

ComponentOne

Accordion for WPF

Copyright 1987-2012 GrapeCity, Inc. All rights reserved.

ComponentOne, a division of GrapeCity

201 South Highland Avenue, Third Floor

Pittsburgh, PA 15206 • USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other
trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne Accordion for WPF ...1

Help with ComponentOne Studio for WPF .. 1

Key Features ..3

Accordion for WPF Quick Start ..3

Step 1 of 3: Creating an Application with a C1Accordion Control ... 3

Step 2 of 3: Adding Accordion Panes ... 4

Step 3 of 3: Running the Project ... 4

Using C1Accordion ..6

C1Accordion Elements .. 7

Accordion Pane Header ... 7

Accordion Pane Content Area ... 8

Expanding and Collapsing Accordion Panes ... 8

Accordion for WPF Layout and Appearance.. 11

ComponentOne ClearStyle Technology .. 12

How ClearStyle Works ... 12

C1Accordion and C1AccordionItem ClearStyle Properties ... 12

Accordion for WPF Appearance Properties .. 13

Text Properties ... 13

Content Positioning Properties ... 14

Color Properties .. 14

Border Properties .. 15

Size Properties .. 15

Templates ... 15

C1Accordion Themes .. 16

Accordion for WPF Samples ... 20

Accordion for WPF Task-Based Help .. 23

Adding Accordion Panes to the C1Accordion Control ... 23

Adding Content to Header Elements ... 24

Adding Text to the Header ... 24

iv

Adding a Control to the Header ... 24

Adding Content to Content Areas ... 25

Adding Text to the Content Area ... 26

Adding a Control to the Content Area ... 26

Adding Multiple Controls to the Content Area.. 28

Changing the Expand Direction .. 28

Filling Out the Accordion's Height .. 29

 1

ComponentOne Accordion for WPF
Display a list of expandable items with ComponentOne Accordion™

for WPF. Select an item to expand it and collapse all others,
automatically organizing your UI and optimizing the use of screen real
estate.

 Getting Started

- Using C1Accordion
(page 6)

- Quick Start (page 3)

- Task-Based Help (page
23)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

http://helpcentral.componentone.com/nethelp/C1studioWPF/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

 3

Key Features
ComponentOne Accordion for WPF allows you to create customized, rich applications. Make the most of

Accordion for WPF by taking advantage of the following key features:

 Expand Direction

The C1Accordion control has the ability to expand in four different directions. The ExpandDirection

property indicates which direction the control expands and can be set to Top, Right, Bottom, or Left. For

more information, see the ExpandDirection topic.

 Custom Header

An accordion pane's header can be customized with both text and controls. For more information on the
customizable header element, see Accordion Pane Header (page 7).

 Configure Items in an Organized Pattern

Accordion is designed to maximize space. Configure the size and position of C1Accordion to hide items
until needed.

 Add Objects of any Data Type

Because the C1Accordion control inherits from ItemsControl, you can add objects of any data type to its

Items collection and use a DataTemplate to create a visual representation of the items.

Accordion for WPF Quick Start
The following quick start guide is intended to get you up and running with Accordion for WPF. In this quick start,
you'll start in Visual Studio to create a new project with a C1Accordion control. You will also customize the

accordion, add accordion panes filled with content to it, and then observe some of the run-time features of the
control.

Step 1 of 3: Creating an Application with a C1Accordion Control

In this step, you'll begin in Visual Studio to create a WPF application using Accordion for WPF.

Complete the following steps:

1. In Visual Studio 2008, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select WPF

Application.

3. Enter a Name for your project and click OK.

4. Navigate to the Toolbox and double-click the C1Accordion icon to add the control to the project.

5. Right click the C1Accordion control to open its context menu and then select Properties.

The Properties window opens with the C1Accordion control's properties in focus.

6. Set the following properties.

 Set the Height property to "250" to set the height of the control.

 Set the Width property to "400" to set the width of the control.

 Set the ExpandDirection property to Left so that the C1Accordion control will expand from the
bottom rather than expanding from the top, which is its default.

4

 Set the Fill property to True by selecting the Fill check box. This means that each pane will expand to
fill the specified width of the C1Accordion control.

 Set AllowCollapseAll to False by clearing the AllowCollapseAll check box. This will prevent users
from collapsing all panes at the same time.

You've successfully created a WPF application containing a C1Accordion control. In the next step, you will
customize the appearance and behavior of the C1Accordion control.

Step 2 of 3: Adding Accordion Panes

In the last step, you created a project with a customized C1Accordion control. In the next step, you will add
accordion panes, which you will customize and add content to.

Complete the following steps:

1. Click the C1Accordion control once to select it.

2. In the Properties window, click the Items ellipsis button.

The Collection Editor: Items dialog box opens.

3. Click the Add button three times to add three C1AccordionItem items to the C1Accordion control.

4. Select the first C1AccordionItem and set the following properties:

 Set the Background property to Aqua to set the background color of the accordion pane.

 Set the Content property to "This is text content" to add text content to the accordion pane.

5. Select the second C1AccordionItem and set the following properties:

 Set the Background property to AliceBlue to set the background color of the accordion panel.

 Set the IsExpanded property to True so that this pane will be expanded at run time.

6. Select the third C1AccordionItem and set the Background property to LawnGreen to set the background
color of the accordion pane.

7. Click OK to close the Collection Editor: Items dialog box.

8. Switch to XAML view and complete the following:

 Add Header="Pane 1" to the first <c1:C1AccordionItem> tag.

 Add Header="Pane 2" to the second <c1:C1AccordionItem> tag.

 Add Header="Pane 3" to the third <c1:C1AccordionItem> tag.

9. Switch to Design view and add a control to the second accordion pane by completing the following steps:

a. In the Designer, click the second accordion pane to select it.

b. Navigate to the Toolbox and double-click the Calendar icon to add the control to the accordion pane.

In this step, you added three accordion panes to the C1Accordion control and then added content to two of the
accordion panes. In the next step, you will run the project and observe the run-time features of the control.

Step 3 of 3: Running the Project

In the last step, you added accordion panes and content to the C1Accordion control. In this step, you will run the
project and observe some of the run-time features of the C1Accordion control.

Complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

Observe that the second pane, which holds the Calendar control, is expanded.

 5

2. Click Pane 1 and observe that the first pane expands to reveal its content.

3. Click Pane 3 and observe that the last pane expands. Note that the third pane expands to the same width

as the other panes despite the fact that it has no content.

6

4. Click Pane 3 and observe that you can't close the pane. This is because you set the AllowCollapseAll

property to False, which means that one accordion pane must be expanded at all times.

Congratulations! You have completed the Accordion for WPF quick start tutorial. In this tutorial, you created a
WPF project containing a C1Accordion control, modified the appearance and behavior of the control, added
accordion panes and accordion pane content to the control, and then observed some of the run-time features of the
control.

Using C1Accordion
The C1Accordion control is a container that that can hold a series of expandable and collapsible panes for storing

text, images, and controls. The C1Accordion control is an ItemsControl, which means that the control is designed

to host a series of objects. The C1AccordionItem class represents the items, or accordion panes, that can be hosted
by the C1Accordion control.

When you add the C1Accordion control to a project, it exists as nothing more than a container. But once the
control is added to your project, you can easily add multiple accordion panes to it in Design view, in XAML, or in
code. The following image depicts a C1Accordion control with three accordion pane items, the first of which is
expanded.

The image above shows the accordion panes sans header text or content, but customizing the header and adding
content to the pane is as simple as setting a few properties. You can also modify behaviors, such as the
expandability and the direction, of the control.

The following topics provide an overview of the C1Accordion control's elements and features.

 7

C1Accordion Elements
This section provides a visual and descriptive overview of the elements that comprise the C1Accordion control.
The control is comprised of two elements – the header and the content area – which combine to make the complete
C1Accordion control.

Accordion Pane Header

By default, the header element of an accordion pane appears at the top of the control and the expander button
appears on the right side of the header. When the C1AccordionItem item (accordion pane) is first placed on the
page, the header element contains no text.

The following image labels the header area of an accordion pane.

To add text to the header element, simply set the Header property to a string. Once the text is added, you can style
it using several font properties (see Text Properties (page 13)). You can also add WPF controls to the header.

The placement of the header element and expander button will change depending on the expand direction of the
control. For more information on expand directions, see the Expand Direction (page 9) topic.

Attribute Syntax versus Property Element Syntax

When you want to add something simple to the header, such as an unformatted string, you can simply use the
common XML attributes in your XAML markup, such as in the following:

<c1ext:C1AccordionItem Header="Hello World"/>

However, there may be times where you want to add more complex elements, such as grids or panels, to the
content area. In this case you would use property element syntax, such as in the following:

<c1ext:C1AccordionItem Width="150" Height="55" Name="C1AccordionItem1">

 <c1ext:C1AccordionItem.Header>

 <Grid HorizontalAlignment="Stretch">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <TextBlock Text="C1AccordionItem" />

 </Grid>

8

 </c1ext:C1AccordionItem.Header>

</c1ext:C1AccordionItem>

Accordion Pane Content Area

An accordion pane's content area initially consists of an empty space. In the content area, you can add grids, text,
images, and arbitrary controls. When working in Blend or Visual Studio's Design view, elements in the content
area of the control can be added and moved on the control through a simple drag-and-drop operation.

The following image labels the content area of an accordion pane.

You can add text to the content area by setting the item's Content property or by adding a TextBox element to the
content area. Adding WPF elements to the content area at run time is simple: You can either use simple drag-and-
drop operations or XAML in Visual Studio or Blend. If you'd prefer to add a control at run time, you can use C#
or Visual Basic code.

A C1AccordionItem item can only accept one child element at a time. However, you can circumvent this issue by

adding a panel-based control as its child element. Panel-based controls, such as a StackPanel control, are able to
hold multiple elements. The panel-based control meets the one control limitation of the C1AccordionItem item,

but its ability to hold multiple elements will allow you to show several controls in the content area of the accordion
pane.

Attribute Syntax versus Property Element Syntax

When you want to add something simple to the content area, such as an unformatted string or a single control, you
can simply use the common XML attributes in your XAML markup, such as in the following:

<c1ext:C1AccordionItem Content="Hello World"/>

However, there may be times where you want to add more complex elements, such as grids or panels, to the
content area. In this case you can use property element syntax, such as in the following:

<c1ext:C1AccordionItem Width="150" Height="55" Name="C1AccordionItem1">

 <c1ext:C1AccordionItem.Content>

 <StackPanel>

 <TextBlock Text="Hello"/>

 <TextBlock Text="World"/>

 </StackPanel>

 </c1ext:C1AccordionItem.Content>

</c1ext:C1AccordionItem>

Expanding and Collapsing Accordion Panes
This section details the options for customizing the way that the accordion panes expand and collapse.

 9

Accordion Pane Initial Expand State

By default, the IsExpanded property of each accordion pane is set to False, which means that the pane appears in

its collapsed state when the page is loaded. If you want the pane to be expanded upon page load, you can set the

IsExpanded property to True.

The following table illustrates the difference between the two expand states.

IsExpanded Result

IsExpanded=False

IsExpanded=True

You can set the expand states in Design view, in XAML, or in code.

Expand Direction

The C1Accordion control includes the option to specify the expand direction using the ExpandDirection property.
In addition to setting the direction that the control expands, changing the ExpandDirection also changes the

header's orientation to the content area of the control. By default the ExpandDirection property is set to Down and
the control expands from top to bottom.

The following table illustrates each ExpandDirection setting.

ExpandDirection Result

Down

10

Up

Right

Left

You can set the collapsing and expanding direction in Design view, in XAML, or in code.

Collapsing Panes

By default, the C1Accordion control's AllowCollapseAll property is set to True, meaning that all panes of an
accordion can be collapsed by the user. This is useful in cases where you want to conserve screen real estate so that
the user is free of unnecessary distractions. Think of it like the musical instrument accordion, which can be tightly
compressed for storage and then decompressed when a player wants to use it.

But there are times when this won't fit into the design of your user interface. For example, you may want to use the
accordion as a menu element. In that case, you'd want the C1Accordion control to fill to a specific height or width
at all times, and the control won't fulfill that need if all of its panes can be collapsed. Therefore, you would set the

AllowCollapseAll property to False so that one pane has to remain open at all times. You would then set the

height or width property as desired and then set the Fill property to True so that the C1Accordion control and its
panes always fill to your specified height or width.

Note: The C1Accordion control is only capable of expanding one pane at a time.

Expansion Fill

The default behavior of an accordion pane (C1AccordionItem) is to fill only to the height (for accordions that
expand up or down) or width (for accordions that expand right or left) of an accordion pane's contents. This will

 11

cause the accordion to grow to different heights or widths depending on the height or width of the content for a
given pane. This is illustrated in the example below.

To avoid this, set the height or width of the C1Accordion control and then set its Fill property to True. This will
cause each panel to expand to fill the width or height that you specified, thus providing a uniformed width or
height for accordion pane. You can observe the difference in the example below.

Accordion for WPF Layout and

Appearance
The following topics detail how to customize the C1Accordion control's layout and appearance. You can use built-
in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to customize the
appearance of the grid and take advantage of WPF's XAML-based styling. You can also use templates to format
and layout the control and to customize the control's actions.

12

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft
Visual Studio, this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a
bit easier. Having to jump between two environments can be a bit challenging to developers who are not familiar

with Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your
designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls
in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is
also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with
those less common situations where a full custom design is required.

C1Accordion and C1AccordionItem ClearStyle Properties

Accordion for WPF supports ComponentOne's new ClearStyle technology that allows you to easily change
control colors without having to change control templates. By just setting a few color properties you can quickly

style the entire grid.

The following table outlines the brush properties of the C1Accordion control:

Brush Description

Background Gets or sets the brush of the control’s background.

ExpandedBackground Gets or sets the brush of the header background that appears

when items of the C1Accordion control are expanded.

MouseOverBrush Gets or sets the System.Windows.Media.Brush used to highlight

the control’s C1AccordionItems when it is moused over.

HeaderBackground Gets or sets the background brush of all headers of all

C1AccordionItem headers contained within the C1Accordion

control.

The following table outlines the brush properties of the C1AccordionItem control:

Brush Description

 13

Background Gets or sets the brush of the control’s background.

ExpandedBackground Gets or sets the brush of the header background when the
C1AccordionItem is expanded.

MouseOverBrush Gets or sets the System.Windows.Media.Brush used to highlight
the control when it is moused over.

HeaderBackground Gets or sets the background brush of the C1AccordionItem

header.

You can completely change the appearance of the C1Accordion and C1AccordionItem controls by setting a few

properties, such as the C1Accordion control’s HeaderBackground property, which sets the background color for

every accordion item in a C1Accordion control. For example, if you set the C1Accordion control’s

HeaderBackground property to "#FFC500FF", each header in the C1Accordion control would appear similar to
the following:

You can also choose to modify the accordion items independently by setting a C1AccordionItem control’s

HeaderBackground property. For example, if you set a the HeaderBackground property of the first accordion item
to "#FFC500FF", the control would appear similar to the following:

It’s that simple with ComponentOne’s ClearStyle technology. For more information on ClearStyle, see the
ComponentOne ClearStyle Technology (page 12) topic.

Accordion for WPF Appearance Properties
ComponentOne Accordion for WPF includes several properties that allow you to customize the appearance of
the control. You can change the appearance of the text displayed in the control and customize graphic elements of
the control. The following topics describe some of these appearance properties.

Text Properties

The following properties let you customize the appearance of text in the accordion pane.

Property Description

FontFamily Gets or sets the font family of the control. This
is a dependency property.

FontSize Gets or sets the font size. This is a dependency
property.

http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592514

14

FontStretch Gets or sets the degree to which a font is

condensed or expanded on the screen. This is
a dependency property.

FontStyle Gets or sets the font style. This is a

dependency property.

FontWeight Gets or sets the weight or thickness of the
specified font. This is a dependency property.

TextAlignment Gets or sets how the text should be aligned in
the accordion pane content area. This is a

dependency property.

Header Gets or sets the header of an accordion item.

HeaderFontFamily Gets or sets the font family of the header.

HeaderFontStretch Gets or sets the font stretch of the header.

HeaderFontStyle Gets or sets the font style of the header.

HeaderFontWeight Gets or sets the font weight of the header.

Content Positioning Properties

The following properties let you customize the position of header and content area content in the C1Accordion

control.

Property Description

HeaderPadding Gets or sets the padding of the header.

HeaderHorizontalContentAlignment HorizontalContentAlignment of the header.

HeaderVerticalContentAlignment Gets or sets the vertical content alignment of

the header.

HorizontalContentAlignment Gets or sets the horizontal alignment of the
control's content. This is a dependency

property.

VerticalContentAlignment Gets or sets the vertical alignment of the

control's content. This is a dependency
property.

Color Properties

The following properties let you customize the colors used in the control itself.

Property Description

Background Gets or sets a brush that describes the

background of a control. This is a dependency

property.

Foreground Gets or sets a brush that describes the

foreground color. This is a dependency

property.

HeaderBackground

HeaderForeground Gets or sets the foreground brush of the

http://msdn2.microsoft.com/en-us/library/ms592515
http://msdn2.microsoft.com/en-us/library/ms592516
http://msdn2.microsoft.com/en-us/library/ms592517
http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518

 15

header.

Border Properties

The following properties let you customize the control's border.

Property Description

BorderBrush Gets or sets a brush that describes the border

background of a control. This is a dependency

property.

BorderThickness Gets or sets the border thickness of a control.

This is a dependency property.

Size Properties

The following properties let you customize the size of the C1Accordion control.

Property Description

Height Gets or sets the suggested height of the

element. This is a dependency property.

MaxHeight Gets or sets the maximum height constraint of

the element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of

the element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of

the element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of

the element. This is a dependency property.

Width Gets or sets the width of the element. This is a

dependency property.

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne Accordion for WPF. Extensible Application Markup
Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to
designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1Accordion control and, in the menu,

selecting Edit Template. Select Edit a Copy to create an editable copy of the current template or select Create

Empty to create a new blank template.

http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

16

If you want to edit the C1AccordionItem template, simply select the C1AccordionItem control and, in the menu,

select Edit Template. Select Edit a Copy to create an editable copy of the current template or Create Empty, to

create a new blank template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's

property. If you manually create a template in XAML you will have to link the appropriate template property to the

template you've created.

Note that you can use the Template property to customize the template.

C1Accordion Themes
ComponentOne Accordion for WPF incorporates several themes that allow you to customize the appearance of your

grid. When you first add a C1Accordion control to the page, it appears similar to the following image:

This is the control's default appearance. You can change this appearance by using one of the built-in themes or by
creating your own custom theme. All of the built-in themes are based on WPF Toolkit themes. The built-in themes
are described and pictured below; note that in the images below, a row has been selected to show selected styles:

Theme Name Theme Preview

http://msdn2.microsoft.com/en-us/library/ms592524

 17

C1Blue

C1ThemeBureauBlack

C1ThemeExpressionDark

C1ThemeExpressionLight

18

C1ThemeOffice2007Blue

C1ThemeOffice2007Black

C1ThemeOffice2007Silver

C1ThemeOffice2010Blue

 19

C1ThemeOffice2010Black

C1ThemeOffice2010Silver

C1ThemeShinyBlue

C1ThemeWhistlerBlue

20

To set an element's theme, use the ApplyTheme method. First add a reference to the theme assembly to your
project, and then set the theme in code, like this:

 Visual Basic
Private Sub Window_Loaded(sender As System.Object, e As

System.Windows.RoutedEventArgs) Handles MyBase.Loaded

 Dim theme As New C1ThemeExpressionDark

 ' Using ApplyTheme
 C1Theme.ApplyTheme(LayoutRoot, theme)

 C#
private void Window_Loaded(object sender, RoutedEventArgs e)

 {

 C1ThemeExpressionDark theme = new C1ThemeExpressionDark();

 //Using ApplyTheme

 C1Theme.ApplyTheme(LayoutRoot, theme);

 }

To apply a theme to the entire application, use the System.Windows.ResourceDictionary.MergedDictionaries
property. First add a reference to the theme assembly to your project, and then set the theme in code, like this:

 Visual Basic
Private Sub Window_Loaded(sender As System.Object, e As

System.Windows.RoutedEventArgs) Handles MyBase.Loaded

 Dim theme As New C1ThemeExpressionDark

 ' Using Merged Dictionaries

Application.Current.Resources.MergedDictionaries.Add(C1Theme.GetCurrentThem

eResources(theme))

End Sub

 C#
private void Window_Loaded(object sender, RoutedEventArgs e)

 {

 C1ThemeExpressionDark theme = new C1ThemeExpressionDark();

 //Using Merged Dictionaries

Application.Current.Resources.MergedDictionaries.Add(C1Theme.GetCurrentThem

eResources(theme));

 }

Note that this method works only when you apply a theme for the first time. If you want to switch to another

ComponentOne theme, first remove the previous theme from

Application.Current.Resources.MergedDictionaries.

Accordion for WPF Samples
Please be advised that these ComponentOne software tools are accompanied by various sample projects and/or demos
which may make use of other development tools included with the ComponentOne Studios.

Samples can be accessed from the ComponentOne Control Explorer. To view samples, on your desktop, click the

Start button and then click ComponentOne | Studio for WPF | Samples | WPF ControlExplorer.

The following pages within the ControlExplorer detail the C1Accordion control:

 21

Sample Description

Accordion Illustrates the functionality of the C1Accordion control.

 23

Accordion for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use

the C1Accordion control in general. If you are unfamiliar with the ComponentOne Accordion for WPF product,

please see the Accordion for WPF Quick Start first.

Each topic in this section provides a solution for specific tasks using the ComponentOne Accordion for WPF

product.

Each task-based help topic also assumes that you have created a new WPF project.

Adding Accordion Panes to the C1Accordion Control
In this topic, you will add an accordion pane to a C1Accordion control in Design view, in XAML, and in code.

At Design Time in Design view

To add a pane to the C1Accordion control, complete the following steps:

1. Click the C1Accordion control once to select it.

2. In the Properties window, click the Items ellipsis button.

3. The Collection Editor: Items dialog box opens.

4. Click the Add button once to add one C1AccordionItem item to the C1Accordion control.

5. In the Properties grid, set the Width property to "150".

In XAML

To add a pane to the C1Accordion control, place the following markup between the <c1ext:C1Accordion>
and </c1ext:C1Accordion> tags:

<c1ext:C1AccordionItem Name="C1AccordionItem" Width="150">

</c1ext:C1AccordionItem>

In Code

To add accordion panes in code, complete the following steps:

1. Enter Code view and import the following namespace:

 Visual Basic
Imports C1.WPF.Extended

 C#
using C1.WPF.Extended;

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

'Create the accordion pane and add content

Dim C1AccordionItem1 As New C1AccordionItem()

C1AccordionItem1.Content = "C1AccordionItem1"

'Add the accordion pane to the C1Accordion control

C1Accordion1.Items.Add(C1AccordionItem1)

 C#

//Create the accordion pane and add content

24

C1AccordionItem C1AccordionItem1 = new C1AccordionItem();

C1AccordionItem1.Content = "c1AccordionItem1";

//Add the accordion pane to the C1Accordion control

c1Accordion1.Items.Add(c1AccordionItem1);

3. Run the program.

Adding Content to Header Elements
You can easily add both simple text and WPF controls to an accordion pane's header. The topics in this section
will provide step-by-step instructions about adding text content and controls to the header.

For more information on the header element, you can also visit the Accordion Pane Header (page 7) topic.

Adding Text to the Header

By default, an accordion pane's header is empty. You can add text to the control's header by setting the Header

property to a string in Design view, in XAML, or in code.

This topic assumes that you have added a C1Accordion control with at least one C1AccordionItem item to your
project.

In XAML

To set the Header property in XAML, add Header="Hello World" to the <c1ext:C1AccordionItem> tag

so that it appears similar to the following:

<c1ext:C1AccordionItem Name="C1AccordionItem1" Header="Hello World"

Width="150" Height="55">

In Code

To set the Header property in code, complete the following steps:

1. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic
C1AccordionItem1.Header = "Hello World"

 C#
c1AccordionItem1.Header = "Hello World";

2. Run the program.

 This Topic Illustrates the Following:

The header of the accordion pane now reads "Hello World". The result of this topic should resemble the following:

Adding a Control to the Header

Any accordion pane header element is able to accept a WPF control. In this topic, you will add a Button control to
the header in XAML and in code.

This topic assumes that you have added a C1Accordion control with at least one C1AccordionItem item to your
project.

 25

In XAML

To add a Button control to the header in XAML, place the following XAML markup between the

<c1ext:C1AccordionItem> and </c1ext:C1AccordionItem> tags:
<c1ext:C1AccordionItem.Header>

<Button Content="Button" Height="Auto" Width="50"/>

</c1ext:C1AccordionItem.Header>

In Code

To add a Button control to the header in code, complete the following steps:

1. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic

'Create the Button control

Dim NewButton As New Button()

NewButton.Content = "Button"

'Set the Button Control's Width and Height properties

NewButton.Width = 50

NewButton.Height = Double.NaN

'Add the Button to the header

C1AccordionItem1.Header = (NewButton)

 C#

InitializeComponent();

//Create the Button control

Button NewButton = new Button();

NewButton.Content = "Button";

//Set the Button Control's Width and Height properties

NewButton.Width = 50;

NewButton.Height = Double.NaN;

//Add the Button to the header

c1AccordionItem1.Header = (NewButton);

2. Run the program.

 This Topic Illustrates the Following:

As a result of this topic, the control will appear in the header. The final result will resemble the following image:

Adding Content to Content Areas
You can easily add both simple text and WPF controls to an accordion pane's header. The topics in this section
will provide step-by-step instructions about how to add text content and controls to the header.

For more information on the header element, you can also visit the Accordion pane Content Area (page 8) topic.

26

Adding Text to the Content Area

You can easily add a simple line of text to the content area of an accordion pane by setting the Content property to

a string in Design view, in XAML, or in code.

This topic assumes that you have added a C1Accordion control with at least one C1AccordionItem item to your
project.

Note: You can also add text to the content area by adding a TextBox control to the content area and then setting

the TextBox control's Text property. To learn how to add a control to the content area, see Adding a Control to the

Content Area (page 26).

At Design Time in Design view

To set the Content property in Design view, complete the following steps:

1. Click the C1AccordionItem item once to select it.

2. In the Properties window, set the Content property to a string (for example, "Hello World").

3. Run the program and expand the accordion pane.

In XAML

To set the Content property in XAML, complete the following:

1. Add Content="Hello World" to the <c1ext:C1AccordionItem> tag so that it appears similar to

the following:

<c1ext:C1AccordionItem Name="C1AccordionItem1" Content="Hello

World" Width="150" Height="55">

2. Run the program and expand the accordion pane.

In Code

To set the Content property in code, complete the following steps:

1. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic
C1AccordionItem1.Content = "Hello World"

 C#
c1AccordionItem1.Content = "Hello World";

2. Run the program and expand the accordion pane.

 This Topic Illustrates the Following:

The content of your accordion pane now reads "Hello World". The result of this topic should resemble the
following:

Adding a Control to the Content Area

Each accordion pane (C1AccordionItem) will accept one child control in its content area. In this topic, you will
add a WPF button control in Design view, in XAML, and in code.

 27

This topic assumes that you have added a C1Accordion control with at least one C1AccordionItem item to your
project.

At Design Time in Design view

To add a Button control to the content area, complete the following steps:

1. Select the accordion pane you wish to add the control to.

2. Double click the Button icon to add it to the accordion pane's content area.

3. In the designer, select the Button control so that its properties take focus in the Properties window.

4. Set the Width property to "Auto".

5. Set the Height property to "Auto".

6. Run the program and expand the accordion pane to reveal the button control.

In XAML

Complete the following steps:

1. To add a Button control to the content area in XAML, complete the following:

2. Place the following markup between the <c1ext:C1AccordionItem> and

</c1ext:C1AccordionItem> tags:

 <Button Content="Button" Height="Auto" Width="Auto"/>

3. Run the program and expand the accordion pane to reveal the button control.

In Code

To add a Button control to the content area in code, complete the following:

1. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic

'Create the Button control

Dim NewButton As New Button()

NewButton.Content = "Button"

'Set the Button Control's Width and Height properties

NewButton.Width = Double.NaN

NewButton.Height = Double.NaN

'Add the Button to the content area

C1AccordionItem1.Content = (NewButton)

 C#

//Create the Button control

Button NewButton = new Button();

NewButton.Content = "Button";

//Set the Button Control's Width and Height properties

NewButton.Width = double.NaN;

NewButton.Height = double.NaN;

28

//Add the Button to the content area

c1AccordionItem1.Content = (NewButton);

2. Run the program and expand the accordion pane to reveal the button control.

 This Topic Illustrates the Following:

When accordion pane is expanded, the button control will appear in its content area, resembling the following
image:

Adding Multiple Controls to the Content Area

You cannot set an accordion pane's (C1AccordionItem) Content property to more than one control at a time.
However, you can circumvent this issue by adding a panel-based control that can accept more than one control,

such as a StackPanel control, to the content area of the accordion pane. When you add multiple controls to the

panel-based control, each one will appear within the accordion pane's content area.

This topic assumes that you have added a C1Accordion control with at least one C1AccordionItem item to your
project.

To add multiple controls to the content area, complete these steps:

1. Place the following XAML markup between the <c1ext:C1AccordionItem> and

</c1ext:C1AccordionItem> tags:
 <c1ext:C1AccordionItem.Content>

 <StackPanel>

 <TextBlock Text="1st TextBlock"/>

 <TextBlock Text="2nd TextBlock"/>

 <TextBlock Text="3rd TextBlock"/>

 </StackPanel>

 </c1ext:C1AccordionItem.Content>

2. Run the program.

3. Expand the accordion pane and observe that each of the three TextBlock controls appear in the content

area. The result will resemble the following:

Changing the Expand Direction
By default, the C1Accordion control's accordion panes expand from top-to-bottom because the ExpandDirection

property is set to Down. You can easily change the expand direction by setting the ExpandDirection property to

Up, Right, or Left in Design view, in XAML, or in code.

 29

This topic assumes that you have added a C1Accordion control with at least one C1AccordionItem to your
project.

At Design Time in Design view

To set the ExpandDirection property in Design view, complete the following steps:

1. Click the C1Accordion control once to select it.

2. In the Properties window, click the ExpandDirection drop-down arrow and select one of the options from

the list. For this example, select Right.

In XAML

To set the ExpandDirection property to Right in XAML, add ExpandDirection="Right" to the

<c1ext:C1Accordion> tag so that it appears similar to the following:

<c1ext:C1Accordion Name="C1Accordion1" ExpandDirection=Right

Width="150" Height="55">

In Code

To set the ExpandDirection property in code, complete the following steps:

1. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic
C1Accordion1.ExpandDirection = C1.WPF.Extended.ExpandDirection.Right

 C#
c1Accordion1.ExpandDirection = C1.WPF.Extended.ExpandDirection.Right;

2. Run the program.

 This Topic Illustrates the Following:

By following the instructions in this topic, you have learned how to set the ExpandDirection property. In this

topic, you set the ExpandDirection property to Right, which will make the C1Accordion control resemble the

following:

Filling Out the Accordion's Height
The default behavior of an accordion pane (C1AccordionItem) is to fill only to the height (for accordions that
expand up or down) or width (for accordions that expand right or left) of its contents. If you want the
C1Accordion control to fill to a specific height or width, you will have to set the height or width of the control and

then set the control's Fill property to True.

At Design Time in Design view

To set the Fill property in Design view, complete the following steps:

1. Add three accordion panes to your C1Accordion control (see Adding Accordion Panes to the
C1Accordion Control (page 23)).

2. Click the C1Accordion control once to select it.

3. In the Properties window, complete the following:

30

 Select the Fill check box.

 Set the Height property to "200".

In XAML

To set the Fill property to True in XAML, complete the following:

1. Add Fill="True" to the <c1ext:C1Accordion> tag so that it appears similar to the following:

<c1ext:C1Accordion Name="C1Accordion1" Fill="True">

2. Add Height="200" to the <c1ext:C1Accordion> tag so that it appears similar to the following:

<c1ext:C1Accordion Name="C1Accordion1" Fill="True" Height="200">

In Code

To set the Fill property in code, complete the following steps:

1. Add and Height="200" to the <c1ext:C1Accordion> tag. This ensures that each accordion pane

expands to fill a height of 200 pixels.

2. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic
C1Accordion1.Fill = True

 C#
c1Accordion1.Fill = true;

3. Run the program.

	ComponentOne Accordion for WPF
	Help with ComponentOne Studio for WPF

	Key Features
	Accordion for WPF Quick Start
	Step 1 of 3: Creating an Application with a C1Accordion Control
	Step 2 of 3: Adding Accordion Panes
	Step 3 of 3: Running the Project

	Using C1Accordion
	C1Accordion Elements
	Accordion Pane Header
	Accordion Pane Content Area

	Expanding and Collapsing Accordion Panes
	Accordion Pane Initial Expand State
	Expand Direction
	Collapsing Panes
	Expansion Fill

	Accordion for WPF Layout and Appearance
	ComponentOne ClearStyle Technology
	How ClearStyle Works
	C1Accordion and C1AccordionItem ClearStyle Properties

	Accordion for WPF Appearance Properties
	Text Properties
	Content Positioning Properties
	Color Properties
	Border Properties
	Size Properties

	Templates
	C1Accordion Themes

	Accordion for WPF Samples
	Accordion for WPF Task-Based Help
	Adding Accordion Panes to the C1Accordion Control
	Adding Content to Header Elements
	Adding Text to the Header
	Adding a Control to the Header

	Adding Content to Content Areas
	Adding Text to the Content Area
	Adding a Control to the Content Area
	Adding Multiple Controls to the Content Area

	Changing the Expand Direction
	Filling Out the Accordion's Height

