
ComponentOne

Imaging for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Imaging for UWP 2

Help with UWP Edition 2

Bitmap 2

Bitmap for UWP Features 2

Bitmap for UWP Quick Start 2

Step 1 of 4: Creating a Windows Store Application 2-3

Step 2 of 4: Adding an Image 3-4

Step 3 of 4: Adding Code for Image Cropping 4-5

Step 4 of 4: Running the Application 5-6

Working with Bitmap for UWP 6

Cropping with a Draggable Crop Box 6-8

Exporting an Image 8-9

Loading Your Own Image 9-10

Warping an Image 10-12

Restarting an Event 12

Image 12

Image for UWP Features 12-13

Image for UWP Quick Start 13

Step 1 of 3: Creating a Universal Windows Application 13

Step 2 of 3: Adding an Image 13

Step 3of 3: Running the Application 14

Image for UWP Task- Based Help 14

Playing or Stopping an Animated Image 14-15

Imaging for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Imaging for UWP
Load images (PNG and JPG), edit pixel by pixel, and show in an image tag or save to a stream with Bitmap for UWP
(C1Bitmap).

Display animated GIF images on your Windows store application as you would in traditional Web applications with
Image for UWP (C1Image). Animated GIFs are compact and allow you to add attractive visual elements to your
applications with minimal effort.

Help with UWP Edition
Getting Started

For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with ComponentOne Studio UWP Edition.

Bitmap for UWP
Load images (PNG and JPG), edit pixel by pixel, and show in an image tag or save to a stream with Bitmap for UWP
(C1Bitmap).

Bitmap for UWP Features
 Reduce/Crop Images

Editing the pixels enables you to resize images and reduce the resolution, which reduces the file size and results in
faster upload time. Also, you can crop users' images in order to upload only part of them as you do in Facebook or
any other web user account.

 Edit Images Programmatically

The C1Bitmap class allows you to access individual pixels to create special effects, crop, resize, or transform images in
any way you want.

 Save Generated Images as JPG/PNG

You can take screen shots using the WritableBitmap, pass it to C1Bitmap, and save the result into a new PNG/JPG
file on the fly.

Bitmap for UWP Quick Start
The following quick start guide is intended to get you up and running with Bitmap for UWP. In this quick start, you'll
create a new Windows Store application that allows users to load a default image and then crop it.

Step 1 of 4: Creating a Windows Store Application
In this step you'll create a Windows Store application in Visual Studio using Bitmap for UWP.

To set up your project, complete the following steps:

1. In Visual Studio, select File | New | Project.
2. Select Templates | Visual C# | Windows | Universal. From the templates list, select Blank App (Universal

Windows).
3. Enter a Name and click OK to create your project. Open the XAML view of the MainPage.xaml file; in this quick

Imaging for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/
http://helpcentral.componentone.com/nethelp/ImagingWinRT/XMLDocuments/ImagingRef/html/T_C1_Xaml_Imaging_C1Bitmap.htm

start you'll add controls using XAML markup.
4. Right-click the project name in the Solution Explorer and select Add Reference.
5. In the Reference Manager dialog box, select ComponentOne Studio UWP Edition and click OK to close the

dialog box and add the reference.

In the next step, you'll set the styles and add an image to the project.
Step 2 of 4: Adding an Image

Step 2 of 4: Adding an Image
In this step, you will add the following XAML to set the image styles and create a new image.

1. Add the XAML within the <UserControl> tags and overwrite the default <Grid> tags.

Markup

<UserControl.Resources>
 <SolidColorBrush Color="#66FFFFFF" x:Key="MaskBrush" />
 </UserControl.Resources>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <StackPanel Orientation="Horizontal" Margin="0,0,0,10">
 <Button Content="Load your own image" Click="LoadImage" Margin="0 0 10 0"
Width="180" HorizontalAlignment="Left" />
 <Button Content="Export selection" Click="ExportImage" Grid.Column="1"
Width="140" />
 </StackPanel>
 <Grid Name="imageGrid" Grid.Row="1" HorizontalAlignment="Center"
VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Stretch="None" Name="image" Grid.RowSpan="3" Grid.ColumnSpan="3" />
 <Grid Name="topMask" Grid.ColumnSpan="2" Background="{StaticResource
MaskBrush}" />
 <Grid Name="bottomMask" Grid.Column="1" Grid.Row="2" Grid.ColumnSpan="2"
Background="{StaticResource MaskBrush}" />
 <Grid Name="leftMask" Grid.RowSpan="2" Grid.Row="1" Background="
{StaticResource MaskBrush}" />
 <Grid Name="rightMask" Grid.Column="2" Grid.RowSpan="2" Background="
{StaticResource MaskBrush}" />
 </Grid>

Imaging for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

 </Grid>

2. Add an image to the project:

Select Project | Add Existing Item.
Browse to find an image. In this example, we use the Lenna.jpg image from the sample -
C1.UWP.Imaging sample provided with ComponentOne Studio UWP Edition.
Select the image and click Add.

In the next step, you'll add the code used to crop the image.

Step 3 of 4: Adding Code for Image Cropping
The code in this step will load the default image and allow the user to crop it.
 Follow these steps:

1. Open the MainPage.xaml.cs file and add the following using (Imports in Visual Basic) statements.

C#

using C1.Xaml;
using C1.Xaml.Imaging;
using System.IO;

2. Add the following code to load a default image and define cropping:

C#

public partial class MainPage : UserControl
 {
 C1Bitmap bitmap = new C1Bitmap();
 Rect selection;

 public MainPage()
 {
 InitializeComponent();
 LoadDefaultImage();
 image.Source = bitmap.ImageSource;
 var mouseHelper = new C1DragHelper(imageGrid);
 mouseHelper.DragStarted += OnDragStarted;
 mouseHelper.DragDelta += OnDragDelta;
 }
 void OnDragDelta(object sender, C1DragDeltaEventArgs e)
 {
 var transform = Window.Current.Content.TransformToVisual(image);
 var start = transform.TransformPoint(_startPosition);
 var end = transform.TransformPoint(e.GetPosition(null));
 start.X = Math.Min((double)Math.Max(start.X, 0), bitmap.Width);
 end.X = Math.Min((double)Math.Max(end.X, 0), bitmap.Width);
 start.Y = Math.Min((double)Math.Max(start.Y, 0), bitmap.Height);
 end.Y = Math.Min((double)Math.Max(end.Y, 0), bitmap.Height);
 selection = new Rect(new Point(
 Math.Round(Convert.ToDouble(Math.Min(start.X, end.X))),

Imaging for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Math.Round(Convert.ToDouble(Math.Min(start.Y, end.Y)))),
 new Size(Convert.ToDouble(Math.Round(Math.Abs(start.X -
end.X))),
 Convert.ToDouble(Math.Round(Math.Abs(start.Y - end.Y)))));
 UpdateMask();
}
 void UpdateMask()
 {
 topMask.Height = selection.Top;
 bottomMask.Height = bitmap.Height - selection.Bottom;
 leftMask.Width = selection.Left;
 rightMask.Width = bitmap.Width - selection.Right;
 }

 void LoadDefaultImage()
 {
 Assembly asm = typeof(Crop).GetTypeInfo().Assembly;
 Stream stream =
asm.GetManifestResourceStream("ImageSamplesLib2012.Resources.Lenna.jpg");
 LoadImageStream(stream);
 }
 void LoadImageStream(Stream stream)
 {
 bitmap.SetStream(stream);

 imageGrid.Width = bitmap.Width;
 imageGrid.Height = bitmap.Height;
 selection = new Rect(0, 0, bitmap.Width, bitmap.Height);
 UpdateMask();
 }
 }

In the next step you will run the application.

Step 4 of 4: Running the Application
Run the application.

1. From the Debug menu, select Start Debugging to view the image.
2. Click on the image and keep the left mouse button pressed while dragging the cursor. The

ImagingSamples2015 sample provided with UWP Edition shows you how to export the cropped image and
save it to a file.

In the following image, notice the eye area is cropped.

Imaging for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Congratulations! You have successfully completed the Image for UWP quick start.

Working with Bitmap for UWP
Bitmap for UWP allows you to complete many different tasks. By combining Bitmap for UWP with some of the
baked-in UWP capabilities, you can crop images, warp images, and render simple XAML framework elements. The
following topics will also discuss exporting your image, loading your own image, and restarting an event .

We'll take images and code from the ImageSamples2012 sample for the following topics. You can find this sample
located in C:\Users\<username>\Documents\ComponentOne Samples\UWP.

Cropping with a Draggable Crop Box
Being able to crop an image entirely on the client is extremely useful. With C1Bitmap or the WriteableBitmap class,
this is achievable in your Windows Store applications. The C1Bitmap component provides an API that is easier to work
with when doing any bitmap related manipulation. This is primarily because it can get and set simple colors and it
gives more direct access to pixels with the GetPixel and SetPixel methods.

Here is the XAML that defines the elements needed to create our crop area. To create the crop area, we'll create an
image mask in XAML through adding <Grid> elements to the XAML markup and apply it to the image based on user
selection in the code behind.

Markup

<UserControl.Resources>
 <SolidColorBrush Color="#66FFFFFF" x:Key="MaskBrush" />
 </UserControl.Resources>
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
<Grid Name="imageGrid" Grid.Row="1" HorizontalAlignment="Center"
VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />

Imaging for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="Auto" />
 </Grid.ColumnDefinitions>
 <Image Stretch="None" Name="image" Grid.RowSpan="3"
Grid.ColumnSpan="3" />
 <Grid Name="topMask" Grid.ColumnSpan="2" Background="
{StaticResource MaskBrush}" />
 <Grid Name="bottomMask" Grid.Column="1" Grid.Row="2"
Grid.ColumnSpan="2" Background="{StaticResource MaskBrush}" />
 <Grid Name="leftMask" Grid.RowSpan="2" Grid.Row="1" Background="
{StaticResource MaskBrush}" />
 <Grid Name="rightMask" Grid.Column="2" Grid.RowSpan="2"
Background="{StaticResource MaskBrush}" />
 </Grid>
 </Grid>

The code below implements the cropping effect for your image. It uses the OnDragStarted and OnDragDelta events
to capture the horizontal and vertical changes as a user chooses the section of the image to crop. The code also uses
some math to get the values of the start and end points and to convert the points into a Rect object.

C#

Point _startPosition;
 void OnDragStarted(object sender, C1DragStartedEventArgs e)
 {
 _startPosition = e.GetPosition(null);
 }

 void OnDragDelta(object sender, C1DragDeltaEventArgs e)
 {
 var transform = Window.Current.Content.TransformToVisual(image);
 var start = transform.TransformPoint(_startPosition);
 var end = transform.TransformPoint(e.GetPosition(null));
 start.X = Math.Min((double)Math.Max(start.X, 0), bitmap.Width);
 end.X = Math.Min((double)Math.Max(end.X, 0), bitmap.Width);
 start.Y = Math.Min((double)Math.Max(start.Y, 0), bitmap.Height);
 end.Y = Math.Min((double)Math.Max(end.Y, 0), bitmap.Height);

 selection = new Rect(new Point(
 Math.Round(Convert.ToDouble(Math.Min(start.X, end.X))),
 Math.Round(Convert.ToDouble(Math.Min(start.Y, end.Y)))),
 new Size(Convert.ToDouble(Math.Round(Math.Abs(start.X - end.X))),
 Convert.ToDouble(Math.Round(Math.Abs(start.Y - end.Y)))));

 UpdateMask();
 }

We apply some logic for the bounds of each portion of the mask.

Imaging for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

void UpdateMask()
 {
 topMask.Height = selection.Top;
 bottomMask.Height = bitmap.Height - selection.Bottom;
 leftMask.Width = selection.Left;
 rightMask.Width = bitmap.Width - selection.Right;
 }

The UpdateMask() method updates the position of all the Grid mask elements based on the Left, Top, Width and
Height properties of the Grid Rect.

C#

void UpdateMask()
 {
 topMask.Height = selection.Top;
 bottomMask.Height = bitmap.Height - selection.Bottom;
 leftMask.Width = selection.Left;
 rightMask.Width = bitmap.Width - selection.Right;
 }

Exporting an Image
Using some simple code and a general button control, you can export your cropped image. Here's the XAML markup
for the general button control:

Markup

<Button Content="Export selection" Click="ExportImage" Grid.Column="1" Width="140" />

The code you'll use to control the export function allows you to block the export option if there's no cropped section
to export. If there is a cropped section to export, then you can choose the file type and destination.

C#

private async void ExportImage(object sender, RoutedEventArgs e)
 {
 if(selection.Width == 0 || selection.Height == 0)
 {
 MessageDialog md = new MessageDialog("Can't export, selection is
empty");
 md.ShowAsync();
 return;
 }
 var picker = new FileSavePicker();
 picker.FileTypeChoices.Add("png", new List<string>{".png"});
 picker.DefaultFileExtension = ".png";
 StorageFile file = await picker.PickSaveFileAsync();
 if (file != null)

Imaging for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 var saveStream = await file.OpenStreamForWriteAsync();
 var crop = new C1Bitmap((int)selection.Width, (int)selection.Height);
 crop.BeginUpdate();
 for (int x = 0; x < selection.Width; ++x)
 {
 for (int y = 0; y < selection.Height; ++y)
 {
 crop.SetPixel(x, y, bitmap.GetPixel(x + (int)selection.X, y +
(int)selection.Y));
 }
 }

Loading Your Own Image
You can also load your own image to crop. This can be accomplished easily with a general button control and some
code behind.

Markup

<Button Content="Load your own image" Click="LoadImage" Margin="0 0 10 0" Width="180"
HorizontalAlignment="Left" />

The code that that responds to the click event will open a File Picker and allow you to choose the image file you wish
to display and then crop.

C#

private async void LoadImage(object sender, RoutedEventArgs e)
 {
 var picker = new FileOpenPicker();
 picker.FileTypeFilter.Add(".png");
 picker.FileTypeFilter.Add(".jpg");
 picker.FileTypeFilter.Add(".gif");
 picker.FileTypeFilter.Add(".jpeg");
 StorageFile file = await picker.PickSingleFileAsync();

 if (file != null)
 {
 using (var fileStream = await file.OpenStreamForReadAsync())
 {
 try
 {
 LoadImageStream(fileStream);
 }
 catch (Exception ex)
 {
 LoadDefaultImage();
 MessageDialog md = new MessageDialog("Image format not
supported, error: \n" + ex.Message, "");

Imaging for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

 md.ShowAsync();
 }
 }
 }
 }

Warping an Image
Just for fun, you might want to be able to warp an image. The code needed to create the warp effect is somewhat
complex, but it uses the C1DragHelpers and some math to apply the warp effect to your image. In the FaceWarp
sample, you can load your own image, export your completed image, and reset the image if you don't like how the
warp looks.

C#

InitializeComponent();
 LoadDefaultImage();
 image.Source = screen.ImageSource;
 var mouseHelper = new C1DragHelper(image, captureElementOnPointerPressed:
true);
 var line = new Line();
 mouseHelper.DragStarted += (s, e) =>
 {
 _position = e.GetPosition(image);
 line = new Line
 {
 X1 = _position.X,
 Y1 = _position.Y,
 X2 = _position.X,
 Y2 = _position.Y,
 Stroke = new SolidColorBrush(Colors.Blue),
 StrokeThickness = 7,
 StrokeEndLineCap = PenLineCap.Triangle,
 StrokeStartLineCap = PenLineCap.Round
 };
 imageGrid.Children.Add(line);
 };
 mouseHelper.DragDelta += (s, e) =>
 {
 var pos = e.GetPosition(image);
 line.X2 = pos.X;
 line.Y2 = pos.Y;
 };
 mouseHelper.DragCompleted += (s, e) =>
 {
 imageGrid.Children.Remove(line);
 var start = _position;
 var end = new Point(_position.X + e.CumulativeTranslation.X,
_position.Y + e.CumulativeTranslation.Y);

Imaging for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

 bitmap = new C1Bitmap(screen);
 Warp(bitmap, screen, start, end);
 };
 }
void Warp(C1Bitmap src, C1Bitmap dst, Point start, Point end)
 {
 dst.BeginUpdate();
 dst.Copy(src, false);
 var dist = Distance(start, end);
 var affectedDist = dist * 1.5;
 var affectedDistSquared = affectedDist * affectedDist;
 for (int row = 0; row < dst.Height; ++row)
 {
 for (int col = 0; col < dst.Width; ++col)
 {
 var point = new Point(col, row);
 if (DistanceSq(start, point) > affectedDistSquared)
 {
 continue;
 }
 if (DistanceSq(end, point) < 0.25)
 {
 dst.SetPixel(col, row, src.GetPixel((int)start.X,
(int)start.Y));
 continue;
 }
 var dir = new Point(point.X - end.X, point.Y - end.Y);
 var t = IntersectRayCircle(end, dir, start, affectedDist);
 TryT(-end.X / dir.X, ref t);
 TryT(-end.Y / dir.Y, ref t);
 TryT((dst.Width - end.X) / dir.X, ref t);
 TryT((dst.Height - end.X) / dir.X, ref t);
 var anchor = new Point(end.X + (point.X - end.X) * t, end.Y +
(point.Y - end.Y));
 var x = start.X + (anchor.X - start.X) / t;
 var y = start.Y + (anchor.Y - start.Y) / t;
 dst.SetPixel(col, row, src.GetInterpolatedPixel(x, y));
 }
 }
 dst.EndUpdate();
 }
 static double Distance(Point a, Point b)
 {
 return Math.Sqrt(DistanceSq(a, b));
 }
 static double DistanceSq(Point a, Point b)
 {
 var dx = a.X - b.X;
 var dy = a.Y - b.Y;
 return dx * dx + dy * dy;
 }

Imaging for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

 static void TryT(double t2, ref double t)
 {
 if (t2 > 0 && t2 < t)
 {
 t = t2;
 }
 }
 static double IntersectRayCircle(Point rayOri, Point rayDir, Point center,
double radius)
 {
 var a = rayDir.X;
 var b = rayOri.X;
 var c = center.X;
 var d = rayDir.Y;
 var e = rayOri.Y;
 var f = center.Y;
 var g = radius * radius;
 var num1 = Math.Sqrt(d * (2 * a * (b - c) * (e - f) - d * (b * b - 2 * b
* c + c * c - g)) - a * a * (e * e - 2 * e * f + f * f - g));
 var num2 = a * (c - b) + d * (f - e);
 return (num1 + num2 > 0 ? num1 + num2 : num1 - num2) / (a * a + d * d);
 }

Restarting an Event
Sometimes, when you're warping an image, you may decide that you don't like how it looks. You can easily clear the
warp effect you've applied to the image with a general button control and some code.

Markup

<Button Content="Restart" Click="Restart" Grid.Column="2" Width="140"
HorizontalAlignment="Left" />

The code attached to the button Click Event should look like the following:

C#

private void Restart(object sender, RoutedEventArgs e)
 {
 bitmap.Copy(originalBitmap, false);
 screen.Copy(originalBitmap, false);
 }

Image for UWP
Display animated GIF images in your Windows Store application as you would in a traditional Web application with
Image for UWP. Animated GIFs are compact and allow you to add attractive visual elements to your applications with
minimal effort.

Imaging for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Image for UWP Features
The following are some of the main features of Image for UWP that you may find useful:

Support for Animated GIF Files

Image enables you to add animated GIF files to your Windows Store applications. The C1Image control can be
used to add GIF images at design time (the regular image control only supports PNG and JPEG formats).

Play, Pause, and Stop Methods

The image source used with the C1Image control is the C1GifImage class, which provides media player-like
commands and allows you to control the GIF animations programmatically. You can use these methods to
animate GIFs while performing a task, creating interesting progress indicators, or simply better integrating the
animations with the state of the application.

Image for UWP Quick Start
The following quick start guide is intended to get you up and running with Image for UWP. In this quick start, you'll
create a new project in Visual Studio, add a C1Image control to your application, and then run the application.

Step 1 of 3: Creating a Universal Windows Application
In this step you'll create a Windows Store application in Visual Studio using Image for UWP.

To set up your project and add a C1Image control to your application, complete the following steps:

1. In Visual Studio, select File | New | Project.
2. Select Templates | Visual C# | Windows | Universal. From the templates list, select Blank App (Universal

Windows).
3. Enter a Name and click OK to create your project. Open the XAML view of the MainPage.xaml file; in this quick

start you'll add controls using XAML markup.
4. Right-click the project name in the Solution Explorer and select Add Reference.
5. In the Reference Manager dialog box, expand Universal Windows and select Extensions; you should see the

UWP assemblies in the center pane. Select C1.UWP.Imaging.
6. Place your cursor between the <Grid> and </Grid> tags.
7. Locate the C1Image icon in your Visual Studio Toolbox and double-click the image. This will add the C1Image

control to your application.

In the next step, you will add an image to the control.

Step 2 of 3: Adding an Image
Next we are going to add an image to the C1Image control.

1. Select the C1Image control and in the Visual Studio Properties window, click the ellipsis button next to
the C1Image.Source property. The Choose Image dialog box opens.

2. Click the Add button.
3. In the Open dialog box, browse to find an image. It can be a .gif (animated or still), .jpg, .jpeg, or .png.
4. Select the image and click Open.
5. Click OK.

In the next step you will run the application.

Imaging for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 3of 3: Running the Application
Now that you've created a Universal Windows application with a C1Image control, you're ready to run the application.

From the Debug menu, select Start Debugging to view your image.

Congratulations!

You have successfully completed the Image for UWP quick start.

Image for UWP Task- Based Help
The task-based help assumes that you are familiar with programming in Visual Studio and know how to use the
C1Image control in general. If you are unfamiliar with the Image for UWP product, please see the Image for UWP
XAML Quick Start first.

Each topic in this section provides a solution for specific tasks using the Image for UWP product. Each topic also
assumes that you have created a new Windows Store application

Playing or Stopping an Animated Image
The image source used with the C1Image control is the C1GifImage class, which provides media player-like
commands. You can use the C1GifImage.Play, C1GifImage.Stop, and C1GifImage.Pause methods to control GIF
animations programmatically. For an example of how to use the C1GifImage.Play and C1GifImage.Stop methods,
follow these steps:

1. In your Windows Store application, double-click the C1Image icon in the Visual Studio Toolbox to add
the C1Image control to MainPage.xaml. The XAML markup will now look similar to the following:

Markup

<Grid x:Name="LayoutRoot" Background="White">
 <c1imaging:C1Image HorizontalAlignment="Left" Margin="10,10,0,0"
Name="c1Image1" VerticalAlignment="Top" />
 </Grid>

2. Select the C1Image control and in the Properties window, click the ellipsis button next to the C1Image.Source
property. The Choose Image dialog box opens.

3. Click the Add button.
4. In the Open dialog box, browse to find an animated .gif.
5. Select the image and click Open.
6. Click OK. You can adjust the size and alignment of the image as necessary.
7. In the Toolbox, double-click the general CheckBox control icon.
8. In the XAML markup, set the Content to Play, set the HorizontalAlignment to Center, and set the

VerticalAlignment to Bottom so your XAML looks similar to the following:

Markup

<Grid x:Name="LayoutRoot" Background="White" Height="139" Width="384">

Imaging for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <c1imaging:C1Image HorizontalAlignment="Center" Margin="10,10,0,252"
Name="c1Image1" Source="Images/Butterfly.gif" Width="44" />
 <CheckBox Content="Play" Height="16" HorizontalAlignment="Center"
Margin="10,10,0,0" Name="checkBox1" VerticalAlignment="Bottom" />
 </Grid>

9. Open the MainPage.xaml.cs.
10. Add the following using statements (Imports if using Visual Basic):

C#

using C1.Xaml.Imaging;
using C1.Xaml;

11. Add code for the C1GifImage.Play and C1GifImage.Stop methods so it looks similar to the following:

C#

public MainPage()
 {
 InitializeComponent();
 var gifImage = new C1GifImage(new Uri("/Images/Butterfly.gif",
UriKind.Relative));
 c1Image1.Source = gifImage;
 checkBox1.IsChecked = true;
 checkBox1.Checked += delegate { gifImage.Play(); };
 checkBox1.Unchecked += delegate { gifImage.Stop(); };
 }

12. Click Debug | Start Debugging to run the application.
13. Select and clear the Play check box to play and stop the animated graphic.

Imaging for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Imaging for UWP
	Help with UWP Edition
	Bitmap
	Bitmap for UWP Features
	Bitmap for UWP Quick Start
	Step 1 of 4: Creating a Windows Store Application
	Step 2 of 4: Adding an Image
	Step 3 of 4: Adding Code for Image Cropping
	Step 4 of 4: Running the Application

	Working with Bitmap for UWP
	Cropping with a Draggable Crop Box
	Exporting an Image
	Loading Your Own Image
	Warping an Image
	Restarting an Event

	Image
	Image for UWP Features
	Image for UWP Quick Start
	Step 1 of 3: Creating a Universal Windows Application
	Step 2 of 3: Adding an Image
	Step 3of 3: Running the Application

	Image for UWP Task- Based Help
	Playing or Stopping an Animated Image

