

ComponentOne

Chart for WPF

Copyright  1987-2011 ComponentOne LLC. All rights reserved.

Corporate Headquarters

ComponentOne LLC

201 South Highland Avenue

3rd Floor

Pittsburgh, PA 15206 ∙ USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales
E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of ComponentOne LLC. All

other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming

normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective

CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express

or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was
written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the

product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make
copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in

seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/

iii

Table of Contents
ComponentOne Chart for WPF Overview .. 1

What's New in ComponentOne Chart for WPF .. 1
Revision History .. 3
What’s New in 2010 v3 .. 3
What's New in 2010 v2 ... 3
What’s New in 2010 v1 .. 3
Installing Chart for WPF .. 5
Chart for WPF Setup Files ... 5
System Requirements ... 6
Installing Demonstration Versions .. 7
Uninstalling Chart for WPF ... 7
End-User License Agreement ... 7
Licensing FAQs ... 7
What is Licensing? ... 7
How does Licensing Work? .. 8
Common Scenarios .. 8
Troubleshooting ... 10
Redistributable Files ... 13
About This Documentation .. 13
XAML and XAML Namespaces .. 13
Creating a Microsoft Blend Project ... 14
Creating a .NET Project in Visual Studio .. 15
Creating an XAML Browser Application (XBAP) in Visual Studio ... 16
Adding the Chart for WPF Components to a Blend Project .. 17
Adding the Chart for WPF Components to a Visual Studio Project .. 17

Key Features ... 18

Chart for WPF Quick Start .. 23
Step 1 of 4: Adding Chart for WPF to your Project ... 23
Step 2 of 4: Adding Data to the Chart ... 24
Step 3 of 4: Format the Axes .. 30
Step 4 of 4: Adjust the Chart's Appearance ... 33

Chart for WPF Top Tips ... 35

C1Chart Concepts and Main Properties .. 40

Common Usage for Basic 2D Charts .. 41
Simple Charts ... 41
Time-Series Charts ... 46
XY Charts .. 49
Formatting Charts .. 53

Chart Types .. 53
Area Charts .. 55
Bar Charts .. 58
Bubble Charts ... 60
Financial Charts ... 61
Column Charts ... 64
Gantt Charts .. 66
Line Charts .. 69
Pie Charts .. 72

iv

Special Pie Chart Properties ... 75
Polar and Radar Charts .. 75
3D Ribbon Chart .. 79
Polygon Chart .. 79
Step Chart .. 80
XYPlot Chart ... 81

Chart Data Series .. 82
Chart Data Series Types ... 82
Chart Data Series Appearance .. 83
Differences Between DataSeries and XYDataSeries .. 83
Render Mode Limitations for Data Series ... 83

Chart Panel .. 83
Mouse Interaction with ChartPanel .. 84

Chart View .. 85
Axes ... 86
Axis Lines .. 87
Dependent Axis ... 88
Axis Position .. 89
Axis Title ... 89
Axis Tick Marks ... 90
Axis Grid Lines .. 92
Axis Bounds ... 92
Axis Scrolling ... 93
Inverted and Reversed Chart Axes .. 93
Multiple Axes ... 94
Axis Logarithmic Scaling ... 95
Axes Annotation .. 98
Axis Annotation Format .. 99
Axis Annotation Rotation .. 100
Custom Axis Annotation .. 101
Plot Area .. 103
Plot Area Size .. 104
Plot Area Appearance .. 105

Data Aggregation .. 105

Data Labels .. 106

Chart Styles .. 107
MouseOver Style .. 107

Chart Appearance .. 108
Chart Themes ... 108
Data Series Color Generation ... 117

End User Interaction .. 124

XAML Elements ... 125

Plotting Functions ... 126
Using a Code String to Define a Function... 127
Calculating the Value for Functions .. 127

TrendLines ... 127

Chart Resource Keys .. 127

Animation .. 129

v

Delivering Data to the Chart .. 129
Collection of Values ... 129
Collection of Objects .. 130
Observable Collection .. 131
Data Context Binding... 131
Data Context as Array of Double ... 131
Data Context as Array of Point .. 131
Data Series Binding .. 131
Item Name Binding .. 132
X-Value Binding ... 132
Series Generation ... 132

Data Binding Tutorials ... 133
Bind to a Data Table Programmatically .. 133
Bind to an XML ... 137

Chart for WPF Samples .. 141

Chart for WPF Task-Based Help ... 143
Adding Labels to Pie Charts ... 143
Adding a Chart Label ... 143
Changing the Corners of the Rectangles in Bar/Column Charts .. 144
Creating Combinations of Charts ... 144
Creating a Gantt Chart ... 144
Creating a Pareto Chart or Scatter Chart ... 145
Creating a Custom Annotation ... 146
Creating a Mouse Click Event for a Column Chart ... 146
Disabling Chart Optimization After it has been Set ... 148
Displaying Gaps in Line or Area Charts ... 148
Performing Batch Updates .. 150
Displaying Axis and Annotations on the Opposite Side of the Chart ... 150
Saving C1Chart as a .Png File .. 151
Setting the Axis Origin ... 151
Specifying the Major and Minor Ticks .. 151
Showing Data Labels on the First of Each Month ... 152
Changing Rotation for 3D Chart .. 153
Enabling Run-Time Interaction for the 2D Cartesian Chart .. 153
Changing Colors .. 153
Binding the Chart to a DataTable from DataSet.. 153
Exporting Chart Image ... 154

1

ComponentOne Chart for WPF

Overview
ComponentOne Chart™ for WPF revolutionizes chart presentations through

powerful rendering, rich styling elements, animations, and data-binding

capabilities. Display your chart in a Smart Client application or take

advantage of the XBAP support and extend your deployment capabilities to

the Web.

With the built-in themes, chart types, and wide range of color palettes your

customized chart is just clicks away – no additional coding required. Combine

the simplicity of Chart for WPF with the power of WPF and you'll discover

creating professionally designed chart types has never been easier.

 Getting Started

If you're new to Chart

for WPF, get started

with the following

topics:

- Chart for WPF

Quick Start (page

23)

- Chart Types (page

53)

- Chart Data Series

(page 82)

What's New in ComponentOne Chart for WPF
This documentation was last revised for 2011 v1 on February 22, 2011.

The following new features were added to ComponentOne Chart for WPF in the 2011 v1 release:

 New Chart Types Added

Added Polygon and PolygonFilled chart types

These are simialr to line/area, but they create a closed area defined by data points. These chart types

(especially PolygonFilled) can be very handy when you need to add a zone with custom shape.

 Add UI Elements Over the Chart

Added ChartPanel and ChartPanelObject classes that allows to position UI elements over the chart using

data coordinates. For more information on these classes see Chart Panel (page 83).

The following image illustrates the ChartPanelObjects:

2

 Add Symbols to Non-Symbol Charts

You can now apply DataSeries.SymbolMarker to non-symbol charts such as Area, Line, and Step.

 Enhanced PlotArea Appearance

You can now add definitions in XAML using the ChartView PlotAreaColumnDefinitions and

PlotAreaRowDefinitions. For more information see Plot Area Appearance (page 105).

The following image illustrates the ChartView PlotAreaColumnDefinitions and

PlotAreaRowDefinitions used to get the background colors for each plot area:

 New Chart Samples

Added the following new samples for the new features: Advanced\Polygon, Interaction\AddRemove

Markers, Interaction\Markders, Interaction\Mouse Marker, Combination\Plot Areas (vertically).

 Multiple Plot Areas

3

Added multiple plot areas (PlotArea class, ChartView.PlotAreas and Axis.PlotAreaIndex properties)

 New Font Properties

Added font properties for the Axis class(FontFamily, FontSize, FontStyle, FontStretch, FontWeight).

 Fast Render Mode

The rendering mode is controlled by the RenderMode property. The new rendering method shows a good

performance with scatter charts.

 Enhanced Symbol Charts

Added LineAreaOptions.OptimizationRadiusScope property and corresponding enum. The

optimization can be applied to the symbol charts

The LineAreaOptions.OptimizationRadius can be set on the data series

 Axis Label Positioning

Improved axis label positioning for small time intervals

 New Icons

 Tip: A version history containing a list of new features, improvements, fixes, and changes for each product is
available on the ComponentOne Website at http://helpcentral.componentone.com/VersionHistory.aspx.

Revision History
The revision history provides recent enhancements to Chart for WPF.

What’s New in 2010 v3

This documentation was last revised for 2010 v3 on October 21, 2010.

Design-time support for C1Chart3D has been added. See the ComponentOne 3D Chart for WPF

documentation for more information on this new control.

What's New in 2010 v2

New changes have been added to ComponentOne Chart for WPF in the 2010 v2 release:

New Changes

The following changes were added to ComponentOne Chart for WPF in the 2010 v2 release:

 The following properties of Axis class now are dependency properties: AnnoPosition, LogBase,

MajorUnit, MinorUnit, Position, and Scale.

What’s New in 2010 v1

This documentation was last revised for 2010 v1 on March 1, 2010. New features, class members, and task-

based help have been added to ComponentOne Chart for WPF in the 2010 v1 release:

New Features

The following new features were added to ComponentOne Chart for WPF in the 2010 v1 release:

 Added AxisPoint class which is used when implementing custom axis annotation

The user can’t create its instance, it can appear only when implementing custom axis annotation template.

The chart creates AxisPoint instance and sets it as DataContext of the annotation element.

http://helpcentral.componentone.com/VersionHistory.aspx

4

 Added extension methods to save chart as bitmap image

You can now save chart at bitmap image by adding a reference to C1.WPF.C1Chart.Extended.dll to

your project and using one of the new extension methods, SaveImage. To see how to save the chart image

as a .png file see Saving C1Chart as a .Png File (page 151).

Supported formats are defined in the following enumeration:

public enum ImageFormat

{

 Bmp,

 Gif,

 Jpeg,

 Png,

 Tiff,

 Wmp

}

The export is implemented as a class in extended charting library (C1.WPF.C1Chart.Extended.dll) with

static extension methods.

 Built-in axis scroll bars.

New class AxisScrollBar and ScrollBar property simplify scrolling implementation when plotting large

data arrays. Added cooresponding AxisScrollBarPosition enumeration to specify the available positions

for axis scroll bar.

 Added Aggregate charts

The new Aggregate and Aggregate properties have been added to allow all users to perform aggregation

on the plotted data. The Aggregate enumeration has been added to specify how data should be aggregated

for charting. For more information see Data Aggregation (page 105).

 Provide access to current axis limits

You can now provide access to current axis limits through the new ActualMin and ActualMax properties

New Members

The following members were added to ComponentOne Chart for WPF in the C1.WPF.C1Chart.dll:

Member Description

AxisPoint class Represents the point on the axis.

AxisScrollBar class Represents the axis scroll bar control.

ScrollBar property Gets or sets the axis scroll bar.

Aggregate property Gets or sets the value which specifies how to

aggregate data for charting.

Aggregate property Gets or sets the value which specifies how to

aggregate data for charting.

ActualMin property Gets the actual axis minimum.

ActualMax property Gets the actual axis maximum.

5

Aggregate Enumeration Specifies how data should be aggregated for

charting.

AxisScrollBarPosition Enumeration Specifies available positions for axis scroll bar.

The following members were added to ComponentOne Chart for WPF in the

C1.WPF.C1Chart.Extended.dll:

Member Description

Export class Contains chart export routines.

SaveImage Method (C1Chart, Stream,

ImageFormat)

Saves the chart image to the provided stream

using the specified image format.

SaveImage Method (C1Chart, Stream,

ImageFormat, Double, Double)

Saves the chart image to the provided stream

using the specified image format with the specified
horizontal and vertical resolution.

SaveImage Method (C1Chart, Stream,

BitmapEncoder, Double, Double)

Saves the chart image to the provided stream

using the specified encoder with the specified
horizontal and vertical resolution.

New Task-Based Help Topics

The following task-based help topics were added to ComponentOne Chart for WPF:

Task-Based Help Topic Description

Disabling Chart Optimization After it

has been Set (page 148)

Shows how to disable the chart optimization after

it has been set.

Displaying Axis and Annotations on the

Opposite Side of the Chart (page 150)

Shows hows to display the axis and annotations on

the opposite side of the chart.

Saving C1Chart as a .Png File (page

151)

Shows how to save C1Chart as a .Png file using

the new SaveImage method.

Installing Chart for WPF
The following sections provide helpful information on installing Chart for WPF.

Chart for WPF Setup Files

The installation program will create the directory C:\Program Files\ComponentOne\Studio for WPF,

which contains the following subdirectories:

bin Contains copies of all ComponentOne binaries (DLLs, EXEs).

For Chart for WPF, the following .dlls are installed:

C1.WPF.C1Chart.Design.dll

C1.WPF.C1Chart.dll

C1.WPF.C1Chart.Extended.dll

6

C1.WPF.C1Chart3D.dll

C1.WPF.C1Chart.Expression.Design.dll

C1.WPF.C1Chart.VisualStudio.Design.dll

C1.WPF.C1Chart.Design.4.0.dll

H2Help Contains Microsoft Help 2.0 integrated documentation for all

Studio components.

C1Chart\XAML Contains the full XAML definitions of C1Chart styles and

templates which can be used for creating your own custom styles

and templates.

The ComponentOne Studio for WPF Help Setup program installs integrated Microsoft Help 2.0 and Microsoft

Help Viewer help to the C:\Program Files\ComponentOne\Studio for WPF directory in the following

folders:

H2Help Contains Microsoft Help 2.0 integrated documentation for all

Studio components.

HelpViewer Contains Microsoft Help Viewer Visual Studio 2010 integrated

documentation for all Studio components.

Samples

Samples for the product are installed in the ComponentOne Samples folder by default. The path of the

ComponentOne Samples directory is slightly different on Windows XP and Windows 7/Vista machines:

Windows XP path: C:\Documents and Settings\<username>\My Documents\ComponentOne Samples

Windows 7/Vista path: C:\Users\<username>\Documents\ComponentOne Samples

The ComponentOne Samples folder contains the following subdirectories:

Common Contains support and data files that are used by many of the demo

programs.

C1Chart Contains samples for Chart for WPF.

Samples can be accessed from the ComponentOne Studio for WPF ControlExplorer. On your desktop, click

the Start button and then click All Programs| ComponentOne | Studio for WPF | C1WPFChart Samples.

System Requirements

System requirements include the following:

Operating Systems: Microsoft Windows® XP with Service Pack 2 (SP2)

Windows Vista™

Windows Server 2003

Windows Server 2008

Windows 7

7

Environments: .NET Framework 3.5 or later

Visual Studio® 2005 extensions for .NET Framework 2.0

November 2006 CTP

Microsoft® Expression®

Blend Compatibility:

Chart for WPF has special design-time support for Blend, which

includes workarounds for correct XAML serialization and a

customizable user interface.

Note: The C1.WPF.VisualStudio.Design.dll assembly is required by Visual Studio 2008 and the
C1.WPF.Expression.Design.dll assembly is required by Expression Blend. The C1.WPF.Expression.Design.dll
and C1.WPF.VisualStudio.Design.dll assemblies installed with Chart for WPF should always be placed in the
same folder as C1.WPF.C1Chart.dll; the DLLs should not be placed in the Global Assembly Cache (GAC).

Installing Demonstration Versions

If you wish to try ComponentOne Chart for WPF and do not have a serial number, follow the steps through

the installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products

is that registered versions will stamp every application you compile so a ComponentOne banner will not

appear when your users run the applications.

Uninstalling Chart for WPF

To uninstall ComponentOne Chart for WPF:

1. Open the Control Panel and select Add or Remove Programs (Programs and Features in Vista).

2. Select ComponentOne Studio for WPF and click the Remove button.

3. Click Yes to remove the program.

End-User License Agreement
All of the ComponentOne licensing information, including the ComponentOne end-user license agreements,

the ComponentOne licensing model, and frequently asked licensing questions, is available online at

http://www.componentone.com/SuperPages/Licensing/.

Licensing FAQs
This section describes the main technical aspects of licensing. It may help the user to understand and resolve

licensing problems he may experience when using ComponentOne .NET and ASP.NET products.

What is Licensing?

Licensing is a mechanism used to protect intellectual property by ensuring that users are authorized to use

software products.

Licensing is not only used to prevent illegal distribution of software products. Many software vendors,

including ComponentOne, use licensing to allow potential users to test products before they decide to purchase

them.

Without licensing, this type of distribution would not be practical for the vendor or convenient for the user.

Vendors would either have to distribute evaluation software with limited functionality, or shift the burden of

http://www.componentone.com/SuperPages/Licensing/

8

managing software licenses to customers, who could easily forget that the software being used is an evaluation

version and has not been purchased.

How does Licensing Work?

ComponentOne uses a licensing model based on the standard set by Microsoft, which works with all types of

components.

Note: The Compact Framework components use a slightly different mechanism for run-time licensing than the

other ComponentOne components due to platform differences.

When a user decides to purchase a product, he receives an installation program and a Serial Number. During

the installation process, the user is prompted for the serial number that is saved on the system. (Users can also

enter the serial number by clicking the License button on the About Box of any ComponentOne product, if

available, or by rerunning the installation and entering the serial number in the licensing dialog.)

When a licensed component is added to a form or Web page, Visual Studio obtains version and licensing

information from the newly created component. When queried by Visual Studio, the component looks for

licensing information stored in the system and generates a run-time license and version information, which

Visual Studio saves in the following two files:

 An assembly resource file which contains the actual run-time license

 A "licenses.licx" file that contains the licensed component strong name and version information

These files are automatically added to the project.

In WinForms and ASP.NET 1.x applications, the run-time license is stored as an embedded resource in the

assembly hosting the component or control by Visual Studio. In ASP.NET 2.x applications, the run-time

license may also be stored as an embedded resource in the App_Licenses.dll assembly, which is used to store

all run-time licenses for all components directly hosted by WebForms in the application. Thus, the

App_licenses.dll must always be deployed with the application.

The licenses.licx file is a simple text file that contains strong names and version information for each of the

licensed components used in the application. Whenever Visual Studio is called upon to rebuild the application

resources, this file is read and used as a list of components to query for run-time licenses to be embedded in the

appropriate assembly resource. Note that editing or adding an appropriate line to this file can force Visual

Studio to add run-time licenses of other controls as well.

Note that the licenses.licx file is usually not shown in the Solution Explorer; it appears if you press the Show

All Files button in the Solution Explorer's toolbox, or from Visual Studio's main menu, select Show All Files

on the Project menu.

Later, when the component is created at run time, it obtains the run-time license from the appropriate

assembly resource that was created at design time and can decide whether to simply accept the run-time

license, to throw an exception and fail altogether, or to display some information reminding the user that the

software has not been licensed.

All ComponentOne products are designed to display licensing information if the product is not licensed. None

will throw licensing exceptions and prevent applications from running.

Common Scenarios

The following topics describe some of the licensing scenarios you may encounter.

Creating components at design time

This is the most common scenario and also the simplest: the user adds one or more controls to the form, the

licensing information is stored in the licenses.licx file, and the component works.

Note that the mechanism is exactly the same for Windows Forms and Web Forms (ASP.NET) projects.

9

Creating components at run time

This is also a fairly common scenario. You do not need an instance of the component on the form, but would

like to create one or more instances at run time.

In this case, the project will not contain a licenses.licx file (or the file will not contain an appropriate run-time

license for the component) and therefore licensing will fail.

To fix this problem, add an instance of the component to a form in the project. This will create the licenses.licx

file and things will then work as expected. (The component can be removed from the form after the

licenses.licx file has been created).

Adding an instance of the component to a form, then removing that component, is just a simple way of adding

a line with the component strong name to the licenses.licx file. If desired, you can do this manually using

notepad or Visual Studio itself by opening the file and adding the text. When Visual Studio recreates the

application resources, the component will be queried and its run-time license added to the appropriate

assembly resource.

Inheriting from licensed components

If a component that inherits from a licensed component is created, the licensing information to be stored in the

form is still needed. This can be done in two ways:

 Add a LicenseProvider attribute to the component.

This will mark the derived component class as licensed. When the component is added to a form, Visual

Studio will create and manage the licenses.licx file, and the base class will handle the licensing process as

usual. No additional work is needed. For example:
 [LicenseProvider(typeof(LicenseProvider))]

 class MyGrid: C1.Win.C1FlexGrid.C1FlexGrid

 {

 // ...

 }

 Add an instance of the base component to the form.

This will embed the licensing information into the licenses.licx file as in the previous scenario, and the

base component will find it and use it. As before, the extra instance can be deleted after the licenses.licx

file has been created.

Please note, that C1 licensing will not accept a run time license for a derived control if the run time license is

embedded in the same assembly as the derived class definition, and the assembly is a DLL. This restriction is

necessary to prevent a derived control class assembly from being used in other applications without a design

time license. If you create such an assembly, you will need to take one of the actions previously described

create a component at run time.

Using licensed components in console applications

When building console applications, there are no forms to add components to, and therefore Visual Studio

won't create a licenses.licx file.

In these cases, create a temporary Windows Forms application and add all the desired licensed components to

a form. Then close the Windows Forms application and copy the licenses.licx file into the console application

project.

Make sure the licenses.licx file is configured as an embedded resource. To do this, right-click the licenses.licx

file in the Solution Explorer window and select Properties. In the property window, set the Build Action

property to Embedded Resource.

10

Using licensed components in Visual C++ applications

There is an issue in VC++ 2003 where the licenses.licx is ignored during the build process; therefore, the

licensing information is not included in VC++ applications.

To fix this problem, extra steps must be taken to compile the licensing resources and link them to the project.

Note the following:

1. Build the C++ project as usual. This should create an exe file and also a licenses.licx file with licensing

information in it.

2. Copy the licenses.licx file from the app directory to the target folder (Debug or Release).

3. Copy the C1Lc.exe utility and the licensed dlls to the target folder. (Don't use the standard lc.exe, it has

bugs.)

4. Use C1Lc.exe to compile the licenses.licx file. The command line should look like this:
c1lc /target:MyApp.exe /complist:licenses.licx /i:C1.Win.C1FlexGrid.dll

5. Link the licenses into the project. To do this, go back to Visual Studio, right-click the project, select

properties, and go to the Linker/Command Line option. Enter the following:
/ASSEMBLYRESOURCE:Debug\MyApp.exe.licenses

6. Rebuild the executable to include the licensing information in the application.

Using licensed components with automated testing products

Automated testing products that load assemblies dynamically may cause them to display license dialogs. This

is the expected behavior since the test application typically does not contain the necessary licensing

information, and there is no easy way to add it.

This can be avoided by adding the string "C1CheckForDesignLicenseAtRuntime" to the

AssemblyConfiguration attribute of the assembly that contains or derives from ComponentOne controls. This

attribute value directs the ComponentOne controls to use design time licenses at run time.

For example:
#if AUTOMATED_TESTING

 [AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime")]

#endif

 public class MyDerivedControl : C1LicensedControl

 {

 // ...

 }

Note that the AssemblyConfiguration string may contain additional text before or after the given string, so the

AssemblyConfiguration attribute can be used for other purposes as well. For example:
 [AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime,BetaVersion")]

THIS METHOD SHOULD ONLY BE USED UNDER THE SCENARIO DESCRIBED. It requires a design

time license to be installed on the testing machine. Distributing or installing the license on other computers is a

violation of the EULA.

Troubleshooting

We try very hard to make the licensing mechanism as unobtrusive as possible, but problems may occur for a

number of reasons.

Below is a description of the most common problems and their solutions.

11

I have a licensed version of a ComponentOne product but I still get the splash screen when I run my
project.

If this happens, there may be a problem with the licenses.licx file in the project. It either doesn't exist, contains

wrong information, or is not configured correctly.

First, try a full rebuild (Rebuild All from the Visual Studio Build menu). This will usually rebuild the correct

licensing resources.

If that fails follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and open it. If prompted, continue to open the file.

4. Change the version number of each component to the appropriate value. If the component does not

appear in the file, obtain the appropriate data from another licenses.licx file or follow the alternate

procedure following.

5. Save the file, then close the licenses.licx tab.

6. Rebuild the project using the Rebuild All option (not just Rebuild).

Alternatively, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and delete it.

4. Close the project and reopen it.

5. Open the main form and add an instance of each licensed control.

6. Check the Solution Explorer window, there should be a licenses.licx file there.

7. Rebuild the project using the Rebuild All option (not just Rebuild).

For ASP.NET 2.x applications, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Find the licenses.licx file and right-click it.

3. Select the Rebuild Licenses option (this will rebuild the App_Licenses.licx file).

4. Rebuild the project using the Rebuild All option (not just Rebuild).

I have a licensed version of a ComponentOne product on my Web server but the components still
behave as unlicensed.

There is no need to install any licenses on machines used as servers and not used for development.

The components must be licensed on the development machine, therefore the licensing information will be

saved into the executable (exe or dll) when the project is built. After that, the application can be deployed on

any machine, including Web servers.

For ASP.NET 2.x applications, be sure that the App_Licenses.dll assembly created during development of the

application is deployed to the bin application bin directory on the Web server.

If your ASP.NET application uses WinForms user controls with constituent licensed controls, the runtime

license is embedded in the WinForms user control assembly. In this case, you must be sure to rebuild and

update the user control whenever the licensed embedded controls are updated.

12

I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen
when I build my projects.

Make sure that the serial number is still valid. If you licensed the component over a year ago, your

subscription may have expired. In this case, you have two options:

Option 1 - Renew your subscription to get a new serial number.

If you choose this option, you will receive a new serial number that you can use to license the new

components (from the installation utility or directly from the About Box).

The new subscription will entitle you to a full year of upgrades and to download the latest maintenance builds

directly from http://prerelease.componentone.com/.

Option 2 – Continue to use the components you have.

Subscriptions expire, products do not. You can continue to use the components you received or downloaded

while your subscription was valid.

Technical Support

ComponentOne offers various support options. For a complete list and a description of each, visit the ComponentOne

Web site at http://www.componentone.com/SuperProducts/SupportServices/.

Some methods for obtaining technical support include:

 Online Resources

ComponentOne provides customers with a comprehensive set of technical resources in the form of FAQs,

samples and videos, Version Release History, searchable Knowledge base, searchable Online Help and

more. We recommend this as the first place to look for answers to your technical questions.

 Online Support via our Incident Submission Form

This online support service provides you with direct access to our Technical Support staff via an online

incident submission form. When you submit an incident, you'll immediately receive a response via e-mail

confirming that you've successfully created an incident. This e-mail will provide you with an Issue

Reference ID and will provide you with a set of possible answers to your question from our

Knowledgebase. You will receive a response from one of the ComponentOne staff members via e-mail in

2 business days or less.

 Peer-to-Peer Product Forums

ComponentOne peer-to-peer product forums are available to exchange information, tips, and techniques

regarding ComponentOne products. ComponentOne sponsors these areas as a forum for users to share

information. While ComponentOne does not provide direct support in the forums, we periodically

monitor them to ensure accuracy of information and provide comments when appropriate. Please note

that a ComponentOne User Account is required to participate in the ComponentOne Product Forums.

 Installation Issues

Registered users can obtain help with problems installing ComponentOne products. Contact technical

support by using the online incident submission form or by phone (412.681.4738). Please note that this

does not include issues related to distributing a product to end-users in an application.

 Documentation

Microsoft integrated ComponentOne documentation can be installed with each of our products, and

documentation is also available online. If you have suggestions on how we can improve our

documentation, please email the Documentation team. Please note that e-mail sent to the Documentation

team is for documentation feedback only. Technical Support and Sales issues should be sent directly to

their respective departments.

http://prerelease.componentone.com/
http://www.componentone.com/SuperProducts/SupportServices/
http://helpcentral.componentone.com/CS/w/
http://www.componentone.com/Members/?ReturnUrl=%2fSupport%2fdefault.aspx%3fnew%3dtrue
http://www.componentone.com/Members/?ReturnUrl=%2fSupport%2fdefault.aspx%3fnew%3dtrue
http://helpcentral.componentone.com/CS/f/
http://www.componentone.com/Members/?ReturnUrl=%2fSupport%2fdefault.aspx%3fnew%3dtrue
mailto:documentation@componentone.com
mailto:documentation@componentone.com
mailto:documentation@componentone.com
http://www.componentone.com/SuperProducts/SupportServices/
mailto:sales@componentone.com

13

Note: You must create a ComponentOne Account and register your product with a valid serial number to obtain

support using some of the above methods.

Redistributable Files
ComponentOne Chart for WPF is developed and published by ComponentOne LLC. You may use it to

develop applications in conjunction with Microsoft Visual Studio or any other programming environment that

enables the user to use and integrate the control(s). You may also distribute, free of royalties, the following

Redistributable Files with any such application you develop to the extent that they are used separately on a

single CPU on the client/workstation side of the network:

 C1.WPF.C1Chart.dll

 C1.WPF.C1Chart.Extended.dll

Note: Both the C1.WPF.C1Chart.dll and C1.WPF.C1Chart.Expression.Design.dll files are installed to C:\Program

Files\ComponentOne\Studio for WPF\bin by default. The C1.WPF.C1Chart.Expression.Design.dll installed
with Chart for WPF for WPF should always be placed in the same folder as the C1.WPF.C1Chart.dll; these files
should NOT be placed in the GAC. The C1.WPF.C1Chart.Expression.Design.dll assembly is required by Blend.

Site licenses are available for groups of multiple developers. Please contact Sales@ComponentOne.com for

details.

About This Documentation
You can create your chart applications using Microsoft Expression Blend or Visual Studio 2008, but Blend is

currently the only design-time environment that allows users to design XAML documents visually.

Acknowledgements

Microsoft, Windows, Windows Vista, Visual Studio, and Microsoft Expression are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries.

ComponentOne

If you have any suggestions or ideas for new features or controls, please call us or write:

Corporate Headquarters

ComponentOne LLC

201 South Highland Avenue

3rd Floor

Pittsburgh, PA 15206 • USA

412.681.4343

412.681.4384 (Fax)

http://www.componentone.com

ComponentOne Doc-To-Help

This documentation was produced using ComponentOne Doc-To-Help® Enterprise.

XAML and XAML Namespaces
XAML is a declarative XML-based language that is used as a user interface markup language in Windows

Presentation Foundation and the .NET Framework 3.0. With XAML you can create a graphically rich

customized user interface, perform databinding, and much more. For more information on XAML and the

.NET Framework 3.0, please see http://www.microsoft.com.

mailto:sales@componentone.com
http://www.componentone.com/
http://www.doctohelp.com/
http://www.microsoft.com/

14

XAML Namespaces

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which

can in turn contain other namespaces. Namespaces prevent ambiguity and simplify references when using

large groups of objects such as class libraries.

When you create a Microsoft Blend project, a XAML file is created for you, and some initial namespaces are

specified:

Namespace Description

xmlns="http://schemas.microsoft.com/win
fx/2006/xaml/presentation"

This is the default Windows Presentation Foundation
namespace.

xmlns:x="http://schemas.microsoft.com/
winfx/2006/xaml"

This is a XAML namespace that is mapped to the x: prefix.
The x: prefix provides a quick, easy way to reference the
namespace, which defines many commonly-used features
necessary for WPF applications.

When you add a C1Chart control to the window in Microsoft Expression Blend, Blend automatically creates a

clr-namespace, or common language runtime (CLR) namespace that maps to the C1.WPF.C1Chart assembly.

The namespace looks like the following:
xmlns:c1chart="http://schemas.componentone.com/xaml/c1chart"

The clr-namespace value is C1.WPF.C1Chart, and the assembly value is C1.WPF.C1Chart.

When you add a C1Chart control to the window in Visual Studio 2008, Visual Studio automatically creates a

clr-namespace, or common run time (CLR) namespace that maps to the C1.WPF.C1Chart assembly. The

namespace looks like the following:
xmlns:c1chart="http://schemas.componentone.com/xaml/c1chart"

You can also choose to create your own custom name for the namespace. For example:
xmlns:MyC1Chart="clr-namespace:C1.WPF.C1Chart;assembly=C1.WPF.C1Chart"

You can now use your custom namespace when assigning properties, methods and events.

Creating a Microsoft Blend Project
To create a new Blend project, complete the following steps:

1. From the File menu, select New Project or click New Project in the Blend startup window. The Create

New Project dialog box opens.

2. Select the WPF Application (.exe), and enter a name for the project in the Name text box.

The WPF Application (.exe) creates a project for a Windows-based application that can be built and run

while being designed.

3. Select the Browse button to specify a location for the project.

4. Select a language from the Language drop-down box and click OK.

15

A new Blend project with a XAML window is created.

Creating a .NET Project in Visual Studio
To create a new .NET project, open Visual Studio 2008 and complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project. The New Project dialog box

opens.

2. Choose the appropriate .NET Framework from the drop-down box in the top-right of the dialog box.

3. Under Project Types, select either Visual Basic or Visual C#.

Note: In Visual Studio 2005 select NET Framework 3.0 under Visual Basic or Visual C# in the Project

types tree.

4. Select WPF Application from the list of Templates in the right pane.

16

5. Enter a name for your application in the Name field and click OK. A new Microsoft Visual Studio .NET

WPF project is created with a .xaml file that will be used to define your user interface and commands in

the application.

Note: You can create your chart applications using Microsoft Expression Blend or Visual Studio, but Blend is

currently the only design-time environment that allows users to design XAML documents visually.

Creating an XAML Browser Application (XBAP) in Visual Studio
To create a new XAML Browser Application (XBAP) in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project. The New Project dialog box

opens.

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the

dialog box.

3. Under Project types, select either Visual Basic or Visual C#.

4. Choose WPF Browser Application from the list of Templates in the right pane.

Note: If using Visual Studio 2005, you may need to select XAML Browser Application (WPF) after

selecting NET Framework 3.0 under Visual Basic or Visual C# in the left-side menu.

5. Enter a name for your application in the Name field and click OK.

17

A new Microsoft Visual Studio .NET WPF Browser Application project is created with a XAML file that

will be used to define your user interface and commands in the application.

When you run this application to a Web server, users can locate the URL and run your program from within

the IE Sandbox.

Note: The XAML Browser Application only works in IE 6 or IE 7.

Adding the Chart for WPF Components to a Blend Project
In order to use C1Chart or another Chart for WPF component in the Design workspace of Blend, you must

first add a reference to the C1.WPF.C1Chart assembly and then add the component from Blend's Asset

Library.

To add a reference to the assembly:

1. Click on Project | Add Reference.

2. Browse to find the C1.WPF.C1Chart.dll installed with Chart for WPF.

Note: The C1.WPF.C1Chart.dll is installed to C:\Program Files\ComponentOne\Studio for WPF\bin

by default.

3. Select C1.WPF.C1Chart.dll and click Open. A reference is added to your project.

To add a component from the Asset Library:

1. Once you have added a reference to the C1.WPF.C1Chart assembly, click the Asset Library button in

the Blend toolbox. The Asset Library appears.

2. Click the Custom Controls tab. All of the Chart for WPF main and auxiliary components are listed here.

3. Select C1Chart from the Asset Library dialog box. The component appears in the Toolbox above the

Asset Library button.

4. Double-click the C1Chart component in the Toolbox to add it to the Window1.xaml.

Adding the Chart for WPF Components to a Visual Studio Project
When you install Chart for WPF the C1Chart control should be added to your Visual Studio Toolbox. You

can also manually add ComponentOne controls to the Toolbox.

ComponentOne Chart for WPF provides the following controls:

 C1Chart

 C1ChartLegend

To use Chart for WPF, add the CChart control to the window or add a reference to the C1.WPF.C1Chart

assembly to your project.

Manually Adding Chart for WPF to the Toolbox

To manually add the C1Chart control to the Visual Studio Toolbox, complete the following steps:

1. Open the Visual Studio IDE (Microsoft Development Environment). Make sure the Toolbox is visible

(select Toolbox in the View menu, if necessary) and right-click the Toolbox to open its context menu.

2. To make Chart for WPF, C1Chart component appear on its own tab in the Toolbox, select Add Tab

from the context menu and type in the tab name, Chart for WPF, for example.

18

3. Right-click the tab where the component is to appear and select Choose Items from the context menu.

The Choose Toolbox Items dialog box opens.

4. In the dialog box, select the WPF Components tab. Sort the list by Namespace (click the Namespace

column header) and select the check boxes for all components belonging to the C1.WPF.C1Chart

namespace. Note that there may be more than one component for each namespace.

Adding Chart for WPF to the Window

To add Chart for WPF to a window or page, complete the following steps:

1. Add the C1Chart control to the Visual Studio Toolbox.

2. Double-click C1Chart or drag the control onto the window.

Adding a Reference to the Assembly

To add a reference to the Chart for WPF assembly, complete the following steps:

1. Select the Add Reference option from the Project menu of your project.

2. Select the ComponentOne Chart for WPF assembly from the list on the .NET tab or on the Browse tab,

browse to find the C1.WPF.C1Chart.dll file and click OK.

3. Double-click the window caption area to open the code window. At the top of the file, add the following

Imports statements (using in C#):
Imports C1.WPF.C1Chart

This makes the objects defined in the Chart for WPF assembly visible to the project.

Key Features
Chart for WPF provides the following unique features:

 Universal and Flexible Data Binding

Easily bind the Chart for WPF control to a data table, collection of business objects, or XML file by

setting a few properties.

19

 Extend Your Deployment Capabilities with XBAP Support

Chart for WPF is fully compatible with the new XBAP deployment capabilities of Windows Presentation

Foundation. The XBAP deployment allows publishing to the client’s (supported) browser for a full

featured application without a Windows installation.

 Choose From Over 35 Built-in Chart Types

Choose from the standard chart types (bar charts, line charts, pie charts, area charts, and more) or select

from more advanced chart types such as a 3D doughnut pie or 3D ribbon.

 Improve the Readability of Your Chart with Data Labels

Highlight important data points and provide valuable data information by adding data labels on each data

series. There is no limit to the number of data labels a chart can contain.

 Charts That Come Alive with ToolTips

Display specific text when the user mouses over chart elements. Chart for WPF gives you the control to

format the information displayed in the ToolTip.

 Display Highly Representative Data with Multiple Axes

Place multiple axes to the top, bottom, left, or right of the chart to create a more detailed representation of

data.

20

 Highly Interactive End-user Experience

Chart for WPF provides a wide range of interactive behaviors ranging from built-in tools such as

scrolling, scaling, and rotating charts at run time.

 Display Large Amounts of Data with Axis Scrolling

Use the Scale and Value properties to enable scrolling along the chart axes. This is helpful when you have

large amounts of X or Y data to display.

 Create Dramatic Data Presentation with Multiple Charts

Chart for WPF allows you to combine various chart types, on a single plot, to create dramatic data

presentation.

 Highly Customizable Plot Elements

21

Quickly and efficiently change the appearance of any plot element using the symbol and connection

properties.

 Create a Wealth of Custom Palettes for Plot Elements

Experience more customizing options for plot elements; you are not restricted to a predefined palette. For

example, use the CustomPalette property to define various brushes for plot elements.

 Industry Leading Stacking Charts

Line, area, bar, and column charts can be stacked to display more complex data in a smaller space.

 12 built-in themes available, giving you the means to achieve colorful, professional-looking

applications

Customize the appearance of your chart application with built-in Office 2007, Vista, and Office 2003

themes, or create your own themes based on the included themes. Your polished chart is just a click away.

 Enhanced graphic effects

Add some flair to your chart by enabling bitmap effects such as bevel, shadow, blur, glow, and emboss.

23

Chart for WPF Quick Start
The following quick start guide is intended to get you up and running with Chart for WPF. This quick start

will guide you through the four basic steps for creating a typical chart such as a Bar chart: choose the chart,

add one or more data series to the chart, set up and format the axes, and adjust the chart's appearance using

the Theme property.

Step 1 of 4: Adding Chart for WPF to your Project
In this step you'll either begin in Visual Studio or Blend to create a chart application using Chart for WPF. When you

add the C1Chart control to your Visual Studio or Blend project you’ll have a functional column chart with fake data. If

you use XAML code only to initialize your chart control you’ll have an empty chart without the fake data.

To add Chart for WPF to your Visual Studio Project using XAML:

1. Create a new WPF project in Visual Studio.

2. Add a reference to the C1.WPF.C1Chart assembly. In the Solution Explorer right-click on References

and select Add Reference. In the Add Reference dialog box select the Browse tab. Browse for the

C1.WPF.C1Chart.dll and select OK.

3. Define the System and the C1.WPF.C1Chart prefixes.
xmlns:System="clr-namespace:System;assembly=mscorlib"

 xmlns:c1chart="clr-

namespace:C1.WPF.C1Chart;assembly=C1.WPF.C1Chart"

4. Inside the Grid, initialize the C1Chart control.
<c1chart:C1Chart Margin="0,0,8,8" MinHeight="160" MinWidth="240"

Content="C1Chart">

</c1chart:C1Chart>

The chart appears empty since we did not add the data for it yet.

In the next step, Step 2 of 4: Adding Data to the Chart (page 24), you will add the data for C1Chart.

To add Chart for WPF to your Blend Project:

1. Create a new WPF project in Blend.

2. Add the C1Chart control to your window.

The C1Chart control is added to the Window.

24

The default "fake" data is added to the Chart control.
<my:C1Chart Margin="10,10,68,102" Name="c1Chart1">

 <my:C1Chart.Data>

 <my:ChartData>

 <my:ChartData.ItemNames>P1 P2 P3 P4

P5</my:ChartData.ItemNames>

 <my:DataSeries Label="Series 1" Values="20 22 19 24

25" />

 <my:DataSeries Label="Series 2" Values="8 12 10 12 15"

/>

 </my:ChartData>

 </my:C1Chart.Data>

 <my:C1ChartLegend DockPanel.Dock="Right" />

 </my:C1Chart>

3. Resize the C1Chart control so it fills up the Window.

In the next step, Step 2 of 4: Adding Data to the Chart (page 24), you will add the data for C1Chart.

Run the program and observe:

The C1Chart control will appear like the following if you added the chart control to your Blend or Visual

Studio project. If you just added the Chart control using XAML code then the Chart will appear empty since

default data was not added to it.

You've successfully created a chart application. In the next step you’ll customize the data series for the

C1Chart control.

Step 2 of 4: Adding Data to the Chart
In the last step, you added the C1Chart control to the Window. In this step, you will add a DataSeries object

and data for it.

25

To add data to the chart in Visual Studio using XAML

1. Set the ChartType property to Bar within the "<c1chart:C1Chart></c1chart:C1Chart>" tag

using the following XAML code:
ChartType="Bar"

2. Add the data for the chart control using the following XAML code:
<c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:ChartData.ItemNames>

 <x:Array Type="{x:Type System:String}">

 <System:String>Hand Mixer</System:String>

 <System:String>Stand Mixer</System:String>

 <System:String>Can Opener</System:String>

 <System:String>Toaster</System:String>

 <System:String>Blender</System:String>

 <System:String>Food Processor</System:String>

 <System:String>Slow Cooker</System:String>

 <System:String>Microwave</System:String>

 </x:Array>

 </c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Values="80 400 20 60 150 300 130

500" AxisX="Price" AxisY="Kitchen Electronics" Label="Price"/>

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

In this step we use one DataSeries that has eight X-values. We added ItemNames of the type string to the

ChartData to represent the string name for each data value. We used an array of string names for the

ItemNames since a few of the item names included spaces. We were able to use the System:String

namespace since we declared the namespace for it in step 4 of Step 1 of 4: Adding Chart for WPF to your

Project (page 23).

The new data appears on the chart like the following:

In the next step, Step 3 of 4: Format the Axes (page 30), you’ll learn how to customize the axes using

XAML code.

26

To add data to the chart in Blend using the Properties Window

1. Select the C1Chart control in the Window to make it active, then navigate to the Appearance tab in the

Chart Properties window and set the ChartType property to Bar.

2. Navigate to the Miscellaneous tab in the Chart Properties window.

3. In the Miscellaneous tab, locate the Data (ChartData) and click on the New button. The chartdata object

is added in the xaml code like the following:
<c1chart:C1Chart MinHeight="160" MinWidth="240" Content="C1Chart"

Margin="0,0,24,8">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData/>

 </c1chart:C1Chart.Data>

 <c1chart:C1ChartLegend DockPanel.Dock="Right"/>

 </c1chart:C1Chart>

The fake chart data is removed and the C1Chart control appears empty since you have not added any data

to it yet.

4. Click on the arrow in the C1Chart properties window next to Data (ChartData) to expand the ChartData

properties. Click on the ellipsis button next to the Children (Collection) property. The DataSeries

Collection Editor: Children dialog box appears.

5. Click Add another item button to add a type of data series to the DataSeriesCollection.

The Select Object dialog box appears.

27

In the Select Object dialog box you can choose one of the following chart objects (BubbleSeries,

DataSeries, HighLowOpenCloseSeries, HighLowSeries, XYDataSeries, XYZDataSeries) depending on

what type of chart you would like to create. To create a Bar chart, you would use the DataSeries. Once

you select the DataSeries object, it is added to the DataSeriesCollection. To add multiple series you can

click the Add another item button

6. Select DataSeries from the Select Object dialog box and click OK.

The [0] DataSeries object is added to the Items panel.

7. Next we will add values that will represent the price of each product. Click on the ellipsis button next to

the Values (Collection) to bring up the Double Collection Editor: Values.

8. Here you can add values. In this example we will click the Add another item button eight times to add

eight values to our series.

9. Select the first array and double click the rectangular box in the Properties pane to enter the value, 80. Do

the same for the remaining values and enter the following values respectively, 400, 20, 60, 150, 300, 130,

and 500. Click OK when you are finished.

The XAML code appears like the following:
<c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:DataSeries Values="80 400 20 60 150

300 130 500"/>

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

10. Next we will add y values. Click on the ellipsis button next to the Values (Collection). The Double

Collection Editor:Values appears.

11. Click on Add another item button four times to add four y-values to the first series. For the first y value

enter 1, for the second y value enter 2, for the third y value enter 3, for the fourth y value enter 4. Once

you are finished entering the y-values click OK to close the collection editor.

12. Navigate to the Appearance section in C1Chart’s properties window and select the ChartType property

and change it to Bar.

13. Run the project and you will have a simple Bar chart with one series that looks like the following:

28

14. Expand the Data tab and locate the ItemNames property. Enter the following names in this order: "Hand

Mixer, Stand Mixer, Can Opener, Toaster, Blender, Food Processor, Slow Cooker, and Microwave. "

Press the Enter key and then go back and make any modifications if needed in the XAML code. The

XAML code should appear like the following:
<c1chart:ChartData.ItemNames>

 <x:Array Type="{x:Type

System:String}">

 <System:String>Hand

Mixer</System:String>

 <System:String>Stand

Mixer</System:String>

 <System:String>Can

Opener</System:String>

 <System:String>Toaster</System:String>

 <System:String>Blender</System:String>

 <System:String>Food

Processor</System:String>

 <System:String>Slow

Cooker</System:String>

 <System:String>Microwave</System:String>

 </x:Array>

 </c1chart:ChartData.ItemNames>

In the next step, Step 3 of 4: Format the Axes (page 30), you’ll learn how to customize the axes using

XAML code.

To add data to the chart programmatically in the code behind file

1. Create a new WPF project in Visual Studio.

2. Add the C1Chart control to Window1.

29

3. Right-click on Window1 and select View Code to open the editor.

4. Add the C1.WPF.C1Chart namespace directive

 Visual Basic
Imports C1.WPF.C1Chart

 C#
using C1.WPF.C1Chart;

5. Add the following code in the constructor Window1 class to create the Bar chart:

 Visual Basic
' Clear previous data

c1Chart1.Data.Children.Clear()

' Add Data

Dim ProductNames As String() = {"Hand Mixer", "Stand Mixer", "Can

Opener", "Toaster", "Blender", "Food Processor", _

"Slow Cooker", "Microwave"}

Dim PriceX As Integer() = {80, 400, 20, 60, 150, 300, _

130, 500}

' create single series for product price

Dim ds1 As New DataSeries()

ds1.Label = "Price X"

'set price data

ds1.ValuesSource = PriceX

' add series to the chart

c1Chart1.Data.Children.Add(ds1)

' add item names

c1Chart1.Data.ItemNames = ProductNames

' Set chart type

c1Chart1.ChartType = ChartType.Bar

 C#
// Clear previous data

 c1Chart1.Data.Children.Clear();

 // Add Data

 string[] ProductNames = { "Hand Mixer", "Stand Mixer", "Can Opener",

"Toaster", "Blender", "Food Processor", "Slow Cooker", "Microwave" };

 int[] PriceX = { 80, 400, 20, 60, 150, 300, 130, 500 };

 // create single series for product price

 DataSeries ds1 = new DataSeries();

 ds1.Label = "Price X";

 //set price data

 ds1.ValuesSource = PriceX;

 // add series to the chart

 c1Chart1.Data.Children.Add(ds1);

30

 // add item names

 c1Chart1.Data.ItemNames = ProductNames;

 // Set chart type

 c1Chart1.ChartType = ChartType.Bar;

In the next step, Step 3 of 4: Format the Axes (page 30), you’ll learn how to customize the axes

programmatically

Run the program and observe:

The string values appear on the Y-Axis like the following:

Notice the X-Axis begins with 20 by default, in the next set of steps you’ll customize the Axes.

You have successfully added data to the chart control. In the next step you’ll format the axes.

Step 3 of 4: Format the Axes
In this step, you will add a ChartView object so you can customize the X-Axis.

To format the axes for Chart for WPF in Visual Studio using XAML:

1. Add the ChartView object so you can set titles for the X-Axis and Y-axis

The ChartView object represents the area of the chart that contains data (including the axes). For more

information on the chart axes, see Axes (page 86). The axis titles are UIElement objects rather than simple

text. In this example we will use TextBlock elements to assign the text to the X-Axis and Y-Axis titles.

31

Once we add the TextBlock element we can then format the text by changing its foreground color and

aligning it to the center.
<c1chart:C1Chart >

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis>

 <c1chart:Axis.Title>

 <TextBlock Text="Price" TextAlignment="Center"

Foreground="Crimson"/>

 </c1chart:Axis.Title>

 </c1chart:Axis>

 </c1chart:ChartView.AxisX>

 <c1chart:ChartView.AxisY>

 <c1chart:Axis>

 <c1chart:Axis.Title>

 <TextBlock Text="Kitchen Electronics"

TextAlignment="Center" Foreground="Crimson"/>

 </c1chart:Axis.Title>

 </c1chart:Axis>

 </c1chart:ChartView.AxisY>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

 </c1chart:C1Chart>

2. Configure the value of the X-Axis to start at zero and change the default AxisX.MajorUnit unit value from

50 to 20. Also set the AutoMin property to False so we can have the value begin at zero instead of the

minimum data value. Your XAML code for the View object should now appear like the following:
<c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis Min="0" Max="500" MajorUnit="20"

AutoMin="False">

 <c1chart:Axis.Title>

 <TextBlock Text="Price"

TextAlignment="Center" Foreground="Crimson" />

 </c1chart:Axis.Title>

 </c1chart:Axis>

 </c1chart:ChartView.AxisX>

 <c1chart:ChartView.AxisY>

 <c1chart:Axis>

 <c1chart:Axis.Title>

 <TextBlock Text="Kitchen Electronics"

TextAlignment="Center" Foreground="Crimson" />

 </c1chart:Axis.Title>

 </c1chart:Axis>

 </c1chart:ChartView.AxisY>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

3. Within the <c1chart:Axis></c1chart:Axis> of the ChartView.AxisX object set the AnnoFormat

to change the numeric x-values along the x-axis to currency and the AnnoAngle property to rotate the X-

Axis annotation to 60 degrees counterclockwise.
<c1chart:Axis AnnoFormat="c" AnnoAngle="60" />

4. Within the <c1chart:Axis></c1chart:Axis> of the ChartView.AxisY object set the Reversed

property to True to reverse the direction of the Y-Axis.

32

In the next step, Step 4 of 4: Adjust the Chart’s Appearance (page 33), you’ll learn how to customize the

chart's appearance using XAML.

To format the axes for Chart for WPF programmatically in the code behind file

Add the following code in the constructor Window1 class to format the chart axes:

 Visual Basic
' set axes titles

 C1Chart1.View.AxisY.Title = New TextBlock(New Run("Kitchen

Electronics"))

 C1Chart1.View.AxisX.Title = New TextBlock(New Run("Price"))

 ' set axes bounds

 C1Chart1.View.AxisX.Min = 0

 C1Chart1.View.AxisX.Max = 500

 ' Financial formatting

 C1Chart1.View.AxisX.AnnoFormat = "c"

 ' axis annotation rotation

 C1Chart1.View.AxisX.AnnoAngle = "60"

 C#
// set axes titles

 c1Chart1.View.AxisY.Title= new TextBlock() { Text = "Kitchen

Electronics" };

 c1Chart1.View.AxisX.Title = new TextBlock() { Text = "Price" };

 // set axes bounds

 c1Chart1.View.AxisX.Min = 0;

 c1Chart1.View.AxisX.Max = 500;

 // financial formatting

 c1Chart1.View.AxisX.AnnoFormat = "c";

 // axis annotation rotation

 c1Chart1.View.AxisX.AnnoAngle=60;

In the next step, Step 4 of 4: Adjust the Chart’s Appearance (page 33), you’ll learn how to customize the

chart’s appearance programmatically.

Run the program and observe:

The new format for the axis annotation is applied to the chart.

33

In the next step, you’ll customize the chart's appearance using the one of the options from the Theme property.

Step 4 of 4: Adjust the Chart's Appearance
In this last step, you will adjust the chart's appearance using the Theme property.

To set the chart’s theme in Visual Studio using XAML:

To specifically define the Office2007Blue theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Margin="0,0,8,8" MinHeight="160" MinWidth="240"

Content="C1Chart" ChartType="Bar" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2007Blue}}">

To set chart’s theme in Blend using the Properties Window

1. Select the C1Chart control in Window1 to make it active.

2. Navigate to the C1Chart’s Appearance group in the Properties window.

3. Click on the dropdown arrow next to the Theme property and select Office2007Blue.

34

To set chart’s theme programmatically in the code behind file

To specifically define the Office2007Blue theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), " Office2007Blue")), _

 ResourceDictionary)

 C#
C1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2007Blue")) as ResourceDictionary;

Run the program and observe:

The Office 2007 Blue theme is applied to the C1Chart control.

Congratulations! You've completed the Chart for WPF quick start and created a chart application, added data

to the chart, set the axes bounds, formatted the axes annotation, and customized the appearance of the chart.

35

Chart for WPF Top Tips
The following top tips for Chart for WPF will help you when you use the C1Chart control.

Tip 1: Use the BeginUpdate()/EndUpdate methods to improve performance

When performing a massive update of the chart properties or the data values, put the update code inside a

BeginUpdate()/EndUpdate() block.

This improves performance since the redrawing occurs only once after a call of the EndUpdate() method.

For example:

 Visual Basic
' start update

 C1Chart1.BeginUpdate()

 Dim nser As Integer = 10, npts As Integer = 100

 For iser As Integer = 1 To nser

 ' create data arrays

 Dim x(npts - 1) As Double, y(npts - 1) As Double

 For ipt As Integer = 0 To npts - 1

 x(ipt) = ipt

 y(ipt) = (1 + 0.05 * iser) * Math.Sin(0.1 * ipt + 0.1 * iser)

 Next

 ' create data series and add it to the chart

 Dim ds = New XYDataSeries()

 ds.XValuesSource = x

 ds.ValuesSource = y

 C1Chart1.Data.Children.Add(ds)

 Next

 ' set chart type

 C1Chart1.ChartType = ChartType.Line

 ' finish update

 C1Chart1.EndUpdate()

 C#
// start update

 c1Chart1.BeginUpdate();

 int nser = 10, npts = 100;

 for (int iser = 0; iser < nser; iser++)

 {

 // create data arrays

 double[] x = new double[npts], y = new double[npts];

 for (int ipt = 0; ipt < npts; ipt++)

 {

 x[ipt] = ipt;

 y[ipt] = (1 + 0.05 * iser) * Math.Sin(0.1 * ipt + 0.1 * iser);

 }

 // create data series and add it to the chart

 XYDataSeries ds = new XYDataSeries();

36

 ds.XValuesSource = x; ds.ValuesSource = y;

 c1Chart1.Data.Children.Add(ds);

 }

 // set chart type

 c1Chart1.ChartType = ChartType.Line;

 // finish update

 c1Chart1.EndUpdate();

Tip 2: Use the line or area chart type for large data arrays

The line and area charts provide the best performance when you have a lots of data values.

To get better performance, enable built-in optimization for large data by setting the attached property,

LineAreaOptions.OptimizationRadius. For example:

 Visual Basic
LineAreaOptions.SetOptimizationRadius(C1Chart1, 1.0)

 C#
LineAreaOptions.SetOptimizationRadius(c1Chart1, 1.0);

It's recommended you use small values 1.0 - 2.0 as radius. A larger value may affect the accuracy of the plot.

Tip 3: Update the appearance and behavior of a plot element using the DataSeries.PlotElementLoaded event

When any plot element (bar,column,pie, etc) is loaded it fires the PlotElementLoaded event. During this event

you have access to the plot element properties as well as to the corresponding data point.

The following code sets the colors of points depending on its y-value. For example:

 Visual Basic
' create data arrays

 Dim npts As Integer = 100

 Dim x(npts - 1) As Double, y(npts - 1) As Double

 For ipt As Integer = 0 To npts - 1

 x(ipt) = ipt

 y(ipt) = Math.Sin(0.1 * ipt)

 Next

 ' create data series

 Dim ds = New XYDataSeries()

 ds.XValuesSource = x

 ds.ValuesSource = y

 ' set event handler

 AddHandler ds.PlotElementLoaded, AddressOf PlotElement_Loaded

 ' add data series to the chart

 C1Chart1.Data.Children.Add(ds)

 ' set chart type

 C1Chart1.ChartType = ChartType.LineSymbols

...

 ' event handler

37

 Sub PlotElement_Loaded(ByVal sender As Object, ByVal args As EventArgs)

 Dim pe = CType(sender, PlotElement)

 If Not TypeOf pe Is Lines Then

 Dim dp As DataPoint = pe.DataPoint

 ' normalized y-value(from 0 to 1)

 Dim nval As Double = 0.5 * (dp.Value + 1)

 ' fill from blue(-1) to red(+1)

 pe.Fill = New SolidColorBrush(Color.FromRgb(CByte(255 * nval), _

 0, CByte(255 * (1 - nval))))

 End If

 End Sub

 C#
// create data arrays

 int npts = 100;

 double[] x = new double[npts], y = new double[npts];

 for (int ipt = 0; ipt < npts; ipt++)

 {

 x[ipt] = ipt;

 y[ipt] = Math.Sin(0.1 * ipt);

 }

 // create data series

 XYDataSeries ds = new XYDataSeries();

 ds.XValuesSource = x; ds.ValuesSource = y;

 // set event handler

 ds.PlotElementLoaded += (s, e) =>

 {

 PlotElement pe = (PlotElement)s;

 if (!(pe is Lines)) // skip lines

 {

 DataPoint dp = pe.DataPoint;

 // normalized y-value(from 0 to 1)

 double nval = 0.5*(dp.Value + 1);

 // fill from blue(-1) to red(+1)

 pe.Fill = new SolidColorBrush(

 Color.FromRgb((byte)(255 * nval), 0, (byte)(255 * (1-nval))));

 }

 };

 // add data series to the chart

 c1Chart1.Data.Children.Add(ds);

 // set chart type

 c1Chart1.ChartType = ChartType.LineSymbols;

Tip 4: Data point labels and tooltips

To create a data point label or tooltip, you should set the data template for the PointLabelTemplate or

PointTooltipTemplate property.

The following sample code shows the index for each data point.

XAML:

38

<c1chart:C1Chart Name="c1Chart1" ChartType="XYPlot">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <!-- source collection -->

 <c1chart:ChartData.ItemsSource>

 <PointCollection>

 <Point X="1" Y="1" />

 <Point X="2" Y="2" />

 <Point X="3" Y="3" />

 <Point X="4" Y="2" />

 <Point X="5" Y="1" />

 </PointCollection>

 </c1chart:ChartData.ItemsSource>

 <c1chart:XYDataSeries SymbolSize="16,16"

 XValueBinding="{Binding X}" ValueBinding="{Binding Y}">

 <c1chart:XYDataSeries.PointLabelTemplate>

 <DataTemplate>

 <!-- display point index at the center of point symbol -->

 <TextBlock

c1chart:PlotElement.LabelAlignment="MiddleCenter"

 Text="{Binding PointIndex}" />

 </DataTemplate>

 </c1chart:XYDataSeries.PointLabelTemplate>

 </c1chart:XYDataSeries>

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

</c1chart:C1Chart>

The data context of element created from the template is set to the instance of DataPoint class which contains

information about the corresponding data point.

Tip 5: Save chart as image

The following method saves chart image as png-file.

 Visual Basic
Sub Using stm = System.IO.File.Create(fileName)

 c1Chart1.SaveImage(stm, ImageFormat.Png)

End Using

 C#
using (var stm = System.IO.File.Create(fileName))

 {

 c1Chart1.SaveImage(stm, ImageFormat.Png);

 }

Tip 6: Printing chart

The following code prints the specified chart on the default printer with the default settings. For example:

 Visual Basic
Dim pd = New PrintDialog()

 pd.PrintVisual(C1Chart1, "chart")

 C#
new PrintDialog().PrintVisual(c1Chart1, "chart");

39

Tip 7: Mixing Cartesian chart types

You can easily mix different chart types on the same Cartesian plot using the ChartType property.

The following code creates three data series: the first is area, the second is step, and the third has the default

chart type (line).

 Visual Basic
Dim nser As Integer = 3, npts As Integer = 25

 For iser As Integer = 1 To nser

 ' create data arrays

 Dim x(npts - 1) As Double, y(npts - 1) As Double

 For ipt As Integer = 0 To npts - 1

 x(ipt) = ipt

 y(ipt) = (1 + 0.05 * iser) * Math.Sin(0.1 * ipt + 0.1 * iser)

 Next

 ' create data series and add it to the chart

 Dim ds = New XYDataSeries()

 ds.XValuesSource = x

 ds.ValuesSource = y

 C1Chart1.Data.Children.Add(ds)

 Next

 'default chart type

 C1Chart1.ChartType = ChartType.Line

 ' 1st series

 C1Chart1.Data.Children(0).ChartType = ChartType.Area

 ' 2nd series

 C1Chart1.Data.Children(1).ChartType = ChartType.Step

 C#
int nser = 3, npts = 25;

 for (int iser = 0; iser < nser; iser++)

 {

 // create data arrays

 double[] x = new double[npts], y = new double[npts];

 for (int ipt = 0; ipt < npts; ipt++)

 {

 x[ipt] = ipt;

 y[ipt] = (1 + 0.05 * iser) * Math.Sin(0.1 * ipt + 0.1 * iser);

 }

 // create data series and add it to the chart

 XYDataSeries ds = new XYDataSeries();

 ds.XValuesSource = x; ds.ValuesSource = y;

 c1Chart1.Data.Children.Add(ds);

 }

 //default chart type

 c1Chart1.ChartType = ChartType.Line;

 // 1st series

 c1Chart1.Data.Children[0].ChartType = ChartType.Area;

 // 2nd series

40

 c1Chart1.Data.Children[1].ChartType = ChartType.Step;

C1Chart Concepts and Main Properties
In order to create and format charts using the C1Chart control, it is useful to understand how the main

properties map into chart elements. The diagram below illustrates this:

The steps involved in creating a typical chart are:

1. Choose the chart type (ChartType property)

C1Chart supports about 30 chart types, including Bar, Column, Line, Area, Pie, Radial, Polar, Candle,

and several others. The best chart type depends largely on the nature of the data, and will be discussed

later.

2. Set up the axes (AxisX and chart.View.AxisY properties)

Setting up the axes typically involves specifying the axis title, major and minor intervals for the tick marks,

content and format for the labels to show next to the tick marks.

3. Add one or more data series (chart.Data.Children collection)

This step involves creating and populating one DataSeries object for each series on the chart, then adding

the object to the chart.Data.Children collection. If your data contains only one numeric value per point

(Y coordinate), use regular DataSeries objects. If the data contains two numeric values per point (X and Y

coordinates), then use XYDataSeries objects instead.

4. Adjust the chart’s appearance using the Theme and Palette properties.

The Theme property allows you to select one of over 10 built-in sets of properties that control the

appearance of the overall chart. The Palette property allows you to select one of over 20 built-in color

41

palettes used to specify colors for the data series. Together, these two properties provide about 200 options

to create professionally-looking charts with little effort.

Common Usage for Basic 2D Charts
This chapter describes the common usage of the basic chart types such as Bar, Pie, and X-Y Plot charts. It also

provides a sample code for each chart type. The samples are simple and concise, and focus on the main aspects

of each common chart type. The distribution package includes a lot of sophisticated samples that show details

and advanced features not discussed in this quick walkthrough.

This section describes how to create basic chart types, including the selection of chart type, adding the data,

formatting, and adding titles to the chart axes.

Simple Charts
The simplest charts are those in which each data point has a single numeric value associated with it. A typical

example would be a chart showing sales data for different regions, similar to the following chart:

Before we can create any charts, we need to generate the data that will be shown as a chart. Here is some code

to create the data we need.

Note: There is nothing chart-specific in this code, this is just some generic data. We will use this data to create

the Time Series and XY charts as well in the next topics.

// Simple class to hold dummy sales data

public class SalesRecord

{

 // Properties

 public string Region { get; set; }

 public string Product { get; set; }

 public DateTime Date { get; set; }

 public double Revenue { get; set; }

 public double Expense { get; set; }

 public double Profit { get { return Revenue - Expense; } }

42

 // Constructor 1

 public SalesRecord(string region, double revenue, double expense)

 {

 Region = region;

 Revenue = revenue;

 Expense = expense;

 }

 // Constructor 2

 public SalesRecord(DateTime month, string product, double revenue,

double expense)

 {

 Date = month;

 Product = product;

 Revenue = revenue;

 Expense = expense;

 }

}

// Return a list with one SalesRecord for each region

List<SalesRecord> GetSalesPerRegionData()

{

 var data = new List<SalesRecord>();

 Random rnd = new Random(0);

 foreach (string region in "North,East,West,South".Split(','))

 {

 data.Add(new SalesRecord(region, 100 + rnd.Next(1500),

rnd.Next(500)));

 }

 return data;

}

// Return a list with one SalesRecord for each product,// Over a period of 12

months

List<SalesRecord> GetSalesPerMonthData()

{

 var data = new List<SalesRecord>();

 Random rnd = new Random(0);

 string[] products = new string[] {"Widgets", "Gadgets", "Sprockets" };

 for (int i = 0; i < 12; i++)

 {

 foreach (string product in products)

 {

 data.Add(new SalesRecord(

 DateTime.Today.AddMonths(i - 24),

 product,

 rnd.NextDouble() * 1000 * i,

 rnd.NextDouble() * 1000 * i));

 }

 }

 return data;

 }

}

Note that the SalesData class is public. This is required for data-binding.

We will follow the following four main steps in creating a chart:

Step 1) Choose the chart type:

The following code clears any existing series, then sets the chart type:

43

public Window1()

{

 InitializeComponent();

 // Clear current chart

 c1Chart.Reset(true);

 // Set chart type

 c1Chart.ChartType = ChartType.Bar;

}

Step 2) Set up the axes:

We will start by obtaining references to both axes. In most charts, the horizontal axis (X) displays labels

associated with each point, and the vertical axis (Y) displays the values. The exception is the Bar chart type,

which displays horizontal bars. For this chart type, the labels are displayed on the Y axis and the values on the

X:

Next we will assign titles to the axes. The axis titles are UIElement objects rather than simple text. This means

you have complete flexibility over the format of the titles. In fact, you could use complex elements with

buttons, tables, or images for the axis titles. In this case, we will use simple TextBlock elements created by a

CreateTextBlock method described later.

We will also configure the value axis to start at zero, and to display the annotations next to the tick marks

using thousand separators:
 // configure label axis

 labelAxis.Title = CreateTextBlock("Region", 14, FontWeights.Bold);

 // configure value axis

_c1Chart.View.AxisX.Title = CreateTextBlock("Amount ($1000)", 14,

FontWeights.Bold);

 c1Chart.View.AxisX.AutoMin = false;

 c1Chart.View.AxisX.Min = 0;

 c1Chart.View.AxisX.MajorUnit = 200;

 c1Chart.View.AxisX.AnnoFormat = "#,##0 ";

Step 3) Add one or more data series

We start this step by retrieving the data using the method listed earlier:

 // get the data

 var data = GetSalesPerRegionData();

Next, we want to display the regions along the label axis. To do this, we will use a Linq statement that

retrieves the Region property for each record. The result is then converted to an array and assigned to the

ItemNames property.

 // Show regions along label axis

 c1Chart.ChartData.ItemNames = (from r in data select

r.Region).ToArray();

Note how the use of Linq makes the code direct and concise. Things are made even simpler because our

sample data contains only one record per region. In a more realistic scenario, there would be several records

per region, and we would use a more complex Linq statement to group the data per region.

Now we are ready to create the actual DataSeries objects that will be added to the chart. We will create three

series: "Revenue", "Expenses", and "Profit":

 // Add Revenue series

 var ds = new DataSeries();

 ds.Label = "Revenue";

 ds.ValuesSource = (from r in data select r.Revenue).ToArray();

c1Chart.Data.Children.Add(ds);

44

 // Add Expense series

 ds = new DataSeries();

 ds.Label = "Expense";

 ds.ValuesSource = (from r in data select r.Expense).ToArray();

 c1Chart.ChartData.Children.Add(ds);

 // Add Profit series

 ds = new DataSeries();

 ds.Label = "Profit";

 ds.ValuesSource = (from r in data select r.Profit).ToArray();

 c1Chart.Data.Children.Add(ds);

For each series, the code creates a new DataSeries object, then sets its Label property. The label is optional; if

provided, it will be displayed in any C1ChartLegend objects associated with this chart. Next, a Linq statement

is used to retrieve the values from the data source. The result is assigned to the ValuesSource property of the

data series object. Finally, the data series is added to the chart’s Children collection.

Once again, note how the use of Linq makes the code concise and natural.

Step 4) Adjust the chart’s appearance

We will use the Theme property to quickly configure the chart appearance:

// Set theme

c1Chart.Theme = _c1Chart.TryFindResource(new

ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),"Office2007Black"))

as ResourceDictionary;}

Recall that we used a CreateTextBlock helper method when setting up the axes. Here is the method

definition:
TextBlock CreateTextBlock(string text, double fontSize, FontWeight

fontWeight)

{

 var tb = new TextBlock();

 tb.Text = text;

 tb.FontSize = fontSize;

 tb.FontWeight = fontWeight;

 return tb;

}

This concludes the code that generates simple value charts. You can test it by invoking the changing to value

of the ChartType property to any of the remaining simple chart type values: Bar, AreaStacked, and Pie to

create charts of different types. Note, if you change the ChartType to Column, you will need display the labels

on the Y-Axis so you will use AxisY. The result should be similar to the images below:

ChartType.Column

45

ChartType.Bar

ChartType.AreaStacked

ChartType.Pie

46

<c1chart:C1ChartLegend DockPanel.Dock="Right" />

Note: By default the chart displays a legend describing the series. To remove the C1ChartLegend, delete the

following XAML code:

Time-Series Charts

Time-series charts display time along the X-axis. This is a very common type of chart, used to show how

values change as time passes.

Most time-series charts show constant time intervals (yearly, monthly, weekly, daily). In this case, the time-

series chart is essentially identical to a simple value type chart like the one described above. The only

difference is that instead of showing categories along the X axis, the chart will show dates or times. (If the time

intervals are not constant, then the chart becomes an XY chart, described in the next section.)

We will now walk through the creation of some time-series charts.

Step 1) Choose the chart type:

The code clears any existing series, then sets the chart type:

public Window1()

 {

 InitializeComponent();

 // Clear current chart

 c1Chart.Reset(true);

 // Set chart type

 c1Chart.ChartType = ChartType.Column;

 }

Step 2) Set up the axes:

We will start by obtaining references to both axes, as in the previous sample. Recall that the Bar chart type

uses reversed axes (values are displayed on the Y axis):

//Get axes

Axis valueAxis = c1Chart.View.AxisY;

Axis labelAxis = c1Chart.View.AxisX;

 if (c1Chart.ChartType == ChartType.Bar)

 {

 valueAxis = _c1Chart.View.AxisX;

 labelAxis = _c1Chart.View.AxisY;

47

 }

Next we will assign titles to the axes. The axis titles are UIElement objects rather than simple text. We will set

up the axis titles using the CreateTextBlock method, the same way we did before. We will also set up the

annotation format, minimum value, and major unit. The only difference is we will use a larger interval for the

tick marks between values:

// configure label axis

labelAxis.Title = CreateTextBlock("Date", 14, FontWeights.Bold);

labelAxis.AnnoFormat = "MMM-yy";

// configure value axis

valueAxis.Title = CreateTextBlock("Amount ($1000)", 14,

FontWeights.Bold);

valueAxis.AnnoFormat = "#,##0 ";

valueAxis.MajorUnit = 1000;

valueAxis.AutoMin = false;

valueAxis.Min = 0;

Step 3) Add one or more data series

This time, we will use the second data-provider method defined earlier:

// get the data

var data = GetSalesPerMonthData();

Next, we want to display the dates along the label axis. To do this, we will use a Linq statement that retrieves

the distinct Date values in our data records. The result is then converted to an array and assigned to the

ItemsSource property of the label axis.

c1Chart.ChartData.ItemNames = (from r in data select

r.Date.ToString("MMM-yy")).Distinct().ToArray();

Note that we used the Distinct Linq operator to remove duplicate date values. That is necessary because our

data contains one record per product for each date.

Now we are ready to create the actual DataSeries objects that will be added to the chart. Each series will show

the revenue for a given product. This can be done with a Linq statement that is slightly more elaborate than

what we used before, but provides a good practical example of the power provided by Linq:

 // add one series (revenue) per product

 var products = (from p in data select p.Product).Distinct();

 foreach (string product in products)

 {

 var ds = new DataSeries();

 ds.Label = product;

 ds.ValuesSource = (

 from r in data

 where r.Product == product

 select r.Revenue).ToArray();

 c1Chart.ChartData.Children.Add(ds);

 }

The code starts by building a list of products in the data source. Next, it creates one DataSeries for each

product. The label of the data series is simply the product name. The actual data is obtained by filtering the

records that belong to the current product and retrieving their Revenue property. The result is assigned to the

ValuesSource property of the data series as before.

48

Step 4) Adjust the chart’s appearance

Once again, we will finish by setting the Theme and Palette properties to quickly configure the chart

appearance:

 c1Chart.Theme = c1Chart.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2007Black")) as ResourceDictionary;}

This concludes the code that generates our time-series charts. You can test it by running it and changing the

ChartType property to Bar, Column, AreaStacked, or Pie to create charts of different types. The result should

be similar to the images below:

ChartType.Column

Note: The AnnoAngle property was set to “30” to make room for the Axis X labels in the images above.

ChartType.Bar

49

Note: The AnnoAngle property was set to “30” to make room for the Axis Y labels in the images above.

ChartType.AreaStacked

Note: The AnnoAngle property was set to “30” to make room for the Axis X labels in the image above.

ChartType.Pie

You would probably never display a time-series chart as a pie. As you can see from the image, the pie chart

completely masks the growth trend that is clearly visible in the other charts.

XY Charts

XY charts (also known as scatter plots) are used to show relationships between variables. Unlike the charts we

introduced so far, in XY charts each point has two numeric values. By plotting one of the values against the X

axis and one against the Y axis, the charts show the effect of one variable on the other.

We will continue our C1Chart tour using the same data we created earlier, but this time we will create XY

charts that show the relationship between revenues from two products. For example, we might want to

determine whether high Widget revenues are linked to high Gadgets revenues (perhaps the products work

well together), or whether high Widget revenues are linked to low Gadgets revenues (perhaps people who buy

one of the products don’t really need the other).

50

To do this, we will follow the same steps as before. The main differences are that this time we will add

XYDataSeries objects to the chart’s Data.Children collection instead of the simpler DataSeries objects. The

Linq statement used to obtain the data is also a little more refined and interesting.

Step 1) Choose the chart type:

The code clears any existing series, then sets the chart type:

public Window1()

{

 InitializeComponent();

 // Clear current chart

 c1Chart.Reset(true);

 // Set chart type

 c1Chart.ChartType = ChartType.XYPlot;

Step 2) Set up the axes:

Since we’re now creating XY series, we have two value axes (before we had a label axis and a value axis). We

will attach titles and formats to both axes as we did before. We will also set the scale and annotation format as

before. We will use the AnnoAngle property to rotate the annotation labels along the X axis so they don’t

overlap:

 // get axes

 var yAxis = _c1Chart.View.AxisY;

 var xAxis = _c1Chart.View.AxisX;

 // configure Y axis

 yAxis.Title = CreateTextBlock("Widget Revenues", 14,

FontWeights.Bold);

 yAxis.AnnoFormat = "#,##0 ";

 yAxis.AutoMin = false;

 yAxis.Min = 0;

 yAxis.MajorUnit = 2000;

 yAxis.AnnoAngle = 0;

 // configure X axis

 xAxis.Title = CreateTextBlock("Gadget Revenues", 14,

FontWeights.Bold);

 xAxis.AnnoFormat = "#,##0 ";

 xAxis.AutoMin = false;

 xAxis.Min = 0;

 xAxis.MajorUnit = 2000;

 xAxis.AnnoAngle = -90; // rotate annotations

Step 3) Add one or more data series

Once again, we will use the second data-provider method defined earlier:

 // get the data

 var data = GetSalesPerMonthData();

Next, we need to obtain XY pairs that correspond to the total revenues for Widgets and Gadgets at each date.

We can use Linq to obtain this information directly from our data:

 // group data by sales date

 var dataGrouped = from r in data

 group r by r.Date into g

 select new

51

 {

 Date = g.Key, // group by date

 Widgets = (from rp in g // add Widget revenues

 where rp.Product == "Widgets"

 select g.Sum(p => rp.Revenue)).Single(),

 Gadgets = (from rp in g // add Gadget revenues

 where rp.Product == "Gadgets"

 select g.Sum(p => rp.Revenue)).Single(),

 };

 // sort data by widget sales

 var dataSorted = from r in dataGrouped

 orderby r.Gadgets

 select r;

The first Linq query starts by grouping the data by Date. Then, for each group it creates a record containing

the Date and the sum of revenues within that date for each of the products we are interested in. The result is a

list of objects with three properties: Date, Widgets, and Gadgets. This type of data grouping and aggregation

is a powerful feature of Linq.

The second Linq query simply sorts the data by Gadget revenue. These are the values that will be plotted on

the X axis, and we want them to be in ascending order. Plotting unsorted values would look fine if we

displayed only symbols (ChartType = XYPlot), but it would look messy if we chose other chart types such as

Line or Area.

Once the data has been properly grouped, summarized, and sorted, all we need to do is create one single data

series, and assign one set of values to the ValuesSource property and the to the XValuesSource property:

 // create the new XYDataSeries

 var ds = new XYDataSeries();

 // set series label (displayed in a C1ChartLegend)

 ds.Label = "Revenue:\r\nWidgets vs Gadgets";

 // populate Y values

 ds.ValuesSource = (

 from r in dataSorted

 select r.Widgets).ToArray();

 // populate X values

 ds.XValuesSource = (

 from r in dataSorted

 select r.Gadgets).ToArray();

 // add the series to the chart

 c1Chart.ChartData.Children.Add(ds);

Step 4) Adjust the chart’s appearance

Once again, we will finish by setting the Theme property to quickly configure the chart appearance:
c1Chart.Theme = c1Chart.TryFindResource(new

ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

"Office2007Black")) as ResourceDictionary;

 }

You can test it by running the program and changing the ChartType property to XYPlot, LineSymbols, or

Area to create charts of different types. The result should be similar to the images below:

ChartType.XYPlot

52

ChartType.LineSymbols

ChartType.Area

53

The most appropriate chart type in this case is the first, an XYPlot. The chart shows a positive correlation

between Gadget and Widget revenues.

This concludes the basic charting topic. You already have the tools you need to create all types of common

charts.

Formatting Charts
The previous section introduced the Theme that you can use to select the appearance of your charts quickly

and easily. The Theme and Palette properties offer a long list of built-in options that were carefully developed

to provide great results with little effort from developers.

In most applications, you will choose the combination of settings for the Theme and Palette properties that is

closest to the feel you want for your application, then customize a few items if necessary. Items you may want

to customize include:

1. Axis titles: The axis titles are UIElement objects. You can customize them directly, and with complete

flexibility. The chart samples used in the Common Usage for Basic 2D Charts (page 41) topic uses the

TextElement objects, but you could use many other elements, including panels such as Border and Grid

objects. For more information on axis titles, see Axis Title (page 89).

2. Axis: The chart samples used in the Common Usage for Basic 2D Charts (page 41) topic shows how you

can customize axis scale, annotation angle, and annotation format. All these are accessible through the

Axis object exposed by the AxisX and AxisY properties. For more information on C1Chart’s axis, see

Axes (page 86).

The C1Chart control has the usual Font properties that determine how annotations are displayed along

both axes (FontFamily, FontSize, etc). If you need more control over the appearance of the annotations,

the Axis object also exposes an AnnoTemplate property that can be used to customize annotations even

further.

3. Grid lines: Grid lines are controlled by the Axis properties. There are properties for the major and minor

grid lines (MajorGridStrokeThickness, MajorGridStrokeThickness, MinorGridStrokeThickness,

MinorGridStrokeThickness, and so on). For more information on grid lines, see Axis Grid Lines (page

92).

4. Tick Marks: Tick marks are also controlled by the Axis properties. There are properties for the major and

minor ticks (MajorTickStroke, MajorTickThickness, MinorTickStroke, MinorTickThickness, and so on).

For more information on tick marks, see Axis Tick Marks (page 90).

Chart Types
Using built-in types is the simplest way to set up the chart's appearance. For example, to set up a Stacked Bar

chart, specify the corresponding string in the ChartType property:

<c1chart:C1Chart ChartType="BarStacked">

 ...

</c1chart:C1Chart>

The available chart types are specified by the members of enumeration ChartType.

The list of available built-in chart types is presented in the table below.

Name in gallery

Area

54

AreaSmoothed

AreaStacked

AreaStacked100pc

Bar

BarStacked

BarStacked100pc

Bubble

Candle

Column

ColumnStacked

ColumnStacked100pc

Gantt

HighLowOpenClose

Line

LineSmoothed

LineStacked

LineStacked100pc

LineSymbols

LineSymbolsSmoothed

LineSymbolsStacked

LineSymbolsStacked100pc

Pie

PieDoughnut

PieExploded

PieExplodedDoughnut

PolarLines

PolarLinesSymbols

PolarSymbols

Polygon

PolygonFilled

Radar

RadarFilled

55

RadarSymbols

Step

StepArea

StepSymbols

XYPlot

Area3D

Area3DSmoothed

Area3DStacked

Area3DStacked100pc

Bar3D

Bar3DStacked

Bar3DStacked100pc

Pie3D

Pie3DDoughnut

Pie3DExploded

Pie3DExplodedDougnut

Ribbon

Area Charts
An Area chart draws each series as connected points of data, filled below the points. Each series is drawn

on top of the preceding series. The series can be drawn independently or stacked. Chart for WPF supports the

following types of Area charts:

 Area3D

 Area3Dsmoothed

 Area3Dstacked

 Area3Dstacked100pc

 AreaSmoothed

 AreaStacked

 AreaStacked100pc

3D Area Charts

Use the AreaShape3D class to access data points associated with the plot elements in the 3D Area chart, get

the value of the plot element when the mouse cursor is over it, get or set the size of plot elements in pixels,

specify whether points are connected with smoothed lines.

The following image represents the 3D Area chart when you set the ChartType property to Area3D:

56

Area 3D Stacked Charts

Use the BaseRenderer property and set the StackedOptions enumeration to create a specific stacking Area

chart such as Stacked or Stacked 100%. Stacking charts represent the data by stacking the values for each series

on top of the values from the previous series.

The following image represents the Area 3D Stacked chart when you set the ChartType property to

Area3Dstacked:

Area Smoothed

The following image represents the Area Smoothed chart when you set the ChartType property to

AreaSmoothed:

57

Area Stacked

The following image represents the Area Stacked chart when you set the ChartType property to AreaStacked:

Area Stacked 100 Percent

The following image represents the Area Stacked 100 Percent chart when you set the ChartType property to

AreaStacked100pc:

58

Bar Charts
Chart for WPF supports the following types of Bar charts:

 Bar

 Bar3D

 Bar3Dstacked

 Bar3Dstacked100pc

 BarStacked

 BarStacked100pc

Bar

The following image represents the Bar chart when you set the ChartType property to Bar:

3D BarThe following image represents the 3D Bar chart when you set the ChartType property to Bar3D:

59

3D Bar Stacked

The following image represents the 3D Bar Stacked chart when you set the ChartType property to

Bar3DStacked:

Bar 3D Stacked 100 Percent

The following image represents the Bar 3D Stacked 100% chart when you set the ChartType property to

Bar3Dstacked100pc:

Bar Stacked

The following image represents the Bar Stacked chart when you set the ChartType property to BarStacked:

60

Bar Stacked 100 Percent

The following image represents the Bar Stacked 100 Percent chart when you set the ChartType property to

BarStacked100pc:

Bubble Charts
The following image represents the Bubble chart when you set ChartType property to Bubble:

61

The following XAML code creates a Bubble chart:

 <c1chart:C1Chart ChartType="Bubble"

 c1chart:BubbleOptions.MinSize="5,5"

 c1chart:BubbleOptions.MaxSize="30,30"

 c1chart:BubbleOptions.Scale="Area">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:BubbleSeries Values="20 22 19 24 25" SizeValues="1 2 3

2 1" />

 <c1chart:BubbleSeries Values="8 12 10 12 15" SizeValues="3 2 1

2 3"/>

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 </c1chart:C1Chart>

Financial Charts
C1Chart implements two types of financial chart: Candle and HighLowOpenClose. Both are commonly used

to display variations in stock prices over a period of time.

A Candle chart is a special type of HiLoOpenClose chart that is used to show the relationship between the

open and close as well as the high and low. Like, HiLoOpenClose charts, Candle charts use the same price

data (time, high, low, open, and close values) except they include a thick candle-like body that uses the color

and size of the body to reveal additional information about the relationship between the open and close values.

For example, long transparent candles show buying pressure and long filled candles show selling pressure.

The Candle chart is made up of the following elements: candle, wick, and tail. The candle or the body (the

solid bar between the opening and closing values) represents the change in stock price from opening to closing.

The thin lines, wick and tail, above and below the candle depict the high/low range. A hollow candle or

transparent candle indicates a rising stock price (close was higher than open). In a hollow candle, the bottom

of the body represents the opening price and the top of the body represents the closing price. A filled candle

indicates a falling stock price (open was higher than close). In a filled candle the top of the body represents the

opening price and the bottom of the body represents the closing price.

Candle Chart

The following image represents the Candle chart when you set ChartType property to Candle and specifiy the

data values for the XValues, HighValues, LowValues, OpenValues, and CloseValues, like the following:

<c1chart:C1Chart ChartType="Candle">

 <c1chart:C1Chart.Data>

62

 <c1chart:ChartData>

 <c1chart:HighLowOpenCloseSeries

 XValues="1 2 3 4 5"

 HighValues="103 105 107 102 99"

 LowValues="100 99 101 98 97"

 OpenValues="100 100 105 100 99"

 CloseValues="102 103 103 99 98"

 />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 </c1chart:C1Chart>

HighLowOpenClose Chart

The following image represents the HighLowOpenClose chart when you set ChartType property to

HighLowOpenClose and specifiy the data values for the XValues, HighValues, LowValues, OpenValues, and

CloseValues, like the following:

<c1chart:C1Chart ChartType="HighLowOpenClose">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:HighLowOpenCloseSeries

 XValues="1 2 3 4 5"

 HighValues="103 105 107 102 99"

 LowValues="100 99 101 98 97"

 OpenValues="100 100 105 100 99"

 CloseValues="102 103 103 99 98"

 />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 </c1chart:C1Chart>

63

The difference between common chart types and financial charts is that Candle and HighLowOpenClose

charts require a special type of data series object, the HighLowOpenCloseSeries. In this type of data series,

each point corresponds to a period (typically one day) and contains five values:

 Time

 Price at the beginning of period (Open)

 Price at the end of period (Close)

 Minimum price during period (Low)

 Maximum price during period (High)

To create financial charts you need to provide all these values.

For example, if the values were provided by the application as collections, then you could use the code below

to create the data series:

// create data series

HighLowOpenCloseSeries ds = new HighLowOpenCloseSeries();

ds.XValuesSource = dates; // dates are along x-axis

ds.OpenValuesSource = open;

ds.CloseValuesSource = close;

ds.HighValuesSource = hi;

ds.LowValuesSource = lo;

// add series to chart

chart.Data.Children.Add(ds);

// set chart type

chart.ChartType = isCandle

 ? ChartType.Candle

 : ChartType.HighLowOpenClose;

Another option is to use data-binding. For example, if the data is available as a collection of StockQuote

objects such as:

public class Quote

64

{

 public DateTime Date { get; set; }

 public double Open { get; set; }

 public double Close { get; set; }

 public double High { get; set; }

 public double Low { get; set; }

}

Then the code that creates the data series would be as follows:

// create data series

HighLowOpenCloseSeries ds = new HighLowOpenCloseSeries();

// bind all five values

ds.XValueBinding = new Binding("Date"); // dates are along x-axis

ds.OpenValueBinding = new Binding("Open");

ds.CloseValueBinding = new Binding("Close");

ds.HighValueBinding = new Binding("High");

ds.LowValueBinding = new Binding("Low");

// add series to chart

chart.Data.Children.Add(ds);

// set chart type

chart.ChartType = isCandle

 ? ChartType.Candle

 : ChartType.HighLowOpenClose;

Column Charts
Chart for WPF supports the following types of Column charts:

 Column

 Column3D

 Column3DStacked

 Column3Dstacked100pc

 ColumnStacked

 ColumnStacked100pc

Column

The following image represents the Column chart when you set the ChartType property to Column:

65

3D Column

The following image represents the 3D Column chart when you set the ChartType property to Column3D:

3D Column Stacked

The following image represents the 3D Column Stacked chart when you set the ChartType property to

Column3DStacked:

3D Column Stacked 100%

66

The following image represents the 3D Column Stacked 100% chart when you set the ChartType property to

Column3Dstacked100pc:

Column Stacked 100%

The following image represents the Column Stacked 100% when you set the ChartType property to

ColumnStacked100pc:

Gantt Charts
Gantt charts use data series objects of type HighLowSeries. Each data series represents a single task, and each

task has a set of start and end values. Simple tasks have one start value and one end value. Tasks that are

composed of multiple sequential sub-tasks have multiple pairs of start and end values.

The following image represents a Gantt chart:

67

To demonstrate Gantt charts, let us start by defining a Task object:
class Task

{

 public string Name { get; set; }

 public DateTime Start { get; set; }

 public DateTime End { get; set; }

 public bool IsGroup { get; set; }

 public Task(string name, DateTime start, DateTime end, bool isGroup)

 {

 Name = name;

 Start = start;

 End = end;

 IsGroup = isGroup;

 }

}

Next, let us define a method that creates a set of Task objects that will be shown as a Gantt chart:
Task[] GetTasks()

{

 return new Task[]

 {

 new Task("Alpha", new DateTime(2008,1,1), new DateTime(2008,2,15),

true),

 new Task("Spec", new DateTime(2008,1,1), new DateTime(2008,1,15),

false),

 new Task("Prototype", new DateTime(2008,1,15), new

DateTime(2008,1,31), false),

 new Task("Document", new DateTime(2008,2,1), new

DateTime(2008,2,10), false),

 new Task("Test", new DateTime(2008,2,1), new DateTime(2008,2,12),

false),

 new Task("Setup", new DateTime(2008,2,12), new DateTime(2008,2,15),

false),

 new Task("Beta", new DateTime(2008,2,15), new DateTime(2008,3,15),

true),

 new Task("WebPage", new DateTime(2008,2,15), new

DateTime(2008,2,28), false),

 new Task("Save bugs", new DateTime(2008,2,28), new

DateTime(2008,3,10), false),

68

 new Task("Fix bugs", new DateTime(2008,3,1), new

DateTime(2008,3,15), false),

 new Task("Ship", new DateTime(2008,3,14), new DateTime(2008,3,15),

false),

 };

}

Now that the tasks have been created, we are ready to create the Gantt chart:
private void CreateGanttChart()

{

 // clear current chart

 c1Chart.Reset(true);

 // set chart type

 c1Chart.ChartType = ChartType.Gantt;

 // populate chart

 var tasks = GetTasks();

 foreach (var task in tasks)

 {

 // create one series per task

 var ds = new HighLowSeries();

 ds.Label = task.Name;

 ds.LowValuesSource = new DateTime[] { task.Start };

 ds.HighValuesSource = new DateTime[] { task.End };

 ds.SymbolSize = new Size(0, task.IsGroup ? 30 : 10);

 // add series to chart

 c1Chart.Data.Children.Add(ds);

 }

 // show task names along Y axis

 c1Chart.Data.ItemNames =

 (from task in tasks select task.Name).ToArray();

 // customize Y axis

 var ax = c1Chart.View.AxisY;

 ax.Reversed = true;

 ax.MajorGridStroke = null;

 // customize X axis

 ax = c1Chart.View.AxisX;

 ax.MajorGridStrokeDashes = null;

 ax.MajorGridFill = new SolidColorBrush(Color.FromArgb(20, 120, 120,

120));

 ax.Min = new DateTime(2008, 1, 1).ToOADate();

}

After clearing the C1Chart and setting the chart type, the code enumerates the tasks and creates one

HighLowSeries for each. In addition to setting the series Label, LowValuesSource and HighValuesSource

properties, the code uses the SymbolSize property to set the height of each bar. In this sample, we define some

tasks as "Group" tasks, and make them taller than regular tasks.

Next, we use a Linq statement to extract the task names and assign them to the ItemNames property. This

causes C1Chart to display the task names along the Y axis.

69

Finally, the code customizes the axes. The Y axis is reversed so the first task appears at the top of the chart.

The axes are configured to show vertical grid lines and alternating bands.

Line Charts

Chart for WPF supports the following types of Line charts:

 Line

 LineSmoothed

 LineStacked

 LineStacked100pc

 LineSymbols

 LineSymbolsSmoothed

 LineSymbolsStacked

 LineSymbolsStacked100pc

Line

The following image represents the Line chart when you set the ChartType property to Line:

Line Smoothed

The following image represents the Line Smoothed chart when you set the ChartType property to

LineSmoothed:

70

Line Stacked

Select the LineStacked member from the ChartType enumeration to create a specific stacking Line chart.

Stacking charts represent the data by stacking the values for each series on top of the values from the previous

series.

The following image represents the Line Stacked chart when you set the ChartType property to LineStacked:

Line Stacked 100%

Select the LineStacked100pc member from the ChartType enumeration to create a specific stacking Line

chart. Stacking charts represent the data by stacking the values for each series on top of the values from the

previous series.

The following image represents the Line Stacked 100% chart when you set the ChartType property to

LineStacked100pc:

71

Line Symbols

The following image represents the Line Symbols when you set the ChartType property to LineSymbols:

Line Symbols Stacked

The following image represents the Line Symbols Stacked chart when you set the ChartType property to

LineSymbolsStacked:

72

Line Symbols Smoothed

The following image represents the Line Symbols Smoothed when you set the ChartType property to

LineSymbolsSmoothed:

Pie Charts
Pie charts are commonly used to display simple values. They are visually appealing and often displayed

with 3D effects such as shading and rotation.

Pie charts have one significant difference when compared to other C1Chart chart types in Pie charts; each

series represents one slice of the pie. Therefore, you will never have Pie charts with a single series (they would

be just circles). In most cases, Pie charts have multiple series (one per slice) with a single data point in each

series. C1Chart represents series with multiple data points as multiple pies within the chart.

Chart for WPF supports the following types of Pie charts:

 Pie

 3D Pie

 3D Doughnut Pie

 3D Exploded Pie

 3D Exploded Doughnut Pie

73

 Dougnut Pie

 Exploded Pie

 Exploded Doughnut Pie

Pie

The following image represents the Pie chart when you set the ChartType property to Pie:

3D Pie

Use the Pie3D class to access data points associated with the plot elements in the 3D Pie chart, get the value of

the plot element when the mouse cursor is over it, get or set the size of plot elements in pixels, and specify

whether points are connected with smoothed lines.

The following image represents the 3D Pie chart when you set the ChartType property to Pie3D:

3D Doughnut Pie

The following image represents the 3D Doughnut Pie chart when you set the ChartType property to

Pie3DDoughnut:

74

3D Exploded Pie

The following image represents the 3D Exploded Pie chart when you set the ChartType property to

Pie3DExploded:

3D Exploded Doughnut Pie

The following image represents the 3D Exploded Doughnut Pie chart when you set the ChartType property to

Pie3DExplodedDoughnut.

Doughnut Pie

The following image represents the Doughnut Pie chart when you set the ChartType property to

PieDoughnut.

Exploded Pie

The following image represents the Exploded Pie chart when you set ChartType property to PieExploded:

75

Exploded Doughnut Pie

The following image represents the Exploded Doughnut Pie chart when you set ChartType property to

PieExplodedDoughnut.

Special Pie Chart Properties

Pie charts are quite different from the other chart types since they do not follow the concept of a two-

dimensional grid or axes. Altering the diameter of the pie or the properties of the exploding slices can be

accomplished with the properties of the Pie class.

Starting Angle

Use the PieOptions.StartingAngleAttached property to specify the angle at which the slices for the first series

start. The default angle is 0 degrees. The angle represents the arc between the most clockwise edge of the first

slice and the right horizontal radius of the pie, as measured in the counter-clockwise direction.

Exploding Pies

A slice of a Pie chart can be emphasized by exploding it, which extrudes the slice from the rest of the pie. Use

the Offset property of the series to set the exploded slice's offset from the center of the pie. The offset is

measured as a percentage of the radius of the pie.

Polar and Radar Charts
Polar Charts

A Polar chart draws the x and y coordinates in each series as (theta,r), where theta is amount of rotation from

the origin and r is the distance from the origin. Theta may be specified in either degrees (default) or radians.

Since the X-axis is a circle, the X-axis maximum and minimum values are fixed.

Polar charts can not be combined with any other chart type in the same chart area.

The following image represents the Polar chart when you set ChartType property to PolarLines.

The following images represent the different types of Polar charts when you set ChartType property to

PolarLinesSymbol, PolarLines, PolarSymbols and specifiy the data values for the XYDataSeries, like the

following:

76

<c1chart:C1Chart Name="c1Chart1" ChartType="PolarLinesSymbols">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:XYDataSeries Label="Series 1" Values="5 10 5 10 5 10 5 10

5"

 XValues="0 45 90 135 180 225 270 315

0"/>

 <c1chart:XYDataSeries Label="Series 2" Values="0 2 4 6 8 10 12 14

16"

 XValues="0 45 90 135 180 225 270 315

0"/>

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:C1ChartLegend DockPanel.Dock="Right" /> </c1chart:C1Chart>

The following image represents the Polar Lines chart with symbols and lines when you set ChartType property

to PolarLines.

77

The following image represents the Polar Symbols chart when you set ChartType property to PolarSymbols.

Radar Charts

A Radar chart is a variation of a Polar chart. A Radar chart draws the y value in each data set along a radar

line. If the data has n unique points, then the chart plane is divided into n equal angle segments, and a radar

line is drawn (representing each point) at n/360 degree increments. By default, the radar line representing the

first point is drawn vertically (at 90 degrees).

The labels for radar chart can be set using ItemNames property. These labels are located at end of each radial

line.

The following image represents the Radar chart when you set ChartType property to Radar.

78

The following image represents the Radar chart with symbols when you set ChartType property to

RadarSymbols.

The following image represents the filled Radar chart when you set ChartType property to RadarFilled.

Special Polar and Radar Chart Properties

The Polar and Radar charts have special properties to chart the degrees of the Radar and set the starting angle.

Setting the Starting Angle

The PolarRadarOptions.StartingAngle Attached property of the PolarRadarOptions class sets the starting

angle for Polar and Radar charts. The default setting for this property is 0. Setting this property to a value other

than 0 will move the origin of the chart counter-clockwise by the specified degrees. For instance, setting the

79

PolarRadarOptions.StartingAngle Attached property to 90, the Polar or Radar chart rotates 90 degrees in the

counter-clockwise direction.

3D Ribbon Chart
The following image represents the 3D Ribbon chart when you set ChartType property to Ribbon:

Polygon Chart
The following image represents the Polygon chart when you set ChartType property to Polygon:

The following image represents the Polygon Filled chart when you set ChartType property to PolygonFilled:

80

Step Chart
A Step chart is a form of a XY Plot chart. Step charts are often used when Y values change by discreet

amounts, at specific values of X with a sudden change of value. A simple, everyday example would be a plot

of a checkbook balance with time. As each deposit is made, and each check is written, the balance (Y value) of

the check register changes suddenly, rather than gradually, as time passes (X value). During the time that no

deposits are made, or checks written, the balance (Y value) remains constant as time passes.

Similar to Line and XY plots, the appearance of the step chart can be customized by using the Connection and

Symbol properties for each series by changing colors, symbol size, and line thickness. Symbols can be removed

entirely to emphasize the relationship between points or included to indicate actual data values. If data holes

are present, the step chart behaves as expected, with series lines demonstrating known information up to the X

value of the data hole. Symbols and lines resume once non-hole data is again encountered.

As with most XY style plots, step charts can be stacked when appropriate.

The following image represents the Step chart when you set ChartType property to Step.

The following image represents the Area Step chart with symbols when you set ChartType property to

StepArea.

81

The following image represents the Symbols Step chart when you set ChartType property to StepSymbols.

XYPlot Chart
The XYPlot is also known as a Scatter plot chart. For more information on the XYPlot chart see XY Charts

(page 49).

The following image represents the XYPlot chart when you set ChartType property to XYPlot:

82

Chart Data Series
One of the more important objects in C1Chart is the data series. The data series contains all of the data to be

included in the chart and many important data-related properties.

Chart Data Series Types
C1Chart provides the following dataseries classes to effectively handle different data types:

 BubbleSeries

 DataSeries

 HighLowOpenCloseSeries

 HighLowSeries

 XYDataSeries

 XYZDataSeries

The Label property in the DataSeries class represents the label for the Series name in the Chart Legend.

There are several DataSeries classes inherited from the same base class DataSeries, each of them combines

several data sets depending on appropriate data nature. For instance, the XYDataSeries provides two sets of

data values that correspond to x- and y-coordinates. The list of available data series classes is presented in the

table below.

Class Values properties Value binding property

DataSeries Values, ValuesSource ValueBinding

XYDataSeries Values, ValuesSource

XValues, XValuesSource

ValueBinding

XValueBinding

HighLowSeries Values, ValuesSource

XValues, XValuesSource

HighValues,

HighLowSeries.HighValuesSource

ValueBinding

XValueBinding

HighValueBinding

83

LowValues, HighLowSeries.LowValuesSource LowValueBinding

HighLowOpenCloseSeries Values, ValuesSource

XValues, XValuesSource

HighValues,

HighLowSeries.HighValuesSource

LowValues, HighLowSeries.LowValuesSource

OpenValues,

HighLowOpenCloseSeries.OpenValuesSource

CloseValues,

HighLowOpenCloseSeries.CloseValuesSource

ValueBinding

XValueBinding

HighValueBinding

LowValueBinding

OpenValueBinding

CloseValueBinding

Each data series class may have its own default template for plotting, for instance HighLowOpenCloseSeries

displays financial data as a set of lines that mark high, low, open and close values.

Chart Data Series Appearance
The appearance of each data series is determined by three groups of properties in the DataSeries class: Symbol,

Connection, and ConnectionArea. These properties affect different parts of the chart depending on the chart

type.

The Symbol properties determine the shape, size, outline, and fill properties of the symbols drawn at each data

point. They apply to chart types that display symbols, including Line, Area, and XYPlot charts. The Symbol

properties also control the appearance of bars in Bar and Column charts.

The Connection properties determine the outline and fill properties of the lines drawn between pairs of data

points. They apply to all collection of points for data series. For line charts the connection is the line which

connects points, for area charts the connection is the area including the outline below the data points.

Differences Between DataSeries and XYDataSeries
DataSeries has only one logical set of data values - Values(y-values).

In this case x-values are generated automatically(0,1,2...), also you can specify text labels for x-axis using

Data.ItemNames property.

XYDataSeries has two sets of data values - Values(y-values) and XValues.

Render Mode Limitations for Data Series
The fast render mode has several limitations:

 Labels, tooltips, and the PlotElement.Loaded event are not supported.

 It’s implemented only for line and symbol(XYPlot) charts(and their combination). These chart types are

commonly used in case of large data.

Chart Panel
The ChartPanel is a container for the UI elements (ChartPanelObject’s) that can be positioned using data

coordinates. The ChartPanel object includes two unique properties: Chart and Children. The Chart gets or sets

the parent chart and the Children property gets the collection of child elements.

To use chart panel with chart it’s necessary to add the panel to the Layers collection of ChartView:

84

<c1chart:C1Chart x:Name="chart">

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.Layers>

 <c1chart:ChartPanel >

 <!-- ChartPanelObjects -->

 </c1chart:ChartPanel>

 </c1chart:ChartView.Layers>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

</c1chart:C1Chart>

The ChartPanelObject class defines the element of the chart panel. The ChartPanelObject includes three

unique properties: Action, Attach, and DataPoint properties.

Using HorizontalAlignment / VerticalAlignment properties it's possible to adjust relative position to the

element and the related data point property, DataPoint. The Content property of the ChartPanelObject can be

set to any UIElement.

The following XAML defines text label with its left-bottom corner at x=0, y=0 in data coordinates:
 <c1chart:ChartPanelObject DataPoint="0,0"

VerticalAlignment="Bottom">

 <TextBlock Text="Zero"/>

 </c1chart:ChartPanelObject>

Note: It is not necessary to specify both coordinates. If the coordinate is set to double.NaN then the element does
not have specific x- or y- coordinates.

We can create horizontal marker at y=0. Note that the HorizontalAlignment property is set to Stretch and the

element fills the width of the plot area.
 <!-- horizontal line -->

 <c1chart:ChartPanelObject DataPoint="NaN,0"

HorizontalAlignment="Stretch">

 <Border BorderBrush="Red" BorderThickness="0,2,0,0"

Margin="0,-1,0,0" />

 </c1chart:ChartPanelObject>

The following sample here creates a vertical marker:
 <!-- vertical line -->

 <c1chart:ChartPanelObject DataPoint="0,NaN"

VerticalAlignment="Stretch">

 <Border BorderBrush="Red" BorderThickness="2,0,0,0"

Margin="-1,0,0,0" />

 </c1chart:ChartPanelObject>

Mouse Interaction with ChartPanel
The ChartPanel panel has support of mouse interaction. The ChartPanelAction enumeration specifies possible

action for the chart panel objects. The ChartPanelAction enumeration includes the following members:

Member name Description

None No action.

MouseMove Follow mouse.

85

LeftMouseButtonDrag Can be dragged with left mouse button.

RightMouseButtonDrag Can be dragged with right mouse button.

Using the Action property we can make a draggable element or element that follows the mouse pointer. For

examplle, adding Action to the previous sample we get the marker that can be moved by user.
 <!-- vertical line -->

 <c1chart:ChartPanelObject DataPoint="0,NaN"

VerticalAlignment="Stretch"

 Action="LeftMouseButtonDrag" >

 <Border BorderBrush="Red" BorderThickness="3,0,0,0"

Margin="-1.5,0,0,0" />

 </c1chart:ChartPanelObject>

Using data binding it's easy to add label that shows the current coordinate:
 <!-- vertical line with coordinate label -->

 <c1chart:ChartPanelObject x:Name="xmarker" DataPoint="0,NaN"

VerticalAlignment="Stretch"

 Action="LeftMouseButtonDrag">

 <Border BorderBrush="Red" BorderThickness="3,0,0,0"

Margin="-1.5,0,0,0" >

 <TextBlock

 Text="{Binding RelativeSource={RelativeSource Self},

 Path=Parent.Parent.DataPoint.X,StringFormat='x=0.0;x=-0.0'}"

/>

 </Border>

 </c1chart:ChartPanelObject>

The property Attach allows to stick the possible positions of the element to the nearest data point. It can be

attached to the single coordinate(X or Y) or both coordintates(XY).

Chart View
The ChartView object represents the area of the chart that contains data (excluding the titles and legend, but

including the axes). The View property returns a ChartView object with the following main properties:

Property Description

Axes Gets the axis collection. Stores x, y, and z axes. These axes are responsible

for the chart range (minimum, maximum, unit, and linear/logarithmic
scale) and the appearance of the axis lines, grid lines, tick marks and axis
labels.

AxisSize Gets or sets the relative size of axis area comparing with the whole plot

cube.

AxisX, AxisY, AxisZ Each of these properties returns Axis objects that allow you to customize

the appearance of the chart axes.

Margin Returns a Margin object that allows you to specify the distance between

the chart area and the plot area. The axes labels are displayed in this
space.

PlotRect Returns a Rect object that controls the appearance of the area inside the

86

axes.

ChartView.Style Contains properties that set the color and border of the chart area.

The following properties in the ChartView class are only applicable in 3D Charts:

Property Description

Camera Gets or sets the camera for 3D only.

Lights Specifies the light source that is used in the scene of 3D charts such as

Ambient light, Directional light, and so on.

Perspective Gets or sets the value of perspective transformation.

Margin Returns a Margin object that allows you to specify the distance between

the chart area and the plot area. The axes labels are displayed in this
space.

Ratio Gets or sets the ratio of axes in plot cube.

Transform Enables you to specify all 3D transformations, including translation,

rotation, and scale transformations.

Axes
The axes are represented by sub-properties of the View property: AxisX, AxisY, and AxisZ. Each of these

properties returns an Axis object with the following main properties:

 Layout, Style, and Value properties

The following properties below represent the layout and style of the axes in C1Chart:

Property Description

Position Allows you to set the position of the axis. For example, you may want

to display the X-axis above the data instead of below. For more
information see Axis Position (page 89).

Reversed Allows you to reverse the direction of the axis. For example, you can

show Y values going down instead of up. For more information see
Inverted and Reversed Chart Axes (page 93).

Title Sets a string to display next to the axis (this is typically used to

describe the variable and units being depicted by the axis). For more
information see Axis Title (page 89).

Foreground Gets or sets the foreground brush of the axis.

AxisLine Gets or sets the axis line. The axis line connects the points on the plot

that correspond to the Min and Max of the axis.

IsTime Gets or sets whether the axis represents time values.

Scale Gets or sets the scale of the axis.

MinScale Gets or sets the minimal scale of the axis.

 Annotation properties

87

The following properties below represent the format for the annotation of the axes in C1Chart:

Property Description

ItemsSource Gets or sets the source for axis annotations.

AnnoFormat A set of predefined formats used to format the values displayed next to

the axis.

AnnoAngle Allows you to rotate the values so they take up less space along the

axis. For more information see Axis Annotation Rotation (page 100).

AnnoTemplate Gets or sets the template for axis annotation.

 Scaling Tickmark and Gridline properties

The following properties represent the scaling, tickmarks, and gridline styles and function for the axes in

C1Chart:

Property Description

AutoMin, AutoMax Determine whether the minimum and maximum values for the axis

should be calculated automatically. For more information see Axis
Bounds.

Min, Max Set the minimum and maximum values for the axis (when AutoMin and

AutoMax are set to False). For more information see Axis Bounds (page
92).

MajorUnit, MinorUnit Set the spacing between the major and minor tickmarks (when the

AutoMajor and AutoMinor properties are set to False).

MajorGridFill Gets or sets the fill based of the major grid. The MajorGridFill enables

you to create a striped plot appearance.

MajorGridStroke,

MinorGridStroke
Gets or sets the brush of the major/minor grid lines.

MajorGridStrokeDashes,

MinorGridStrokeDashes
Gets or sets the dash pattern of the major/minor grid lines.

MajorGridStrokeThicknes

s,
MinorGridStrokeThickness

Gets or sets the thickness of the major/minor grid lines.

MajorTickHeight,

MinorTickHeight
Gets or sets the major/minor tick height.

MajorTickStroke,

MinorTickStroke
Gets or sets the major/minor tick stroke.

MajorTickThickness,

MinorTickThickness
Gets or sets the major/minor tick thickness.

Axis Lines

The axis lines are lines that appear horizontally from the starting value to the ending value for the Y-Axis and

vertically from the starting value to the ending value for the X-Axis. The Z-axis line is used in 3D charts.

You can use either the Axis.Foreground or the ShapeStyle.Stroke property to apply color to the axis line.

Note that the Axis.Foreground property overrides the ShapeStyle.Stroke property.

88

You can specify the type of shape for the starting and ending points of the axis line using the

StrokeStartLineCap and StrokeEndLineCap properties.

Property Description

Foreground Gets or sets the foreground brush of the axis.

Stroke Gets or sets the stroke brush of the shape.

StrokeThickness Gets or sets the stroke thickness of the shape.

ShapeStyle.StrokeStart

LineCap
Gets or sets the shape for the start of the stroke line cap.

ShapeStyle.StrokeEndL

ineCap
Gets or sets the shape for the end of the stroke line cap.

Dependent Axis

The IsDependent allows to link the auxiliary axis with one from the main axes (AxisX or AxisY, depending

on AxisType). The dependent axis always has the same minimum and maximum as the main axis.

New property DependentAxisConverter and delegate Axis.AxisConverter specifies function that is used to

convert coordinate from main axis to the dependent axis.

The following code creates a depepdent Y-Axis:

c1Chart1.Reset(true);

 c1Chart1.Data.Children.Add(

 new DataSeries() { ValuesSource = new double[] { -10, 0, 10,

20, 30, 40 } });

 c1Chart1.ChartType = ChartType.LineSymbols;

 Axis axis = new Axis() { AxisType = AxisType.Y, IsDependent

=true};

 // Celsius -> Fahrenheit

 axis.DependentAxisConverter = (val) => val * 9 / 5 + 32;

 c1Chart1.View.Axes.Add(axis);

The following image displays the dependent (leftmost) Y-Axis that shows values in Fahrenheit corresponding

to the Celsius on the main Y-axis:

89

Axis Position

You can specify the axis position by setting the Position property to near or far values. For vertical axis

Axis.Position.Near corresponds to the left and Axis.Position.Far corresponds to the right. For horizontal

axis Axis.Position.Near corresponds to bottom and Axis.Position.Far corresponds to the top.

Axis Title

Adding a title to an axis clarifies what is charted along that axis. For example if your data includes

measurements it’s helpful to include the unit of measurement (grams, meters, liters, etc) in the axis title. Axis

titles can be added to Area, XY-Plot, Bar, HiLoOpenClose or Candle charts.

The axis titles are UIElement objects rather than simple text. This means you have complete flexibility over

the format of the titles. In fact, you could use complex elements with buttons, tables, or images for the axis

titles.

To set the Axis Title programmatically
// Set axes titles

 c1Chart1.View.AxisY.Title= new TextBlock() { Text = "Kitchen

Electronics" };

 c1Chart1.View.AxisX.Title = new TextBlock() { Text = "Price" };

To set the Axis Title using XAML code
<c1chart:C1Chart >

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis>

 <c1chart:Axis.Title>

 <TextBlock Text="Price" TextAlignment="Center"

Foreground="Crimson"/>

 </c1chart:Axis.Title>

 </c1chart:Axis>

 </c1chart:ChartView.AxisX>

 <c1chart:ChartView.AxisY>

 <c1chart:Axis>

 <c1chart:Axis.Title>

90

 <TextBlock Text="Kitchen Electronics"

TextAlignment="Center" Foreground="Crimson"/>

 </c1chart:Axis.Title>

 </c1chart:Axis>

 </c1chart:ChartView.AxisY>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

 </c1chart:C1Chart>

Axis Tick Marks

The chart automatically sets up the axis with both major and minor ticks. Customizing the tick spacing or

attributes is as easy as manipulating a set of properties.

The MajorUnit and MinorUnit properties set the state of the Axis' tick marks. To eliminate clutter in a chart,

you can display fewer labels or tick marks on the category (x) axis by specifying the intervals at which you

want the categories to be labeled, or by specifying the number of categories that you want to display between

tick marks.

Major Tick Overlap

You can determine the overlap value for the major tick mark by specifying a value range from 0 to 1 for the

MajorTickOverlap property. The default value is 0, which means there is no overlap. When the overlap is 1,

the whole tick is inside the plot area. As you increase the MajorTickOverlap value for the X-Axis, the tick

mark moves up and down as you decrease the value. As you increase the MajorTickOverlap value for the Y-

Axis the tick mark moves to the left.
c1Chart1.Reset(true);

c1Chart1.Data.Children.Add(

new DataSeries() { ValuesSource = new double[] { 1, 2, 1, 2 } });

c1Chart1.ChartType = ChartType.LineSymbols;

c1Chart1.View.AxisX.MajorGridStrokeThickness = 0;

c1Chart1.View.AxisX.MajorTickThickness = 3;

c1Chart1.View.AxisX.MajorTickHeight = 10;

c1Chart1.View.AxisX.MajorTickOverlap = 0;

c1Chart1.View.AxisY.MajorGridStrokeThickness = 0;

c1Chart1.View.AxisY.MajorTickThickness = 3;

c1Chart1.View.AxisY.MajorTickHeight = 10;

c1Chart1.View.AxisY.MajorTickOverlap = 0;

The following image displays the MajorTickOverlap value as zero:

91

Minor Tick Overlap

You can determine the overlap value for the minor tick mark by specifying a value range from 0 to 1 for the

MinorTickOverlap property. The default value is 0 which, means there is no overlap. When the overlap is 1,

the whole tick is inside the plot area.
c1Chart1.Reset(true);

c1Chart1.Data.Children.Add(

new DataSeries() { ValuesSource = new double[] { 1, 2, 1, 2 } });

c1Chart1.ChartType = ChartType.LineSymbols;

c1Chart1.View.AxisX.MinorGridStrokeThickness = 0;

c1Chart1.View.AxisX.MinorTickThickness = 3;

c1Chart1.View.AxisX.MinorTickHeight = 10;

c1Chart1.View.AxisX.MinorTickOverlap = .5;

c1Chart1.View.AxisY.MinorGridStrokeThickness = 0;

c1Chart1.View.AxisY.MinorTickThickness = 3;

c1Chart1.View.AxisY.MinorTickHeight = 10;

c1Chart1.View.AxisY.MinorTickOverlap = 1;

The following image depicts a MinorTickOverlap set to "1":

92

Axis Grid Lines

Grid lines are lines that appear perpendicular with major/minor tick marks at unit major/minor intervals.

Grid lines can help improve the readability of the Chart when you are looking for exact values.

To paint or fill the major/minor grid lines

You can apply a color to major/minor grid lines using the MajorGridStroke/MinorGridStroke properties. A

fill color can be applied in between each value of the major grid lines using the MajorGridFill properties.

To set the dash pattern for major/minor grid lines

You can set the dash pattern for major/minor grind lines using the

MajorGridStrokeDashes/MinorGridStrokeDashes property.

To set the thickness for major/minor grid lines

You can specifiy the thickness for major/minor grid lines using the

MajorGridStrokeThickness/MinorGridStrokeThickness properties.

To set the fill for major grid lines

You can apply a fill for the major gridlines using the MajorGridFill property.

Axis Bounds

Normally a graph displays all of the data it contains. However, a specific part of the chart can be displayed by

fixing the axis bounds.

The chart determines the extent of each axis by considering the lowest and highest data value and the

numbering increment. Setting the Min and Max, AutoMin, and AutoMax properties allows the customization

of this process.

Axis Min and Max

Use the Min and Max properties to frame a chart at specific axis values. If the chart has X-axis values ranging

from 0 to 100, then setting Min to 0 and Max to 10 will only display the values up to 10.

The chart can also calculate the Min and Max values automatically. If the AutoMax and AutoMin properties

are set to True then the chart automatically formats the axis numbering to fit the current data set.

93

Axis Scrolling

In circumstances when you have a substantial amount of X-values or Y-values in your chart data, you can add

an AxisScrollBar control to the axes on your chart. Adding a scrollbar can make the data on the chart easier to

read by scrolling through it so you can closely view pieces of data one at a time. The following image has the

ScrollBar set to the View.AxisX.Value property.

A scrollbar can appear on the X-Axis or Y-Axis simply by setting the ScrollBar’s Value property to AxisX for

the X-Axis or AxisY for the Y-Axis.

The following XAML code shows how to assign a horizontal scrollbar to the X-Axis:

<c1chart:C1Chart Name="c1Chart1">

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis Scale="0.2">

 <c1chart:Axis.ScrollBar>

 <c1chart:AxisScrollBar />

 </c1chart:Axis.ScrollBar>

 </c1chart:Axis>

 </c1chart:ChartView.AxisX>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

Setting the minimum and maximum values for the Scrollbar will prevent the scrollbar from changing the Axis

values when you are scrolling.

Inverted and Reversed Chart Axes

When a data set contains X or Y values which span a large range, sometimes the normal chart setup does not

display the information most effectively. Formatting a chart with a vertical Y-axis and axis annotation that

94

begins at the minimum value can sometimes be more visually appealing if the chart could be inverted or the

axes reversed. Therefore, C1Chart provides the Inverted property and the Reversed property of the axis.

Setting the Reversed property of the ChartView to True will reverse the axes. This means that the Max side of

the axis will take the place of the Min side of the axis, and the Min side of the axis will take the place of the

Max side of the axis. Initially, the chart displays the Minimum value on the left side of the X-axis, and on the

bottom side of the Y-axis. Setting the Reversed property of the Axis, however will juxtapose these Maximum

and Minimum values.

Multiple Axes

Multiple axes are commonly used when you have the following:

 Two or more Data Series that have mixed types of data which make the scales very different

 Wide range of data values that vary from Data Series to Data Series

The following chart uses five axes to effectively display the length and temperature in both metric and non-

metric measurements:

You can add multiple axes to the chart by adding a new Axis object and then specifying its type (X, Y, or Z)

for the AxisType property.

The following XAML code shows how to add multiple Y-axes to the chart:
<c1chart:C1Chart Margin="0" Name="c1Chart1">

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <!-- Auxiliary y-axes -->

 <c1chart:Axis Name="ay2" AxisType="Y" Position="Far" Min="0"

Max="10" />

 <c1chart:Axis Name="ay3" AxisType="Y" Position="Far" Min="0"

Max="20" />

 <c1chart:Axis Name="ay4" AxisType="Y" Position="Far" Min="0"

Max="50" />

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:DataSeries Values="1 2 3 4 5" />

95

 <c1chart:DataSeries AxisY="ay2" Values="1 2 3 4 5" />

 <c1chart:DataSeries AxisY="ay3" Values="1 2 3 4 5" />

 <c1chart:DataSeries AxisY="ay4" Values="1 2 3 4 5" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

</c1chart:C1Chart>

Axis Logarithmic Scaling

When data is shown with large differences in scale or when data is expected to vary exponentially on the same

chart, it is often convenient to use logarithmic scaling on one or more axes. On a logarithmic axis, equal

distance along it depicts an equal percentage change. If logarithmic scaling is used on one or both axes, the

chart is called a Log Scale chart.

With logarithmic scaling, values are physically spaced based upon the logarithm of the value instead of the

value itself. This is useful when quantities are charted over a very wide range, and when depiction of geometric

and/or exponential relationships is desired.

Unlike arithmetic charts where changes are measured in terms of direct units, log scale charts show changes

in terms of percentage change. For example, in a log scale chart measuring dollars, a change from $1 to $2 is a

100 percent change so the distance on the chart axis from $1 to $2 would be the same from $50 to $100.

Whereas in an arithmetic chart, a change from $50 to $100 would make the distance on the axis from $50 to

$100 appear much larger on the chart because it is a change of $50 as opposed to just $1.

Commonly Used Logarithms

Logarithms can be expressed using any base value, including integers and floating point values. The two most

commonly used types of logarithms include:

 Common logarithms – Use 10 as the base so it’s written as log 100 = 2.

 Natural logarithms –Use the mathematical constant e as the base.

Logarithmic Base

You can specify the value for the logarithmic base using the LogBase property. The default value is

double.Nan which corresponds to the default linear axis. A natural logarithm is the logarithm to the base e.

Note that Logarithmic scaling does not make mathematical sense when values are less than or equal to zero.

The following image shows how C1Chart appears when the LogBase is set to 10 for the X-Axis and Y-Axis,

which is the common logarithm:

96

The following image shows how C1Chart appears when the LogBase for the X-Axis is e and the LogBase for

the Y-Axis is 10:

The following image shows how C1Chart appears when the LogBase for the X-Axis is e and the LogBase for

the Y-Axis is e:

97

Criteria used for Logarithmic Scaling

The following additional criteria must be following for logarithmic axes:

 Any data that is less than or equal to zero is not graphed (it is treated as a data hole), since a logarithmic

axis only handles data values that are greater than zero. For the same reason, axis and data

minimum/maximum bounds and origin properties cannot be set to zero or less.

 Axis numbering increment, ticking increment, and precision properties have no effect when the axis is

logarithmic.

 For a logarithmic X-axis, the chart type must be either plot, bubble, area, HiLo, HiLoOpenClose or

candle. For the Y-axis, the chart type must be either plot, bubble, area, polar, HiLo, HiLoOpenClose,

candle, radar or filled radar.

UnitMajor and Logarithmic Axes

For logarithmic axis scaling, MajorUnit is taken as a multiplier of the base value of each cycle that provides a

hint as to the annotation spacing within each cycle of the logarithmic base. That is (MajorUnit * base cycle

value) is approximately the annotation value increment within each cycle. For integer logarithmic base values,

the result is usually exact. For floating point values, annotations are rounded to nice numbers as for linear

scaling.

Detailed Explanation of UnitMajor and Logarithmic Axes

Often, when logarithmic scales are used, the bounds of a chart axis will span multiple cycles of the logarithmic

base. In these cases, the usual linear specification of MajorUnit no longer makes sense, as a value appropriate

for a given cycle makes little sense for the previous or next cycles. For the MajorUnit setting to be of value, it

must pertain to values relative to each cycle of the logarithmic base.

If this doesn't make sense to you, think about what single, fixed, incremental value you might use for the

following axis:

98

Following the above reasoning, for logarithmic axes, the chart assumes that MajorUnit specifies the fraction of

the base value for each cycle. Consider the following examples:

In each case, the base cycle value is 1. For each cycle the next annotation value = previous number + (base

value of cycle * MajorUnit). The maximum value of the MajorUnit is the LogarithmicBase. The automatic

value of MajorUnit is always the LogBase.

When all of the annotation values are calculated, a nice rounding algorithm is applied so the numbers are

relatively easy to read. The behavior may seem a bit odd, but it is the result of accommodating any logarithmic

base while at the same time obtaining numbers for the annotations that are reasonable to read.

For example, the plots above are log-base 10 values, but there are also natural-logs to consider such as log-base

2, log-base-x, etc.

Axes Annotation
The annotation along each axis is an important part of any chart. The chart annotates the axes with numbers

based on the data/values entered into the BubbleSeries, DataSeries, HighLowOpenCloseSeries,

HighLowSeries, or XYDataSeries objects. Annotation for the Axes will always display basic text without any

formatting applied to them.

The chart automatically produces the most natural annotation possible, even as chart data changes. The

following Annotation properties can be modified to perfect this process:

99

Property Description

AnnoFormat A set of predefined formats used to format the values displayed next to the
axis.

AnnoAngle Gets or sets the rotation angle of axis annotation. This allows you to rotate

the values so they will take up less space along the axis.

AnnoTemplate Gets or sets the template for the axis annotation. This is useful for building

custom annotations. For an example, see Creating a Custom Annotation
(page 146).

ItemsSource Gets or sets the source for axis annotations.

Axis Annotation Format

You can control the annotation formatting for the values on the X or Y axis using the AnnoFormat property.

Setting the AnnoFormat property to a .NET Framework composite format string will format the data entered

into the property. For more information on the standard numeric format strings that you can use for the

AnnoFormat property see Standard Numeric Format Strings.

DateTime Format Strings

The DateTime format strings are divided into two categories:

 Standard Date Time Format Strings

 Custom Date Time Format Strings

Numeric Format Strings

 Standard Numeric Format Strings

 Custom Numeric Format Strings

Custom Numeric Format Strings

You can also customize your format strings by using the custom numeric format strings.

To use the AnnoFormat property specify a standard or custom format string for it. For example the following

Bar chart's AnnoFormat property is set to "c" to change the whole values to currency format.

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx
http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx
http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx
http://msdn.microsoft.com/en-us/library/0c899ak8.aspx

100

XAML
<c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis Min="0" AnnoFormat="c"

AutoMin="false" AutoMax="false" Max="200" />

 </c1chart:ChartView.AxisX>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

C#
 // Financial formatting

 c1Chart1.View.AxisX.AnnoFormat = "c";

 c1Chart1.View.AxisX.Min = 0;

Axis Annotation Rotation

Use the AnnoAngle property to rotate the axis annotation counterclockwise from the specified number of

degrees. This property is especially useful if the X-axis is crowded with annotation. Rotating the annotations

+/- 30 or 60 degrees allows a much larger number of annotations in a confined space on horizontal axes. By

utilizing the AnnoAngle property, the X-axis annotation does not overlap, as shown below:

101

XAML
<c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis Min="0" MajorUnit="10"

AnnoFormat="c" AutoMin="false" AutoMax="false" Max="200" AnnoAngle="60"

/>

 </c1chart:ChartView.AxisX>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

C#
// Financial formatting

c1Chart1.View.AxisX.AnnoFormat = "c";

c1Chart1.View.AxisX.Min = 0;

c1Chart1.View.AxisX.AnnoAngle = "60";

Custom Axis Annotation

In some situations you may need to create custom axis annotation. The following scenarios can be useful for

creating custom axis annotation:

 When the ItemsSource property is a collection of numbers or DateTime values the chart uses these values

as axis labels. The following code uses the ItemsSource property to create the custom Y-axis labels:
c1Chart1.Reset(true);

 c1Chart1.Data.Children.Add(

 new DataSeries() { ValuesSource = new double[] { 1, 2, 1, 3, 1,

4 } });

 c1Chart1.ChartType = ChartType.LineSymbols;

 c1Chart1.View.AxisY.ItemsSource = new double[] { 1.25, 1.5, 1.75,

4 };

Here is what the chart appears like after adding the preceding code:

102

 When the ItemsSource property is a collection of KeyValuePair<object, double> or

KeyValuePair<object, DateTime> the chart creates axis labels based on the provided pairs of values. For

example, the following code uses the KeyValuePair to create the custom axis annotation for the Y axis:
c1Chart1.Reset(true);

 c1Chart1.Data.Children.Add(

 new DataSeries() { ValuesSource = new double[] { 1, 2, 1, 3, 1,

4 } });

 c1Chart1.ChartType = ChartType.LineSymbols;

 c1Chart1.View.AxisY.ItemsSource = new

List<KeyValuePair<object,double>>

 { new KeyValuePair<object,double>("Min=1", 1),

 new KeyValuePair<object,double>("Average=2.5", 2.5),

 new KeyValuePair<object,double>("Max=4", 4)};

Here is what the chart appears like after adding the preceding code:

103

 You can use the ItemsValueBinding and ItemsLabelBinding properties to create axis labels using arbitrary

collection as data source, like in the following code:
 c1Chart1.Reset(true);

 Point[] pts = new Point[] { new Point(1, 1.3), new Point(2, 2.7),

new Point(3, 3.9) };

 c1Chart1.DataContext = pts;

 c1Chart1.ChartType = ChartType.LineSymbols;

 c1Chart1.View.AxisY.ItemsSource = pts;

 c1Chart1.View.AxisY.ItemsValueBinding = new Binding("Y");

 c1Chart1.View.AxisY.ItemsLabelBinding = new Binding();

Here is what the chart appears like after adding the preceding code:

Plot Area
The data is plotted in the plot area of the chart. The Plot area is the part of the plot limited by axes and

containing all plot elements (bars, columns, lines etc.). Previously, the chart can have only one plot area but

now it's possible to have several ones in the same chart.

Usually plot areas are created automatically based on PlotareaIndex property. By default it's 0 and the new

plot area is not created for the additional axis. Axis is just added for example, at the left of main y-axis or at

the bottom of the main x-axis. But if you set PlotAreaIndex = 1 the new axis is added on the same line as the

main axis. For x-axis the auxiliary axis will be at the right and for y-axis - at the top.

The following example illustrates the new axis added on the same line as the main axis:

104

 <c1chart:C1Chart x:Name="chart" >

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <!-- Main axes -->

 <c1chart:ChartView.AxisX>

 <c1chart:Axis Min="0" Max="100" Title="x1" />

 </c1chart:ChartView.AxisX>

 <c1chart:ChartView.AxisY>

 <c1chart:Axis Min="0" Max="100" Title="y1" />

 </c1chart:ChartView.AxisY>

 <!-- Auxiliary axis at the right of main x-axis -->

 <c1chart:Axis x:Name="x2" Title="x2" PlotAreaIndex="1"

 AxisType="X" Min="0" Max="10" />

 <!-- Auxiliary axis at the top of main x-axis -->

 <c1chart:Axis x:Name="y2" Title="y2" PlotAreaIndex="1"

 AxisType="Y" Min="0" Max="10" />

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

 </c1chart:C1Chart>

To add the data you need to specify the name of the axis (DataSeries.AxisX/AxisY) and the data will be

plotted along the auxiliary axis.

Plot Area Size

The PlotArea size can be specified using the ColumnDefinitions and RowDefinitions collections in the class

PlotAreaCollection. The approach is similar to working with the standard grid control. The first collection

contains column attributes(widths). The second collection is for the row(height). By default, the plot areas

have the same width and the same height.

The following examples show how to programatically specify the size of the plot area:
 // widths

 // the width of first plot area is default(fill available space)

105

 chart.View.PlotAreas.ColumnDefinitions.Add(new

PlotAreaColumnDefinition());

 // the width of second plot area is constant 100 px

 chart.View.PlotAreas.ColumnDefinitions.Add(new

PlotAreaColumnDefinition()

 { Width= new GridLength(100) });

 // heights

 // the height of first plot area is 1*

 chart.View.PlotAreas.RowDefinitions.Add(new PlotAreaRowDefinition()

 { Height = new GridLength(1, GridUnitType.Star) });

 // the height of second plot area is 2*

 chart.View.PlotAreas.RowDefinitions.Add(new PlotAreaRowDefinition()

 { Height = new GridLength(2, GridUnitType.Star) });

Plot Area Appearance

You can modify the PlotArea’s appearance by using the Background and Stroke/StrokeThickness properties

for the border of the plot area. The plot areas are referenced by using the row/column (the same as the

elements in the grid).

The following sample shows how to modify the Plot Area appearance:
 <c1chart:ChartView.PlotAreas>

 <!-- row=0 col=0 -->

 <c1chart:PlotArea Background="#10FF0000" Stroke="Red" />

 <!-- row=1 col=0 -->

 <c1chart:PlotArea Row="1" Background="#1000FF00" />

 <!-- row=0 col=1 -->

 <c1chart:PlotArea Column="1" Background="#100000FF" />

 <!-- row=1 col=1 -->

 <c1chart:PlotArea Row="1" Column="1" Background="#10FFFF00"

Stroke="Yellow" />

 </c1chart:ChartView.PlotAreas>

Data Aggregation
Data aggregation can be used on the entire C1Chart control through the Aggregate property or used on

individual series through the Aggregate property.

Data aggregation is when data is gathered and is reflected in a summary form. Commonly, aggregation is used

to collect more information about specific groups based on certain variables such as geographic location,

income, and age.

C1Chart enables you to use aggregate functions for a grouped data by specifying it when the DataSeries is

created. For each DataSeries you can choose from one of the following functions using the Aggregate

enumeration:

Member name Description

None Raw values (no aggregation).

Sum Calculates the sum of all values for each point.

Count Number of values for each point.

Average Average of all values for each point.

106

Minimum Gets the minimum value for each point.

Maximum Gets the maximum value for each point.

Variance Gets the variance of the values for each point (sample).

VariancePop Gets the variance of the values for each point (population).

StandardDeviation Gets the standard deviation of the values for each point (sample).

StandardDeviationPop Gets the standard deviation of the values for each point (population).

Data Labels
Data labels are labels associated with data points on the chart. They can be useful on some charts by making it

easier to see which series a particular point belongs to, or its exact value.

C1Chart supports data labels. Each data series has a PointLabelTemplate property that specifies the visual

element that should be displayed next to each point. The PointLabelTemplate is usually defined as a XAML

resource, and may be assigned to the chart from XAML or from code.

You can add a DataTemplate to determine both visual aspects of how the data is presented and how data

binding accesses the presented data.

To define the PointLabelTemplate as a XAML resource you can create a Resource Dictionary, add the

DataTemplate resource to your Resource Dictionary and then in your Window.xaml file you can access the

DataTemplate resource.

To add a new resource dictionary:

1. In Solution Explorer, right-click your project, point to Add, and then select Resource Dictionary. The

Add New Item dialog box appears.

2. In the Name text box, name the dictionary Resources.xaml and click the Add button.

Resources.xaml is added to the project and opens in the code editor.

To create a label you need to create the label template and assign the PointLabelTemplate to the template.

When rendering the plot for each data point the label is created based on the specified template. The

DataContext property of the label is set to the current DataPoint instance that provides information about the

point. When using data binding it makes it easier to display this information in the label.

Here is the sample of a label template that displays the value of the point.

<DataTemplate x:Key="lbl">

 <TextBlock Text="{Binding Path=Value}" />

</DataTemplate>

After you define a resource, you can reference the resource to be used for a property value by using a resource

markup extension syntax that specifies the key name

To assign the template to the data series set the PointLabelTemplate property to the following:

<c1chart:DataSeries PointLabelTemplate="{StaticResource lbl}" />

Since it is a standard data template, the complex label can be built, for example, the next sample template

defines the data label for the XY chart which shows both coordinates of the data point.

107

It uses the standard grid with two columns and two rows as a container. The x-value of the point is obtained

with indexer of the DataPoint class. The indexer allows getting the values for the data series classes which

support several data sets, such as XYDataSeries class.

<DataTemplate x:Key="lbl">

 <!-- Grid 2x2 with black border -->

 <Border BorderBrush="Black">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <!-- x-coordinate -->

 <TextBlock Text="X=" />

 <TextBlock Grid.Column="1" Text="{Binding Path=[XValues]}" />

 <!-- y-coordinate -->

 <TextBlock Grid.Row="1" Text="Y=" />

 <TextBlock Grid.Row="1" Grid.Column="1" Text="{Binding

Path=Value}" />

 </Grid>

 </Border>

</DataTemplate>

When displaying the numerical data value often it is necessary to format the output value. With the static class

Format you can specify standard .Net format string inside the XAML code. For example, the sample code

uses converter to format percentage value.

<DataTemplate x:Key="lbl1">

 <TextBlock Text="{Binding Path=PercentageSeries,

 Converter={x:Static c1chart:Converters.Format},

 ConverterParameter=#.#%}"/>

</DataTemplate>

Chart Styles
Plot elements support WPF styles that are a convenient way to control the appearance of chart.

MouseOver Style
The following example shows how to create a style that sets the Stroke property for a PlotElement to Black:
<Window.Resources>

 ...

 <Style x:Key="mouseOver" TargetType="{x:Type c1c:PlotElement}">

 <!-- Default black outline -->

 <Setter Property="Stroke" Value="Black" />

 <Style.Triggers>

 <!-- When mouse is over the element make thick red outline -->

 <Trigger Property="IsMouseOver" Value="true">

 <Setter Property="Stroke" Value="Red" />

 <Setter Property="StrokeThickness" Value="3" />

108

 <Setter Property="Canvas.ZIndex" Value="1" />”

 </Trigger>

 </Style.Triggers>

 </Style>

</Window.Resources>

Note: When you set the TargetType of your style to the PlotElement type without assigning the style with

an x:Key, the style gets applied to both of your PlotElement elements.

To apply the mouseover styles to the data series you can use set the SymbolStyle property like the following:

<c1c:DataSeries … SymbolStyle="{StaticResource mouseOver}"/>

Chart Appearance
When the chart's data and axes are formatted properly, its elements can be customized to make it look clearer

and more professional. The following topics cover tasks that customize the appearance of a chart.

Chart Themes
ComponentOne Chart for WPF incorporates several themes, including Office 2003 Vista, and Office 2007

themes that allow you to customize the appearance of your chart. The built-in themes are described and

pictured below:

Office2007Black Theme

This is the default theme based on the Office 2007 Black style and it appears as a dark gray-colored chart with

orange highlighting.

In XAML

To specifically define the Office2007Black theme in your chart add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2007Black}}">

In Code

To specifically define the Office2007Black theme in your chart, add the following code your project:

109

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2007Black")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2007Black")) as ResourceDictionary;

Office2007Blue Theme

This theme is based on the Office 2007 Blue style and it appears as a blue-colored chart with orange

highlighting.

In XAML

To specifically define the Office2007Blue theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2007Blue}}">

In Code

To specifically define the Office2007Blue theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), " Office2007Blue")), _

 ResourceDictionary)

 C#
C1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2007Blue")) as ResourceDictionary;

Office2007Silver Theme

This theme is based on the Office 2007 Silver style and it appears as a silver-colored chart with orange

highlighting.

110

In XAML

To specifically define the Office2007Silver theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2007Silver}}">

In Code

To specifically define the Office2007Silver theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2007Silver")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2007Silver")) as ResourceDictionary;

Vista Theme

This theme is based on the Vista style and it appears as a teal-colored chart with blue highlighting.

111

In XAML

To specifically define the Vista theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Vista}}">

In Code

To specifically define the Vista theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Vista")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Vista")) as ResourceDictionary;

MediaPlayer Theme

This theme is based on the Windows Media Player style and it appears as a black-colored chart with blue

highlighting.

In XAML

To specifically define the MediaPlayer theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=MediaPlayer}}">

In Code

To specifically define the MediaPlayer theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "MediaPlayer")), _

 ResourceDictionary)

112

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "MediaPlayer")) as ResourceDictionary;

DuskBlue Theme

This theme appears as a charcoal-colored chart with electric blue and orange highlighting.

In XAML

To specifically define the DuskBlue theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=DuskBlue}}">

In Code

To specifically define the DuskBlue theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "DuskBlue")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "DuskBlue")) as ResourceDictionary;

DuskGreen Theme

This theme appears as a charcoal -colored chart with electric green and purple highlighting.

113

In XAML

To specifically define the DuskGreen theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=DuskGreen}}">

In Code

To specifically define the DuskGreen theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "DuskGreen")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 " DuskGreen")) as ResourceDictionary;

Office2003Blue Theme

This theme is based on the Office 2003 Blue style and it appears as a neutral-colored chart with blue and

orange highlighting.

114

In XAML

To specifically define the Office2003Blue theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2003Blue}}">

In Code

To specifically define the Office2003Blue theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2003Blue")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2003Blue")) as ResourceDictionary;

Office2003Classic Theme

This theme is based on the Office 2003 Classic style and appears as a gray-colored chart with slate-colored

highlighting.

In XAML

To specifically define the Office2003Classic theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2003Classic}">

In Code

To specifically define the Office2003Classic theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2003Classic")), _

 ResourceDictionary)

115

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2003Classic")) as ResourceDictionary;

Office2003Olive Theme

This theme is based on the Office 2003 Olive style and it appears as a neutral-colored chart with olive green

and orange highlighting.

In XAML

To specifically define the Office2003Olive theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2003Olive}}">

In Code

To specifically define the Office2003Olive theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2003Olive")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2003Olive")) as ResourceDictionary;

Office2003Royale Theme

This theme is similar to the Office 2003 Royale style and appears as a silver-colored chart with blue

highlighting.

116

In XAML

To specifically define the Office2003Royale theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2003Royale}}">

In Code

To specifically define the Office2003Royale theme in your chart add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2003Royale")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 " Office2003Royale")) as ResourceDictionary;

Office2003Silver Theme

This theme is based on the Office 2003 Silver style and it appears as a silver-colored chart with gray and

orange highlighting.

117

In XAML

To specifically define the Office2003Silver theme in your chart, add the following Theme XAML to the

<c1chart:C1Chart> tag so that it appears similar to the following:
<c1chart:C1Chart Name="c1Chart1" Theme="{DynamicResource

{ComponentResourceKey TypeInTargetAssembly=c1chart:C1Chart,

ResourceId=Office2003Silver}}">

In Code

To specifically define the Office2003Silver theme in your chart, add the following code your project:

 Visual Basic
C1Chart1.Theme = TryCast(C1Chart1.TryFindResource(_

 New ComponentResourceKey(GetType(C1Chart), "Office2003Silver")), _

 ResourceDictionary)

 C#
c1Chart1.Theme = c1Chart1.TryFindResource(

 new ComponentResourceKey(typeof(C1.WPF.C1Chart.C1Chart),

 "Office2003Silver")) as ResourceDictionary;

Data Series Color Generation
The data series color scheme can be selected by using the Palette property. By default, C1Chart uses the

ColorGeneration.Default setting. The remaining options mimic the color themes of Microsoft Office.

Available color schemes for the data series are listed below:

Color Generation Setting Description or Preview

Default When the C1Chart.ColorGeneration is set to

"Default" the chart uses the theme palette if the

theme is set, otherwise "Apex" palette is applied.

Standard

118

Office

GrayScale

Apex

119

Aspect

Civic

Concourse

120

Equity

Flow

Foundry

121

Median

Metro

Module

122

Opulent

Oriel

Origin

123

Paper

Solstice

Technic

124

Trek

Urban

Verve

End User Interaction
C1Chart contains built-in tools that simplify the implementation of interactive behaviors for the end user. The

end user can explore, rotate and zoom chart using combinations of mouse and shift keys. The control center

for interactive features is the Actions property of C1Chart. The Action object has several properties that allow

customization of the interface. All of the properties can be set or changed at design time through the Properties

window with the Action Collection Editor or in XAML and programmatically through the Actions

collection.

The following list reveals the supported chart actions:

125

 Rotate action allows changing viewing angle. This action is available only for chart with 3D effects. The

Rotate3Daction class represents the rotate action for the 3D charts.

 Scale action increases or decreases the scale of the chart along the selected axis or axes. The ScaleAction

class represents the scale action.

Note: The zoom is not applicable for the chart's axis if the MinScale property is equal to zero. The

MinScale property specifies the minimum scale that can be set for the axis.

 Translate action provides the opportunity to scroll through the plot area. The TranslateAction class

represents the translate action.

Note: You will not be available to translate along the axis if the Axis.Scale property is greater than 1.

 Zoom action allows the user to select rectangular area for viewing.

Note: The zoom is not applicable for the chart's axis if the MinScale property is equal to zero. The

MinScale property specifies the minimum scale that can be set for the axis.

The scaling, translation and zooming are available only for chart with Cartesian axes.

Interactive rotation at run time is available for 3D Charts.

The Action object provides a set of properties that help to customize the action's behavior.

 The MouseButton and Modifiers properties specify the mouse button and key (ALT, CONTROL or

SHIFT) combination that will invoke the execution of the action.

XAML Elements
Several auxiliary XAML elements are installed with ComponentOne Chart for WPF. These elements include

templates and themes and are located in the Chart for WPF installation directory, by default C:\Program

Files\ComponentOne\Studio for WPF\C1WPFChart\XAML. You can incorporate these elements into

your project, for example, to create your own theme based on the included Office 2007 themes. For more

information about the built-in themes some of these elements represent, see Chart Themes (page 108).

Included Auxiliary XAML Elements

The following auxiliary XAML elements are included with Chart for WPF with their location within the

C:\Program Files\ComponentOne\Studio for WPF\C1WPFChart\XAML folder noted:

Element Folder Description

ChartTypes.xaml Specifies the templates for all the available chart
types.

default.xaml Themes Specifies the templates for Default theme.

DuskBlue.xaml Themes Specifies the templates for the Dusk Blue theme.

DuskGreen.xaml Themes Specifies the templates for the Dusk Green theme.

generic.xaml Themes Specifies the templates for different styles and the

initial style of the chart.

126

Grayscale.xaml Themes Specifies the templates for the grayscale theme.

Legend.xaml Themes Specifies the templates for the Legend.

MediaPlayer.xaml Themes Specifies the templates for the Media Player

theme.

Office2003Blue.xaml Themes Specifies the templates for the Office 2003 Blue
theme.

Office2003Classic.xaml Themes Specifies the templates for the Office 2003 Classic

theme.

Office2003Olive.xaml Themes Specifies the templates for the Office 2007 Olive

theme.

Office2003Royale.xaml Themes Specifies the templates for the Office 2007 Royal

theme.

Office2003Silver.xaml Themes Specifies the templates for the Office 2007 Silver

theme.

Office2007Black.xaml Themes Specifies the templates for the Office 2007 Black

theme.

Office2007Blue.xaml Themes Specifies the templates for the Office 2007 Blue

theme.

Office2007Silver.xaml Themes Specifies the templates for the Office 2007 Silver

theme.

Vista.xaml Themes Specifies the templates for the Vista theme.

Plotting Functions
C1Chart has a built-in engine for plotting functions. To use the built-in engine for plotting functions it is

necessary to add a reference to the C1.WPF.C1Chart.Extended.dll in your project.

There are various types of functions used for different applications. C1Chart provides the various types of

functions needed to create many applications.

There are two types of supported functions:

1. One-variable explicit functions

 One-variable explicit functions are written as y=f(x) (see the YFunctionSeries class).

 A few examples include: rational, linear, polynomial, quadratic, logarithmic, and exponential

functions.

 Commonly used by scientists and engineers, these functions can be used in many different types of

finance, forecasts, performance measurement applications, and so on.

2. Parametric functions

 The function is defined by a pair of equations, such as y=f1(t) and x=f2(t) where t is the

variable/coordinate for functions f1 and f2.

 Parametric functions are special types of function because the x and y coordinates are defined by

individual functions of a separate variable.

127

 They are used to represent various situations in mathematics and engineering, from heat transfer, fluid

mechanics, electromagnetic theory, planetary motion and aspects of the theory of relativity, to name a

few.

 For more information about the parametric function (see the ParametricFunctionSeries class).

Using a Code String to Define a Function
When an interpretive code string is used to define a function of a function class (YFunctionSeries or

ParametricFunctionSeries), the string is compiled and the resulting code is dynamically included into the

application. Execution speed will be the same as any other compiled code.

For simple, one-variable explicit functions, the YFunctionSeries class object is used. This object has one code

property, FunctionCode. For YFunction objects, the independent variable is always assumed to be "x".

For parametric functions, a pair of equations must be defined using the ParametricFunctionSeries class object.

This object has two properties, one for each coordinate. The properties, XFunctionCode and YFunctionCode

accept code in which the independent variable is always assumed to be "t".

Calculating the Value for Functions
You can calculate the value of the functions for Parametric and YFunction using the CalculateValue method.

TrendLines
The trend lines supported by chart with TrendLine objects can be divided into two groups, including

regression and non-regression. In 2D charts, trend lines are typically used in X-Y line, bar, or scatter charts.

Non-regression trendlines are MovingAverage, Average, Minimum, and Maximum. Moving Average

trendline is the average over the specified time.

Regression trend lines are polynomial, exponent, logarithmic, power and Fourier functions that approximate

the data which the functions trend.

To use the trend lines feature, it is necessary to add the reference to the C1.WPF.C1Chart.Extended.dll in

your project.

Chart Resource Keys
Built in themes and resources have several incorporated resource keys. These keys include brush, border, and

other elements and can be customized to represent a unique appearance. When customizing a theme, a

resource key that is not explicitly specified will revert to the default. The included resource keys and their

descriptions are noted in the following topics.

The following tables describe chart resource keys for the chart control and its elements such as the chart area,

plot area, axes, and legend.

Chart Resource Key

Resource Key Description

C1Chart_Foreground_Color Represents C1Chart's foreground color.

C1Chart_Background_Color Represents C1Chart's background color.

C1Chart_Background_Brush Represents C1Chart's background brush.

128

C1Chart_Foreground_Brush Represents C1Chart's foreground brush.

C1Chart_Border_Brush Represents C1Chart's border brush.

C1Chart_Border_Thickness Represents C1Chart's border thickness (all 4 edges).

C1Chart_CornerRadius Represents chart's corner radius (all 4 corners).

C1Chart_Padding Represents C1Chart's padding.

C1Chart_Margin Represents C1Chart's margin.

Legend Resource Keys

Resource Key Description

C1Chart_LegendBackground_Brush Represents C1Chart's legend background brush.

C1Chart_LegendForeground_Brush Represents Legend's foreground brush for the C1Chart control.

C1Chart_LegendBorder_Brush Represents Legend's border brush for the C1Chart control.

C1Chart_LegendBorder_Thickness Represents the Legend border's thickness (all 4 edges) for the

C1Chart control.

C1Chart_Legend_CornerRadius Represents the Legend's corner radius (all 4 corners).

Chart Area Resource Keys

Resource Key Description

C1Chart_ChartAreaBackground_Brush Represents the ChartArea's background brush.

C1Chart_ChartAreaForeground_Brush Represents the ChartArea's foreground brush on mouseover.

C1Chart_ChartAreaBorder_Brush Represents the ChartArea's border brush.

C1Chart_ChartAreaBorder_Thickness Represents the ChartArea's border thickness.

C1Chart_ChartArea_CornerRadius Represents the ChartArea's corner radius (all 4 corners).

C1Chart_ChartArea_Padding Represents the ChartAreas' padding.

Plot Area Resource Keys

Resource Key Description

C1Chart_PlotAreaBackground_Brush Represents the PlotArea's background brush.

Custom palette for plot elements Key

Resource Key Description

C1Chart_CustomPalette Represents the custom palette for plot elements.

Axis Keys

Resource Key Description

C1Chart_AxisMajorGridStroke_Brush Represents the AxisMajorGridStroke's brush.

C1Chart_AxisMinorGridStroke_Brush Represents the AxisMinorGridStroke's brush.

129

Animation
Almost all of the plot elements can be animated with standard WPF animations. The following style is the

modified style that adds "running ants" animation to the element which is under the mouse pointer.

<Style x:Key="mouseOver" TargetType="{x:Type c1c:PlotElement}">

 <!-- Default black outline -->

 <Setter Property="Stroke" Value="Black" />

 <Style.Triggers>

 <!-- When mouse is over element make thick red outline -->

 <Trigger Property="IsMouseOver" Value="true">

 <Setter Property="Stroke" Value="Red" />

 <Setter Property="StrokeThickness" Value="2" />

 <Setter Property="StrokeDashArray" Value="2,2" />

 <Setter Property="Canvas.ZIndex" Value="1" />

 <Trigger.EnterActions>

 <!-- Start animation -->

 <BeginStoryboard >

 <Storyboard>

 <DoubleAnimation

Storyboard.TargetProperty="StrokeDashOffset"

 From="0" To="8" RepeatBehavior="Forever"

Duration="0:0:0.5"/>

 </Storyboard>

 </BeginStoryboard>

 </Trigger.EnterActions>

 </Trigger>

 </Style.Triggers>

</Style>

Each DataSeries in a chart is composed of PlotElement objects that represent each individual symbol,

connector, area, pie slice, etc in the series. The specific type of PlotElement depends on the chart type.

You can add animations to your charts by attaching Storyboard objects to the plot elements. This is usually

done in response to the DataSeries.Loaded event, which fires after the PlotElement objects have been created

and added to the data series.

Delivering Data to the Chart
Chart for WPF's C1Chart control can be bound to any object that implements the

System.Collections.IEnumerable interface (such as XmlDataProvider, DataSet, DataView, and so on).

A datatable can be bound to the chart by assigning the ItemsSource property to the C1Chart control.

The following topics provide information on the different data binding methods used to deliver data to the

C1Chart control.

Collection of Values
You can use several methods for delivering data to the chart. One method, is binding a collection of values

using the ValuesSource property.

130

Any collection of numerical values that support IEnumerable interface can be used as a data source for the

data series. Each data series class has appropriate properties for data binding. For example, the DataSeries

class uses the ValuesSource property for data binding.

To bind the collection of values to the DataSeries you can first specify the binding source as an array of double

like the following:
<!—Binding Source -->

<x:Array xmlns:sys="clr-namespace:System;assembly=mscorlib"

 x:Key="array" Type="sys:Double">

 <sys:Double>1</sys:Double>

 <sys:Double>4</sys:Double>

 <sys:Double>9</sys:Double>

 <sys:Double>16</sys:Double>

</x:Array>

To pass the array to the data series use the following code:

<!—Binding Target -->

<c1chart:DataSeries ValuesSource="{Binding Source={StaticResource

array},Path=Items}"/>

It is possible to specify the data values as an attribute, the values should be separated with spaces, for example:

<c1chart:DataSeries Values="1 2 9 16"/>

The preceding markup declaratively binds the ValuesSource property of a DataSeries to the Items property of a

DataSeries object which is given a value of "1 2 9 16".

Collection of Objects
Data binding should be used when you have a collection of objects where each object includes numerical

properties. There are at least two chart properties involved in the data binding process.

 ItemsSource property – The source where the collection of objects are assigned to.

 ValueBinding property – Gets or sets the value binding for the chart's data series. Specifies what object

property provides the data value.

Suppose we have the array of points in resources:

<x:Array x:Key="points" Type="Point">

 <Point>0,0</Point>

 <Point>10,0</Point>

 <Point>10,10</Point>

 <Point>0,10</Point>

 <Point>5,5</Point>

</x:Array>

The following XAML fragment presents the chart with two data series, one is bound to X coordinate of points,

and the other is bound to Y coordinate:

<c1chart:C1Chart Name="chart2">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData

 ItemsSource="{Binding Source={StaticResource points}, Path=Items}">

 <c1chart:DataSeries ValueBinding="{Binding Path=X}"/>

 <c1chart:DataSeries ValueBinding="{Binding Path=Y}"/>

131

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

</c1chart:C1Chart>

The next sample shows the series that uses both coordinates of points at once; note it is the instance of

XYDataSeries class that handles two sets of data values which correspond to x- and y-coordinates:
<c1chart:XYDataSeries

 XValueBinding="{Binding Path=X}"

 ValueBinding="{Binding Path=Y}"/>

Observable Collection
WPF has a special generic collection class ObservableCollection which provides notification about updating

such as when items get added, removed, or when the entire list is refreshed. If an instance of this class is used

as a data source for the chart, the chart automatically reflects the changes that were made in the collection.

Data Context Binding
If you plan to have multiple properties bind to the same source then use the DataContext property. The

DataContext property provides a convenient way to establish a data scope.

The C1Chart control uses the DataContext property as ItemsSource when the items source is not set.

DataContext should be IEnumerable for using as items source.

The following topics show how to use the DataContext as a Double and a Point:

Data Context as Array of Double

The following code shows how to use the data context as an array of double:

c1Chart1.Reset(true);

c1Chart1.DataContext = new double[] { 1, 2, 3, 4, 5 };

c1Chart1.ChartType = ChartType.Column;

Data Context as Array of Point

The following code shows how to use the data context as an array of point:

c1Chart1.Reset(true);

c1Chart1.DataContext = new Point[] { new Point(1, 1), new Point(2, 2),

new Point(3, 4), new Point(4, 1) };

c1Chart1.ChartType = ChartType.LineSymbols;

Data Series Binding
C1Chart provides the following binding types used for specifying which properties should be plotted on the

chart:

 Item name binding - Specifies the item name binding for the chart data.

 Series bindings - Collection of value bindings for data series for each binding in the collection the data

series is created during auto-generation.

 X-value binding- The X-Value binding specifies the x-value binding for the chart data series.

132

Item Name Binding

The Item Name binding is a type of data binding used to specify the item name binding for the chart data

when the ItemNameBinding property is used.

The following example calls the bindings method on the target object:

ChartBindings bindings = new ChartBindings();

bindings.ItemNameBinding = new Binding("Name");

bindings.SeriesBindings.Add(new Binding("Input"));

bindings.SeriesBindings.Add(new Binding("Output"));

chart.Bindings = bindings;

chart.DataContext = new InOut[]

{

 new InOut() { Name = "n1", Input = 90, Output = 110},

 new InOut() { Name = "n2", Input = 80, Output = 70},

 new InOut() { Name = "n3", Input = 100, Output = 100},

};

where InOut is defined as:

public class InOut

{

 public string Name { get; set; }

 public double Input{ get; set;}

 public double Output { get; set; }

}

X-Value Binding

The X-Value binding specifies the x-value binding for the chart data series when the XBinding property is

used.

The following example uses the XBinding property to set the x-value binding for the data series:

ChartBindings bindings = new ChartBindings();

bindings.XBinding = new Binding("X");

bindings.SeriesBindings.Add(new Binding("Y"));

chart.Bindings = bindings;

chart.DataContext = new Point[] { new Point(1, 0),

new Point(2, 2), new Point(3, 1), new Point(5, 3) };

Series Generation
The chart data series can be generated manually or automatically.

The property AutoGenerateSeries specifies whether the series are created automatically. By default the

AutoGenerateSeries property is null and only generates data series if Children collection is empty. While the

series are being generated, chart analyzes the elements of Data.ItemsSource (or C1Chart.DataContext)

collection and creates series for each property that has supported types (numeric,DateTime).

To control the process of series generation, use the Bindings property that allows to specifiy which properties

should be plotted. For more information on the Bindings property see, Data Series Binding (page 131).

133

Data Binding Tutorials
The following sections include data binding tutorials for the C1Chart control. The tutorials provide step-by-

step instructions. By following the steps outlined in this chapter, you will be able to bind C1Chart to a data

table and an xml file.

The key properties in both tutorials are the following:

 ItemsSource - provides a list of objects

 ItemNameBinding - specifies the name of an element such as label on the x-axis

 ValueBinding - specifies the numerical value

Bind to a Data Table Programmatically

This tutorial provides step-by-step instructions for binding the C1Chart to a dataset programmatically. The

data shows the information as a simple bar chart with one y-axis that represents the names of the products and

one x-axis that represents the unit's price for each product. The products' ten most expensive products are

displayed in descending order. The Bar chart uses one series to draw the unit price. A legend is not used since

there is only one series.

The chart uses data from the sample Access database, Nwind.mdb. This tutorial assumes that the database file

Nwind.mdb is in the C:\Users\username\Documents\ComponentOne Samples\Common (XP) or

C:\Documents and Settings\username\My Documents\ComponentOne Samples\Common (Vista)
directory, and refer to it by filename instead of the full path name for the sake of brevity.

Completing this tutorial will produce a chart that looks like the following:

To bind C1Chart to a data table programmatically, complete the following steps:

1. Create a new WPF project in Visual Studio. For more information about creating a WPF project, see

Creating a .NET Project in Visual Studio (page 15).

2. Add the C1.WPF.C1Chart reference to your project.

134

3. Add the C1Chart control to the Window. For more information see, Adding the Chart for WPF

Components to a Visual Studio Project (page 17).

4. Once the C1Chart control is placed on the Window, the following XAML code is added:
Title="Window1" Height="300" Width="500" xmlns:c1chart="clr-

namespace:C1.WPF.C1Chart;assembly=C1.WPF.C1Chart" Loaded="Window_Loaded">

 <Grid>

 <c1chart:C1Chart Content="" Margin="10,10,10,18" Name="c1Chart1">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:ChartData.ItemNames>P1 P2 P3 P4

P5</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Label="Series 1" Values="20 22 19

24 25" />

 <c1chart:DataSeries Label="Series 2" Values="8 12 10

12 15" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:Legend DockPanel.Dock="Right" />

 </c1chart:C1Chart>

 </Grid>

5. Select the XAML tab and add the following namespace in the XAML code:
 xmlns:sys="clr-namespace:System;assembly=mscorlib"

6. In the XAML code, change the Title's Width from 300 to 500.

7. Within the <c1chart:C1Chart> tag modify the Margin to "0" and set the ChartType to "Bar". This

will change the default chart's appearance from Column to Bar. Your XAML code should appear like the

following:
<c1chart:C1Chart Margin="0" Name="c1Chart1" ChartType="Bar">

</c1chart:C1Chart>

Your chart appears like the following:

8. Create a label after the closing c1chart:C1Chart tag and label it as "Ten Most Expensive Products".
<TextBlock DockPanel.Dock="Top" Text="Ten Most Expensive Products"

HorizontalAlignment="Center"/>

Your XAML code should now appear like the following:
<Grid>

 <c1chart:C1Chart Margin="0" Name="c1Chart1" ChartType="Bar"

Height="185" VerticalAlignment="Top">

 <c1chart:C1Chart.Data>

135

 <c1chart:ChartData>

 <c1chart:DataSeries Label="Series 1" Values="20 22 19

24 25" />

 <c1chart:DataSeries Label="Series 2" Values="8 12 10

12 15" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:Legend DockPanel.Dock="Right" />

 </c1chart:C1Chart>

 <TextBlock DockPanel.Dock="Top" Text="Ten Most Expensive Products"

HorizontalAlignment="Center"/>

</Grid>

9. Add the following using/imports directives in your code-behind file:

 Visual Basic
Imports System.Data

Imports System.Data.OleDb

Imports C1.WPF.C1Chart

 C#
using System.Data;

using System.Data.OleDb;

using C1.WPF.C1Chart;

10. Declare the variable for the DataSet outside the Window_Loaded procedure, then add the following code

to retrieve the products and unit price from the database:

 Visual Basic
Private _dataSet As DataSet

Private Sub Window_Loaded(ByVal sender As Object, ByVal e As

RoutedEventArgs)

 ' create connection and fill data set

 Dim mdbFile As String = "c:\Program Files\ComponentOne Studio.NET

2.0\Common\nwind.mdb"

 Dim connString As String =

String.Format("Provider=Microsoft.Jet.OLEDB.4.0; Data Source={0}",

mdbFile)

 Dim conn As New OleDbConnection(connString)

 Dim adapter As New OleDbDataAdapter("SELECT TOP 10 ProductName,

UnitPrice" & Chr(13) & "" & Chr(10) & " FROM Products ORDER BY

UnitPrice DESC;", conn)

 _dataSet = New DataSet()

 adapter.Fill(_dataSet, "Products")

 ' set source for chart data

 c1Chart1.Data.ItemsSource = _dataSet.Tables("Products").Rows

End Sub

 C#
DataSet _dataSet;

 private void Window_Loaded(object sender, RoutedEventArgs e)

 {

136

 // create connection and fill data set

 string mdbFile = @"c:\Program Files\ComponentOne Studio.NET

2.0\Common\nwind.mdb";

 string connString =

string.Format("Provider=Microsoft.Jet.OLEDB.4.0; Data Source={0}",

mdbFile);

 OleDbConnection conn = new OleDbConnection(connString);

 OleDbDataAdapter adapter =

 new OleDbDataAdapter(@"SELECT TOP 10 ProductName, UnitPrice

 FROM Products ORDER BY UnitPrice DESC;", conn);

 _dataSet = new DataSet();

 adapter.Fill(_dataSet, "Products");

 // set source for chart data

 c1Chart1.Data.ItemsSource = _dataSet.Tables["Products"].Rows;

 }

Note: Make sure the file path for the mdbFile matches up to where you have the nwind.mdb database
project located on your machine.

11. Click on the XAML tab so your are in XAML view and delete the following default data from ChartData:
<c1chart:ChartData.ItemNames>P1 P2 P3 P4 P5</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Label="Series 1" Values="20 22 19

24 25" />

 <c1chart:DataSeries Label="Series 2" Values="8 12 10

12 15" />

The C1Chart control now appears empty on the Window.

12. Within the <c1chart:C1Chart.Data> tag add the ItemNameBinding property to the ChartData to

specify the name of the element, in this case the label on the y-axis and the ValueBinding property to the

DataSeries to specify the numerical value for the series.
<c1chart:ChartData ItemNameBinding="{Binding Path=[ProductName]}">

 <c1chart:DataSeries ValueBinding="{Binding

Path=[UnitPrice]}"/>

 </c1chart:ChartData>

Your XAML code for your project should look like the following:
<Window x:Class="Chart for WPF_QuickStart.Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 Title="Window1" Height="300" Width="500" Loaded="Window_Loaded"

xmlns:c1chart="clr-namespace:C1.WPF.C1Chart;assembly=C1.WPF.C1Chart">

 <Grid>

 <c1chart:C1Chart Margin="0" Name="c1Chart1" ChartType="Bar">

 <TextBlock DockPanel.Dock="Top" Text="Ten Most Expensive

Products"

 HorizontalAlignment="Center"/>

 <c1chart:C1Chart.Data>

 <c1chart:ChartData ItemNameBinding="{Binding

Path=[ProductName]}">

 <c1chart:DataSeries ValueBinding="{Binding

Path=[UnitPrice]}"/>

137

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 </c1chart:C1Chart>

 </Grid>

</Window>

13. Remove the <c1chart:Legend DockPanel.Dock="Right" /> tag from XAML to remove the

built-in Legend control.

14. Run your project to ensure that everything is working correctly.

Observe the following at runtime

The chart is now populated with data from the Products table.

Bind to an XML
This tutorial provides step-by-step instructions for embedding the XML as a data island within the source

of the XAML page to bind the C1Chart control to the xml data. The data shows the information as a simple

bar chart with one y-axis that represents the names of the cities and one x-axis that represents the population

for each country. The Bar chart uses one series to draw the population. A legend is used to show the color for

the population.

In this tutorial the binding is set in the ChartData class using the following XAML code:

<c1chart:ChartData ItemsSource="{Binding Source={StaticResource data}}"

 ItemNameBinding="{Binding XPath=CityName}">

 <c1chart:DataSeries Label="Population"

 ValueBinding="{Binding XPath=Population}" />

</c1chart:ChartData>

Completing this tutorial will produce a chart that looks like the following:

138

To bind C1Chart to xml:

1. Create a new WPF project in Visual Studio. For more information about creating a WPF project, see

Creating a .NET Project in Visual Studio (page 15).

2. Create a Resource section in your Window and add an XML data provider to it. Within the resources

section embed the XML data directly as an XML data island. An XML data island must be wrapped in

<x:Xdata> tags and always have a single root node, which is Cities in this example:

XAML:
<Grid.Resources>

 <XmlDataProvider x:Key="data" XPath="Cities/City">

 <x:XData>

 <Cities xmlns="">

 <City>

 <CityName>Mumbai</CityName>

 <Population>13000000</Population>

 </City>

 <City>

 <CityName>Karachi</CityName>

 <Population>11600000</Population>

 </City>

 <City>

 <CityName>Delhi</CityName>

 <Population>11500000</Population>

 </City>

 <City>

 <CityName>Isanbul</CityName>

 <Population>11200000</Population>

 </City>

 </Cities>

 </x:XData>

 </XmlDataProvider>

</Grid.Resources>

3. Add the C1.WPF.C1Chart reference to your project.

4. Add the C1Chart control to the Window.

Once the C1Chart control is placed on the Window, the following XAML code is added:
Title="Window1" Height="50" Width="100" xmlns:c1chart="clr-

namespace:C1.WPF.C1Chart;assembly=C1.WPF.C1Chart" Loaded="Window_Loaded">

139

 <Grid>

 <c1chart:C1Chart Content="" Margin="10,10,10,18" Name="c1Chart1">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:ChartData.ItemNames>P1 P2 P3 P4

P5</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Label="Series 1" Values="20 22 19

24 25" />

 <c1chart:DataSeries Label="Series 2" Values="8 12 10

12 15" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:Legend DockPanel.Dock="Right" />

 </c1chart:C1Chart>

 </Grid>

5. Change the Window's Width to "300" and Height to "550"

6. Within the <c1chart:C1Chart> tag modify the Margin to "0" and set the ChartType to "Bar". This

will change the default chart's appearance from Column to Bar. Your XAML code should appear like the

following:
<c1chart:C1Chart Margin="0" Name="c1Chart1" ChartType="Bar">

</c1chart:C1Chart>

7. In the XAML file locate the <c1chart:C1Chart.Data> tag and delete the following XAML code

from it:
<c1chart:ChartData.ItemNames>P1 P2 P3 P4 P5</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Label="Series 1" Values="20 22 19

24 25" />

 <c1chart:DataSeries Label="Series 2" Values="8 12 10

12 15" />

The two default series are removed from C1Chart and now the C1Chart control appears empty because

there is no data for it.

8. Within the <c1chart:C1Chart.Data> tag add the ItemNameBinding property to the ChartData to

specify the name of the element, in this case the label on the y-axis and the ValueBinding property to the

DataSeries to specify the numerical value for the series. The following example binds the

ChartData.ItemsSource property using the binding extension, specifying the Source. The

ChartData.ItemNameBinding property is bound using the binding extension specifying the Path. The

DataSeries.Label property is bound using the binding extension to specify the Path which is the

Population.

In XAML:
<c1chart:ChartData ItemsSource="{Binding Source={StaticResource data}}"

 ItemNameBinding="{Binding XPath=CityName}">

 <c1chart:DataSeries Label="Population"

 ValueBinding="{Binding XPath=Population}" />

 </c1chart:ChartData>

Your XAML code for your C1Chart control should look like the following:
<c1chart:C1Chart Height="300" HorizontalAlignment="Left" Margin="0"

Name="c1Chart1" ChartType="Bar" VerticalAlignment="Top" Width="500">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData ItemsSource="{Binding

Source={StaticResource data}}"

 ItemNameBinding="{Binding XPath=CityName}">

 <c1chart:DataSeries Label="Population"

140

 ValueBinding="{Binding XPath=Population}" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:Legend DockPanel.Dock="Right" />

 </c1chart:C1Chart>

9. Run your project to ensure that everything is working correctly.

Your chart will appear like the following:

Notice how the annotation appears for the x-axis. We will need to format the annotation for the x-axis so

the population appears in the thousandths.

10. Declare tags for C1Chart's ChartView.AxisX property. You will need to set the following properties of

the AxisX to format the annotation and the gridlines.

Add the following XAML code after the closing, </c1chart:C1Chart.Data>, tag:
<c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX >

 <c1chart:Axis Min="0" MajorGridStroke="DarkGray"

AnnoFormat="#,###,###"/>

 </c1chart:ChartView.AxisX>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

The X-Axis annotation appears updated on the Chart like the following:

141

Chart for WPF Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or

demos, which may make use of other ComponentOne development tools included with ComponentOne

Studios.

Samples can be accessed from the ComponentOne Sample Explorer. On your desktop, click the Start button

and then click ComponentOne | Studio for WPF | C1WPFChart Samples. The following tables provide a

short description for each sample included in the C1WPFChartSamples.

C1WPFChart Samples

Sample Description

Advanced The Advanced group includes the following samples: Aggregate, Functions,

Moving Average, Parametric, Polygon, and Trend lines. The Aggregate
sample shows the built-in aggregate features. The Functions samples
demonstrates how to plot the function represented by javascript expression.
The Moving Average sample creates two moving average trend lines with
different periods. The Parametric sample plots the function defined
parametrically with two equations x = x(t) and y = y(t). The Trend lines
shows available trend line types.

Appearance Shows how to create a complex Bubble chart and how to play animation

when loading new data.

Axes The Axes sample includes a Logarithmic, Ticks, Origin, Dependant Axes, and

Custom Labels samples. The Logarithmic sample shows logarithmic axes with
default and custom axis templates. The Ticks sample demonstrates various
options for axis ticks. The Origin sample shows how to use the scrollbars to
change the position of origin for the x and y axes. The dependant axes
sample demonstrates how to use dependent axes to display the temperature
in different units. The Custom Labels sample shows how to customize the
position and appearance of axis labels.

Basics This sample includes the following samples: Labels and tooltips, Radar, and

Image and export. The Lables and tooltips sample shows how to attach
labels or tooltips to each data point. The Radar sample demonstrates how to

142

use a Radar chart, and the Image and export sample demonstrates how to
export chart to an image file.

Combination The Combination sample includes the following samples: Financial, Complex,

and Plot areas. The Financial sample shows a financial chart with column and
candle data series and two y-axes. The Complex samples shows a stacked
column chart with two stacking groups and line data series.

Interaction The Interaction group includes the following samples: Interactive zoom,

AddRemove Markers, Markers, Mouse Marker, and Drag and Drop. The
Interactive zoom sample shows a zoom, scale and pan a chart using the
mouse. The Drag and Drop sample shows a drag and drop data series
between the charts.

Performance The Performance group includes the following samples: Live Data and Large

data. The Live data sample shows dynamic data with trend lines and the
Large Data sample shows an interactive chart with 50000 data points.

To run this sample:

1. Open Visual Studio or Microsoft Expression Blend.

2. Select File | Open Project/Solution.

3. Click the drop-down Look in list and find the "<PersonalDocumentsFolder>\ComponentOne

Samples\Common" where <PersonalDocumentsFolder> is the users Documents folder. This is the

default location of the sample created by the installation program. The location may be different if you

installed Chart for WPF elsewhere on your machine.

4. Select the Samples.sln and click Open to open the project in Blend or Visual Studio

5. Select Project | Test Solution or click F5 to run the sample.

143

Chart for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET, and know how

to use the C1Chart control in general. Each topic in this section provides a solution for specific tasks using the

ComponentOne Chart for WPF product.

Each task-based help topic also assumes that you have created a new WPF project. For additional information

on this topic, see Creating a .NET Project in Visual Studio (page 15) or Creating a Microsoft Blend Project

(page 14).

Note: Some of the examples reference the C1NWind.mdb database which is installed by default in the

ComponentOne Samples\Common folder installed in your MyDocuments folder (Documents in Vista).

Adding Labels to Pie Charts
To add multiple values to a Pie chart label you can create a label template like the following:

 <c1chart:C1Chart Name="c1Chart1" ChartType="Pie">

 <c1chart:C1Chart.Resources>

 <DataTemplate x:Key="lbl">

 <StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="{Binding Path=Name}" />

 <TextBlock Text="=" />

 <TextBlock Text="{Binding Path=Value}" />

 </StackPanel>

 <TextBlock Text="{Binding

Path=PercentageSeries,Converter={x:Static c1chart:Converters.Format},

ConverterParameter=#.#%}"/>

 </StackPanel>

 </DataTemplate>

 </c1chart:C1Chart.Resources>

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:ChartData.ItemNames>P1 P2 P3 P4

P5</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Values="20 22 19 24 25"

PointLabelTemplate="{StaticResource lbl}" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:C1ChartLegend DockPanel.Dock="Right" />

 </c1chart:C1Chart>

Adding a Chart Label
To add a label above your chart, add a TextBlock element after the opening c1chart:C1Chart tag and enter the

title for your chart in the Text property:
<TextBlock DockPanel.Dock="Top" Text="Chart Title"

HorizontalAlignment="Center"/>

144

Changing the Corners of the Rectangles in Bar/Column Charts
Bars/columns do not have rounded corners by default. The radius of rectangle corners can be set using Bar

class, for example:
ds.Symbol = new Bar() { RadiusX=5, RadiusY=5};

Creating Combinations of Charts
Using different templates for the different data series it is easy to create various combinations of chart types.

Column-line chart

This chart can be created with DataSeries.ChartType.

<c1chart:C1Chart Name="c1chart1">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData >

 <!-- Default(column) appearance for the first series -->

 <c1chart:DataSeries Label="series 1" Values="0.5 2 3 4" />

 <!-- Second series stars connected with lines-->

 <c1chart:DataSeries Label="series 2" Values="1 3 2 1"

 ChartType="LineSymbols" SymbolMarker="Star4" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

</c1chart:C1Chart>

Creating a Gantt Chart
To create a Gantt chart, use the following XAML code:

<c1chart:C1Chart Margin="0" Name="c1Chart1"

 xmlns:sys="clr-namespace:System;assembly=mscorlib">

 <c1chart:C1Chart.Resources>

 <x:Array x:Key="start" Type="sys:DateTime" >

 <sys:DateTime>2008-6-1</sys:DateTime>

 <sys:DateTime>2008-6-4</sys:DateTime>

 <sys:DateTime>2008-6-2</sys:DateTime>

 </x:Array>

 <x:Array x:Key="end" Type="sys:DateTime">

 <sys:DateTime>2008-6-10</sys:DateTime>

 <sys:DateTime>2008-6-12</sys:DateTime>

 <sys:DateTime>2008-6-15</sys:DateTime>

 </x:Array>

 </c1chart:C1Chart.Resources>

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:ChartData.Renderer>

 <c1chart:Renderer2D Inverted="True" ColorScheme="Point"/>

 </c1chart:ChartData.Renderer>

 <c1chart:ChartData.ItemNames>Task1 Task2

Task3</c1chart:ChartData.ItemNames>

 <c1chart:HighLowSeries HighValuesSource="{StaticResource end}"

 LowValuesSource="{StaticResource start}"/>

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

145

 <c1chart:ChartView.AxisX>

 <c1chart:Axis IsTime="True" AnnoFormat="d"/>

 </c1chart:ChartView.AxisX>

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

</c1chart:C1Chart>

Run your project and the data in the XAML code produces the following Gantt chart in your Window:

Creating a Pareto Chart or Scatter Chart
To create a Pareto or Scatter chart, use the following XAML code:

<c1chart:C1Chart Name="c1Chart1">

 <c1chart:C1Chart.View>

 <c1chart:ChartView>

 <c1chart:ChartView.AxisX>

 <c1chart:Axis AnnoAngle="-75" MajorGridStroke="Gray"/>

 </c1chart:ChartView.AxisX>

 <!-- Standard(default) left y-axis -->

 <c1chart:ChartView.AxisY>

 <c1chart:Axis Min="0" Max="50" Title="Frequency"

MajorGridStroke="Gray"/>

 </c1chart:ChartView.AxisY>

 <!-- Auxiliary(right) y-axis -->

 <c1chart:Axis Name="ay2" AxisType="Y" Position="Far"

AnnoFormat="p"

 Min="0" Max="1" />

 </c1chart:ChartView>

 </c1chart:C1Chart.View>

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

146

 <c1chart:ChartData.ItemNames>Documents Quality Packaging

Delivery Other</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries Values="40 30 20 5 5" />

 <c1chart:DataSeries AxisY="ay2" Values="0.4 0.7 0.9 0.95 1.0"

ChartType="LineSymbols" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

</c1chart:C1Chart>

Creating a Custom Annotation
To create a custom annotation using the AnnoTemplate property, use the following XAML or C# code:

XAML Code
...

 <c1chart:ChartView.AxisX>

 <c1chart:Axis>

 <c1chart:Axis.Resources >

 <local:ColorConverter x:Key="clrcnv" />

 </c1chart:Axis.Resources>

 <c1chart:Axis.AnnoTemplate>

 <DataTemplate>

 <TextBlock Width="25" TextAlignment="Center"

 Text="{Binding Path=Value}"

 Foreground="{Binding Converter={StaticResource clrcnv}}"/>

 </DataTemplate>

 </c1chart:Axis.AnnoTemplate>

 </c1chart:Axis>

 </c1chart:ChartView.AxisX>

...

C# Code
public class ColorConverter : IValueConverter {

 int cnt = 0;

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 //DataPoint dpt = (DataPoint)value;

 // alternate the brushes

 return cnt++ % 2 == 0 ? Brushes.Blue : Brushes.Red;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture)

 {

 return null;

 }

}

Creating a Mouse Click Event for a Column Chart
You can add animation when you click on any column in the Column chart, using MouseDown and

MouseLeave events, like the following XAML code:

<Window x:Class="MouseEvent.Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

147

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 Title="Window1" Height="300" Width="300"

xmlns:c1chart="http://schemas.componentone.com/xaml/c1chart"

Loaded="Window_Loaded">

 <Grid>

 <Grid.Resources>

 <Style x:Key="sstyle" TargetType="{x:Type

c1chart:PlotElement}">

 <Setter Property="StrokeThickness" Value="1" />

 <Setter Property="Canvas.ZIndex" Value="0" />

 <Style.Triggers>

 <EventTrigger

RoutedEvent="c1chart:PlotElement.MouseDown">

 <BeginStoryboard>

 <Storyboard>

 <Int32Animation

Storyboard.TargetProperty="(Panel.ZIndex)"

 To="1" />

 <DoubleAnimation

Storyboard.TargetProperty="StrokeThickness"

 To="4" Duration="0:0:0.3"

 AutoReverse="True"

 RepeatBehavior="Forever" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 <EventTrigger

RoutedEvent="c1chart:PlotElement.MouseLeave">

 <BeginStoryboard>

 <Storyboard>

 <DoubleAnimation

Storyboard.TargetProperty="StrokeThickness" />

 <Int32Animation

Storyboard.TargetProperty="(Panel.ZIndex)" />

 </Storyboard>

 </BeginStoryboard>

 </EventTrigger>

 </Style.Triggers>

 </Style>

 </Grid.Resources>

 <c1chart:C1Chart Margin="0" Name="c1Chart1" ChartType="Column">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:ChartData.ItemNames>P1 P2 P3 P4

P5</c1chart:ChartData.ItemNames>

 <c1chart:DataSeries SymbolStyle="{StaticResource

sstyle}" Values="20

22 19 24 25" />

 <c1chart:DataSeries SymbolStyle="{StaticResource

sstyle}" Values="8

12 10 12 15" />

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 </c1chart:C1Chart>

 </Grid>

</Window>

148

This Topic Illustrates the Following:

Click on any of the columns and notice the animation around the borders of the rectangles:

Disabling Chart Optimization After it has been Set
To disable the chart optimization once it has been set like the following:

 Visual Basic
LineAreaOptions.SetOptimizationRadius(c1Chart1, 2.0)

 C#
LineAreaOptions.SetOptimizationRadius(c1Chart1, 2.0);

You can set it to the default value, NaN, like the following:

 Visual Basic
LineAreaOptions.SetOptimizationRadius(c1Chart1, double.NaN)

 C#
LineAreaOptions.SetOptimizationRadius(c1Chart1, double.NaN);

Displaying Gaps in Line or Area Charts
By default, if there is a hole(double.NaN) in data values chart just skips the value and draws line to next valid

data point.

To change this behavior and show the gaps at the hole values, set Display = ShowNaNGap.

For example, the following XAML code includes specified holes in the DataSeries:

<c1chart:C1Chart Name="c1Chart1" ChartType="Line">

 <c1chart:C1Chart.Data>

 <c1chart:ChartData>

 <c1chart:DataSeries Values="20 22 NaN 24 15 NaN 27 26"

 ConnectionStrokeThickness="3" />

149

 </c1chart:ChartData>

 </c1chart:C1Chart.Data>

 </c1chart:C1Chart>

The chart appears similar to the following without the Display property set:

To show a gap between the chart lines in a Line chart you can set the Display property to ShowNaNGap like

the following:

 Visual Basic
Me.C1Chart1.Data.Children(1).Display =

C1.WPF.C1Chart.SeriesDisplay.ShowNaNGap

 C#
this.C1Chart1.Data.Children[1].Display =

C1.WPF.C1Chart.SeriesDisplay.ShowNaNGap;

The line chart will display a gap between the chart lines, similar to the following:

150

Performing Batch Updates
You can perform batch updates without refreshing the chart after each change by entering your code inside the

BeginUpdate()/EndUpdate() methods like the following:

 Visual Basic
C1Chart1.BeginUpdate()

 ' change or format the chart, add data etc.

 ...

 C1Chart1.EndUpdate()

 C#
c1Chart1.BeginUpdate();

 // change or format the chart, add data etc.

 ...

 c1Chart1.EndUpdate();

Displaying Axis and Annotations on the Opposite Side of the Chart
To display the horizontal axis and annotations on the opposite side of the chart you can use the auxiliary axis

and position the axis at the top with the title only like the following code:

 Visual Basic
c1Chart1.View.Axes.Add(new Axis()

 {

 AxisType = AxisType.X,

 Position = AxisPosition.Far,

 ItemsSource = new string[] { ""},

 Title = "Axis title",

 });

 C#
c1Chart1.View.Axes.Add(new Axis()

 {

151

 AxisType = AxisType.X,

 Position = AxisPosition.Far,

 ItemsSource = new string[] { ""},

 Title = "Axis title",

 });

Saving C1Chart as a .Png File
To save C1Chart as a .Png file, use the following code:

 Visual Basic
' save image to file

Using stm = System.IO.File.Create("chart.png")

 c1Chart1.SaveImage(stm, C1.WPF.C1Chart.Extended.ImageFormat.Png)

End Using

 C#
// save image to file

 using (var stm = System.IO.File.Create("chart.png"))

 {

 c1Chart1.SaveImage(stm, C1.WPF.C1Chart.Extended.ImageFormat.Png);

 }

Setting the Axis Origin
You can specify the axis origin using the Origin property, like the following:

{

 c1Chart1.Reset(true);

 c1Chart1.Data.Children.Add(new XYDataSeries()

 {

 ValuesSource = new double[] { -1, 2, 0, 2, -2 },

 XValuesSource = new double[] { -2, -1, 0, 1, 2 }

 };

 c1Chart1.View.AxisX.Origin = 0;

 c1Chart1.View.AxisY.Origin = 0;

 c1Chart1.ChartType = ChartType.LineSymbols;

 }));

Specifying the Major and Minor Ticks
There are two types of ticks on the axis: major tick has a small line and corresponding label while the minor

tick has only the line across the axis.

By default, the distance between ticks is calculated automatically.

To set a specific distance, use the MajorUnit and MinorUnit properties.

Default Ticks

The following image displays the default ticks:

152

Custom Ticks

The following chart image uses the MajorUnit and MinorUnit properties to set the specific distance, for

example:

 Visual Basic
c1Chart1.View.AxisY.MajorUnit = 5

 c1Chart1.View.AxisY.MinorUnit = 1

 C#
c1Chart1.View.AxisY.MajorUnit = 5;

 c1Chart1.View.AxisY.MinorUnit = 1;

Time Axis

For time axis you can specify the MajorUnit and MinorUnit as a TimeSpan value:

 Visual Basic
c1Chart1.View.AxisY.MajorUnit = TimeSpan.FromHours(12)

 C#
c1Chart1.View.AxisY.MajorUnit = TimeSpan.FromHours(12);

Showing Data Labels on the First of Each Month
To only show the data labels on the first of each month, use the following code:

 Visual Basic
c1Chart1.View.AxisX.IsTime = True

c1Chart1.View.AxisX.AnnoFormat = "MMM-dd"

‘ when MajorUnit=31 for time axis chart should

‘ take into account variable number of day in month

‘ and mark the first day of each month

c1Chart1.View.AxisX.MajorUnit = 31

 C#
c1Chart1.View.AxisX.IsTime = true;

c1Chart1.View.AxisX.AnnoFormat = "MMM-dd";

// when MajorUnit=31 for time axis chart should

// take into account variable number of day in month

// and mark the first day of each month

c1Chart1.View.AxisX.MajorUnit = 31;

153

Changing Rotation for 3D Chart
To change the rotation view for 3D chart type at runtime, add the Rotate3DAction class to Actions collection.

For example, to rotate chart with the middle mouse button use the following XAML code:
<c1chart:C1Chart.Actions>

 <c1chart:Rotate3DAction MouseButton="Middle" />

</c1chart:C1Chart.Actions>

Enabling Run-Time Interaction for the 2D Cartesian Chart
The action for zooming, scaling, and translating is invoked by the specified mouse button with optional

keyboard modifiers (Alt|Ctrl|Shift). The actions should be placed in the Actions collection. The following

XAML code below defines a set of actions.

<c1chart:C1Chart.Actions>

<!-- use left mouse button to scroll through data -->

<c1chart:TranslateAction MouseButton="Left" />

<!-- use ctrl+left mouse button to change scale -->

<c1chart:ScaleAction MouseButton="Left" Modifiers="Ctrl"/>

<!-- use shift+left mouse to zoom selected rectangular area-->

<c1chart:ZoomAction MouseButton="Left" Modifiers="Shift" />

</c1chart:C1Chart.Actions>

The actions are closely related with Axis properties(Min, Max, Scale, MinScale). When Axis.Scale=1 the

translate action is not available along the axis. The MinScale sets limitation of zoom or scale that can be

achieved during action.

Changing Colors
To change the colors assigned to the plot elements such as bars and pies(depending on chart type), you can

either change the Palette property to one of the predefined color palettes or you can create a custom palette,

such as:

Brush[] customBrushes = new Brush[2] { Brushes.Blue, Brushes.Orange };

c1Chart1.CustomPalette = customBrushes;

Binding the Chart to a DataTable from DataSet
Here is sample code that creates the chart from the data table.

In Code:

 Visual Basic
Private _dataSet As DataSet

Private Sub Window_Loaded(ByVal sender As Object, ByVal e As

RoutedEventArgs)

 ' create connection and fill data set

 Dim mdbFile As String = "c:\db\nwind.mdb"

 Dim connString As String =

String.Format("Provider=Microsoft.Jet.OLEDB.4.0; Data Source={0}",

mdbFile)

 Dim conn As New OleDbConnection(connString)

154

 Dim adapter As New OleDbDataAdapter("SELECT TOP 10 ProductName,

UnitPrice FROM Products " & vbCr & vbLf & " ORDER BY UnitPrice;", conn)

 _dataSet = New DataSet()

 adapter.Fill(_dataSet, "Products")

 ' set data table rows as the source for chart data

 c1Chart1.Data.ItemsSource = _dataSet.Tables("Products").Rows

End Sub

 C#
DataSet _dataSet;

private void Window_Loaded(object sender, RoutedEventArgs e)

{

 // create connection and fill data set

 string mdbFile = @"c:\db\nwind.mdb";

 string connString = string.Format(

 "Provider=Microsoft.Jet.OLEDB.4.0; Data Source={0}",

 mdbFile);

 OleDbConnection conn = new OleDbConnection(connString);

 OleDbDataAdapter adapter = new OleDbDataAdapter(

 @"SELECT TOP 10 ProductName, UnitPrice FROM Products

 ORDER BY UnitPrice;", conn);

 _dataSet = new DataSet();

 adapter.Fill(_dataSet, "Products");

 // set data table rows as the source for chart data

 c1Chart1.Data.ItemsSource = _dataSet.Tables["Products"].Rows;

}

In XAML:
<c1chart:C1Chart.Data>

 <c1chart:ChartData ItemNameBinding="{Binding Path=[ProductName]}">

 <c1chart:DataSeries ValueBinding="{Binding Path=[UnitPrice]}"/>

 </c1chart:ChartData>

</c1chart:C1Chart.Data>

Exporting Chart Image
You can export a chart image by using the RenderTargetBitmap like in the following code:

 Visual Basic
Dim bm As New RenderTargetBitmap(CInt(c1Chart1.ActualWidth),

CInt(c1Chart1.ActualHeight), 96, 96, PixelFormats.[Default])

bm.Render(c1Chart1)

Dim enc As New PngBitmapEncoder()

enc.Frames.Add(BitmapFrame.Create(bm))

Dim fs As New FileStream("chart.png", FileMode.Create)

enc.Save(fs)

 C#
RenderTargetBitmap bm = new RenderTargetBitmap(

 (int)c1Chart1.ActualWidth,(int)c1Chart1.ActualHeight,

155

 96, 96, PixelFormats.Default);

bm.Render(c1Chart1);

PngBitmapEncoder enc = new PngBitmapEncoder();

enc.Frames.Add(BitmapFrame.Create(bm));

FileStream fs = new FileStream("chart.png", FileMode.Create);

enc.Save(fs);

	ComponentOne Chart for WPF Overview
	What's New in ComponentOne Chart for WPF
	Revision History
	What’s New in 2010 v3
	What's New in 2010 v2
	What’s New in 2010 v1

	Installing Chart for WPF
	Chart for WPF Setup Files
	System Requirements
	Installing Demonstration Versions
	Uninstalling Chart for WPF

	End-User License Agreement
	Licensing FAQs
	What is Licensing?
	How does Licensing Work?
	Common Scenarios
	Creating components at design time
	Creating components at run time
	Inheriting from licensed components
	Using licensed components in console applications
	Using licensed components in Visual C++ applications
	Using licensed components with automated testing products

	Troubleshooting
	I have a licensed version of a ComponentOne product but I still get the splash screen when I run my project.
	I have a licensed version of a ComponentOne product on my Web server but the components still behave as unlicensed.
	I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen when I build my projects.

	Technical Support
	Redistributable Files
	About This Documentation
	XAML and XAML Namespaces
	Creating a Microsoft Blend Project
	Creating a .NET Project in Visual Studio
	Creating an XAML Browser Application (XBAP) in Visual Studio
	Adding the Chart for WPF Components to a Blend Project
	Adding the Chart for WPF Components to a Visual Studio Project

	Key Features
	Chart for WPF Quick Start
	Step 1 of 4: Adding Chart for WPF to your Project
	Step 2 of 4: Adding Data to the Chart
	Step 3 of 4: Format the Axes
	Step 4 of 4: Adjust the Chart's Appearance

	Chart for WPF Top Tips
	C1Chart Concepts and Main Properties
	Common Usage for Basic 2D Charts
	Simple Charts
	Time-Series Charts
	XY Charts

	Formatting Charts

	Chart Types
	Area Charts
	Bar Charts
	Bubble Charts
	Financial Charts
	Column Charts
	Gantt Charts
	Line Charts
	Pie Charts
	Special Pie Chart Properties

	Polar and Radar Charts
	3D Ribbon Chart
	Polygon Chart
	Step Chart
	XYPlot Chart

	Chart Data Series
	Chart Data Series Types
	Chart Data Series Appearance
	Differences Between DataSeries and XYDataSeries
	Render Mode Limitations for Data Series

	Chart Panel
	Mouse Interaction with ChartPanel

	Chart View
	Axes
	Axis Lines
	Dependent Axis
	Axis Position
	Axis Title
	Axis Tick Marks
	Major Tick Overlap
	Minor Tick Overlap

	Axis Grid Lines
	Axis Bounds
	Axis Scrolling
	Inverted and Reversed Chart Axes
	Multiple Axes
	Axis Logarithmic Scaling
	Criteria used for Logarithmic Scaling
	UnitMajor and Logarithmic Axes

	Axes Annotation
	Axis Annotation Format
	Axis Annotation Rotation
	Custom Axis Annotation

	Plot Area
	Plot Area Size
	Plot Area Appearance

	Data Aggregation
	Data Labels
	Chart Styles
	MouseOver Style

	Chart Appearance
	Chart Themes
	Data Series Color Generation

	End User Interaction
	XAML Elements
	Plotting Functions
	Using a Code String to Define a Function
	Calculating the Value for Functions

	TrendLines
	Chart Resource Keys
	Animation
	Delivering Data to the Chart
	Collection of Values
	Collection of Objects
	Observable Collection
	Data Context Binding
	Data Context as Array of Double
	Data Context as Array of Point

	Data Series Binding
	Item Name Binding
	X-Value Binding

	Series Generation

	Data Binding Tutorials
	Bind to a Data Table Programmatically
	Bind to an XML

	Chart for WPF Samples
	Chart for WPF Task-Based Help
	Adding Labels to Pie Charts
	Adding a Chart Label
	Changing the Corners of the Rectangles in Bar/Column Charts
	Creating Combinations of Charts
	Creating a Gantt Chart
	Creating a Pareto Chart or Scatter Chart
	Creating a Custom Annotation
	Creating a Mouse Click Event for a Column Chart
	Disabling Chart Optimization After it has been Set
	Displaying Gaps in Line or Area Charts
	Performing Batch Updates
	Displaying Axis and Annotations on the Opposite Side of the Chart
	Saving C1Chart as a .Png File
	Setting the Axis Origin
	Specifying the Major and Minor Ticks
	Showing Data Labels on the First of Each Month
	Changing Rotation for 3D Chart
	Enabling Run-Time Interaction for the 2D Cartesian Chart
	Changing Colors
	Binding the Chart to a DataTable from DataSet
	Exporting Chart Image

