiple datasets in a single chart by specifying data source for a
series. This is useful when the data to plot lies at multiple places. To specify the data source for a series, set
the ItemsSource property of the Series class. Setting this property overrides the ItemsSource property set for
the chart.

The following image displays a mixed chart that combines column and line symbols chart types. The chart plots and
compares sales and expenses data of four countries.

FlexChart for UWP 42

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code sets the Column chart type for FlexChart and overrides it by setting the LineSymbols chart type for
the Sales series, thereby implementing mixed charts.

XAML

<Chart:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ChartType="Column"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:Series SeriesName="Sales"
 Binding="Sales"
 ChartType="LineSymbols"/>
 <Chart:Series SeriesName="Expenses"
 Binding="Expenses"/>
</Chart:C1FlexChart>

Pareto Chart
Pareto chart is a type of chart that contains both bar and a line chart. It is a vertical bar chart in which values are
plotted in decreasing order of relative frequency from left to right. The categories or factors that represent the bigger
bars on the left are more important than those on the right. The line chart plots the cumulative total percentage of
frequencies that are represented by the bars.

Pareto chart is essentially used in scenarios where the data is broken into different categories, and when the
developer needs to highlight the most important factors from a given set of factors. For example, quality control,
inventory control, and customer grievance handling are some areas where Pareto chart analysis can be frequently
used.

In FlexChart, Pareto chart can be easily created by combining RangedHistogram chart with any of Line, Spline,
LineSymbol, or SplineSymbol chart. First, plot the relative frequency on a RangedHistogram in descending order. Then,
calculate the cumulative relative frequency in percentage using original data to create another series which is plotted

FlexChart for UWP 43

Copyright © 2018 GrapeCity, Inc. All rights reserved.

on any of the Line, Spline, LineSymbol, or SplineSymbol chart. This forms Pareto line of the chart which helps in
identifying the added contribution of each category.

To implement Pareto chart using the FlexChart control, see FlexChartExplorer sample. The samples are available in
the default installation folder - Documents\ComponentOne Samples\

RangedHistogram
RangedHistogram is a modern Excel-like histogram chart that helps visualize frequency distribution on y axis,
against ranged x axis. Like Histogram chart type, bins are created by dividing the raw data values into a series of
consecutive, non-overlapping intervals. Based on the number of values falling in a particular bin, frequencies
are then plotted as rectangular columns against x-axis.

RangedHistogram plots frequency distribution for the provided data in non-category and category modes.

Non-Category Mode
In non-category mode, the original data points are binned into intervals or ranges. These intervals are then plotted on
x-axis, and y-axis shows frequency distribution for respective ranges. FlexChart automatically calculates the intervals in
which your data is grouped.
However, you can control this behavior by specifying the HistogramBinning through BinMode property. Moreover,
you can further set BinWidth, NumberOfBins, values for UnderflowBin and OverflowBin, and specify whether to
ShowUnderflowBin and ShowOverflowBin.

The following image illustrates frequency distribution for units sold of various products of a retail store in non-
category mode.

FlexChart for UWP 44

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create a RangedHistogram for a given data in category mode, you need to add the RangedHistogram series, set
the ChartType property to RangedHistogram and set the BindingX property, as shown in the following code snippet.

Xaml

<Chart:C1FlexChart x:Name="flexChart"
 ChartType="RangedHistogram"
 ItemsSource="{Binding DataContext.Data}"
 Binding="Value"
 BindingX="Name">
 <Chart:RangedHistogram x:Name="RangedhistogramSeries"
 SeriesName="Frequency" />
</Chart:C1FlexChart>

Note that unlike traditional Histogram, other chart types cannot be plotted using the same x axis values as
RangedHistogram.

Scatter
The Scatter Chart, which is also known as the XY Chart, depicts relationship among items of different data series. In
simple terms, it is a plot of X values and Y values along the two axes. The data points are not connected and can be
customized using different symbols. This chart type is normally used to represent scientific data, and can highlight the
deviation of assembled data from predicted data or result.

To create the Scatter Chart, you need to set the ChartType property to Scatter.

Set the Stacking property to Stacked or Stacked100pc to create the stacking Scatter Chart.

FlexChart for UWP 46

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Spline
The Spline Chart is similar to the line chart except that it connects data points by using splines rather than straight
lines. The chart is used as an alternative to the line chart, but more specifically for representing data that requires the
use of curve fittings.

You need to set the ChartType property to Spline to create the Spline Chart.

You can set the Stacking property to Stacked or Stacked100pc to create the stacking Spline Chart.

FlexChart for UWP 47

Copyright © 2018 GrapeCity, Inc. All rights reserved.

SplineArea
The SplineArea chart is just like the area chart with the only difference in the manner in which data points are
connected. The SplineArea chart connects data points by using splines instead of straight lines, and fills the area
enclosed by the splines.

You can set the ChartType property to SplineArea to create the SplineArea Chart.

To create the stacking SplineArea Chart, set the Stacking property to Stacked or Stacked100pc.

FlexChart for UWP 48

Copyright © 2018 GrapeCity, Inc. All rights reserved.

SplineSymbols
The SplineSymbols Chart combines the Spline Chart and the Scatter Chart. The chart plots data points by using
symbols and connects those data points by using splines.

To create the SplineSymbols Chart, set the ChartType property to SplineSymbols.

Set the Stacking property to Stacked or Stacked100pc to create the stacking SplineSymbols Chart.

FlexChart for UWP 49

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Step
Step charts use horizontal and vertical lines to present data that show sudden changes along y-axis by discrete
amount. These charts help display changes that are sudden and irregular but stay constant till the next change. Step
charts enable judging trends in data along with the duration for which the trend remained constant.

Consider a use case where you want to visualize and compare weekly sales and units downloaded of a software.
As both of these values vary with discrete amounts, you can use step chart to visualize them. As shown in the image
below, apart from depicting the change in sales these charts also show the exact time of change and the duration for
which sales were constant. Moreover, you can easily identify the magnitude of respective changes by simply looking
at the chart.

FlexChart supports Step chart, StepSymbols chart, and StepArea or filled step chart. The following table gives detailed
explanation of these chart types.

Step chart is similar to the Line chart, except that Line
chart uses shortest distance to connect consecutive data
points, while Step chart connects them with horizontal
and vertical lines. These horizontal and vertical lines give
the chart step-like appearance.

While the line charts depict change and its trend, the
Step charts also help in judging the magnitude and the
intermittent pattern of the change.

FlexChart for UWP 50

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Working with FlexChart
To work with FlexChart for UWP and use it for developing your applications, you should know how to leverage
several features and functionality offered by the control.

This section provides important conceptual, task-based information on features and functionality offered by FlexChart.

The below-mentioned links take you to the sections that discuss the different ways in which you can work with
FlexChart.

Data
Appearance
End-User Interaction
FlexChart Elements
Trend Lines
Export

Data
Data is the first and foremost requirement of a chart. Without data, a chart cannot possibly visualize or display
anything. Thus, while working with a chart, your first job is to get your chart to display data, so that you can work with
and interpret the data accordingly.

When it comes to your chart data, there are two primary stages that sum up the specification, representation, and
interpretation of the data:

Providing data
Plotting data

 Access these sections to go through these stages with reference to FlexChart at length.

Providing Data
To get your chart to plot data, you first need to provide data to the chart.

The most common and widely used approach for providing data to the chart is data binding.

Click the following link to know how you can bind data to FlexChart:

Binding data using a data source

Binding Data Using a Data Source
Binding data means connecting one or more data consumers to a data provider in a synchronized manner. When data
bound, the chart uses all of the bound data as its source of data for the specified series, and represents the data on
the chart surface as per the series and chart properties.

Since there is a layer between the data source and the actual chart, the data often needs to be summarized before it
can be plotted; however, the data to be plotted sometimes may already be available in a data view or another data
source object. And therefore, you can bind the chart directly to the data source object in such cases.

To bind the FlexChart control to the data source, you first need to set the ItemsSource property to the data source

FlexChart for UWP 52

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Plotting Data
FlexChart for UWP plots data bound in the form of fields or data arrays when relevant values are set in the BindingX and
the Binding property.

You require setting the values in the BindingX and the Binding property as per the desired chart type . For instance, in case
of the Scatter Chart, you need to set a single value (field) in both the BindingX and the Binding property. However, in case
of the Bubble Chart, you need to set a single value (field) in the BindingX property and two values (fields, one for specifying
Y-values and another for specifying the size of the bubble) in the Binding property.

See the following code snippets for reference:

In case of Scatter Chart

XAML

<Chart:C1FlexChart x:Name="flexChart" ItemsSource="{Binding DataContext.Data}"
 BindingX="Country" ChartType="Scatter">
 <Chart:C1FlexChart.Series>
 <Chart:Series SeriesName="Sales" Binding="Sales"/>
 <Chart:Series SeriesName="Expenses" Binding="Expenses"/>
 </Chart:C1FlexChart.Series>
</Chart:C1FlexChart>

In case of Bubble Chart

XAML

<Chart:C1FlexChart x:Name="flexChart" BindingX="X" ItemsSource="{Binding DataContext.Data}"
 ChartType="Bubble">
 <Chart:C1FlexChart.Series>
 <Chart:Series SeriesName="Bubble" Binding="Y,Size"/>
 </Chart:C1FlexChart.Series>
</Chart:C1FlexChart>

Once the data is plotted, you can work on it to visualize data that suits your requirements.

FlexChart for UWP 55

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Go through the sections given below to learn how to customize series and plot irregular data.

Showing or Hiding a Series
Interpolating Null Values

Showing or Hiding a Series
Once the series have been displayed in the chart, you can customize the displayed series to manage the same more
efficiently.

FlexChart for UWP allows you to customize series by showing or hiding a series either in the Plot Area or the Legend
or both.

If there are hundreds of series to be displayed in your chart, you would certainly need to manage the same due to the
space limitation of the chart.

In FlexChart, you can manage series by using the Visibility property of a series. The Visibility property accepts values
of the SeriesVisibility enumerated type.

You can set the property to the following different values to show or hide a series:

Value Description

SeriesVisibility.Visible The series is displayed in the Plot as well as the Legend.

SeriesVisibility.Plot The series is displayed in the Plot, but hidden in the Legend.

SeriesVisibility.Legend The series is displayed in the Legend, but hidden in the Plot.

SeriesVisibility.Hidden The series is hidden in the Plot as well as the Legend.

Here's the code snippet showing how to set the Visibility property:

XAML
Tab Caption

<Chart:Series SeriesName="March" Binding="March" Visibility="Legend"/>
<Chart:Series SeriesName="April" Binding="April" Visibility="Plot"/>
<Chart:Series SeriesName="May" Binding="May"/>

Code

C#

series1.SeriesName = "March";
series2.SeriesName = "April";

series1.Visibility = C1.Chart.SeriesVisibility.Legend;
series2.Visibility = C1.Chart.SeriesVisibility.Plot;

copyCode

FlexChart for UWP 56

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Interpolating Null Values
Often, there are null values in the data fields of a data table that you bind to FlexChart for plotting data. Due to the
presence of null values, FlexChart creates gaps once it has plotted the data. The gaps present in the plotted data make
data look inconsistent and incomplete.

FlexChart allows you to deal with such inconsistencies by using the InterpolateNulls property. You can
set the InterpolateNulls property, so that the chart automatically fills in gaps created by null values in data.

The InterpolateNulls property is applicable only for the Line Chart and the Area Chart.

Here is how you can set the InterpolateNulls property:

C#

flexChart.Options.InterpolateNulls = true;

Appearance
The appearance of a chart determines its overall look and feel. A good and clean appearance draws your audiences
toward the visual representation of your data. And it also adds to the ease of interpreting the data.

You can customize the appearance of FlexChart in a variety of ways that are mentioned below:

Colors
Fonts

FlexChart for UWP 57

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Symbol Styles for Series

Colors
Colors are used to enhance the visual impact of a chart. You can customize colors by choosing colors
interactively, setting chart palette, specifying RGB values, specifying hue, saturation, and brightness, or using
transparent colors.

FlexChart lets you customize colors for the entire chart as well as the following elements:

Series
Header and Footer
Legend
Plot Area
Label

Click the links given below to learn how to use colors in different ways.

Choosing Colors Interactively
Setting Chart Palette
Specifying RGB Colors
Specifying Hue, Saturation, and Brightness
Using Transparent Colors

Choosing Colors Interactively
Colors can be chosen interactively by using .NET's color dialog that works like the standard windows color dialog. You
can choose from Windows basic colors or customer colors, or you can interactively choose from a full color spectrum.

Setting FlexChart Palette
You can set the desired FlexChart palette by using the Palette property. By default, FlexChart uses
the Palette.Standard setting that specifies the standard chart palette.

Here are the available palettes in FlexChart:

Palette Setting Preview

FlexChart for UWP 58

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Darkly

Cerulean

Custom Copies the currently specified palette into the custom group.

Specifying RGB Colors
A color can be specified by its RGB components, useful for matching another RGB color. RGB color values combine
hexadecimal values for the red, green, and blue components of a color. "00" is the smallest value a component can
have; "ff" is the largest value. For example, "#ff00ff" specifies magenta (the maximum value of red and blue combined
with no green).

Specifying Hue, Saturation, and Brightness
In addition to a color being specified by its RGB components, it can also be represented by its hue, saturation, and
brightness. The hue, saturation, and brightness are all aspects of the red, green, and blue color scheme. The hue is the
specific tone of the color wheel made up of red, green, and blue tones. The saturation is the intensity of the hue from

FlexChart for UWP 64

Copyright © 2018 GrapeCity, Inc. All rights reserved.

gray tone to a pure vivid tone. And the brightness is the lightness or darkness of a tone.

Using Transparent Colors
The background and foreground of all elements except the chart itself can be "Transparent".

When a background or foreground is transparent, the chart uses the color of the element outside it for the
background. For example, the header would have the background of the chart itself when its background is set to
Transparent.

In other words, if the background color of the element is transparent then its background is not drawn. If the
foreground color of the element is transparent, then the foreground (for example, the text of a title) is not drawn.

The transparent color properties are located under the Style nodes, found at design time on the Control, Header,
Footer, Legend, ChartArea, and ChartLabels objects in the Visual Studio Properties window.

Font
Fonts, when customized with respect to various chart elements, enhance the impact of the chart. You can adjust the
font size of an element to make it more suitable as per the overall size of the chart.

To change or customize fonts in FlexChart, you can use the following properties provided by the ChartStyle object:

Property Description

FontFamily Sets the font family.

FontSize Sets the font size.

FontStretch Sets the font stretch.

FontStyle Sets the font style.

FontWeight Sets the font weight.

Symbol Styles for Series
Depending upon the requirements, you may need to customize the appearance of series in the chart.

FlexChart allows you to customize series in the chart with the SymbolMarker and the SymbolSize property.

The SymbolMarker property allows you to set the shape of the marker to be used for each data point in the series.
The SymbolSize property enables you to set the size (in pixels) of the symbols used to render the series.

Below is a table that lists how these properties affect each chart type:

Value Effect for SymbolMarker Effect for SymbolSize

ChartType.Column No effect No effect

ChartType.Bar No effect No effect

ChartType.Line No effect No effect

ChartType.Scatter Changes the symbol marker Changes the symbol size

FlexChart for UWP 65

Copyright © 2018 GrapeCity, Inc. All rights reserved.

ChartType.LineSymbols Changes the symbol marker Changes the symbol size

ChartType.Area No effect No effect

ChartType.Spline No effect No effect

ChartType.SplineSymbols Changes the symbol marker Changes the symbol size

ChartType.SplineArea No effect No effect

ChartType.Bubble Changes the symbol marker No effect

ChartType.Candlestick No effect Changes the symbol size

ChartType.HighLowOpenClose No effect Changes the symbol size

The SymbolSize property has no effect on the Bubble Chart; however, you can change the size of the bubble in
the Bubble Chart by setting the BubbleMaxSize and the BubbleMinSize property provided by the ChartOptions
class.

End-User Interaction
When it comes to the functionality and features of the chart, you may have specific requirements that can be
accommodated only through a few specific tools.

Therefore, to accommodate such requirements, FlexChart renders a set of conversion methods and interactive built-
in tools. These tools help you customize and develop your applications further.

Go to the following sections for information on end-user interaction:

ToolTips
Axis Scrollbar
Range Selector
Line Marker

ToolTips
Tooltips are pop-ups that appear while hovering over data points or series in a chart. They provide additional,
valuable information about chart data in scenarios, as follows:

Single series chart: Tooltips display data values and series name.
Mixed charts: Tooltips display multiple data values for multiple series for a single category.
Pie charts: Tooltips display name and percentage share or value of slices.

A tooltip displays Y value of a data point in FlexChart by default. However, FlexChart allows creating and formatting
custom content in tooltips using pre-defined parameters and formats. In addition, the control allows creating a shared
tooltip in the case of mixed charts.

To know more about tooltips in FlexChart, see the following topics:

Default Tooltip
Customizing Tooltip Content
Formatting Tooltip Content

FlexChart for UWP 66

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Shared Tooltip

Default Tooltip
FlexChart displays a default tooltip when you hover over a data point or series. The default tooltip shows the Y value
of the hovered data point. FlexChart generates the default tooltip using the underlying data when custom content is
not present.

The following image displays the default tooltip showing the data value of a data point.

Customizing Tooltip Content
FlexChart simplifies customizing tooltip content by allowing you to set pre-defined parameters in the ToolTipContent
property of the tooltip.

To customize content in a tooltip, set the pre-defined parameters in the template string of
the ToolTipContent property of the FlexChartBase class.

The table below lists the pre-defined parameters applicable for tooltip content customization.

Parameter Description

x Shows the X value of the data point.

y Shows the Y value of the data point.

value Shows the Y value of the data point.

name Shows the X value of the data point.

seriesName Shows the name of the series.

FlexChart for UWP 67

Copyright © 2018 GrapeCity, Inc. All rights reserved.

pointIndex Shows the index of the data point.

The following image displays customized tooltip content showing the index and the data point values.

The following code compares and displays data of number of daily website visitors in a specific week. The code shows
how to configure the ToolTipContent property to customize tooltip content.

XAML
<Chart:C1FlexChart Name="flexChart"
 ToolTipContent="Index: {pointIndex}Day: {name}{seriesName}: {Visitors}">
</Chart:C1FlexChart>

Formatting Tooltip Content
In FlexChart, it is possible to display number separators, current symbols, or date/time formats to add more details
into tooltips.

FlexChart enables you to format the custom content in the tooltip by using standard and custom format strings. These
format strings are a variety of Numeric and DateTime formats provided by .NET.

For information about these format strings, refer to Numeric and DateTime format strings.

The following image displays customized tooltip content showing the index and formatted values of the data point.

FlexChart for UWP 68

Copyright © 2018 GrapeCity, Inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

The following code compares and displays data of number of daily website visitors in a specific week. The code shows
how to configure the ToolTipContent property to format tooltip content.

XAML
<Chart:C1FlexChart Name="flexChart"
 ToolTipContent="Index: {pointIndex}Day: {name}{seriesName}: {Visitors:F}">
</Chart:C1FlexChart>

Shared Tooltip
A shared tooltip is a single tooltip that highlights all data values for a single X value in the chart.

In a chart containing mixed chart types, you often require displaying multiple Y values for a common X value through a single tooltip. In
such cases, FlexChart tooltips can be used as shared tooltips by setting the ToolTipContent property accordingly.

The following image displays a shared tooltip showing Y values for all series at a single X value.

FlexChart for UWP 69

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The code compares and displays data of number of daily website visitors, unique visitors, and link clicks in a specific week. The code
shows how to set the ToolTipContent property to create a shared tooltip.

XAML
<Chart:C1FlexChart Name="flexChart"
 ToolTipContent="Index: {pointIndex}Day: {name}Visitors: {Visitors}Unique Visitors:
 {UniqueVisitors}Link Click: {LinkClick}">
</Chart:C1FlexChart>

Axis Scrollbar
An Axis scrollbar, which represents the scrollbar of an axis, allows you to scroll through the values of the axis, thereby letting you
select a specific range. The presence of a large number of values or data in charts makes data interpretation difficult, especially in
compact user interfaces. Axis Scrollbars solve this problem by letting you easily interpret closely related data within a specific range.

FlexChart allows you to add Axis Scrollbar to primary axes (X and Y axes) as well as secondary axes. To add Axis Scrollbar to an axis,
you need to create an instance of the C1.Xaml.Chart.Interaction.C1AxisScrollbar class.

The C1AxisScrollbar class provides the ScrollButtonsVisible property that accepts Boolean values to set the visibility of the increase
and decrease buttons. To set the current lower and the current upper magnitude of the scrollbar, you can use the LowerValue and
the UpperValue property provided by C1RangeSlider class respectively. The lower and upper values change when the scrollbar is
resized or moved. When any of the LowerValue or the UpperValue property changes, the ValueChanged event provided by the
C1RangeSlider class fires.

See the following code snippet for reference:

XAML
<Chart:Axis.Scrollbar>
 <Interaction:C1AxisScrollbar x:Name="axisYScrollbar" Width="30" ScrollButtonsVisible="False"/>
</Chart:Axis.Scrollbar>

Code

C# copyCode

FlexChart for UWP 70

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 End While

 Return pointsList
 End Get
 End Property

 Public ReadOnly Property Description() As String
 Get
 Return Strings.Description
 End Get
 End Property

 Public ReadOnly Property Title() As String
 Get
 Return Strings.Title
 End Get
 End Property
End Class

Range Selector
While scrollbars are a traditional way of scrolling the chart, Range Selector is a more modern approach, which lets the user visualize
where the selected range sits in the complete data range.

FlexChart's Range Selector lets you select a range of numeric data with lower value thumb and upper value thumb. These thumbs define
the start and end values of the range. On dragging the thumb towards left (or down) on the range bar, you reduce its value, and
dragging it towards the right (or up) increases the value on the range bar.

In FlexChart, you can add Range Selector by creating an instance of the C1.Xaml.Chart.Interaction.C1RangeSelector class. The
C1RangeSelector class inherits the C1.Xaml.C1RangeSlider class. You can use the LowerValue and the UpperValue property provided by
C1RangeSlider to set the lower and the upper value of the range selector respectively. The ValueChanged event fires when any of the
LowerValue or the UpperValue property is changed.

To set the horizontal or the vertical orientation of the range selector, you can use the Orientation property. When the property is
changed, the OrientationChanged event fires.

FlexChart for UWP 72

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Line Marker
LineMarker displays the precise data values for a given position on the chart by dragging horizontal and/or vertical lines over the
plot with an attached label. It is useful in scenarios, where a user has a lot of data in a line or area chart, or if a user wants to
display data from multiple series in a single label. With built-in interactions, such as Drag and Move. a user can drag the line
marker and more precisely select the data point on the chart.

To create a line marker and use it in FlexChart, you need to create an instance of the C1.Xaml.Chart.Interaction.C1LineMarker
class.

You need to use the Lines property provided by C1LineMarker to set the visibility of the LineMarker lines. The Lines property
accepts the following values from the LineMarkerLines enumeration:

Both: Shows both vertical and horizontal lines
Horizontal: Shows a horizontal line
Vertical: Shows a vertical line
None: Shows no line

The C1LineMarker class also provides the Alignment property to set the alignment of the line marker. In addition, you can set the
interaction mode of the line marker by setting the Interaction property to any of the following values in the LineMarkerInteraction
enumeration:

Drag: The line marker moves when the user drags the line
Move (Default): The line marker moves with the pointer
None: The user specifies the position by clicking.

If you set the Interaction property to Drag, you need to set the DragContent and the DragLines property to specify whether the
content and values linked with the line marker lines are draggable or not.

Below is the code snippet with the implementation.

XAML

FlexChart for UWP 74

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Dim series As Series = flexChart.Series(index)
 Dim value As Object = series.GetValues(0)(pointIndex)
 Dim fill As Integer = CType((CType(flexChart, IChart)).GetColor(index), Integer)
 Dim content As String = String.Format("{0}{1} = {2}", vbLf, series.SeriesName,
value.ToString())
 tb.Inlines.Add(New Run() With {
 .Text = content,
 .Foreground = New SolidColorBrush() With {
 .Color = FromArgb(fill)
 }
 })
 index += 1
 End While
 tb.IsHitTestVisible = False
 lineMarker.Content = tb
 End If
End Sub

Hit Test
FlexChart supports hit testing, which enables you to fetch information about a specific point in the control at run-time. The information obtained
about the pointed coordinate can then be reused to drill down the chart data, to set alerts, or to enable other user interaction functionalities. Users
can obtain relevant information about the chart element pointed to by using mouse or touch interaction.

FlexChart for UWP 76

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <Chart:C1FlexChart x:Name="flexChart"
 HorizontalAlignment="Left"
 Height="220" Margin="70,25,0,0"
 VerticalAlignment="Top" Width="455"
 Binding="YVals" BindingX="XVals" ChartType="SplineSymbols"
 PointerPressed="flexChart_PointerPressed" >
 <Chart:C1FlexChart.Series>
 <Chart:Series x:Name="series0" SeriesName="Series 0"/>
 <Chart:Series x:Name="series1" SeriesName="Series 1" />
 </Chart:C1FlexChart.Series>
</Chart:C1FlexChart>

Back to Top

3. Invoke chart’s HitTest method in mouse event handler

In the respective event handler, invoke the HitTest() method and pass the captured mouse pointer coordinates, as shown in the below code
snippet.

C#
private void flexChart_PointerPressed(object sender, PointerRoutedEventArgs e)
{
 HitTestOnFlexChart(e.GetCurrentPoint(flexChart).Position);
}

Back to Top

4. Use the information returned by HitTestInfo object

The information regarding mouse pointer location, as returned by the HitTestInfo object, can then be reused. For example in the below code
snippet, the values returned by HitTestInfo object are converted to string and displayed in a TextBlock.

C#
void HitTestOnFlexChart(Point p)
{
 // Show information about chart element under mouse/touch.
 var ht = flexChart.HitTest(p);
 var result = new StringBuilder();
 result.AppendLine(string.Format("Chart element: {0}", ht.ChartElement));
 if (ht.Series != null)
 result.AppendLine(string.Format("Series name: {0}", ht.Series.Name));
 if (ht.PointIndex > 0)
 result.AppendLine(string.Format("Point index= {0:0}", ht.PointIndex));
 if (ht.Distance > 0)
 result.AppendLine(string.Format("Distance= {0:0}", ht.Distance));
 if (ht.X != null)
 result.AppendLine(string.Format("X= {0:0:0}", ht.X));
 if (ht.Y != null)
 result.AppendLine(string.Format("Y= {0:0:0}", ht.Y));
 tbPosition1.Text = result.ToString();
}

Back to Top

FlexChart Elements
You can customize the elements of a chart to make the chart look more professional and visually appealing.

FlexChart consists of Axes, Legend, and Titles. These elements have already been discussed briefly in FlexChart
Fundamentals.

Below are the sections that focus upon the customization of these elements with respect to FlexChart.

FlexChart Axes
FlexChart Axes Labels
Annotations
FlexChart Legend
FlexChart Series
FlexChart Data Labels
Multiple Plot Areas

FlexChart for UWP 78

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexChart Axes
Charts generally have two axes for measuring and categorizing data: a vertical axis (Y-axis) and a horizontal axis (X-
axis). The vertical axis is also known as value axis, and the horizontal axis is also called category axis.

Not all charts depict axes in the same manner. For instance, Scatter charts and Bubble charts depict numeric values on
the vertical axis as well as the horizontal axis to represent discreet or continuous numerical data. A real-time example
could be how Internet Usage (Hours per Week) is plotted against different Age Groups. Here, both the items will have
numeric values, and data points will be plotted corresponding to their numeric values on X and Y axes.

Other charts, such as Line, Column, Bar, and Area display numeric values on the vertical axis and categories on the
horizontal axis. A real-time example could be how Internet Usage (Hours per Week) is plotted against different
regions. Here, regions will be textual categories plotted on the horizontal axis.

However, FlexChart provides great flexibility, thereby allowing you to display numeric values on both X and Y axes
even in case of Bar, Line, and Area charts. Also, FlexChart doesn't require any additional settings to display different
types of values.

An axis in FlexChart is represented by the Axis class. You can access the primary axes of FlexChart by using the AxisX
and the AxisY property.

The primary X-axis is rendered horizontally at the bottom, and the primary Y-axis is rendered vertically at the left. You
can, however, create exceptions to this rule by customizing the primary axes and also by using multiple axes.

While working with FlexChart, you can change the way tick marks and axes labels appear. You can even lessen the
number of axes labels on X and Y axes by specifying the number of units between values on the axes. In addition, you
can modify the alignment and orientation of the labels and change the format of the numbers to be depicted. You can
style the axes and change their position as per your requirements as well.

The sections, which are mentioned below, explain different customizations and modifications possible with respect to
the FlexChart axes.

Axes Position
Axes Title
Axes Tick Marks
Axes Gridlines
Axes Bounds
Axes Reversing
Axis Binding
Multiple Axes

Axes Position
FlexChart lets you change the position of the axes by using the Position property.

The Position property for an axis can be set to the following values in the Position enumeration:

Property Description

Position.Auto Positions the item automatically.

Position.Bottom Positions the item at the bottom.

Position.Left Positions the item at the left.

Position.None Hides the item.

Position.Right Positions the item at the right.

Position.Top Positions the item at the top.

FlexChart for UWP 79

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Here is the sample code:

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis Title="Fruits" AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>
<Chart:C1FlexChart.AxisY>
 <Chart:Axis AxisLine="True" Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

Axes Title
After creating a chart, you can add a title to any vertical or horizontal axis in the chart. An axis title displays
information regarding what is displayed along the axis. And it enables end-users viewing the chart to understand what
the data is about. It is however not possible to add axis titles to charts without axes, for instance Pie Chart.

In FlexChart, you can set the axis title by using the Title property, which accepts a string.

See the following code snippet:

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis Title="Fruits" AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>
<Chart:C1FlexChart.AxisY>
 <Chart:Axis AxisLine="True" Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

FlexChart for UWP 80

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Tick Marks
Axes tick marks are the points at which labels are plotted on the axes. In other words, they are the small marks that identify the position of
items on the axes. In addition, they divide axes into equal sections by a value determined by specific properties of an axis. And their
location controls the location of grid lines.

When it comes to axes tick marks, a chart is rendered with two types basically: major tick marks and minor tick marks. Major tick marks are
rendered automatically when an axis intersects the interval grid lines. And minor tick marks are rendered between major tick marks.

By default, FlexChart sets up X-axis with major tick marks and Y-axis with no tick marks.

You can, however, use the MajorTickMarks and the MinorTickMarks property to manipulate the position of the major tick marks and the
minor tick marks respectively.

Both the properties can be set to any of the following TickMark enumeration values:

Values Description

TickMark.Cross Tick marks cross the axis.

TickMark.Inside Tick marks appear inside the plot.

TickMark.None Tick marks don't appear.

TickMark.Outside Tick marks appear outside the plot.

See the following code sample:

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis MajorTickMarks="Inside" Title="Fruits" AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>
<Chart:C1FlexChart.AxisY>
 <Chart:Axis MajorTickMarks="Inside" AxisLine="True" Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

FlexChart for UWP 81

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Grid Lines
Axes grid lines extend from any vertical or horizontal axis across the plot area of the chart. They are displayed for major
and minor units and aligned with major and minor tick marks displayed on the axes. These auxiliary lines form a
grid that improves the readability of the chart, especially when you are looking for exact values.

Primarily, axes grid lines are of two types: major grid lines and minor grid lines. The lines perpendicular to major tick
marks at major unit intervals are major gridlines, while those perpendicular to minor tick marks at minor unit intervals
are minor grid lines.

In FlexChart, major grid lines are controlled by the MajorGrid property, while minor grid lines are controlled by
the MinorGrid property. In addition, the appearances of the major and the minor grid lines are controlled by
the MajorGridStyle and the MinorGridStyle property respectively.

Using these properties, you can display horizontal as well as vertical grid lines to make the FlexChart data easier to read.

The code below illustrates how to set these properties.

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis MajorGrid="True" MajorTickMarks="Inside" Title="Fruits" AxisLine="True"
 Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>
<Chart:C1FlexChart.AxisY>
 <Chart:Axis MajorGrid="True" MajorTickMarks="Inside" AxisLine="True"
 Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

FlexChart for UWP 82

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Bounds
If you want to display a specific portion of the chart in terms of data, you can do so by fixing the axes bounds. With axes
bounds, the chart determines the extent of each axis by reckoning the lowest and the highest data values.

FlexChart enables you to set axes bounds by setting the Min and the Max property for the axes.

The following code shows how to set the Min and the Max property:

XAML

<Chart:C1FlexChart.AxisY>
 <Chart:Axis Min="0" Max="8" MajorGrid="True" MajorTickMarks="Inside" AxisLine="True"
 Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

FlexChart for UWP 83

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Reversing
When a dataset contains X or Y values that lie in a large range, the general chart setup sometimes doesn't display the
information most effectively. Often, the chart data may look more appealing with the axes reversed.

You can reverse the axes in FlexChart by using the Reversed property.

Setting the Reversed property for the axes to True reverses the axes. This means that the maximum value along the axis
takes the place of the minimum value, and the minimum value along the axis takes the place of the maximum value.

Initially, the chart displays the minimum value on the left of X-axis, and at the bottom of Y-axis. However, the Reversed
property for the axes juxtaposes the maximum and minimum values.

Here is the sample code:

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis Reversed="True" MajorGrid="True" MajorTickMarks="Inside" Title="Fruits"
 AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>
<Chart:C1FlexChart.AxisY>
 <Chart:Axis Reversed="True" Min="0" Max="8" MajorGrid="True" MajorTickMarks="Inside"
 AxisLine="True" Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

FlexChart for UWP 84

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axis Binding
Axis binding enables you to override the default axes labels that the axes display based on the chart binding. In other
words, axis binding lets you show axes labels from a data source other than the chart data source.

FlexChart allows you to bind axes to a data source using the ItemsSource property of the Axis class. Specify the fields
containing values for the axes labels in the data source using the Binding property of the Axis class.

The following image displays labels on Y-axis from the fields not part of the chart data source.

FlexChart for UWP 85

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code uses revenue data of an organization in a given year. The chart data source contains the revenue
data in the Euro currency. To replace Euro currency axis labels with USD currency labels, the code binds Y-axis to a
data source containing USD data.

Visual Basic

' bind Y axis to a data source
flexChart.AxisY.ItemsSource = AxisData

' specify fields containing values for axis labels
flexChart.Binding = "Value,Text"

C#

// bind Y axis to a data source
flexChart.AxisY.ItemsSource = AxisData;

// specify fields containing values for axis labels
flexChart.Binding = "Value,Text";

Multiple Axes
Although a chart contains primary X and Y axes, you may still sometimes require additional axes to fulfill your requirements. For example, you may want to plot series of a significantly
different range of values in a chart. In addition, you may want to plot entirely different values (of different types) within a single chart. With just two axes, it would not be possible to
display data in such scenarios effectively. In such cases, using secondary axes would come in handy. To use secondary axes, you can plot multiple series in a single chart with their own X
and Y axes.

FlexChart allows you to work with multiple axes easily. You just need to create additional axes as per your requirements, and then bind the same to the AxisX or the AxisY property of a
series.

The following image shows two Y axes. one primary and another auxiliary, along with X axis in FlexChart.

The following code snippet demonstrates how you can create and use multiple axes in FlexChart:

XAML

<Chart:C1FlexChart x:Name="flexChart" ItemsSource="{Binding DataContext.Data}" BindingX="Time"
 Grid.Row="1">
 <Chart:Series x:Name="precSeries" SeriesName="prec" Binding="Precipitation">
 <Chart:Series.AxisY>
 <Chart:Axis Position="Right" Min="0" Max="100" Title="precipitation, mm" MajorGrid="False"/>
 </Chart:Series.AxisY>
 </Chart:Series>
 <Chart:Series x:Name="avgSeries" SeriesName="t, avg" ChartType="LineSymbols" Binding="Temperature"/>
 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Title="temperature, C" Min="0" MajorGrid="True" AxisLine="False" Position="Left" MajorTickMarks="None"></Chart:Axis>
 </Chart:C1FlexChart.AxisY>
</Chart:C1FlexChart>

FlexChart Axes Labels
Axes labels are the values that appear along the axes. By default, axes labels are determined on the basis of the axes
data points and the generated intervals.

FlexChart for UWP 86

Copyright © 2018 GrapeCity, Inc. All rights reserved.

In FlexChart, you can change the look, format, and alignment of the axes labels using the properties listed below.

Property Description

Format Specifies the format string used for the axes labels.

LabelAlignment Sets the alignment of the axes labels.

LabelAngle Specifies the rotation angle of the labels.

Labels Indicates whether the axes labels are visible.

OverlappingLabels Indicates how to handle overlapping labels.

The following sections discuss how to work with these properties:

Axes Labels Format
Axes Labels Rotation
Axes Labels Visibility
Axes Labels Overlap
Axis Grouping

Axes Labels Format
By default, axis labels are determined automatically based on the data points and generated intervals of the axes.
However, you can still format the axis labels by using the Format property to cover your requirements better.

The Format property accepts values from the Standard .Net Format string.

Axes Labels Rotation
When the horizontal axis is crowded with axis labels, you need to rotate the labels to avoid the cluttered look. Rotating the labels allows you
to accommodate a large number of labels in a limited space on the axis.

You can use the LabelAngle property to rotate axes labels in anticlockwise direction in FlexChart.

See the code given below for reference.

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis LabelAngle="45" Reversed="True" MajorGrid="True" MajorTickMarks="Inside" Title="Fruits"
 AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>

FlexChart for UWP 87

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Labels Visibility
FlexChart enables you to show or hide axis labels with the Labels property. You can set the property to False for a specific axis, if you want to
hide axis labels along the axis. The default value of the Labels property is True.

See the following code snippet:

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis Labels="False" LabelAngle="45" Reversed="True" MajorGrid="True" MajorTickMarks="Inside"
 Title="Fruits" AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>

Axes Labels Overlap
In case there are less number of data points and shorter label text, axis labels are rendered without any overlapping. However, axis labels may
overlap due to its long text or large numbers of data points in chart.

To manage overlapped axis labels in FlexChart, use the following options.

FlexChart for UWP 88

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Trim or Wrap Axis Labels
Staggered Axis Labels

Trim or Wrap Axis Labels

In case there are overlapping labels in the chart for any reason, you can manage the same using the OverlappingLabels property.

The OverlappingLabels property accepts the following values in the OverlappingLabels enumeration:

Property Description

Auto Hides overlapping labels.

Show Shows all labels including the overlapping ones.

Trim Trim label, if it's larger than the available width.

WordWrap Wrap label, if it's larger than the available width.

Here is the code snippet:

XAML

<Chart:C1FlexChart.AxisX>
 <Chart:Axis OverlappingLabels="Auto" Labels="False" LabelAngle="45" Reversed="True"
 MajorGrid="True" MajorTickMarks="Inside" Title="Fruits" AxisLine="True" Position="Bottom"></Chart:Axis>
</Chart:C1FlexChart.AxisX>
<Chart:C1FlexChart.AxisY>
 <Chart:Axis OverlappingLabels="Show" Reversed="True" Min="0" Max="8" MajorGrid="True"
 MajorTickMarks="Inside" AxisLine="True" Position="Right"></Chart:Axis>
</Chart:C1FlexChart.AxisY>

Staggered Axis Labels

Another way to handle overlapping of axis labels is to stagger them for better visibility. Staggered axis labels can generated by
using StaggeredLines property. This property accepts an integer value and the default value is set to 1.

// Set StaggeredLines property
flexChart1.AxisX.StaggeredLines = 2;

C#

Axis Grouping

FlexChart for UWP 89

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexChart provides the flexibility to group axis labels as per the requirement. Axis grouping helps in improving the
readability of the chart and makes it easy for analyzing data from different levels. Implementation of axis grouping in
FlexChart depends on the data you are using, it can be either categorical data, numerical data, or DateTime data.

FlexChart supports the following axis grouping depending upon the data.

Categorical Axis Grouping
Learn how to perform axis grouping while working with categorical data.

Numerical Axis Grouping
Learn how to perform axis grouping while working with numerical data.

DateTime Axis Grouping
Learn how to perform axis grouping while working with date time format data.

Categorical Axis Grouping
Categorical axis grouping is applicable in scenarios where the data displayed on the axis is categorical in
nature. Categorical data can either be flat or hierarchical. In case you are using flat data, use the GroupNames
property to apply axis grouping. And, in case you are using hierarchical data, use the GroupNames
and GroupItemsPath property to apply axis grouping. Moreover, FlexChart allows you to set the group separator using
the GroupSeparator property.

The following image shows how FlexChart appears after setting the categorical axis grouping using flat data.

Add the following code in Index.xaml.

XAML

FlexChart for UWP 90

Copyright © 2018 GrapeCity, Inc. All rights reserved.

<Chart:C1FlexChart x:Name="flexChart" ChartType="Column" BindingX="Country"
 ItemsSource="{Binding Data}" ToolTipContent="{}{x}{seriesName}
{y:n0}" Header="World GDP Ranking" Grid.Row="1" >
 <Chart:C1FlexChart.HeaderStyle>
 <Chart:ChartStyle FontSize="20" FontFamily="GenericSansSerif"/>
 </Chart:C1FlexChart.HeaderStyle>
 <Chart:Series SeriesName="GDP, current prices" Binding="CurrentPrices"/>
 <Chart:Series SeriesName="GDP based on PPP valuation"
Binding="PPPValuation"/>
 <Chart:C1FlexChart.AxisX>
 <Chart:Axis GroupSeparator="Vertical" GroupNames="Continent" />
 </Chart:C1FlexChart.AxisX>
 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Title="GDP (billion USD)" MajorGrid="True"/>
 </Chart:C1FlexChart.AxisY>
 </Chart:C1FlexChart>

Numerical Axis Grouping
Numerical axis grouping is applicable in scenarios where the data displayed on the axis represents numeric values. To
implement numerical axis grouping in FlexChart, set the GroupProvider property to an object of the
IAxisGroupProvider implementation.

In the example code below, we have created a class NumericAxisGroupProvider that implements the
IAxisGroupProvider interface. The interface provides GetLevels method that returns the group levels and GetRanges
method that returns the group ranges for a given level. Moreover, FlexChart allows you to set the group separator
using the GroupSeparator property.

The following image shows how FlexChart appears after setting the numerical axis grouping.

Add the following code in Index.xaml.

FlexChart for UWP 91

Copyright © 2018 GrapeCity, Inc. All rights reserved.

XAML

<Chart:C1FlexChart x:Name="flexChart" ChartType="SplineSymbols" BindingX="Month"
 ItemsSource="{Binding Data}" Grid.Row="1" >
 <Chart:Series Binding="Temperature"/>
 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Title="Temperature in Celsius" MajorGrid="True"
GroupSeparator="Horizontal" Min="0" Max="40" Position="Right"/>
 </Chart:C1FlexChart.AxisY>
</Chart:C1FlexChart>

XAML

public NumericAxisGrouping()
 {
 InitializeComponent();
 flexChart.AxisY.GroupProvider = new NumericAxisGroupProvider();
 }
 class NumericAxisGroupProvider : IAxisGroupProvider
 {
 public int GetLevels(IRange range)
 {
 return 1;
 }

 public IList<IRange> GetRanges(IRange range, int level)
 {
 var ranges = new List<IRange>();
 if (level == 1)
 {
 ranges.Add(new DoubleRange("Low", 0, 10));
 ranges.Add(new DoubleRange("Medium", 10, 25));
 ranges.Add(new DoubleRange("High", 25, 40));
 }
 return ranges;
 }
 }

DateTime Axis Grouping
DateTime axis grouping is applicable in scenarios where the data displayed on the axis represents date time values. To
implement date axis grouping in FlexChart, set the GroupProvider property to an object of the IAxisGroupProvider
implementation.

In the example code below, we have created a class DateTimeGroupProvider that implements the
IAxisGroupProvider interface. The interface provides GetLevels method that returns the group levels and GetRanges
method that returns the group ranges for a given level. Moreover, FlexChart allows you to set the group separator
using the GroupSeparator property.

FlexChart for UWP 92

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 return 2;
 }

 public IList<IRange> GetRanges(IRange range, int level)
 {
 var timeRange = range as TimeRange;
 if (timeRange == null)
 return null;
 var min = timeRange.TimeMin;
 var max = timeRange.TimeMax;
 var span = max - min;

 List<IRange> ranges = new List<IRange>();
 DateTime start;
 if (level == 1)
 {
 start = new DateTime(min.Year,
((int)Math.Ceiling((double)min.Month / 3) - 1) * 3 + 1, 1);
 ranges = Enumerable.Range(0, ((max.Month - start.Month) / 3 + 1)
+ 4 * (max.Year - start.Year)).Select(a => start.AddMonths(a * 3))
 .TakeWhile(a => a <= max)
 .Select(a => (IRange)(new TimeRange("Q" +
(int)Math.Ceiling((double)a.Month / 3), a, a.AddMonths(3)))).ToList();
 }
 else
 {
 start = new DateTime(min.Year, 1, 1);
 ranges = Enumerable.Range(0, max.Year - start.Year + 1).Select(a
=> start.AddYears(a))
 .TakeWhile(a => a <= max)
 .Select(a => (IRange)(new TimeRange(a.ToString("yyyy"), a,
a.AddYears(1)))).ToList();
 }

 return ranges;
 }
 }

Annotations
Annotations are visual elements used to mark or highlight specific areas in a chart. They include texts, images, and
shapes that can be used to display and highlight important information about specific data points. The primary
purpose of using annotations in a chart is to communicate the chart data clearly.

FlexChart provides eight types of annotations in three categories: shape, text, and image annotations. Each annotation
type allows you to make chart data informative in different ways. Those include displaying information in circle,
rectangle, polygon, and other shapes, and highlighting data through explanatory notes or images.

In addition, annotations in FlexChart can be positioned in the chart using attachment modes, such as Absolute,
Relative, Data Index, and Data Coordinate. Both annotations and their content are customizable through styling
properties of font, color, and stroke. They can be made interactive by adding tooltips, especially image annotations.

FlexChart for UWP 94

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To explore annotations, refer to the following sections:

Adding Annotations
Positioning Annotations
Customizing Annotations
Types of Annotations
Creating Callouts

Adding Annotations
FlexChart enables you to add annotations in an annotation layer, which contains the collection of all annotations in
the chart.

To add annotations in FlexChart, follow these steps:

1. Create an annotation layer in FlexChart.
2. Add the annotation instance in the annotation layer.

To create an annotation layer in FlexChart, create an instance of the AnnotationLayer class and add it to the Layers
collection of FlexChart. To add an annotation into the annotation layer, create an instance of the annotation class
based on its type. Add the annotation instance to the Annotations collection of the annotation layer.

The following code snippet illustrates how to create and add the Rectangle annotation to Annotation Layer in
FlexChart.

XAML
<Chart:C1FlexChart.Layers>
 <Annotation:AnnotationLayer>
 <Annotation:AnnotationLayer.Annotations>

FlexChart for UWP 95

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <Annotation:Rectangle Content="Maximum Tax Revenue201345000">
 </Annotation:Rectangle>
 </Annotation:AnnotationLayer.Annotations>
 </Annotation:AnnotationLayer>
</Chart:C1FlexChart.Layers>

Positioning Annotations
In FlexChart, positioning annotations includes two mechanisms (not necessarily in the same order), as follows:

Positioning annotations relative to the chart.
Positioning annotations relative to the data points.

Positioning Annotations Relative to the Chart

Positioning annotations relative to the chart includes specifying the attachment and the location of the annotations in
the chart.

FlexChart provides four ways of attaching annotations, as follows:

Absolute: This attachment indicates that the annotation is fixed and cannot move, irrespective of the resizing
of the application. To set the absolute attachment, set the Attachment property to Absolute from
the AnnotationAttachment enum. To set the location of the annotation in the absolute attachment mode, set
the annotation’s coordinates in pixels.
DataCoordinate: This attachment indicates that the annotation is attached to a specific data point. To set this
attachment, set the Attachment property to DataCoordinate from the AnnotationAttachment enum. To set the
annotation’s location, specify the annotation’s data coordinates by setting the Location property.
DataIndex: This attachment indicates that the annotation is attached to the series as per the series index and
to the point as per the point index. To set this attachment, set the Attachment property to DataIndex from the
AnnotationAttachment enum. To specify the annotation’s location, set the SeriesIndex and the PointIndex
properties.
Relative: This attachment indicates that the annotation retains its location and dimensions relative to the chart.
To set this attachment, set the Attachment property to Relative from the AnnotationAttachment enum. Specify
the annotation’s location using the Location property in terms of relative position inside the chart where (0, 0)
is the top left corner and (1, 1) is the bottom right corner.

Positioning Annotations Relative to the Data Points

Specify the position of annotations with respect to the data points by setting the Position property from
the AnnotationPosition enum.

The following image displays the Rectangle annotation highlighting the maximum tax revenue in the year, 2013.

FlexChart for UWP 96

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code compares tax revenue data of nine consecutive years to display the maximum tax revenue. The
code shows how to specify the attachment, location, and position of the Rectangle annotation to Annotation Layer in
FlexChart.

XAML
<Annotation:Rectangle Content="Maximum Tax Revenue201345000"
 Attachment="DataIndex"
 SeriesIndex="0"
 PointIndex="5"
 Position="Top"
 Width="140"
 Height="50">
</Annotation:Rectangle>

Customizing Annotations
FlexChart annotations are customizable in terms of dimensions (for shapes), scaling (for images), and content style (for
all except images).

Dimensions: Change the dimensions of all shapes using dimension properties of the respective classes. For
instance, to change the dimensions of the Rectangle annotation, set the Height and the Width properties of
the Rectangle class.
Style: Customize the appearance of shape and text annotations in terms of color, font, and stroke by using
the Style property of the AnnotationBase class.
Content Style: Customize the appearance of content present in shape annotations by using the ContentStyle
property of the Shape class.

FlexChart for UWP 97

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following image displays the Rectangle annotation customized to further highlight the maximum tax revenue in
the year, 2013.

The following code compares tax revenue data of nine consecutive years to display the maximum tax revenue. The
code shows how to set the Rectangle annotation's dimensions, customize its appearance and content.

XAML
<Annotation:Rectangle.Style>
 <Chart:ChartStyle Fill="DarkBlue"
 Stroke="OrangeRed"
 StrokeThickness="2"
 StrokeDashArray="1,2"
 FontFamily="GenericSansSerif"
 FontWeight="Normal" />
</Annotation:Rectangle.Style>
<Annotation:Rectangle.ContentStyle>
 <Chart:ChartStyle Stroke="Yellow"
 FontFamily="GenericSansSerif"
 FontSize="8.5"
 FontWeight="Bold">
 </Chart:ChartStyle>
</Annotation:Rectangle.ContentStyle>

Types of Annotations
FlexChart provides eight types of annotations in three categories, as follows:

FlexChart for UWP 98

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Shapes: Include useful information at specific areas and highlight the areas within chart data by using shapes,
such as Circle, Ellipsis, Rectangle, Square, Line, or Polygon.
Text: Add descriptive notes or informative comments at specific points in the chart by using text annotations.
Image: Add self-explanatory images to readily communicate chart data by using image annotations.

To explore different types of annotations provided by FlexChart, refer to the following sections:

Shape Annotations
Text Annotations
Image Annotations

Shape Annotations
Shapes are beneficial for drawing the user’s attention at specific areas where important data is highlighted.

FlexChart offers six shape annotations, as follows:

Circle
Ellipsis
Line
Polygon
Rectangle
Square

The following image shows the Line annotation highlighting the maximum customs duty and fees in the year, 2016.

FlexChart for UWP 99

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create any of these specific shapes, create an instance of the shape annotation’s class. Set the dimensions of the shape
by using the dimension properties from the corresponding class. For example, to create a line annotation, create an
instance of the Line class. Specify the length of the line annotation or rotate it by setting the Start and the End properties
of the Line class.

For any shape annotation, specify the text by setting the Content property of the Shape class, the base class for all shape
annotations. In addition, other shapes like triangles and arrows can be created using the Polygon annotation in FlexChart.

The following code uses customs tax data on importation of goods for representing its increment or decrement for the
year, 2016. The code shows how to add, position, and customize the Line annotation in FlexChart.

XAML
<Chart:C1FlexChart.Layers>
 <Annotation:AnnotationLayer>
 <Annotation:AnnotationLayer.Annotations>
 <Annotation:Line.ContentStyle Content="Maximum Customs Duty and Fees: 31000"
 Attachment="DataCoordinate"
 Start="0,31000"
 End="12,31000"
 Position="Top">
 <Annotation:Line.Style>
 <Chart:ChartStyle Stroke="DarkTurquoise"
 StrokeThickness="3" />
 </Annotation:Line.Style>
 <Annotation:Line.ContentStyle>
 <Chart:ChartStyle Stroke="Black"
 FontFamily="GenericSansSerif"
 FontSize="9"
 FontWeight="Bold"/>
 </Annotation:Line.ContentStyle>
 </Annotation:Line>
 </Annotation:AnnotationLayer.Annotations>
 </Annotation:AnnotationLayer>
</Chart:C1FlexChart.Layers>

FlexChart for UWP 100

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Text Annotation
Text annotations let you add additional information at specific data points to make the data informative. FlexChart lets you add single line as well
as multiline text in text annotations.

The following image shows the Text annotation displaying the maximum population growth rate between 1961 and 2011.

To work with text annotation in FlexChart, create an instance of the Text class and set the Content property for the instance.

The following code compares population growth rates at specific years in five consecutive decades. The code shows how to add, position, and
customize the Text annotation in FlexChart.

XAML
<Chart:C1FlexChart.Layers>
 <Annotation:AnnotationLayer>
 <Annotation:AnnotationLayer.Annotations>
 <Annotation:Text Content="Maximum Population Growth Over Preceding Year
(24.7 From 21.6)"
 Attachment="DataCoordinate"
 Location="1961,25.15"
 Position="Top">
 <Annotation:Text.Style>
 <Chart:ChartStyle Stroke="Green"
 FontFamily="GenericSansSerif"
 FontSize="8"
 FontWeight="Bold" />
 </Annotation:Text.Style>
 </Annotation:Text>
 </Annotation:AnnotationLayer.Annotations>
 </Annotation:AnnotationLayer>
</Chart:C1FlexChart.Layers>

Image Annotation
Image annotations create visual impact and allow users to quickly interpret the chart data. A great way to communicate informative
data through image annotations is by adding tooltips.

The following image displays highest earning of a fast food chain among others using a tooltip with an image annotation.

FlexChart for UWP 101

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 </Annotation:Image>
 </Annotation:AnnotationLayer.Annotations>
 </Annotation:AnnotationLayer>
</Chart:C1FlexChart.Layers>

Creating Callouts
Callouts in charts are used to display the details of a data series or individual data points in an easy-to-read format. Callouts being connected with data points, help better visualize and comprehend chart
data by minimizing visual disturbances in the chart area. In FlexChart, Polygon type annotations can be customized to create chart callouts with line or arrow connectors.

In this example, we are using sample created in the Quick Start topic to further create an arrow callout and polygon annotation with line connection. This is done with the help of the Points property and
the ContentCenter property that define the coordinates of polygon vertices and annotation content center respectively.

To create callouts connected with respective data points, follow these steps:

Step 1: Create annotation with line connector
Step 2: Create arrow annotation callout
Step 3: Render the annotations in chart

The following image illustrates polygon annotations connected to data points through arrow and line connectors.

Step 1: Create annotation with line connector

To create a line callout, use the following code.

Visual Basic

 ...
 lineCallouts.SeriesIndex = 2
 lineCallouts.PointIndex = 2
 lineCallouts.ContentCenter = New Point(-50, 75)
 Dim lineCalloutsPoints As PointCollection = New PointCollection()
 lineCalloutsPoints.Add(New Point(0, 0))
 lineCalloutsPoints.Add(New Point(25, -25))
 lineCalloutsPoints.Add(New Point(50, -25))
 lineCalloutsPoints.Add(New Point(50, -50))
 lineCalloutsPoints.Add(New Point(25, -75))
 lineCalloutsPoints.Add(New Point(0, -50))
 lineCalloutsPoints.Add(New Point(0, -25))
 lineCalloutsPoints.Add(New Point(25, -25))
 lineCalloutsPoints.Add(New Point(0, 0))
 lineCallouts.Points = lineCalloutsPoints
 flexChart.Invalidate()
End Sub

C#

 ...
 // Create a line callout annotation of polygon type
 lineCallout.SeriesIndex = 2;
 lineCallout.PointIndex = 2;
 lineCallout.ContentCenter = new Point(25, -40);
 // Create a list of points for the line callout annotation
 var lineConnectorPoints = new PointCollection();
 lineConnectorPoints.Add(new Point(0, 0));
 lineConnectorPoints.Add(new Point(25, -25));
 lineConnectorPoints.Add(new Point(50, -25));
 lineConnectorPoints.Add(new Point(50, -50));
 lineConnectorPoints.Add(new Point(25, -75));
 lineConnectorPoints.Add(new Point(0, -50));
 lineConnectorPoints.Add(new Point(0, -25));
 lineConnectorPoints.Add(new Point(25, -25));
 lineConnectorPoints.Add(new Point(0, 0));
 lineCallout.Points = lineConnectorPoints;
 flexChart.Invalidate();
}

Back to Top

Step 2: Create arrow annotation callout

1. To create an arrow callout use the following code.

FlexChart for UWP 103

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Back to Top

Step 3: Render the annotations in chart

To Render the annotations in chart, follow these steps:

1. Define global field of render engine.
Visual Basic

Dim _engine As IRenderEngine
C#

IRenderEngine _engine;

2. To create an instance of AnnotationLayer and add the annotation callouts in it, use the following code.
XAML

 <Chart:C1FlexChart.Layers>
 <Annotation:AnnotationLayer>
 <Annotation:AnnotationLayer.Annotations>
 <Annotation:Polygon x:Name="arrowCallout" Content="Low"
 SeriesIndex="0" PointIndex="1" Attachment="DataIndex">
 <Annotation:Polygon.Style>
 <Chart:ChartStyle Fill="#C800FF00" Stroke="Green"/>
 </Annotation:Polygon.Style>
 </Annotation:Polygon>

 <Annotation:Polygon x:Name="lineCallout" Content="High"
 SeriesIndex="0" PointIndex="4" Attachment="DataIndex">
 <Annotation:Polygon.Style>
 <Chart:ChartStyle Fill="#C8FF0000" Stroke="Red" />
 </Annotation:Polygon.Style>
 </Annotation:Polygon>
 </Annotation:AnnotationLayer.Annotations>
 </Annotation:AnnotationLayer>
</Chart:C1FlexChart.Layers>

3. To render the callouts use the following code in the Rendered event of chart.
Visual Basic

Private Sub flexChart_Rendered(sender As Object, e As RenderEventArgs)
 If (_engine Is Nothing) Then
 _engine = e.Engine
 SetUpAttotations()
 End If
End Sub

C#
private void flexChart_Rendered(object sender, C1.Xaml.Chart.RenderEventArgs e)
{
 if (_engine == null)
 {
 _engine = e.Engine;
 SetUpAnnotations();
 }
}

Back to Top

FlexChart Legend
By default, FlexChart doesn't display the Legend until the series are specified with the relevant names. Once you've set
the series with their relevant names, the Legend is displayed by FlexChart.

Here are the properties you can use to customize the overall appearance of the Legend:

Property Description

LegendPosition Determines the position of the legend.

LegendOrientation Changes the orientation of the legend.

LegendTitle Changes the title of the legend.

FlexChart provides methods and properties to customize its legend entries, so that charts are easy to comprehend.
Following topics discuss how to change the behavior of FlexChart legend.

Legend Text Wrap
Legend Grouping

Legend Text Wrap
Legend text wrap is a feature to shorten the legend entries by either truncating or wrapping them into multiple
lines. This feature gives user the flexibility to effectively utilize chart display area by adjusting the space occupied
by legends.

FlexChart for UWP 106

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code uses sample created in Quick Start. The code shows how to implement legend text wrapping in
FlexChart.

XAML

<Chart:C1FlexChart x:Name="flexChart"
 ItemsSource="{Binding DataContext.Data}"
 BindingX="Fruit"
 LegendTextWrapping="Wrap"
 LegendPosition="Right"
 LegendMaxWidth="80">
 <Chart:Series SeriesName="Label 1 (The quick brown fox jumps over the lazy dog)"
 Binding="March"/>
 <Chart:Series SeriesName="Label 2 (The quick brown fox jumps over the lazy dog)"
 Binding="April"/>
 <Chart:Series SeriesName="Label 3 (The quick brown fox jumps over the lazy dog)"
 Binding="May"/>
</Chart:C1FlexChart>

Visual Basic

flexChart.LegendTextWrapping = C1.Chart.TextWrapping.Wrap
flexChart.LegendPosition = C1.Chart.Position.Right
flexChart.LegendMaxWidth = 80

C#

this.InitializeComponent();
flexChart.LegendTextWrapping = C1.Chart.TextWrapping.Wrap;
flexChart.LegendPosition = C1.Chart.Position.Right;
flexChart.LegendMaxWidth = 80;

Legend Grouping

FlexChart for UWP 108

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <Chart:Series SeriesName="Q1" Binding="ProfitQ1" LegendGroup="Profit" StackingGroup="1" />
 <Chart:Series SeriesName="Q2" Binding="SalesQ2" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q2" Binding="ProfitQ2" LegendGroup="Profit" StackingGroup="1" />
 <Chart:Series SeriesName="Q3" Binding="SalesQ3" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q3" Binding="ProfitQ3" LegendGroup="Profit" StackingGroup="1" />
 <Chart:Series SeriesName="Q4" Binding="SalesQ4" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q4" Binding="ProfitQ4" LegendGroup="Profit" StackingGroup="1" />
 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Format="$0M"
 Labels="True"
 Title="Million $"
 Min="0" MajorGrid="True"
 AxisLine="False"
 Position="Left"
 MajorTickMarks="None" />
 </Chart:C1FlexChart.AxisY>

 <!--Styling the legend group headers-->
 <Chart:C1FlexChart.LegendGroupHeaderStyle>
 <Chart:ChartStyle Stroke="DarkBlue"
 FontFamily="Cambria"
 FontStyle="Normal"
 FontSize="15" FontWeight="Bold"/>
 </Chart:C1FlexChart.LegendGroupHeaderStyle>
</Chart:C1FlexChart>

Custom Legend Icon
FlexChart allows you to apply custom image or icon for customizing the legend items. To enable FlexChart to display
custom legend icon, implement the GetLegendItemImageSource method provided by ISeries interface. This method
primarily accepts two parameters; index and _size. The index parameter refers to the legend item position and _size
parameter refers to the default legend icon size.

In the example code below, we have implemented the GetLegendItemImageSource method to customize the image
size and draw a border around it. This method then returns the image object. To apply the custom legend icon add
object of the class SeriesWithPointLegendItems to the chart Series collection.

The image shows how FlexChart appears after using custom legend icon.

FlexChart for UWP 110

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 return LegendIconImage;
 }
 }
 }
 private static List<SmartPhoneVendor> SmartPhoneVendors()
 {

 vendors.Add(new SmartPhoneVendor()
 {
 Name = "Apple",
 Color = Color.FromArgb(136, 189, 230),
 Sales = 350,
 });
 vendors.Add(new SmartPhoneVendor()
 {
 Name = "LG",
 Color = Color.FromArgb(251, 178, 88),
 Sales = 120,
 });

 vendors.Add(new SmartPhoneVendor()
 {
 Name = "Samsung",
 Color = Color.FromArgb(188, 153, 199),
 Sales = 280,
 });

 vendors.Add(new SmartPhoneVendor()
 {
 Name = "Xiaomi",
 Color = Color.FromArgb(240, 126, 110),
 Sales = 68,
 });

 return vendors;
 }
 public class SmartPhoneVendor
 {
 public string Name { get; set; }
 public double Sales { get; set; }
 public Color Color { get; set; }
 }
 }

FlexChart Series
A series is a set of data or more specifically related data points that are plotted on a chart.

In FlexChart, a series is represented by the Series object, which provides the entire data plotted on the chart. And
the C1Flexchart.Series collection comprises all data series (Series objects) in the control.

You can assign any of the following properties to a series in FlexChart:

FlexChart for UWP 113

Copyright © 2018 GrapeCity, Inc. All rights reserved.

An X-axis (Series.AxisX)
A Y-axis (Series.AxisY)
A property containing Y values for the series (Series.Binding)
A property containing X values for the series (Series.BindingX)
A chart type (Series.ChartType)
A collection of objects containing the series data (Series.ItemsSource)
A name (Series.SeriesName)

A series consists of a collection of data points that you can customize using the following properties:

To set the shape of the marker to be used for each data point in the series (Series.SymbolMarker)
To set the size of the symbol used to render the series (Series.SymbolSize)
To set the symbol style used in the data points in the series (Series.SymbolStyle)

Once you have set these properties in a series, the same settings are inherited by all data points.

Here are the links to key information regarding the Series object in FlexChart:

Creating and Adding a Series
Adding Data to Series
Emphasizing Different Types of Data
Customizing Series

Creating and Adding Series
By default, FlexChart for UWP displays three series containing dummy data at design-time as well as run-time.
However, you can provide your own data and display the series with that data. For information on how to provide
data to FlexChart, refer to Providing Data.

You first need to create a series by using the Series object. And then, you need to add the series to the FlexChart
Series collection using the Add method in the C1FlexChart.Series collection property.

The following code shows how to create and add a series in FlexChart at run-time.

XAML
Tab Caption

<Chart:Series Binding="Y" BindingX="X" SeriesName="Series 4">
 <Chart:Series.ItemsSource>
 <PointCollection>
 <Foundation:Point>1,8</Foundation:Point>
 <Foundation:Point>2,12</Foundation:Point>
 <Foundation:Point>3,10</Foundation:Point>
 <Foundation:Point>4,12</Foundation:Point>
 <Foundation:Point>5,15</Foundation:Point>
 </PointCollection>
 </Chart:Series.ItemsSource>
</Chart:Series>

Code

C#

C1.Xaml.Chart.Series series4 = new C1.Xaml.Chart.Series();
flexChart.Series.Add(series4);

copyCode

FlexChart for UWP 114

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Adding Data to Series
When it comes to adding data to series, FlexChart provides a powerful way through binding. You can bind series in
FlexChart with multiple data sources, which enables you to combine data from multiple data sources. To plot data
from multiple data sources, you need to use the Series.ItemsSource property.

See the following code for reference. Notice that the following code user the DataCreator.cs class to generate data.

XAML
Tab Caption

<Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}">
 <Chart:C1FlexChart x:Name="flexChart" ChartType="Scatter">
 <Chart:C1FlexChart.Series>
 <Chart:Series x:Name="Function1" SeriesName="Function 1" BindingX="XVals"
 Binding="YVals"></Chart:Series>
 <Chart:Series x:Name="Function2" SeriesName="Function 2" BindingX="XVals"
 Binding="YVals"></Chart:Series>
 </Chart:C1FlexChart.Series>
 </Chart:C1FlexChart>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup>
 <VisualState x:Name="WideLayout">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="540"></AdaptiveTrigger>
 </VisualState.StateTriggers>
 </VisualState>
 <VisualState x:Name="NarrowLayout">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="0"></AdaptiveTrigger>
 </VisualState.StateTriggers>
 <VisualState.Setters>
 <Setter Target="flexChart.LegendPosition" Value="Top"></Setter>
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
</Grid>

Code

DataCreator.cs

class DataCreator
{
 public delegate double MathActionDouble(double num);
 public delegate double MathActionInt(int num);

 public static List<DataPoint> Create(MathActionDouble function, double from, double
to, double step)

copyCode

FlexChart for UWP 115

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Math.Cos(0.15 * y), 160);
 }

 return _function2Source;
 }
 }
}

Emphasizing Different Types of Data
In a chart, there is often a common but crucial requirement to emphasize different types of data. Emphasizing or distinguishing different
types of data is vital because chart data that is distinguishable is easier to interpret and understand.

FlexChart caters to this requirement by allowing you to combine two or more chart types in a single chart. For instance, you can
combine the LineSymbols Chart with the Column Chart to make the chart data easier to interpret. You can use the ChartType property to
specify the chart type at the series level for each series, thereby creating charts with multiple chart types.

The following code combines two chart types in a single chart.

XAML
Tab Caption

<Chart:C1FlexChart.Series>
 <Chart:Series ChartType="Line" x:Name="Function1" SeriesName="Function 1" BindingX="XVals"
 Binding="YVals"></Chart:Series>
 <Chart:Series ChartType="LineSymbols" x:Name="Function2" SeriesName="Function 2" BindingX="XVals"
 Binding="YVals"></Chart:Series>
</Chart:C1FlexChart.Series>

FlexChart for UWP 118

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Customizing Series
Once the series have been displayed in the chart, you can customize the displayed series to manage the same more efficiently.

FlexChart allows you to customize series by showing or hiding a series either in the Plot Area or the Legend or both. If there are
hundreds of series to be displayed in your chart, you would certainly need to manage the same due to the space limitation of the
chart.

In FlexChart, you can manage series by using the Visibility property of a series. The Visibility property accepts values of
the SeriesVisibility enumerated type.

You can set the property to the following different values to show or hide a series:

Value Description

SeriesVisibility.Visible The series is displayed in the Plot as well as the Legend.

SeriesVisibility.Plot The series is displayed in the Plot, but hidden in the Legend.

SeriesVisibility.Legend The series is displayed in the Legend, but hidden in the Plot.

SeriesVisibility.Hidden The series is hidden in the Plot as well as the Legend.

Here's the code snippet for reference:

XAML
Tab Caption

<Chart:C1FlexChart.Series>
 <Chart:Series Visibility="Hidden" x:Name="Function1" SeriesName="Function 1" BindingX="XVals"
 Binding="YVals"></Chart:Series>
 <Chart:Series Visibility="Plot" x:Name="Function2" SeriesName="Function 2" BindingX="XVals"
 Binding="YVals"></Chart:Series>
</Chart:C1FlexChart.Series>

FlexChart for UWP 119

Copyright © 2018 GrapeCity, Inc. All rights reserved.

In addition, you can enhance the visual appeal of the series by setting different palettes for FlexChart. For more details, refer
to Setting FlexChart Palette.

You can also work with different symbol styles to render visually appealing series in the chart. For more information, refer to Symbol
styles for Series.

Waterfall Series
Waterfall series allows you to understand the cumulative effect of sequential positive or negative values. It is useful to
understand the effect of a series of positive and negative values on an initial value. The series depicts color coded
columns to easily distinguish positive values from negative values. Generally initial and final values are depicted by total
columns, while intermediate values are represented by floating columns. It is recommended to use Waterfall series when
there is a column of category text and a mix of positive and negative values. Such cases are mostly found in quantitative
analysis like inventory analysis or performance analysis, where the chart shows the gradual transition in the quantitative
value of an entity subjected to increment or decrement.

FlexChart provides features that can be implemented and customized for enhanced data visualization through Waterfall
series.

Connector lines: Connector lines are the lines that connect color coded columns to display the flow of data in the
chart. To show connector lines, set the ConnectorLines property of the WaterFall class to True.
Connector lines customization: Once displayed, connector lines can be customized using
the ConnectorLineStyle property that allows you to access styling properties of the ChartStyle class.
Columns customization: To clear differentiate positive values from negative values or total, you can apply various
styles to the columns showing these values. For that, you can use various properties, such
as RisingStyle, FallingStyle, TotalStyle, or StartStyle provided by the Waterfall class.

The following image displays Waterfall series displaying the cumulative effect of sequential positive and negative values.

FlexChart for UWP 120

Copyright © 2018 GrapeCity, Inc. All rights reserved.

' add the instance to Series collection
flexChart.Series.Add(waterFall)

' bind the field containing Y values for the series
waterFall.Binding = "Amount"

' bind the field containing X values for the FlexChart
flexChart.BindingX = "Costs"

' set the ConnectorLines property
waterFall.ConnectorLines = True

' set the ShowTotal property
waterFall.ShowTotal = True

Box-and-Whisker
Box-and-Whisker series allows you to display groups of data into the range, quartiles, and median. The name itself suggests that the series
depicts data through boxes and whiskers.

A box is the range showing the quartiles (lower and upper) and the median. Whiskers, on the other hand, are the lines extending vertically from
the boxes. These lines indicate the data variability outside the lower and the upper quartiles. In addition, points that lie outside of these lines
are known as outliers.

Box-and-Whisker series is ideal for visualizing statistical distribution or examining multiple sets of data graphically.

Box-and-Whisker series in FlexChart allows working with different features, as follows:

Quartile: Specify whether you would like to calculate quartiles by including or excluding median. To specify quartile calculation, set
the QuartileCalculation property from the QuartileCalculation enumeration.
Inner points: Indicate whether to show or hide inner points by setting the ShowInnerPoints property.
Outliers: Indicate whether to show outliers by setting the ShowOutliers property.
Mean line: Display the mean line by setting the ShowMeanLine property.
Mean marks: Show mean marks by setting the ShowMeanMarks property.

The following image displays quartiles, median, and whiskers for the data that compares scores of students in three subjects across different
schools.

FlexChart for UWP 124

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateSchoolScoreData();
 }

 return _data;
 }
 }
}

Error Bar
Error Bar series allows you to indicate variability of data or uncertainty in values. It enables you to display standard
deviations and a range of error in variable data using error bars. Generally, results of scientific studies or experimental
sciences use error bars in charts to depict variations in data from original values.

FlexChart lets you use Error Bar series in different chart types including Area, Column, Line, LineSymbols, Scatter,
Spline, SplineArea, and SplineSymbols.

Error Bar series in FlexChart offers several features, as follows:

Error amount: Set up error bars on all data points using different ways, such as a fixed value, percentage,
standard error, or standard deviation. In addition, it is possible to set a custom value to show a precise error
amount, if required. To display error bars in any of these ways, set the ErrorAmount property from
the ErrorAmount enumeration.
Direction: Show error bars in the Plus, the Minus, or even both directions by setting the Direction property
from the ErrorBarDirection enumeration.
End style: Display error bars with or without caps by setting the EndStyle property from the ErrorBarEndStyle
enumeration.
Bar style: Customize the appearance of error bars using the ErrorBarStyle property.

The following image displays Plus and Minus error amounts in the mean MCA (Middle Cerebral Artery) velocity data
for different seizure types observed in children.

FlexChart for UWP 129

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 }
 }

}

Stacked Groups
FlexChart supports stacking and grouping of data items in column and bar charts. Stacking provides capabilities for stacking data items one on top of the
other (in column chart) or side-by-side (in bar chart). Whereas, grouping enables clustering of the stacked data items in bar and column charts.

Stacked groups allow you to compare items across categories in a group. In addition, you can visualize relative difference between items in each group.

The following image displays stacked groups in FlexChart.

To stack specific series in a specific stacked group, set the index value of that stacked group in the StackingGroup property for the series. Note that Stacked
groups in FlexChart are implementable when the Stacking property for FlexChart is set to either Stacked or Stacked100pc, which specifies how the data
values of chart will be stacked.

The following code uses sample created in Quick Start and shows how to implement stacked groups in FlexChart.

XAML
Tab Caption

<Chart:C1FlexChart x:Name="flexChart" Stacking="Stacked" ItemsSource="{Binding DataContext.Data}" BindingX="Fruit">
 <Chart:Series SeriesName="March" Binding="March" StackingGroup="0"/>
 <Chart:Series SeriesName="April" Binding="April" StackingGroup="0"/>
 <Chart:Series SeriesName="May" Binding="May" StackingGroup="1"/>
</Chart:C1FlexChart>

FlexChart Data Labels
Data labels are the labels associated with data points to provide additional information about the data points. In other
words, these labels can be defined as descriptive texts or values displayed over data points of the series. These labels
are primarily used to highlight crucial data points, thereby enhancing the readability of the chart and allowing you to
identify data quickly.

FlexChart offers support for highly customizable data labels that enable you to conveniently highlight chart data. And
that in turn helps end-users to identify and interpret the chart data more efficiently. When it comes to working with
data labels in FlexChart, the DataLabel property allows you to do so. By default, FlexChart does not display data labels;
however, you can not only display data labels, but also customize them as per your requirements using various
properties of the DataLabel and the DataLabelBase classes.

Below are the sections that describe how you can add data labels to data points and how you can control data labels
in terms of their appearance and the data they display:

FlexChart for UWP 133

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Adding and Positioning Data Labels
Formatting Data Labels
Manage Overlapped Data Labels

Adding and Positioning Data Labels
When added to data points in the chart, data labels make it easier to understand the chart data because they display
details about individual data points. These labels quickly highlight data that is both relevant and important.

There is a simple method to add data labels to data points while working with FlexChart. You just need to configure
the Content property as per the type of entry you want to display in data labels. And you need to set the position of
data labels using the Position property to display the data labels in the chart.

The table below lists the pre-defined parameters applicable for data label content customization.

Parameter Description

x Shows the X value of the data point.

y Shows the Y value of the data point.

value Shows the Y value of the data point.

name Shows the X value of the data point.

seriesName Shows the name of the series.

pointIndex Shows the index of the data point.

P Shows the percentage share with respect to the parent slice in Sunburst.

p Shows the percentage share with respect to the whole chart in Sunburst.

See the following code snippet for reference.

XAML
Tab Caption

<Chart:C1FlexChart.DataLabel>
 <Chart:DataLabel Content="{}{y}" Position="Top"></Chart:DataLabel>
</Chart:C1FlexChart.DataLabel>

Code

C#

flexChart.DataLabel.Content = "{y}";
flexChart.DataLabel.Position = C1.Chart.LabelPosition.Top;

copyCode

FlexChart for UWP 134

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Formatting Data Labels
FlexChart provides a number of options to format data labels the way you want. You can set and style borders of data
labels, connect them with their corresponding data points, and customize the way data labels appear.

Setting and Styling Borders of Data Labels
Borders add an extra appeal to data labels and make them more highlighted. This comes in handy to seamlessly
highlight really crucial data in the chart, so that end users can focus on what is important.

In FlexChart, borders can be enabled and customized by using different properties, such as Border and BorderStyle.

Here is the code snippet illustrating the setting and the customization of borders.

C#

flexChart.DataLabel.Border = true;

FlexChart for UWP 136

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Manage Overlapped Data Labels
A common issue pertaining to charts is the overlapping of data labels that represent data points. In most
cases, overlapping occurs due to long text in data labels or large numbers of data points.

In case of overlapped data labels in FlexChart, it provides the following ways to manage the overlapping.

Auto Arrangement of Data Labels
Hide Overlapped Labels
Control Appearance of Overlapped Labels
Rotate Data Labels
Trim or Wrap Data Label

Auto Arrangement of Data Labels

The easiest way to handle overlapping of data labels is to set the FlexChart to position the data labels automatically.
For automatic positioning of data labels, you can set the Position property to Auto. Moreover, you can also set
the MaxAutoLabels property to set the maximum number of labels that can be positioned automatically.

When the Position property is set to Auto, the number of created data labels is limited by MaxAutoLabels property
which is 100 by default. You can increase the value of MaxAutoLabels property if necessary, but it may slow down the
chart rendering since the label positioning algorithm becomes expensive in terms of performance when number of
labels is large.

This approach may not provide an optimal layout when working with large data set and when there is not enough
space for all data labels. In this case, it's recommended to reduce the number of data labels. For example, create a
series with limited number of data points that should have labels, that is, chose to hide the labels at the individual
series level.

// Set Position and MaxAutoLabels property
flexChart.DataLabel.Position = LabelPosition.Auto;
flexChart.DataLabel.MaxAutoLabels = 150;

C#

FlexChart for UWP 138

Copyright © 2018 GrapeCity, Inc. All rights reserved.

the data labels using ContentOptions property. Managing of data labels using the ContenOptions property is
dependent on MaxWidth and MaxLines property.

The MaxWidth property allows you to set the maximum width of a data label. In case the width of data label text
exceeds the specified width, then you can either trim the data labels or wrap the data labels using the ContentOptions
property.

The MaxLines property allows you to set the maximum number of lines in data label. This property helps you to limit
the wrapped text to grow vertically. In case the wrapped text does not fit within the specified MaxWidth and MaxLines
property values, then the last line gets trimmed with an ellipses(…).

// Set MaxWidth property
flexChart.DataLabel.MaxWidth = 20; // Set ContentOptions property
flexChart.DataLabel.ContentOptions = ContentOptions.Trim;

C#

Multiple Plot Areas
Multiple plot areas allow you to increase the visibility of data by displaying each series in a separate plot area across
one axis, keeping the other axis fixed.

FlexChart enables you to create multiple plot areas for different series within the same chart area. In FlexChart, create
different plot areas and add them to the C1FlexChart.PlotAreas collection. In addition, you can customize the plot
areas in terms of row index, column index, height, and width.

The following image displays multiple plot areas showing data for one series each in FlexChart.

The following code uses data regarding four metrics, namely, Acceleration, Velocity, Distance, and Time of a vehicle.
The code demonstrates how to implement multiple plot areas in FlexChart.

FlexChart for UWP 140

Copyright © 2018 GrapeCity, Inc. All rights reserved.

});

flexChart.Series.Add(new Series()
{
 SeriesName = "Velocity",
 Binding = "Velocity",
 AxisY = new Axis()
 {
 Position = C1.Chart.Position.Left,
 MajorGrid = true,
 PlotAreaName = "plot2"
 },

});

flexChart.Series.Add(new Series()
{
 SeriesName = "Distance",
 Binding = "Distance",
 AxisY = new Axis()
 {
 Position = C1.Chart.Position.Left,
 MajorGrid = true,
 PlotAreaName = "plot3"
 }
});

Trend Lines
Trend lines are an important tool for analyzing data. Trend line indicates the general rate of increase or decrease of Y
data over X data in a chart. A common scenario is measuring the rate change of sales price over time. FlexChart
control supports trend lines through a built-in TrendLine class for ease of use during implementation. Trend lines are
most commonly used in Line, Column, Bar, or Scatter charts.

FlexChart supports the following regression and non-regression trend lines.

TrendLine.FitType Description

Linear A linear trend line is the straight line that most closely approximates the data
in the chart. The data is linear, if the data pattern resembles a line.
Equation - Y(x) = C0 + C1*x

Polynomial Polynomial trend lines are curved lines that are used with fluctuating data.
They are useful for analyzing gains or losses over a large data set. When using
a polynomial trend line, it is important to also set the Order of the line, which
can be determined by the number of fluctuations in the data.
Equation - Y(x) = C0 + C1*x + C2*x2 + : + Cn-1*xn-1

Logarithmic Logarithmic trend line is a best-fit curved line that is most useful when the
rate of change in the data increases or decreases quickly and then levels out.
A logarithmic trend line can use negative and/or positive values.
Equation - Y(x) = C0 * ln(C1*x)

Power Power trend line is a curved line that is best used with data sets that compare
measurements that increase at a specific rate — for example, the acceleration
of a race car at one-second intervals. You cannot create a power trend line if
your data contains zero or negative values.
Equation - Y(x) = C0 * pow(x, C1)

FlexChart for UWP 142

Copyright © 2018 GrapeCity, Inc. All rights reserved.

XAML

<Chart:C1FlexChart x:Name="flexChart" RenderMode="Direct2D" ChartType="LineSymbols"
ItemsSource="{Binding Data}" ToolTipContent="{}{y}" Grid.Row="1">
 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Min="0" Max="100" AxisLine="False" MajorGrid="True"
MajorTickMarks="None" />
 </Chart:C1FlexChart.AxisY>
 <Chart:Series SeriesName="Base Data" BindingX="X" Binding="Y"/>
 <Chart:TrendLine SeriesName="Trend Line" x:Name="trendLine" Binding="Y"
BindingX="X" Order="4"/>
 </Chart:C1FlexChart>

Code

HTML

public partial class Trendline
 {
 ObservableCollection<DataItem> dataList = new ObservableCollection<DataItem>
();
 public Form1()
 {
 InitializeComponent();
 var rnt = new Random();
 for (int i = 1; i < 30; i++)
 {
 dataList.Add(new DataItem() { X = i, Y = rnt.Next(100) });
 }
 }
 public class DataItem
 {
 int _y;
 public int X { get; set; }

 public int Y
 {
 get { return _y; }
 set
 {
 if (value == _y) return;
 _y = value;
 }
 }}
 }
 }

Export

FlexChart for UWP 144

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexPie
Pie charts are generally used to represent size of items in a series as a percentage of the entire pie. Ideally, the Pie
Chart is to be used when you want to plot only one series comprising non-zero and positive values. And the number
of categories are not more than seven.

The FlexPie control enables you to create customized pie charts that depict data points as slices of a pie. The arc
length of each slice represents the value of that specific slice.

Key Features
Header and Footer: Use simple properties to set a title and footer text.

Legend: Change position of the legend as needed.

Selection: Change the selection mode and customize the selected pie slice appearance.

Exploding and Donut Pie Charts: Use simple properties to convert it into an exploding pie chart or a donut
pie chart.

Data Labels: Add, style, format, set the position of data labels and manage the overlapped data labels on the
chart.

Quick Start
This quick start is intended to guide you through a step-by-step process of creating a simple FlexPie application and running the same in
Visual Studio.

Complete the following steps to see how FlexPie appears on running the application:

Step1: Adding FlexPie to the Application
Step 2: Binding FlexPie to a Data Source

FlexChart for UWP 148

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Press F5 to run the application and observe the following output.

FlexPie Fundamentals
The key features of FlexPie are as follows:

Header and Footer

Legend

Selection

Label Position

Exploding and Donut Pie Charts

FlexChart for UWP 152

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Point: Highlights the pie slice that the user clicks.
Series: Highlights the entire pie.

After setting the SelectionMode property to Point, you can change the position of the selected pie slice by setting
the SelectedItemPosition property. And also, you can move the selected pie slice away from the center of FlexPie by
setting the SelectedItemOffset property.

Label Position

You can select the position of the PieDataLabel.Position with respect to FlexPie, using the following options:

Center
Inside
None
Outside

See the following Xaml for setting the these properties:

XAML

<Chart:C1FlexPie x:Name="pieChart" Width="auto" Height="auto" Header="Fruit Sale
Chart" Xaml:C1NagScreen.Nag="True" Footer="Random Data" SelectedItemPosition="Bottom"
SelectedItemOffset="0.5" SelectionMode="Point" LegendPosition="Right" >
 <Chart:C1FlexPie.DataLabel>
 <Chart:PieDataLabel Position="Inside"/>
 </Chart:C1FlexPie.DataLabel>
 <Chart:C1FlexPie.FooterStyle>
 <Chart:ChartStyle FontSize="20" Stroke="BlueViolet"
FontStyle="Italic"/>
 </Chart:C1FlexPie.FooterStyle>
 <Chart:C1FlexPie.HeaderStyle>
 <Chart:ChartStyle FontSize="20" Stroke="BlueViolet"
FontStyle="Italic"/>
 </Chart:C1FlexPie.HeaderStyle>
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle StrokeThickness="3" Stroke="BlueViolet" />
 </Chart:C1FlexPie.SelectionStyle>
 </Chart:C1FlexPie>

The following sections discuss hot to create Exploded and Doughnut Pie Charts.

Exploded Pie Chart
The Offset property can be used to push the pie slices away from the center of FlexPie, producing the exploded Pie
Chart. This property accepts a double value to determine how far the pie slices should be pushed from the center.

FlexChart for UWP 154

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Sunburst Chart
Sunburst, also known as a multi-level pie chart, is ideal for visualizing multi-level hierarchical data depicted by
concentric circles.The circle in the center represents the root node, with the data moving outside from the center. A
section of the inner circle supports a hierarchical relationship to those sections of the outer circle which lie within the
angular area of the parent section.

Using Sunburst chart helps the end user to visualize the relationship between outer rings and inner rings. For instance,
you might want to display sales report for each quarter of three years. Using SunBurst chart, a sales report of a specific
month can be highlighted, thereby depicting relationship with the respective quarter.

 To explore the features of Sunburst chart, click the following links:

Quick Start
Key Features
Legend and Titles
Selection
Drilldown

Quick Start
This quick start is intended to guide you through a step-by-step process of creating a simple Sunburst application and running the same in Visual Studio.

To quickly get started with Sunburst chart and observe how it appears on running the application, follow these steps:

1. Add Sunburst Chart to the Application

FlexChart for UWP 163

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexRadar
FlexRadar is a radar chart that is also known as polar chart, star chart, web chart, or spider chart due to its appearance.
The chart plots value of each category along a separate axis that starts from the center and ends on the outer ring. All
axes are arranged radially, with equal distances between each other, while maintaining the same scale between all
axes. Each category value is plotted along its individual axis and all the values are connected together to form a
polygon. Common business applications of FlexRadar can include skill analysis of employees and product comparison.
It is important to note that the FlexRadar control represents a polar chart when X values are numbers that specify
angular values in degrees.

To know more about FlexRadar, click the following links:

Quick Start
Key Features
Chart Types
Legend and Titles

Quick Start
This quick start is intended to guide you through a step-by-step process of creating a simple FlexRadar application
and running the same in Visual Studio.

To quickly get started with FlexRadar and observe how it appears on running the application, follow these steps:

1. Add FlexRadar to the Application
2. Bind FlexRadar to the Data Source
3. Run the Application

FlexChart for UWP 184

Copyright © 2018 GrapeCity, Inc. All rights reserved.

TreeMap
Hierarchical information and data are useful in varied walks of life and setups, be it family tree, programming,
organization structure, or directories. Visualizing such data and spotting information in them is a difficult task,
especially if the data is huge. Treemap charts enable visualization of hierarchical data as nested rectangles on a limited
space. They are useful in having a quick glimpse of patterns in large data and in comparing proportions.

The TreeMap chart control supports binding to data to show hierarchy, and allows user to drill down the data further
to numerous levels for detailed analysis. The control can be customized to display data in horizontal, vertical, and
squarified layouts of constituting rectangles.

Both TreeMap and Sunburst charts are ideal for displaying and visualizing hierarchical data, but treemap is preferred
when space is a constraint as it can show humongous data in a limited area.

The following topics help you get accustomed with the TreeMap control, and explore its advanced capabilities.

Key Features
TreeMap control has numerous features to enable users display hierarchical data in a limited area, and analyze data by
comparing the size of tree nodes (or nested rectangles). These are as follows:

Hierarchical representation of data
TreeMap control is an ideal tool to help users visualize and compare proportions in data values within a
hierarchy.
Layout
TreeMap supports multiple display arrangements, where the tree branches can be shown as squares, horizontal
rectangles or vertical rectangles.

FlexChart for UWP 194

Copyright © 2018 GrapeCity, Inc. All rights reserved.

