
ComponentOne

Gauges for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Gauges for UWP 3

Getting Started 4

Help with UWP Edition 4

Gauges for UWP Key Features 5

Gauges for UWP Quick Start 6

Step 1 of 4: Setting up the Application 6

Step 2 of 4: Adding Controls 6-9

Step 3 of 4: Adding Code to the Application 9

Step 4 of 4: Running the Application 9-11

Why Use Gauge Controls? 12

Using C1Radial Gauge 13

C1RadialGauge Values 13-14

C1RadialGauge Start Angle and Sweep Angle 14-15

C1RadialGauge Decorators 15-16

C1RadialGauge Decorators Location 16-17

C1RadialGauge Decorators Value Binding 17

C1RadialGauge Pointer and Pointer Cap 18

C1RadialGauge Face and Cover 18-19

Using C1Linear Gauge 20

C1LinearGauge Values 20-21

C1LinearGauge Orientation 21

C1LinearGauge Decorators 21-22

C1LinearGauge Decorators Location 22-23

C1LinearGauge Pointer 23

C1LinearGauge Face and Cover 23-24

Using C1Knob 25

C1Knob Values 25-26

C1Knob Start Angle and Sweep Angle 26

C1Knob Interaction 26

C1Knob Decorators 26-27

C1KnobDecorators Location 27-28

Gauges for UWP Task-Based Help 29

Setting the Start Value 29-30

Setting the Minimum and Maximum Values 30-31

Gauges for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding Labels to the Gauge 31-32

Adding Tick Marks to the Gauge 32-34

Customizing Tick Marks 34-35

Customizing the Gauge Shape 35-37

Customizing the Pointer's Appearance 37-38

Gauges for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

Gauges for UWP
Add some flare to your dashboards with modern looking and interactive gauges. Gauges for UWP includes several
gauge controls to enhance your data visualizations and business dashboards. They provide you an attractive way to
display your data on a Windows tablet.

Gauges for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Getting Started

Help with UWP Edition
Getting Started

For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with ComponentOne Studio UWP Edition.

Gauges for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/

Gauges for UWP Key Features
Gauges for UWP includes the following key features:

Seven Gauge Controls

Gauges for UWP includes 7 controls with different shapes. Select the most appropriate gauge for your data:

C1RadialGauge
C1LinearGauge
C1Knob
C1RegionKnob
C1RulerGauge
C1SpeedometerGauge
C1VolumeGauge
Interactive Gauges

The C1Knob control enables the end-user to drag the pointer to a value. Also included is the
unique C1RegionKnob with customizable regions. Interactive gauges offer an alternative to text-based editors
or sliders and a very engaging experience for your users.

Tick Marks and Labels

Define marks and labels in XAML or code. Use simple properties to customize their interval, location, and
appearance. Apply formatting to the gauge labels; for example, format labels in currency or percentage format
using standard format strings.

Ranges

Add colored ranges to the gauge to draw attention to a certain range of values. Use simple properties to
customize their start and end points, as well as location, size, and appearance. Create non-linear ranges by
specifying a start and end width to show growth and add visual appeal to any gauge.

Pointer Customization

Use simple properties to customize the appearance and location of the pointer and pointer cap.

Scale Customization

Use simple properties to set the start and sweep angle of the gauge scale. Gauges for UWP also supports
logarithmic scales.

Off Mode Support

If there is no value, you can set the off position outside the range.

Easily Change Colors with ClearStyle

Gauges for UWP supports ClearStyle technology that allows you to easily change control colors without
having to change control templates. By just setting a few color properties in Visual Studio you can easily
change the look of any gauge.

Gauges for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Gauges for UWP Quick Start
The following quick start guide is intended to get you up and running with Gauges for UWP. In this quick start you'll
start in Visual Studio and create a new project, add Gauges for UWP controls to your application, and customize the
appearance and behavior of the controls.

You will create an application that includes the C1RadialGauge, C1LinearGauge, and C1Knob controls. At run time
when a user changes the value of a slider, the value of the gauge controls will also change.

Step 1 of 4: Setting up the Application
In this step you will create an application in Visual Studio, and add StackPanel panels to customize the layout of the
controls.

To set up your project, follow these steps:

1. In Visual Studio, select File | New | Project.
2. Select Templates | Visual C# | Windows | Universal. From the templates list, select Blank App (Universal

Windows). Enter a Name for your project and click OK to create your project.

The MainPage.xaml page will open with the cursor between the <Grid> and </Grid> tags.
3. Navigate to the Toolbox and double-click the StackPanel icon to add the panel to MainPage.xaml.
4. Add x:Name="sp1" Width="Auto" Height="Auto" Orientation="Vertical" HorizontalAlignment="Center"

VerticalAlignment="Center" to the <StackPanel> tag so that it appears similar to the following:
Markup

<StackPanel x:Name="sp1" Width="Auto" Height="Auto" Orientation="Vertical"
HorizontalAlignment="Center" VerticalAlignment="Center"></StackPanel>

Elements in the panel will now appear centered and vertically positioned.
5. In the XAML window of the project, place the cursor between the <StackPanel> and </StackPanel> tags.
6. Navigate to the Toolbox and double-click the StackPanel icon to add the panel to the existing StackPanel.
7. Add x:Name="sp2" Width="Auto" Height="Auto" Orientation="Horizontal" HorizontalAlignment="Center"

VerticalAlignment="Center" to the <StackPanel> tag so that it appears similar to the following:
Markup

<StackPanel x:Name="sp2" Width="Auto" Height="Auto" Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center"></StackPanel>

Elements in the panel will now appear centered and horizontally positioned.

You've successfully created a new UWP style project and set up your application. In the next step you'll added Gauges
for UWP controls to the application and customize those controls.

Step 2 of 4: Adding Controls
In this step you'll set up the application by adding C1RadialGauge, C1LinearGauge, and C1Knob controls to the
project.

To set add the gauge controls to your application, following these steps:

1. In the XAML window of the project, place the cursor between the <StackPanel x:Name="sp2"> and
</StackPanel> tags.

2. Navigate to the Toolbox and double-click the C1Knob icon to add the control to the StackPanel. This will add

Gauges for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

the reference and XAML namespace automatically.
3. Give your control a name by adding x:Name="c1kb1" to the <Gauge:C1Knob> tag so that it appears similar to

the following:

Markup

<Gauge:C1Knob x:Name="c1kb1">

By giving it a unique identifier, you'll be able to access the control in code.

4. Resize your control a margin by adding Width="150" to the <Gauge:C1Knob> tag so that it appears similar to
the following:

Markup

<Gauge:C1Knob x:Name="c1kb1" Width="150">

The control will appear smaller when the application is run.

5. Give your control a margin by adding Margin="5" to the <Gauge:C1Knob> tag so that it appears similar to the
following:

Markup

<Gauge:C1Knob x:Name="c1kb1" Width="150" Margin="5">

This will add spacing between the C1Knob and other controls you will add to the page.

6. Set the minimum and maximum values by adding Minimum="0" Maximum="100" to the <Gauge:C1Knob> tag
so that it appears similar to the following:

Markup

<Gauge:C1Knob x:Name="c1kb1" Width="150" Margin="5" Minimum="0" Maximum="100">

This determines the highest and lowest values available in the knob.

7. In the XAML window of the project, place the cursor between the </Gauge:C1Knob> and </StackPanel> tags.

8. Navigate to the Toolbox and double-click the C1RadialGauge icon to add the control to the StackPanel.

9. Customize the control by adding x:Name="c1rg1" Margin="5" Minimum="0" Maximum="100" Height="300"
to the <Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge x:Name="c1rg1" Margin="5" Minimum="0" Maximum="100"
Height="300" Value="100" StartAngle="0" SweepAngle="300"></Gauge:C1RadialGauge>

This will give the C1RadialGauge a name, resize the control, and set the minimum and maximum values of the
control.

10. Add the following markup between the x <Gauge:C1RadialGauge> and </Gauge:C1RadialGauge> tags to
change the appearance of the gauge:

Markup

<Gauge:C1GaugeRange To="40" Location="0.8" Fill="#088080" Width="0.2"

Gauges for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Opacity="0.6" />
<Gauge:C1GaugeRange From="75" Fill="#088080" Location="0.9" EndWidth="0.2"
Opacity="0.3" />
<Gauge:C1GaugeMark Interval="20" />
<Gauge:C1GaugeMark Interval="10" />
<Gauge:C1GaugeMark Interval="1" />
<Gauge:C1GaugeLabel Interval="20" Alignment="In" AlignmentOffset="10"
FontSize="16" />

This will set the appearance of the gauge range and tick marks.

11. In the XAML window of the project, place the cursor between the first and second </StackPanel> tags.

12. Navigate to the Toolbox and double-click the Slider icon to add the standard control to the StackPanel.

13. Customize the control by adding x:Name="s1" Height="400" Minimum="0" Maximum="100"
ValueChanged="s1_ValueChanged_1" Orientation="Vertical" to the <Slider> tag so that it appears similar to
the following:

Markup

<Slider x:Name="s1" Height="400" Minimum="0" Maximum="100"
ValueChanged="s1_ValueChanged_1" Orientation="Vertical"/>

This will give the Slider a name, resize the control, and set the minimum and maximum values. You will add
code for the event handler in a later step.

14. In the XAML window of the project, place the cursor between the </Slider> and </StackPanel> tags.

15. Navigate to the Toolbox and double-click the C1LinearGauge icon to add the control to the StackPanel.

16. Customize the control by adding x:Name="c1lg1" Minimum="0" Maximum="100" Width="120" Height="500"
to the <Gauge:C1LinearGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1LinearGauge x:Name="c1lg1" Minimum="0" Maximum="100" Width="120"
Height="500" Orientation="Vertical" XAxisLocation="0.05" XAxisLength="0.9"
YAxisLocation="0.2"></Gauge:C1LinearGauge>

This will give the C1LinearGauge control a name, resize the control, and set the minimum and maximum
values.

17. Add the following markup between the x <Gauge:C1LinearGauge> and </Gauge:C1LinearGauge> tags to
change the appearance of the gauge:

Markup

<Gauge:C1GaugeMark Interval="20" />
<Gauge:C1GaugeMark Interval="10" />
<Gauge:C1GaugeMark Interval="2" />
<Gauge:C1GaugeLabel Interval="20" Format="n0" Alignment="Out"
AlignmentOffset="30" FontSize="16"/>
<Gauge:C1GaugeRange To="40" Location="0" Fill="#088080" Width="0.2"
Opacity="0.2"/>
<Gauge:C1GaugeRange From="40" To="80" Location="0" Fill="#088080" Width="0.2"

Gauges for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

Opacity="0.4"/>
<Gauge:C1GaugeRange From="80" To="100" Location="0" Fill="#088080" Width="0.2"
Opacity="0.6"/>

This will set the appearance of the gauge range and tick marks.

You've successfully set up your application's user interface. You've added Gauges for UWP controls to the application
and customized those controls. In the next step you'll add code to your application.

Step 3 of 4: Adding Code to the Application
In the previous step you created a new UWP style project and added Gauges for UWP controls to the application. In
this step you'll add code to your application to customize it.
Complete the following steps:

1. Select View | Code to switch to Code view.
2. Add the following imports statements to the top of the page:

Visual Basic

Imports C1.Xaml
Imports C1.Xaml.Gauge

C#

using C1.Xaml;
using C1.Xaml.Gauge;

3. Add the code for the s1_ValueChanged_1 event handler to set the gauge and slider control values. It will look
like the following:

Visual Basic

Private Sub s1_ValueChanged_1(sender As Object, e As
RangeBaseValueChangedEventArgs)
 Me.c1lg1.Value = Me.s1.Value
 Me.c1rg1.Value = Me.s1.Value
 Me.c1kb1.Value = Me.s1.Value
End Sub

C#

private void s1_ValueChanged_1(object sender, RangeBaseValueChangedEventArgs e)
{
 this.c1lg1.Value = this.s1.Value;
 this.c1rg1.Value = this.s1.Value;
 this.c1kb1.Value = this.s1.Value;
}

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Gauges for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 4 of 4: Running the Application
Now that you've created a UWP style application and customized the application's appearance and behavior, the only
thing left to do is run your application. To run your application and observe Gauges for UWP's run-time behavior,
complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

The application will appear similar to the following:

2. Click and drag the slider's thumb button. Notice that the values of the C1Knob, C1RadialGauge,
and C1LinearGauge controls change:

Gauges for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

Congratulations!

You've completed the Gauges for UWP quick start and created an application using the C1RadialGauge,
C1LinearGauge, and C1Knob controls and viewed some of the run-time capabilities of your application.

Gauges for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

Why Use Gauge Controls?
You might be asking why you'd need to use gauge controls – after all, gauges just display a single value and you
could display that value using a simple label instead of a gauge.

Gauges are better because they also display a range, allowing users to determine instantly whether the current value
is low, high, or intermediate. You could use two additional labels to display the range as well as the current value, but
that would make your user interface more confusing. That is why many applications use progress indicators that are
simple linear gauges, instead of showing progress simply as a label.

Gauges are also more visually attractive than simple labels (or sliders or scrollbars), and that adds value to your
applications.

But why use a gauge control instead of simply asking a designer to create a visually attractive gauge in XAML and
then animating an element to show the current value? Why use a control?

There are a couple of reasons for that. First, you may not be a great designer and may not have access to one. Second,
you probably don't need a single gauge in your application. You may need several, showing values that span different
ranges. Maybe you don't even know the actual range when you are writing the application (what's the maximum value
of sales this quarter?).

Gauge controls provide the flexibility to adjust the ranges programmatically, based on data, rather than hardwiring
them in XAML.

Gauges for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using C1Radial Gauge
C1RadialGauge uses a rotating pointer to show a value along a curved scale. The C1RadialGauge control displays a
value using a rotating pointer. The value is represented by a Value property and the range is defined by the Minimum
and Maximum properties. The C1RadialGauge control appears similar to a typical speedometer:

Creating and using a C1RadialGauge typically involves the following steps:

1. Creating the C1RadialGauge control and setting its main
properties: C1Gauge.Minimum, C1Gauge.Maximum, C1RadialGauge.StartAngle,
and C1RadialGauge.SweepAngle.

2. Adding C1GaugeMark and C1GaugeLabel decorators to show the scale. Each element may show a set of labels,
tick marks, or both.

3. Optionally adding C1GaugeRange decorators to highlight parts of the scale. Ranges are typically used to
indicate ranges that are too low, acceptable, or too high. Ranges can also be dynamic, moving automatically
when the C1Gauge.Value property changes.

4. Optionally customizing gauge elements with XAML templates.
5. Setting the C1Gauge.Value property to display the value you want to show.

C1RadialGauge Values
You can use the C1RadialGauge control's C1Gauge.Minimum, C1Gauge.Maximum, and C1Gauge.Value properties to
specify the available range and the selected value in that range:

Gauges for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1Gauge.Minimum and C1Gauge.Maximum properties specify the range of values the gauge is designed to
show. For example, a thermometer may have a scale ranging from -40 to 100 degrees, and a speedometer may have
range of 0 to 140 miles per hour. The range is specified through the C1Gauge.Minimum and C1Gauge.Maximum
properties (of type double). The default range for a C1RadialGauge control is from 0 to 100.

The C1Gauge.Value property indicates the current value of the gauge. In the C1RadialGauge control, this is indicated
visually by the value the C1GaugePointer element is pointing to. The default C1Gauge.Value for a C1RadialGauge
control is 50.

C1RadialGauge Start Angle and Sweep Angle
Once the range has been defined, you need to specify the angles that match the C1Gauge.Minimum
and C1Gauge.Maximum values. The C1RadialGauge.StartAngle defines the position of the pointer when
the C1Gauge.Value property is set to the C1Gauge.Minimum value in the range. The C1RadialGauge.SweepAngle
specifies the rotation added to the C1RadialGauge.StartAngle when the C1Gauge.Value property is set to
the C1Gauge.Maximum value in the range.

All angles are specified in degrees, measured clockwise from the top of the control. The angles may be negative, but
the absolute value of the C1RadialGauge.SweepAngle may not exceed 360 degrees. The default values
for C1RadialGauge.StartAngle is -140 and for C1RadialGauge.SweepAngle is 280.

The images below show the effect of the C1RadialGauge.StartAngle and C1RadialGauge.SweepAngle properties:

Gauges for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1RadialGauge Decorators
By default, the C1RadialGauge control displays only a blue-gray background and a pointer. In most applications, you'll
also want to display a scale composed of labels and tick marks that allow users to see what the current value is and
where it lies within the gauge's range. This is done by adding C1GaugeMark, C1GaugeLabel, and C1GaugeRange
elements to the gauge's C1Gauge.Decorators collection:

The decorators are displayed at specific positions on the scale, determined by the value of
the C1GaugeDecorator.From, C1GaugeDecorator.To, and C1GaugeMark.Interval properties.

In the image above, you'll see one C1GaugeMark and one C1GaugeLabel element:

Markup

<!-- Add label marks -->
<Gauge:C1GaugeLabel From="0" To="100" Interval="20" Location="1.1"/>

<!-- Add tick marks -->

Gauges for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

<Gauge:C1GaugeMark From="0" To="100" Interval="5" Location=".9"/>

The C1GaugeLabel element shows labels for the values 0 to 100 along the scale. The C1GaugeMark element shows
tick marks spaced 5 units apart.

In addition to showing the scale, you may want to highlight parts of the scale range. For example, you may want to
add a red marker to indicate that values in that range are too low (sales) or too high (expenses). This can be done
easily by adding one or more C1GaugeRange elements to the gauge's C1Gauge.Decorators collection.

In the image above, you'll see three C1GaugeRange elements:

Markup

<!-- Add three colored ranges -->
<Gauge:C1GaugeRange From="80" To="100" Location="0.7" Fill="Red" />
<Gauge:C1GaugeRange From="50" To="80" Location="0.7" Fill="Yellow" />
<Gauge:C1GaugeRange From="0" To="50" Location="0.7" Fill="Green" />

The C1GaugeRange elements show red, yellow, and green range areas. Each C1GaugeRange element displays a
curved swath along the scale. The color of the swath is determined by the C1GaugeRange.Fill property, and the
position is determined by the C1GaugeDecorator.From and C1GaugeDecorator.To properties. You can control the
thickness of the ranges using the C1GaugeRange.StrokeThickness property.

C1RadialGauge Decorators Location
Each decorator element has a C1GaugeDecorator.Location property that determines where the elements are
displayed. These properties range from zero (the center of the gauge) to one (the outer edge of the gauge). The
gauge control also has a C1RadialGauge.Radius property that ranges from zero to one and affects the positioning of
all decorators. The default value for the radius property is 0.8, which causes all decorators to be displayed entirely
within the control.

In the C1RadialGauge Decorators example, the C1GaugeDecorator.Location property for the C1GaugeLabel was set
to 1.1. This caused the labels to appear offset towards the outer edge of the gauge. The labels are still drawn within
the control because the C1RadialGauge.Radius property is set to 0.8 (the actual position of the labels in this case can
be calculated as 1.1 * 0.8 = 0.88).

The diagrams below show the effect of the C1GaugeDecorator.Location properties applied to the C1GaugeMark
and C1GaugeLabel elements on our sample gauge:

Gauges for UWP 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

Notice how specifying values greater than 1 for the C1GaugeDecorator.Location may cause the labels or marks to be
drawn outside the body of the gauge.

You may specify as many C1GaugeMark elements as you want. For example, you could create a clock gauge with a
range from 0 to 60 minutes. In that case, you could use one C1GaugeLabel and two C1GaugeMark elements:

One C1GaugeLabel with an interval of 15, to show labels for the four "main" hours (12, 3, 6, 9);
One C1GaugeMark with an interval of five, to show every full hour;
One C1GaugeMark with an interval of one, to show each minute.

You may also customize the labels and tick marks using the Template properties.

C1RadialGauge Decorators Value Binding
The ranges are not restricted to static values. You can use the C1GaugeRange.ValueBinding property to bind the
range's starting or ending positions to the current value being displayed by the gauge. For example, the code below
would cause the red range to appear only when the speed exceeded 80 miles per hour:

Markup

<!-- Add three colored ranges -->
<Gauge:C1GaugeRange From="80" ValueBinding="To" Location="0.7" Background="Red" />
<Gauge:C1GaugeRange From="50" To="80" Location="0.7" Fill="Yellow" />
<Gauge:C1GaugeRange From="0" To="50" Location="0.7" Fill="Green" />

The diagrams below show the effect of this change as the Value property changes:

Gauges for UWP 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1RadialGauge Pointer and Pointer Cap
The C1RadialGauge control includes a pointer which indicates the selected C1Gauge.Value of the control. The pointer
consists of the actual C1GaugePointer element and the C1RadialGauge.PointerCap element:

The C1RadialGauge.PointerOrigin property sets the location of the pointer; you can customize the location of the
pointer by setting this property – for example the point (0, 0) is the top-left corner of the control and the point (0.5,
0.5) is the center of the control. The C1RadialGaugePointer.Location property sets the relative location of
the C1GaugePointer element.

The C1GaugePointer element appears by default as a brown tapering element, but you can customize the
appearance of the C1GaugePointer element by setting several properties, including
the C1Gauge.PointerFill,C1Gauge.PointerLength
, C1Gauge.PointerOffset, , C1Gauge.PointerStrokeThickness, C1Gauge.PointerStyle, C1Gauge.PointerVisibility,
and C1Gauge.PointerWidth properties.

The C1RadialGauge.PointerCap element appears by default as a gray circle, but you can customize the appearance
of the C1RadialGauge.PointerCap element by setting several properties, including
the C1RadialGauge.PointerCap, C1RadialGauge.PointerCapFill, C1RadialGauge.PointerCapStroke,
 C1RadialGauge.PointerCapStrokeThickness, and C1RadialGauge.PointerCapStyle properties. You can also edit
the C1RadialGauge.PointerCapSize template.

C1RadialGauge Face and Cover
Like a watch, the C1RadialGauge control includes a C1Gauge.Face and a C1Gauge.Cover. The C1Gauge.Face appears
above the background but behind the pointer and other decorators, and the C1Gauge.Cover appears, like a glass
over on a watch, above all other elements. For example, in the image below the C1Gauge.Face includes a gradient
that appears behind the elements in the gauge and the C1Gauge.Cover includes text that appears above
the C1Gauge.Face and all other elements:

Gauges for UWP 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can customize the appearance of the C1Gauge.Cover by using the C1Gauge.CoverTemplate and you can
customize the appearance of the C1Gauge.Face by using the C1Gauge.FaceTemplate.

Gauges for UWP 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using C1Linear Gauge
The C1LinearGauge control has an object model that is almost identical to the one of the
C1RadialGauge. C1LinearGauge uses a linear pointer to show a value along a linear scale. This is similar to a typical
thermometer:

The steps involved in creating and using a C1LinearGauge control are the same as the ones we described before for
the C1RadialGauge:

1. Create the C1LinearGauge control and set its main properties: C1Gauge.Minimum, C1Gauge.Maximum,
and C1LinearGauge.Orientation.

2. Add C1GaugeMark decorators to show the scale. Each C1GaugeMark element may show a set of labels, tick
marks, or both.

3. Optionally add C1GaugeRange decorators highlight parts of the scale. Ranges are typically used to indicate
ranges that are too low, acceptable, or too high. Ranges can also be dynamic, moving automatically when
the C1Gauge.Value property changes.

4. Optionally customize gauge elements with XAML templates.
5. Set the C1Gauge.Value property to display the value you want to show.

C1LinearGauge Values
You can use the C1LinearGauge control's C1Gauge.Minimum, C1Gauge.Maximum, and C1Gauge.Value properties to
specify the available range and the selected value in that range:

Gauges for UWP 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1Gauge.Minimum and C1Gauge.Maximum properties specify the range of values the gauge is designed to
show. For example, a thermometer may have a scale ranging from -40 to 100 degrees, and a speedometer may have
range of 0 to 140 miles per hour. The range is specified through the C1Gauge.Minimum and C1Gauge.Maximum
properties (of type double). The default range for a C1LinearGauge control is from 0 to 100.

The C1Gauge.Value property indicates the current value of the gauge. In the C1LinearGauge control, this is indicated
visually by the value the C1GaugePointer element is pointing to. The default C1Gauge.Value for a C1LinearGauge
control is 0; in the above image, the C1Gauge.Value was set to 10.

C1LinearGauge Orientation
C1LinearGauge controls do not have the C1RadialGauge.StartAngle and C1RadialGauge.SweepAngle properties used
with radial gauges. Instead, they have an C1LinearGauge.Orientation property that you can use to create vertical or
horizontal gauges.

By default, the C1LinearGauge.Orientation property is set to Horizontal and the gauge appears displayed
horizontally in the application:

You can set the C1LinearGauge.Orientation property to Vertical to create a vertical gauge:

By default, the vertical C1LinearGauge control will display a scale from top to bottom – for example 0 to 100 in the
example above. To reverse the direction of the scale you would need to set the following properties:

Set XAxisLocation to 1

Set XAxisLength to -1

The scale will be reversed so 100 is at the top and 0 is at the bottom of the gauge.

A linear gauge has many applications. For example, a vertical linear gauge could be used as a thermometer such as
the one displayed in the Using C1LinearGauge topic.

Gauges for UWP 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1LinearGauge Decorators
By default, the C1LinearGauge control displays only a plain horizontal linear gauge. In most applications, you'll also
want to display a scale composed of labels and tick marks that allow users to see what the current value is and where
it lies within the gauge's range. This is done by adding C1GaugeMark, C1GaugeLabel, and C1GaugeRange elements to
the gauge's C1Gauge.Decorators collection:

The decorators are displayed at specific positions on the scale, determined by the value of
the C1GaugeDecorator.From, C1GaugeDecorator.To, and C1GaugeMark.Interval properties.

In the image above, you'll see three C1GaugeMark elements and one C1GaugeLabel element:

Markup

<!-- Add tick marks -->
<Gauge:C1GaugeMark From="0" To="100" Interval="25" Location="1.1" />
<Gauge:C1GaugeMark From="0" To="100" Interval="12.5" Location="1.1" />
<Gauge:C1GaugeMark From="0" To="100" Interval="2.5" Location="1.1" />
<!-- Add label marks -->
<Gauge:C1GaugeLabel Location="1.3" Interval="25" Foreground="Gray" Alignment="Center"
Format="0°" />

The C1GaugeLabel element shows labels every 25 units for the values 0 to 100 along the scale. The C1GaugeMark
element shows tick marks spaced 25, 12.5, and 2.5 units apart.

In addition to showing the scale, you may want to highlight parts of the scale range. For example, you may want to
add a red marker to indicate that values in that range are too low (sales) or too high (expenses). This can be done
easily by adding one or more C1GaugeRange elements to the gauge's C1Gauge.Decorators collection.

In the image above, you'll see three C1GaugeRange elements:

Markup

<!-- Add three colored ranges -->
<Gauge:C1GaugeRange Fill="Blue" To="40" Width=".1" />
<Gauge:C1GaugeRange Fill="BlueViolet" From="40" To="80" Width=".1" />
<Gauge:C1GaugeRange Fill="Red" From="80" To="100" Width=".1" />

The C1GaugeRange elements show blue, blue violet, and red range areas. Each C1GaugeRange element displays a
curved swath along the scale. The color of the swath is determined by the C1GaugeRange.Fill property, and the
position is determined by the C1GaugeDecorator.From and C1GaugeDecorator.To properties. You can control the
thickness of the ranges using the C1GaugeRange.Width property.

C1LinearGauge Decorators Location
Decorators are positioned with the C1LinearGauge control compared to the C1RadialGauge control. Recall that the
C1RadialGauge control has a C1RadialGauge.Radius property that determines how far from the center of the gauge

Gauges for UWP 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

that decorators are displayed. The C1RadialGauge.Radius property ranges from zero (center of the gauge) to one
(outer edge of the gauge). Individual decorators are offset from the C1RadialGauge.Radius by an amount specified by
the Location property.

The C1LinearGauge has a C1LinearGauge.YAxisLocation property that is analogous to C1RadialGauge.Radius. This
property ranges from zero (top of the gauge) to one (bottom of the gauge). Individual decorators are offset from
the C1LinearGauge.YAxisLocation by an amount specified by their C1GaugeDecorator.Location property.

The default value for the C1LinearGauge.YAxisLocation property is zero. The default value for
the C1GaugeDecorator.Location of the C1GaugeMark decorators is one (causing these elements to appear at the
bottom of the gauge by default). The default value for the C1GaugeDecorator.Location property of
the C1GaugeRange decorator is zero (causing it to appear at the top of the gauge by default).

C1LinearGauge Pointer
The C1GaugeDecorator.Frcontrol includes a pointer which indicates the selected C1Gauge.Value of the control. The
pointer consists of the C1GaugePointer element:

The C1GaugePointer element appears by default as a brown tapering element, but you can customize the
appearance of the C1GaugePointer element by setting several properties, including the C1Gauge.PointerFill,
C1Gauge.PointerLength, C1Gauge.PointerOffset, C1Gauge.PointerStroke, C1Gauge.PointerStrokeThickness,
C1Gauge.PointerStyle, C1Gauge.PointerVisibility, and C1Gauge.PointerWidth properties. You can also customize how
the C1GaugePointer element appears by setting the C1LinearGaugePointer.Orientation property to Vertical or
Horizontal.

C1LinearGauge Face and Cover
Like a watch or thermometer, the C1LinearGauge control includes a C1Gauge.Face and a C1Gauge.Cover.
The C1Gauge.Face appears above the background but behind the pointer and other decorators, and
the C1Gauge.Cover appears, like a glass over a thermometer, above all other elements. For example, in the image
below the C1Gauge.Face includes a gradient that appears behind the elements in the gauge and the C1Gauge.Cover
includes text that appears above the C1Gauge.Face and all other elements:

You can customize the appearance of the C1Gauge.Cover by using the C1Gauge.CoverTemplate and you can

Gauges for UWP 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

customize the appearance of the C1Gauge.Face by using the C1Gauge.FaceTemplate.

Gauges for UWP 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using C1Knob
The C1Knob control extends a C1RadialGauge control to let the user select a numerical value by rotating the pointer.
For example, C1Knob is perfect if you want to simulate the volume knob of a music player. By default, the C1Knob
control appears similar to the following image:

Creating and using a C1Knob control is similar to creating a C1RadialGauge control and typically involves the similar
steps:

1. Creating the C1Knob control and setting its main
properties: C1Gauge.Minimum, C1Gauge.Maximum, C1RadialGauge.StartAngle,
and C1RadialGauge.SweepAngle.

2. Setting how users interact with the knob, by setting the C1Knob.InteractionMode property.
3. Adding C1GaugeMark and C1GaugeLabel decorators to show the scale. Each element may show a set of

labels, tick marks, or both.
4. Optionally customizing gauge elements with XAML templates.
5. Setting the C1Gauge.Value property to display the value you want to initially show.

C1Knob Values
You can use the C1Knob control's C1Gauge.Minimum, C1Gauge.Maximum, and C1Gauge.Value properties to
specify the available range and the selected value in that range:

Gauges for UWP 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1Gauge.Minimum and C1Gauge.Maximum properties specify the range of values the knob is designed to
show. The range is specified through the C1Gauge.Minimum and C1Gauge.Maximum properties (of type double).
The default range for a C1Knob control is from 0 to 100.

The C1Gauge.Value property indicates the current value of the gauge. In the C1Knob control, this is indicated visually
by the value the C1GaugePointer element is pointing to. The default C1Gauge.Value for a C1Knob control is 50.

C1Knob Start Angle and Sweep Angle
Once the range has been defined, you can specify the angles that match the C1Gauge.Minimum
and C1Gauge.Maximum values. The C1RadialGauge.StartAngle defines the position of the pointer when
the C1Gauge.Value property is set to the C1Gauge.Minimum value in the range. The C1RadialGauge.SweepAngle
specifies the rotation added to the C1RadialGauge.StartAngle when the C1Gauge.Value property is set to
the C1Gauge.Maximum value in the range.

All angles are specified in degrees, measured clockwise from the top of the control. The angles may be negative, but
the absolute value of the C1RadialGauge.SweepAngle may not exceed 360 degrees.

C1Knob Interaction
The C1Knob.InteractionMode property controls what interactions are possible with the control at run time – you can
choose whether users can move the knob by clicking, dragging, or both.

You can set the C1Knob.InteractionMode property to one of the following values:

Value Description

Drag Moves the pointer when the user drags it.

Click Moves the pointer when the user clicks inside the knob.

ClickOrDrag Moves the pointer when the user clicks inside the knob or drags the pointer.

By default the C1Knob.InteractionMode property is set to Click.

C1Knob Decorators
By default, the C1Knob control displays a simple blue-gray background and a pointer. Like with C1RadialGauge and
C1LinearGauge, you can customize the indicators of the grid by adding the C1GaugeMark, C1GaugeLabel,
and C1GaugeRange elements to the gauge's C1Gauge.Decorators collection:

Gauges for UWP 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

The decorators are displayed at specific positions on the scale, determined by the value of
the C1GaugeDecorator.From, C1GaugeDecorator.To, and C1GaugeMark.Interval properties.

In the image above, you'll see one C1GaugeMark and one C1GaugeLabel element:

Markup

<!-- Add tick marks -->
<Gauge:C1GaugeMark Interval="20" Alignment="In" From="10" />

<!-- Add label marks -->
<Gauge:C1GaugeLabel Interval="20" Alignment="Center" Location="0.9" To="80" />

The C1GaugeLabel element shows labels for the values 10 to 90 along the scale. The C1GaugeMark element shows
tick marks spaced 20 units apart.

In addition to showing the scale, you may want to highlight parts of the scale range by adding one or
more C1GaugeRange elements to the gauge's C1Gauge.Decorators collection.

In the image above, you'll see ten C1GaugeRange elements:

Markup

<!-- Add ten colored ranges -->
<Gauge:C1GaugeRange From="0" To="10" Location="0.7" Fill="White" />
<Gauge:C1GaugeRange From="10" To="20" Location="0.7" Fill="Gray" />
<Gauge:C1GaugeRange From="20" To="30" Location="0.7" Fill="White" />
<Gauge:C1GaugeRange From="30" To="40" Location="0.7" Fill="Gray" />
<Gauge:C1GaugeRange From="40" To="50" Location="0.7" Fill="White" />
<Gauge:C1GaugeRange From="50" To="60" Location="0.7" Fill="Gray" />
<Gauge:C1GaugeRange From="60" To="70" Location="0.7" Fill="White" />
<Gauge:C1GaugeRange From="70" To="80" Location="0.7" Fill="Gray" />
<Gauge:C1GaugeRange From="80" To="90" Location="0.7" Fill="White" />
<Gauge:C1GaugeRange From="90" To="100" Location="0.7" Fill="Gray" />

The C1GaugeRange elements show white and gray range areas. Each C1GaugeRange element displays a curved
swath along the scale. The color of the swath is determined by the C1GaugeRange.Fill property, and the position is
determined by the C1GaugeDecorator.From and C1GaugeDecorator.To properties You can control the thickness of
the ranges using the C1GaugeRange.StrokeThickness property.

C1KnobDecorators Location

Gauges for UWP 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

Each decorator element has a C1GaugeDecorator.Location property that determines where the elements are
displayed. These properties range from zero (the center of the gauge) to one (the outer edge of the gauge). The
gauge control also has a C1RadialGauge.Radius property that ranges from zero to one and affects the positioning of
all decorators. The default value for the radius property is 0.8, which causes all decorators to be displayed entirely
within the control.

For example, if you set the C1GaugeDecorator.Location property for the C1GaugeLabel was to 1.1 the labels will
appear offset towards the outer edge of the knob. The labels are still drawn within the control because the
C1RadialGauge.Radius property is set to 0.8 (the actual position of the labels in this case can be calculated as 1.1 * 0.8
= 0.88).

Gauges for UWP 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

Gauges for UWP Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use the
gauge controls in general. If you are unfamiliar with the Gauges for UWP product, please see the Gauges for UWP
Quick Start first.

Each topic in this section provides a solution for specific tasks using the Gauges for UWP product.

Each task-based help topic also assumes that you have created a new UWP project and added a gauge control to the
project.

Setting the Start Value
In this topic you'll change the C1LinearGauge control's C1Gauge.Value property. The C1Gauge.Value property
determines the currently selected number. By default the C1LinearGauge control starts with its C1Gauge.Value set to
0 but you can customize this number at design time, in XAML, and in code. Note that although this topic sets
the C1Gauge.Value of the C1LinearGauge control, the same steps can be used to customize the C1Gauge.Value of
other controls.

At Design Time

To set the C1LinearGauge control's C1Gauge.Value property at run time, complete the following steps:

1. Click the C1LinearGauge control once to select it.
2. Navigate to the Properties window, and enter a number, for example "20", in the text box next to the

C1Gauge.Value property.

This will set the C1Gauge.Value property to the number you chose.

In XAML

For example, to set the C1Gauge.Value property add Value="20" to the
<Gauge:C1LinearGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1LinearGauge Height="89" Margin="47,57,33,43" Name="C1LinearGauge1"
Width="287" Value="20">

In Code

For example, to set the C1Gauge.Value property, add the following code to your project:

Visual Basic

C1LinearGauge1.Value = 20

C#

C1LinearGauge1.Value = 20;

Run your project and observe:

Initially the gauge's C1GaugePointer will be set to the C1Gauge.Value you selected:

Gauges for UWP 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

Setting the Minimum and Maximum Values
You can use the C1Gauge.Minimum and C1Gauge.Maximum properties to set a numeric range that the gauge would
be limited to. You can customize the C1Gauge.Minimum and C1Gauge.Maximum values at design time, in XAML, and
in code. Although this topic sets the C1Gauge.Minimum and C1Gauge.Maximum properties of the C1LinearGauge
control, the same steps can be used to customize the C1Gauge.Minimum and C1Gauge.Maximum of other controls.

When setting the C1Gauge.Minimum and C1Gauge.Maximum properties, the C1Gauge.Minimum should be
smaller than the C1Gauge.Maximum. Also be sure to set the C1Gauge.Value property to a number within the
C1Gauge.Minimum and C1Gauge.Maximum range (here the default is 0, which falls within the range set below).

At Design Time

To set the C1Gauge.Minimum and C1Gauge.Maximum for the C1LinearGauge at run time, complete the following
steps:

1. Click the C1LinearGauge control once to select it.

2. Navigate to the Properties window, and enter a number, for example 50, next to the C1Gauge.Maximum property.

3. In the Properties window, enter a number, for example -50, next to the C1Gauge.Minimum property.

This will set C1Gauge.Minimum and C1Gauge.Maximum values.

In XAML

To set the C1LinearGauge control's C1Gauge.Minimum and C1Gauge.Maximum in XAML add Maximum="50"
Minimum="-50" to the <Gauge:C1LinearGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1LinearGauge Height="89" Margin="47,57,33,43" Name="C1LinearGauge1"
Width="287" Maximum="50" Minimum="-50">

In Code

To set the C1LinearGauge control's C1Gauge.Minimum and C1Gauge.Maximum add the following code to your
project:

Visual Basic

C1LinearGauge1.Minimum = -50
C1LinearGauge1.Maximum = 50

C#

C1LinearGauge1.Minimum = -50;
C1LinearGauge1.Maximum = 50;

Run your project and observe:

Gauges for UWP 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

The gauge will be limited to the selected range at run time:

Adding Labels to the Gauge
You can add and customize the C1RadialGauge control's labeling in the Properties window, XAML, or through code.
Although this topic sets the C1GaugeLabel properties of the C1RadialGauge control, the same steps can be used to
customize the C1GaugeLabel of other controls.

At Design Time

To add labeling to the C1RadialGauge control in the Properties window at design time, complete the following steps:

1. Click the C1RadialGauge control once to select it.
2. Navigate to the Properties window, and click the ellipsis button next to the Decorators item. The Decorators

collection editor will open.
3. Choose C1GaugeLabel in the drop-down list in the top-left of the editor and click the Add button. A

C1GaugeLabel decorator will be added to the collection and will be selected.
4. In the right-side properties pane, set the C1GaugeLabel element's C1GaugeDecorator.Location to 1.

Set the C1GaugeLabel element's C1GaugeLabel.Interval to 20.

This will set the control's label.

In XAML

To add labeling to the C1RadialGauge control in XAML add the <Gauge:C1GaugeLabel> tag to the
<Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="42,29,188,31" Name="C1RadialGauge1"
Width="189">
 <Gauge:C1GaugeLabel Interval="20" Location="1" />
 </Gauge:C1RadialGauge>

In Code

Right-click the window and select View Code to open the Code Editor. Add code to the main class, so it appears
similar to the following:

Visual Basic

Public Sub New()
 InitializeComponent()
 Dim c1gl As New C1.Xaml.Gauge.C1GaugeLabel
 c1gl.Location = 1
 c1gl.Interval = 20
 Me.C1RadialGauge1.Decorators.Add(c1gl)
 End Sub

C#

Gauges for UWP 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

public MainPage(){
 InitializeComponent();
 C1.Xaml.Gauge.C1GaugeLabel c1gl = new C1.Xaml.Gauge.C1GaugeLabel();
 c1gl.Location = 1;
 c1gl.Interval = 20;
 this.C1RadialGauge1.Decorators.Add(c1gl);
 }

Run your project and observe:

The C1RadialGauge control will appear with labeling:

Adding Tick Marks to the Gauge
You can add tick marks to the C1LinearGauge control through the Properties window, XAML, or through code.
Although this topic sets the C1GaugeMark properties of the C1LinearGauge control, the same steps can be used to
customize the C1GaugeMark of other controls.

At Design Time
To add tick marks to the C1LinearGauge control in the Properties window at design time, complete the following
steps:

1. Click the C1LinearGauge control once to select it.
2. Navigate to the Properties window, and click the ellipsis button next to the Decorators item. The Decorators

collection editor will open.
3. Choose C1GaugeMark in the drop-down list in the top-left of the editor and click the Add button. A

C1GaugeMark decorator will be added to the collection and will be selected.
4. In the right-side properties pane, set the C1GaugeMark element's C1GaugeDecorator.Location to 1.1.
5. Set the C1GaugeLabel element's C1GaugeLabel.Interval to 20.
6. Choose C1GaugeMark in the drop-down list in the top-left of the editor and click the Add button. A second

C1GaugeMark decorator will be added to the collection and will be selected.
7. In the right-side properties pane, set the C1GaugeMark element's C1GaugeDecorator.Location to 1.1.
8. Set the C1GaugeLabel element's C1GaugeLabel.Interval to 10.
9. Choose C1GaugeMark in the drop-down list in the top-left of the editor and click the Add button. A third

C1GaugeMark decorator will be added to the collection and will be selected.
10. In the right-side properties pane, set the C1GaugeMark element's C1GaugeDecorator.Location to 1.1.
11. Set the C1GaugeLabel element's C1GaugeLabel.Interval to 5.

In XAML

To add labeling to the C1LinearGauge control in XAML add three <Gauge:C1GaugeMark> tags to the

Gauges for UWP 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

<Gauge:C1LinearGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1LinearGauge Height="89" Margin="90,72,41,88" Name="C1LinearGauge1"
Width="287">
 <Gauge:C1GaugeMark Interval="20" Location="1.1" />
 <Gauge:C1GaugeMark Interval="10" Location="1.1" />
 <Gauge:C1GaugeMark Interval="5" Location="1.1" />
</Gauge:C1LinearGauge>

In Code

Right-click the window and click View Code to switch to the Code Editor. And add code to the main class, so it
appears similar to the following:

Visual Basic

Public Sub New()
InitializeComponent()
 Dim c1gm1 As New C1.Xaml.Gauge.C1GaugeMark
 c1gm1.Location = 1.1
 c1gm1.Interval = 20
 Me.C1LinearGauge1.Decorators.Add(c1gm1)
 Dim c1gm2 As New C1.Xaml.Gauge.C1GaugeMark
 c1gm2.Location = 1.1
 c1gm2.Interval = 10
 Me.C1LinearGauge1.Decorators.Add(c1gm2)
 Dim c1gm3 As New C1.Xaml.Gauge.C1GaugeMark
 c1gm3.Location = 1.1
 c1gm3.Interval = 5
 Me.C1LinearGauge1.Decorators.Add(c1gm3)
End Sub

C#

public MainPage(){
InitializeComponent();
 C1.Xaml.Gauge.C1GaugeLabel c1gm1 = new C1.Xaml.Gauge.C1GaugeMark();
 c1gm1.Location = 1.1;
 c1gm1.Interval = 20;
 this.C1LinearGauge1.Decorators.Add(c1gm1);
 C1.Xaml.Gauge.C1GaugeLabel c1gm2 = new C1.Xaml.Gauge.C1GaugeMark();
 c1gm2.Location = 1.1;
 c1gm2.Interval = 10;
 this.C1LinearGauge1.Decorators.Add(c1gm2);
 C1.Xaml.Gauge.C1GaugeLabel c1gm3 = new C1.Xaml.Gauge.C1GaugeMark();
 c1gm3.Location = 1.1;
 c1gm3.Interval = 5;
 this.C1LinearGauge1.Decorators.Add(c1gm3);
}

Run your project and observe:

Gauges for UWP 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1LinearGauge control will appear with tick marks of three sizes:

Customizing Tick Marks
By default, gauge marks are drawn as blue-gray rectangles. You can customize their appearance by assigning a
custom template to the C1GaugeMark.Template property of the C1GaugeMark element. In the following steps, you'll
create a new DataTemplate which defines the C1GaugeMark appearance and then you'll assign that template to
the C1GaugeMark element's C1GaugeMark.Template property in the C1RadialGauge control.

Complete the following steps:

1. Switch to XAML view and add three <Gauge:C1GaugeMark> tags to the <Gauge:C1RadialGauge> tag so that it
appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="89" Margin="90,72,41,88" Name="C1RadialGauge1"
Width="287">
 <Gauge:C1GaugeMark From="0" To="100" Interval="10" />
 <Gauge:C1GaugeMark Interval="5" Location="1.1" />
</Gauge:C1RadialGauge>

2. Add the following markup just under the UserControl tag to add a template:

Markup

<UserControl.Resources>
 <!-- Template used to render the gauge marks -->
 <DataTemplate x:Key="MyMarkTemplate">
 <Rectangle Width="4" Height="18" Fill="BlueViolet" Stroke="Black"
StrokeThickness=".5"/>
 </DataTemplate>
</UserControl.Resources>

This template defines the appearance of the tick marks.

3. Next, set the C1GaugeMark.Template property on the first C1GaugeMark element you added to reference
the new template's key:

Markup

<Gauge:C1GaugeMark From="0" To="100" Interval="10" Template="{StaticResource
MyMarkTemplate}"/>

Run your project and observe:

The C1RadialGauge control appears with custom tick marks:

Gauges for UWP 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

Notice that the marks are drawn from the position specified by the C1GaugeDecorator.Location property and grow
inward. If you increase the Height of the rectangles used to show the marks, the tick marks will extend farther toward
the center of the gauge. To make them extend out you would change the C1GaugeDecorator.Location property on
the C1GaugeMark element. Also, notice how elements used to show tick marks are rotated along the scale; elements
used to show labels are not (see Adding Labels to the Gauge).

Customizing the Gauge Shape
Most radial gauges are circular, but you can create gauges with other shapes as well. To customize the shape of
a C1RadialGauge, you would need to:

Choose a shape for the gauge.
Set the C1RadialGauge.PointerOrigin property to match the position of the pointer taking into account the
gauge shape.
Hide the default round background by setting the gauge's Background property to Transparent and the
BorderThickness to 0.
Add elements to the C1Gauge.Face layer to show the new gauge shape.

Complete the following steps to follow the steps above to create a C1RadialGauge with a customized shape:

1. Switch to XAML view and modify the <Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="102,34,127,26" Name="C1RadialGauge1"
Width="189" StartAngle="-160" SweepAngle = "140">
</Gauge:C1RadialGauge>

This will set the C1RadialGauge control's initial properties.

2. In XAML view add PointerOrigin="0.8,0.5" to the <Gauge:C1RadialGauge> tag so that it appears similar to the
following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="102,34,127,26" Name="C1RadialGauge1"
Width="189" StartAngle="-160" SweepAngle = "140" PointerOrigin="0.8,0.5">
</Gauge:C1RadialGauge>

The C1RadialGauge.PointerOrigin property will set where the C1RadialGauge control's C1GaugePointer
originates.

Gauges for UWP 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. In XAML view add Background="Transparent" to the <Gauge:C1RadialGauge> tag so that it appears similar to
the following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="102,34,127,26" Name="C1RadialGauge1"
Width="189" StartAngle="-160" SweepAngle = "140" PointerOrigin="0.8,0.5"
Background="Transparent">
</Gauge:C1RadialGauge>

The C1RadialGauge control will now appear transparent.

4. In XAML view add BorderThickness="0" to the <Gauge:C1RadialGauge> tag so that it appears similar to the
following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="102,34,127,26" Name="C1RadialGauge1"
Width="189" StartAngle="-160" SweepAngle = "140" PointerOrigin="0.8,0.5"
Background="Transparent" BorderThickness="0">
</Gauge:C1RadialGauge>

The C1RadialGauge control will now appear without a border.

5. In XAML view add markup after the <Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="102,34,127,26" Name="C1RadialGauge1"
Width="189" StartAngle="-160" SweepAngle = "140" PointerOrigin="0.8,0.5"
Background="Transparent" BorderThickness="0">
 <!-- Add tick marks to the gauge -->
 <Gauge:C1GaugeMark Interval="10" Location="1"/>
 <Gauge:C1GaugeMark Interval="5" Location="1" />
</Gauge:C1RadialGauge>

This will add C1GaugeMark elements and tick marks to the gauge.

6. In XAML view add markup after the <Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="189" Margin="102,34,127,26" Name="C1RadialGauge1"
Width="189" StartAngle="-160" SweepAngle = "140" PointerOrigin="0.8,0.5"
Background="Transparent" BorderThickness="0">
 <!-- Add tick marks to the gauge -->
 <Gauge:C1GaugeMark Interval="10" Location="1"/>
 <Gauge:C1GaugeMark Interval="5" Location="1" />
 <!-- Add a face with custom shape -->
 <Gauge:C1RadialGauge.Face>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="4*" />
 <ColumnDefinition Width="10*" />
 <ColumnDefinition Width="1*" />

Gauges for UWP 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </Grid.ColumnDefinitions>
 <Border Grid.Column="1" Background="Black" BorderBrush="LightGray"
BorderThickness="4" CornerRadius="140,60,60,140"/>
 </Grid>
 </Gauge:C1RadialGauge.Face>
</Gauge:C1RadialGauge>

This will add a customized C1Gauge.Face to the gauge.

Run your project and observe:

The C1RadialGauge control appears with a customized face:

You can customize the C1Gauge.Face of the C1RadialGauge control even further. For example, take a look at the
following customized gauges included in the SpeedometersPage.xaml page of the GaugeSamples sample installed
with UWP Edition:

Customizing the Pointer's Appearance
By default, the C1GaugePointer appears as a tapered brown rectangle and the pointer cap appears as a gray circle
with a gradient. You can customize the appearance of both. In the following steps, you'll customize the appearance of
the C1RadialGauge control's C1GaugePointer and C1RadialGauge.PointerCap.

Complete the following steps:

1. Click once on the C1RadialGauge control to select it.
2. Switch to XAML view and add PointerFill="SkyBlue"

PointerStroke="CornflowerBlue" to the <Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="226" Margin="22,24,0,12" Name="C1RadialGauge1"

Gauges for UWP 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

Width="256" PointerFill="SkyBlue" PointerStroke="CornflowerBlue">
</Gauge:C1RadialGauge>

This will set customize the color of the C1GaugePointer.

3. In XAML view add PointerCapStroke="CornflowerBlue" to the <Gauge:C1RadialGauge> tag so that it appears
similar to the following:

Markup

<Gauge:C1RadialGauge Height="226" Margin="22,24,0,12" Name="C1RadialGauge1"
Width="256" PointerFill="SkyBlue" PointerCapStroke="CornflowerBlue"
PointerStroke="CornflowerBlue">
</Gauge:C1RadialGauge>

This will customize the color that the C1RadialGauge.PointerCap is outlined in.

4. In XAML view add the following <Gauge:C1RadialGauge.PointerCapFill> markup to the
<Gauge:C1RadialGauge> tag so that it appears similar to the following:

Markup

<Gauge:C1RadialGauge Height="226" Margin="22,24,0,12" Name="C1RadialGauge1"
Width="256" PointerFill="SkyBlue" PointerCapStroke="CornflowerBlue"
PointerStroke="CornflowerBlue" >
 <Gauge:C1RadialGauge.PointerCapFill>
 <LinearGradientBrush>
 <GradientStop Color="CornflowerBlue" Offset="0"/>
 <GradientStop Color="SkyBlue" Offset="1"/>
 </LinearGradientBrush>
 </Gauge:C1RadialGauge.PointerCapFill>
</Gauge:C1RadialGauge>

This will add a linear gradient to the C1RadialGauge control's C1RadialGauge.PointerCap.

Run your project and observe:

The C1RadialGauge control appears with a customized C1GaugePointer and C1RadialGauge.PointerCap:

Gauges for UWP 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Gauges for UWP
	Getting Started
	Help with UWP Edition

	Gauges for UWP Key Features
	Gauges for UWP Quick Start
	Step 1 of 4: Setting up the Application
	Step 2 of 4: Adding Controls
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	Why Use Gauge Controls?
	Using C1Radial Gauge
	C1RadialGauge Values
	C1RadialGauge Start Angle and Sweep Angle
	C1RadialGauge Decorators
	C1RadialGauge Decorators Location
	C1RadialGauge Decorators Value Binding

	C1RadialGauge Pointer and Pointer Cap
	C1RadialGauge Face and Cover

	Using C1Linear Gauge
	C1LinearGauge Values
	C1LinearGauge Orientation
	C1LinearGauge Decorators
	C1LinearGauge Decorators Location

	C1LinearGauge Pointer
	C1LinearGauge Face and Cover

	Using C1Knob
	C1Knob Values
	C1Knob Start Angle and Sweep Angle
	C1Knob Interaction
	C1Knob Decorators
	C1KnobDecorators Location

	Gauges for UWP Task-Based Help
	Setting the Start Value
	Setting the Minimum and Maximum Values
	Adding Labels to the Gauge
	Adding Tick Marks to the Gauge
	Customizing Tick Marks
	Customizing the Gauge Shape
	Customizing the Pointer's Appearance

