

ComponentOne

ComboBox for WPF

By GrapeCity, Inc.

Copyright  1987-2012 GrapeCity, Inc. All rights reserved.

Corporate Headquarters

ComponentOne, a division of GrapeCity

201 South Highland Avenue

3rd Floor

Pittsburgh, PA 15206 ∙ USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other

trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective

CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express

or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne ComboBox for WPF Overview ... 5

Help with ComponentOne Studio for WPF ... 5

Key Features .. 7

ComboBox for WPF Quick Start .. 7

Step 1 of 4: Creating an Application with a C1ComboBox Control ... 7

Step 2 of 4: Adding Items to the First C1ComboBox Control .. 9

Step 3 of 4: Adding Code to the Control ... 9

Step 4 of 4: Running the Project .. 12

Working with the C1ComboBox Control ... 13

C1ComboBox Elements ... 13

C1ComboBox Features .. 14

Drop-Down List Direction .. 14

Item Selection ... 14

AutoComplete .. 15

Drop-Down List Sizing .. 15

ComboBox for WPF Layout and Appearance .. 15

ComponentOne ClearStyle Technology ... 15

How ClearStyle Works .. 16

C1ComboBox and C1ComboBoxItem ClearStyle Properties .. 16

C1ComboBoxThemes .. 17

ComboBox for WPF Appearance Properties ... 20

Text Properties .. 20

Content Positioning Properties .. 21

Color Properties .. 21

Border Properties .. 21

Size Properties .. 21

Templates .. 22

Item Templates ... 23

ComboBox for WPF Task-Based Help ... 25

iv

Working with ComboBox Items ... 25

Adding ComboBox Items in the Designer.. 25

Adding ComboBox Items in XAML .. 25

Adding ComboBox Items in Code .. 26

Adding ComboBox Items from a Collection .. 27

Changing the Drop-Down List Direction ... 28

Disabling AutoComplete.. 29

Setting the Maximum Height and Maximum Width of the Drop-Down List ... 30

Launching with the Drop-Down List Open ... 31

Opening the Drop-Down List on MouseOver .. 32

Selecting an Item ... 32

 5

ComponentOne ComboBox for WPF

Overview
ComponentOne ComboBox™ for WPF is a full-featured combo box

control that combines an editable text box with an auto-searchable

drop-down list.

For a list of the latest features added to ComponentOne Studio for

WPF, visit What's New in Studio for WPF.

 Getting Started

- Working with the

C1ComboBox Control

(page 13)

- Quick Start (page 7)

- Task-Based Help (page

25)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and

creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

http://www.componentone.com/SuperProducts/StudioWPF/What%27s+New/
http://helpcentral.componentone.com/nethelp/c1studiowpf/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

 7

Key Features
ComponentOne ComboBox for WPF allows you to create customized, rich applications. Make the most of

ComboBox for WPF by taking advantage of the following key features:

 Auto-Searchable Drop-Down List

Locate items quickly by typing the first few characters. ComboBox will automatically search the list and

select the items for you as you type.

 Populate the Drop-down List with Data Templates

ComboBox fully supports data templates, making it easy to add any visual elements to the list items. This

includes text, images, and any other controls. The control uses element virtualization, so it always loads

quickly, even when populated with hundreds of items.

 Time-tested, Familiar Object Model

ComboBox has a rich object model based on the WPF ComboBox control. You can easily specify whether

the end user is able to enter items that are not on the drop-down list, get or set the index of the selected

item, the height of the drop-down list, and more.

ComboBox for WPF Quick Start
The following quick start guide is intended to get you up and running with ComboBox for WPF. In this quick

start, you'll start in Visual Studio 2008 to create a new project with two C1ComboBox controls. The first control

will be populated with a list of three items that, when clicked, will determine the list that appears in the second

combo box.

Step 1 of 4: Creating an Application with a C1ComboBox Control
In this step, you'll begin in Visual Studio to create a WPF application using ComboBox for WPF.

Complete the following steps:

http://www.componentone.com/newimages/products/screenshots/studiosilverlight/c1combobox_countries.png
http://www.componentone.com/newimages/products/screenshots/studiosilverlight/c1combobox_countries.png

8

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select WPF

Application.

3. Enter a Name for your project and click OK.

4. Add two C1ComboBox controls to the project by completing the following steps:

a. In the Toolbox, double-click the StackPanel icon to add it to the project.

b. Select the StackPanel control.

c. Double-click the C1ComboBox icon to add the control to the StackPanel.

d. Repeat steps 4b and 4c to add another C1ComboBox to the StackPanel. The project resembles the

following:

5. Set the StackPanel control’s properties as follows:

 Set the Width property to "300".

 Set the Height property to "35".

 Set the Orientation property to Horizontal.

6. Set c1ComboBox1’s properties as follows:

 Set the Width property to "150".

 Set the Height property to "35".

 Set the Name property to “Category”

7. Set c1ComboBox2’s properties as follows:

 Set the Width property to "150".

 Set the Height property to "35".

 Set the Name property to “Shows”.

The project resembles the following:

 9

You have completed the first step of the quick start by creating a WPF project and adding two C1ComboBox

controls to it. In the next step, you'll add items to the first C1ComboBox control.

Step 2 of 4: Adding Items to the First C1ComboBox Control
In the last step, you created a project and added two C1ComboBox controls to it. In this step, you will add three

items to the first combo box.

Complete the following steps:

1. Select the first C1ComboBox, Category.

2. In the Properties window, click the Items ellipsis button to open the Collection Editor: Items dialog box.

3. Click Add three times to add three C1ComboBoxItems to the control. Three C1ComboBoxItems named

c1ComboBoxItem1, c1ComboBoxItem2, and c1ComboBoxItem3, are added to the control.

4. Set c1ComboBoxItem1’s properties as follows:

 Set the Content property to "Comedy".

 Set the Height property to "25".

5. Set c1ComboBoxItem2’s properties as follows:

 Set the Content property to "Drama".

 Set the Height property to "25".

6. Set C1ComboBoxItem3’s properties as follows:

 Set the Content property to "Science Fiction".

 Set the Height property to "25".

7. Click OK to close the Collection Editor: Items dialog box.

In this step, you added items to the first combo box. In the next step, you will add code to the project that will

populate the second combo box with items when a user selects an item in the first combo box.

Step 3 of 4: Adding Code to the Control
In the last step, you added items to the first combo box. In this step, you will add code to the project that will

populate the second combo box according to the option the user selects in the first combo box.

1. Select the first C1ComboBox control (“Category”).

2. In the Properties window, click the Events button.

3. Double-click the inside the SelectedIndexChanged text box to add the

C1ComboBox1_SelectedIndexChanged event handler.

The MainPage.xaml.cs page opens.

10

4. Import the following namespace into your project:

 Visual Basic

Imports System.Collections.Generic

 C#

using System.Collections.Generic;

5. Add the following code to the C1ComboBox1_SelectedIndexChanged event handler:

 Visual Basic

'Create List for Comedy selection

Dim dropDownList_Comedy As New List(Of String)()

dropDownList_Comedy.Add("Absolutely Fabulous")

dropDownList_Comedy.Add("The Colbert Report")

dropDownList_Comedy.Add("The Daily Show")

dropDownList_Comedy.Add("The Office")

'Create List for Drama selection

Dim dropDownList_Drama As New List(Of String)()

dropDownList_Drama.Add("Breaking Bad")

dropDownList_Drama.Add("Desperate Housewives")

dropDownList_Drama.Add("Mad Men")

dropDownList_Drama.Add("The Sopranos")

'Create List for Science Fiction selection

Dim dropDownList_SciFi As New List(Of String)()

dropDownList_SciFi.Add("Battlestar Galactica")

dropDownList_SciFi.Add("Caprica")

dropDownList_SciFi.Add("Stargate")

dropDownList_SciFi.Add("Star Trek")

'Check for SelectedIndex value and assign appropriate list to 2nd combo

box

If Category.SelectedIndex = 0 Then

 Shows.ItemsSource = dropDownList_Comedy

ElseIf Category.SelectedIndex = 1 Then

 Shows.ItemsSource = dropDownList_Drama

ElseIf Category.SelectedIndex = 2 Then

 Shows.ItemsSource = dropDownList_SciFi

End If

 11

 C#

//Create List for Comedy selection

List<string> dropDownList_Comedy = new List<string>();

dropDownList_Comedy.Add("Absolutely Fabulous");

dropDownList_Comedy.Add("The Colbert Report");

dropDownList_Comedy.Add("The Daily Show");

dropDownList_Comedy.Add("The Office");

//Create List for Drama selection

List<string> dropDownList_Drama = new List<string>();

dropDownList_Drama.Add("Breaking Bad");

dropDownList_Drama.Add("Desperate Housewives");

dropDownList_Drama.Add("Mad Men");

dropDownList_Drama.Add("The Sopranos");

//Create List for Science Fiction selection

List<string> dropDownList_SciFi = new List<string>();

dropDownList_SciFi.Add("Battlestar Galactica");

dropDownList_SciFi.Add("Caprica");

dropDownList_SciFi.Add("Stargate");

dropDownList_SciFi.Add("Star Trek");

//Check for SelectedIndex value and assign appropriate list to 2nd

combo box

if (Category.SelectedIndex == 0)

{

 Shows.ItemsSource = dropDownList_Comedy;

}

else if (Category.SelectedIndex == 1)

{

 Shows.ItemsSource = dropDownList_Drama;

}

else if (Category.SelectedIndex ==2)

{

 Shows.ItemsSource = dropDownList_SciFi;

}

In the next step, you will run the project and observe the results of this quick start.

12

Step 4 of 4: Running the Project
In the previous three steps, you created a WPF project with two combo boxes, added items to the first combo box, and

wrote code that will populate the second combo box with items once an item is selected in the first combo box. In this

step, you will run the project and observe the results of this quick start.

Complete the following steps:

1. Press F5 to run the project. The project loads with two blank combo boxes:

2. Click the second combo box's drop-down arrow and observe that the drop-down list is empty:

3. Click the first combo box's drop-down arrow and select Comedy.

4. Click the second combo box's drop-down arrow and observe that the drop-down list features the following

items:

5. Click the first combo box's drop-down arrow and select Drama.

6. Click the second combo box's drop-down arrow and observe that the drop-down list features the following

items:

7. Click the first combo box's drop-down arrow and select Science Fiction.

8. Click the second combo box's drop-down arrow and observe that the drop-down list features the following

items:

 13

Congratulations! You have completed the ComboBox for WPF quick start.

Working with the C1ComboBox

Control
This section provides an overview of C1ComboBox control basics. If you haven't used the control, we recommend

starting with the ComboBox for WPF Quick Start (page 7) topic.

C1ComboBox Elements
The C1ComboBox control is a flexible control used to display data in a drop-down list. It is essentially the

combination of two controls: a text box that allows users to enter a selection, and a list box that allows users to

select from a series of list options. The following image diagrams the C1ComboBox control.

See below for a description of each C1ComboBox element.

 Selection Box

The selection box serves two purposes: it allows users to enter the list item they're searching for directly

into the text box, and it displays the currently selected item. The content of this box is equal to the content

of the C1ComboBox control's selected index item.

 Drop-Down Button

The drop-down button reveals the drop-down list when clicked.

 Drop-Down List

The drop-down list consists of a series of list items (see below); it can contain as little or as many list items

as you need. If the number of items exceeds the size of the drop-down list, a scrollbar will automatically

appear.

14

 List Items

Each list item in a drop-down list is represented by the C1ComboBoxItem class. List items can contain

text, pictures, and even controls.

 Selected Item

The selected item in a list can be fixed by the developer or chosen by a user at run-time. The value of a

selected list item's IsSelected property is True.

C1ComboBox Features
The following topics detail a few of the C1ComboBox control's features. For more information on utilizing these

features, see the ComboBox for WPF Task-Based Help (page 25) section.

Drop-Down List Direction

By default, when the user clicks the C1ComboBox control's drop-down arrow at run-time, the drop-down list will

appear below the control; if that is not possible, it will appear above the control. You can, however, change the

direction in which the drop-down list appears by setting the DropDownDirection property to one of the following

four options:

Event Description

BelowOrAbove

(default)

Tries to open the drop-down list below the header. If it is not

possible tries to open above it.

AboveOrBelow Tries to open the drop-down list above the header. If it is not

possible tries to open below it.

ForceBelow Forces the drop-down list to open below the header.

ForceAbove Forces the drop-down list to open above the header.

For instructions about how to change the drop-down direction, see Changing the Drop-Down List Direction (page

28).

Item Selection

The SelectedIndex property determines which item is selected in a drop-down list. The SelectedIndex is based on a

zero-based index, meaning that 0 represents the first C1ComboBoxItem, 1 represents the second

C1ComboBoxItem, and so on. In the image below, the SelectedIndex is set to 2, which selects the third

C1ComboBoxItem.

 15

AutoComplete

The C1ComboBox control features an auto-completion feature, which selects a list item based on user input. As

the user types, the list item is loaded into the selection box, as seen in the following image:

The user only has to press ENTER to select the list item suggested by the AutoComplete feature.

The AutoComplete feature can be disabled by setting the AutoComplete property to False. To learn how to disable

the feature at design time, in XAML, and in code, see Disabling AutoComplete (page 29).

Drop-Down List Sizing

By default, the size of the drop-down list is determined by the width of the widest C1ComboBoxItem item and the

collective height of all of the C1ComboBoxItem items, as the DropDownWidth and DropDownHeight properties

are both set to NaN.

You can control the maximum width and maximum height of the drop-down list by setting the C1ComboBox

control's MaxDropDownWidth and MaxDropDownHeight properties. Setting these properties ensures that the

area of the drop-down list can never expand to a larger area than you've specified. If the width or height of the list

exceeds the specified maximum height and width, scrollbars will automatically be added to the drop-down list.

For task-based help on drop-down list sizing, see Setting the Maximum Height and Maximum Width of the Drop-

Down List (page 30).

ComboBox for WPF Layout and

Appearance
The following topics detail how to customize the C1ComboBox control's layout and appearance. You can use

built-in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to

customize the appearance of the grid and take advantage of WPF's XAML-based styling. You can also use

templates to format and layout the control and to customize the control's actions.

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF

control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle

of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft

Visual Studio, this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a

bit easier. Having to jump between two environments can be a bit challenging to developers who are not familiar

with Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your

designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in

the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls

in your application so this process should be simple. For example, if you just want to change the row color of your

data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-

looking template just to simply change a few colors.

16

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource

created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).

Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is

also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old

fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with

those less common situations where a full custom design is required.

C1ComboBox and C1ComboBoxItem ClearStyle Properties

ComboBox for WPF supports ComponentOne's new ClearStyle technology that allows you to easily change

control colors without having to change control templates. By just setting a few color properties you can quickly

style the entire grid.

The following table outlines the brush properties of the C1ComboBox control:

Brush Description

Background Gets or sets the brush of the control’s background.

ButtonBackground Gets or sets the brush of the drop-down button’s background.

ButtonForeground Gets or sets the brush of the drop-down button’s foreground.

FocusBrush Gets or sets the brush for the control when it has focus.

MouseOverBrush Gets or sets the brush for the control when it is moused over.

PressedBrush Gets or sets the brush for the control when it is pressed.

SelectedBackground Gets or sets the brush of the background for the selected

C1ComboBoxItem.

The following table outlines the brush properties of the C1ComboBoxItem control:

Brush Description

Background Gets or sets the brush of the control’s background.

You can completely change the appearance of the C1ComboBox and C1ComboBoxItem controls by setting a few

properties, such as the C1ComboBox control’s ButtonBackground property, which sets the background color for

the control’s drop-down arrow. For example, if you set the C1ComboBox control’s ButtonBackground property

to "#FFC500FF", each header in the C1ComboBox control would appear similar to the following:

It’s that simple with ComponentOne’s ClearStyle technology. For more information on ClearStyle, see the

ComponentOne ClearStyle Technology (page 15) topic.

 17

C1ComboBoxThemes

ComponentOne ComboBoxfor WPF incorporates several themes that allow you to customize the appearance of your

grid. When you first add a C1ComboBox control to the page, it appears similar to the following image:

This is the control's default appearance. You can change this appearance by using one of the built-in themes or by

creating your own custom theme. All of the built-in themes are based on WPF Toolkit themes. The built-in themes

are described and pictured below; note that in the images below, a row has been selected to show selected styles:

Theme Name Theme Preview

C1ThemeBureauBlack

C1ThemeExpressionDark

18

C1ThemeExpressionLight

C1Blue

C1ThemeOffice2007Black

C1ThemeOffice2007Blue

C1ThemeOffice2007Silver

 19

C1ThemeOffice2010Black

C1ThemeOffice2010Blue

C1ThemeOffice2010Silver

C1ThemeShinyBlue

C1ThemeWhistlerBlue

20

To set an element's theme, use the ApplyTheme method. First add a reference to the theme assembly to your

project, and then set the theme in code, like this:

 Visual Basic
Private Sub Window_Loaded(sender As System.Object, e As

System.Windows.RoutedEventArgs) Handles MyBase.Loaded

 Dim theme As New C1ThemeExpressionDark

 ' Using ApplyTheme
 C1Theme.ApplyTheme(LayoutRoot, theme)

 C#
private void Window_Loaded(object sender, RoutedEventArgs e)

 {

 C1ThemeExpressionDark theme = new C1ThemeExpressionDark();

 //Using ApplyTheme

 C1Theme.ApplyTheme(LayoutRoot, theme);

 }

To apply a theme to the entire application, use the System.Windows.ResourceDictionary.MergedDictionaries

property. First add a reference to the theme assembly to your project, and then set the theme in code, like this:

 Visual Basic
Private Sub Window_Loaded(sender As System.Object, e As

System.Windows.RoutedEventArgs) Handles MyBase.Loaded

 Dim theme As New C1ThemeExpressionDark

 ' Using Merged Dictionaries

Application.Current.Resources.MergedDictionaries.Add(C1Theme.GetCurrentThem

eResources(theme))

End Sub

 C#
private void Window_Loaded(object sender, RoutedEventArgs e)

 {

 C1ThemeExpressionDark theme = new C1ThemeExpressionDark();

 //Using Merged Dictionaries

Application.Current.Resources.MergedDictionaries.Add(C1Theme.GetCurrentThem

eResources(theme));

 }

Note that this method works only when you apply a theme for the first time. If you want to switch to another

ComponentOne theme, first remove the previous theme from

Application.Current.Resources.MergedDictionaries.

ComboBox for WPF Appearance Properties
ComponentOne ComboBox for WPF includes several properties that allow you to customize the appearance of

the control. You can change the appearance of the text displayed in the control and customize graphic elements of

the control. The following topics describe some of these appearance properties.

Text Properties

The following properties let you customize the appearance of text in the combo box control.

 21

Property Description

FontFamily Gets or sets the font family of the control. This is a

dependency property.

FontSize Gets or sets the font size. This is a dependency

property.

FontStretch Gets or sets the degree to which a font is condensed or

expanded on the screen. This is a dependency property.

FontStyle Gets or sets the font style. This is a dependency

property.

FontWeight Gets or sets the weight or thickness of the specified

font. This is a dependency property.

TextAlignment Gets or sets how the text should be aligned in the drop-

down list. This is a dependency property.

Content Positioning Properties

The following properties let you customize the position of header and content area content in the C1ComboBox

control.

Property Description

HorizontalContentAlignment Gets or sets the horizontal alignment of the

control's content. This is a dependency
property.

VerticalContentAlignment Gets or sets the vertical alignment of the

control's content. This is a dependency
property.

Color Properties

The following properties let you customize the colors used in the control itself.

Property Description

Background Gets or sets a brush that describes the background of a

control. This is a dependency property.

Foreground Gets or sets a brush that describes the foreground color.

This is a dependency property.

Border Properties

The following properties let you customize the control's border.

Property Description

BorderBrush Gets or sets a brush that describes the border

background of a control. This is a dependency property.

BorderThickness Gets or sets the border thickness of a control. This is a

dependency property.

Size Properties

The following properties let you customize the size of the C1ComboBox control.

http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592514
http://msdn2.microsoft.com/en-us/library/ms592515
http://msdn2.microsoft.com/en-us/library/ms592516
http://msdn2.microsoft.com/en-us/library/ms592517
http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518
http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512

22

Property Description

Height Gets or sets the suggested height of the element. This is

a dependency property.

MaxHeight Gets or sets the maximum height constraint of the

element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of the

element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of the

element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of the

element. This is a dependency property.

Width Gets or sets the width of the element. This is a

dependency property.

DropDownHeight Gets or sets the height of the dropdown (set to

Double.NaN to size automatically).

DropDownWidth

Gets or sets the width of the drop-down list (set to

Double.NaN to size automatically).

MaxDropDownHeight Gets or sets maximum height constraint of the drop-

down box.

MaxDropDownWidth

Gets or sets maximum width constraint of the drop-down

box.

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user

interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne ComboBox for WPF. Extensible Application Markup

Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to

designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1ComboBox control and, in the menu,

selecting Edit Template. Select Edit a Copy to create an editable copy of the current template or select Create

Empty to create a new blank template.

http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

 23

If you want to edit the C1ComboBoxItem template, simply select the C1ComboBoxItem and, in the menu, select

Edit Template. Select Edit a Copy to create an editable copy of the current template or Create Empty, to create a

new blank template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's

property. If you manually create a template in XAML you will have to link the appropriate template property to the
template you've created.

Note that you can use the Template property to customize the template.

Additional ComboBox Templates

In addition to the default templates, the C1ComboBox control includes a few additional templates. These

additional templates can also be accessed in Microsoft Expression Blend – in Blend select the C1ComboBox

control and, in the menu, select Edit Additional Templates. Choose a template, and select Create Empty.

Item Templates
ComponentOne ComboBox for WPF's combo box control is an ItemsControls that serves as a container for other

elements. As such, the control includes templates to customize items places within the combo box. These

templates include an ItemTemplate, an ItemsPanel, and an ItemContainerStyle template. You use the

ItemTemplate to specify the visualization of the data objects, the ItemsPanel to define the panel that controls the

layout of items, and the ItemStyleContainer to set the style of all container items.

Accessing Templates

You can access these templates in Microsoft Expression Blend by selecting the C1ComboBox control and, in the

menu, selecting Edit Additional Templates. Choose Edit Generated Items (ItemTemplate), Edit Layout of

Items (ItemsPanel), or Edit Generated Item Container (ItemStyleContainer) and select Create Empty to create a

new blank template or Edit a Copy.

A dialog box will appear allowing you to name the template and determine where to define the template.

http://msdn2.microsoft.com/en-us/library/ms592524
http://msdn.microsoft.com/en-us/library/system.windows.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.itemscontrol.itemspanel.aspx

 25

ComboBox for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use

the C1ComboBox control in general. If you are unfamiliar with the ComponentOne ComboBox for WPF

product, please see the ComboBox for WPF quick start first.

Each topic in this section provides a solution for specific tasks using the ComponentOne ComboBox for WPF

product.

Each task-based help topic also assumes that you have created a new WPF project.

Working with ComboBox Items
The following topics illustrate several ways to add list items to the C1ComboBox control.

Adding ComboBox Items in the Designer

In this topic, you will learn how to add items to the C1ComboBox control in Expression Blend. This method is

useful whenever you're creating a static combo box with just a few items.

Complete the following steps:

1. In the Properties window, click the Items ellipsis button to open the Collection Editor: Items dialog

box.

2. Click Add to add a C1ComboBoxItem to the C1ComboBox control.

 This Topic Illustrates the Following:

With the program running, click the drop-down arrow and observe that one item appears in the drop-down list as

follows:

Adding ComboBox Items in XAML

In this topic, you will learn how to add items to the C1ComboBox control in XAML markup. This method is

useful whenever you're creating a static combo box with just a few items.

Complete the following steps:

1. To add items to the C1ComboBox control, add the following XAML markup between the

<c1:C1ComboBox> and </c1:C1ComboBox> tags:

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

26

2. Run the program.

3. Click the drop-down arrow and observe that four items appear in the drop-down list. The result resembles

the following image:

 This Topic Illustrates the Following:

With the program running, click the drop-down arrow and observe that four items appear in the drop-down list.

The result resembles the following image:

Adding ComboBox Items in Code

In this topic, you will learn how to add items to the C1ComboBox control in C# and Visual Basic code. This

method is useful when you’re creating a static combo box with just a few items.

Complete the following steps:

To disable AutoComplete, complete the following:

1. Open the MainPage.xaml.cs page.

2. Import the following namespace into your project:

 Visual Basic

Imports C1.WPF

 C#

Using C1.WPF;

3. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =

"C1ComboBoxItem1"})

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =

"C1ComboBoxItem2"})

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =

"C1ComboBoxItem3"})

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =

"C1ComboBoxItem4"})

 C#

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =

"C1ComboBoxItem1" });

 27

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =

"C1ComboBoxItem2" });

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =

"C1ComboBoxItem3" });

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =

"C1ComboBoxItem4" });

4. Run the program.

 This Topic Illustrates the Following:

With the project running, click the drop-down arrow and observe that four items appear in the drop-down list. The

result resembles the following image:

Adding ComboBox Items from a Collection

In this topic, you will populate a combo box's drop-down list with a collection.

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Import the following namespace into the project:

 Visual Basic

Imports System.Collections.Generic

 C#

using System.Collections.Generic;Create your list by adding the following code beneath

the InitializeComponent() method:

 Visual Basic

Dim dropDownList As New List(Of String)()

dropDownList.Add("C1ComboBoxItem1")

dropDownList.Add("C1ComboBoxItem2")

dropDownList.Add("C1ComboBoxItem3")

dropDownList.Add("C1ComboBoxItem4")

 C#

List<string> dropDownList = new List<string>();

dropDownList.Add("C1ComboBoxItem1");

dropDownList.Add("C1ComboBoxItem2");

dropDownList.Add("C1ComboBoxItem3");

28

dropDownList.Add("C1ComboBoxItem4");

4. Add the list to the combo box by setting the ItemsSource property:

 Visual Basic

C1ComboBox1.ItemsSource = dropDownList

 C#

c1ComboBox1.ItemsSource = dropDownList;

5. Run the program.

 This Topic Illustrates the Following:

With the project running, click the drop-down arrow and observe that four items appear in the drop-down list. The

result resembles the following image:

Changing the Drop-Down List Direction
By default, the drop-down list will attempt to open at the bottom of the control; if there is no room at the bottom to

display the whole drop-down list, it will appear above the control. You can, however, specify where you would like

the drop-down list to open.

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, click the DropDownDirection drop-down arrow and select an option. For this

example, select ForceAbove.

3. Run the program and click the drop-down arrow. Observe that the drop-down list appears above the

control.

In XAML

Complete the following steps:

1. Add DropDownDirection="ForceAbove" to the <c1:C1ComboBox> tags so that the markup

resembles the following:

<c1:C1ComboBox Width="249" DropDownDirection="ForceAbove">

2. Run the program and click the drop-down arrow. Observe that the drop-down list appears above the

control.

In Code

Complete the following steps:

 29

1. Open the MainPage.xaml.cs page.

2. Add following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.DropDownDirection = ForceAbove

 C#

c1ComboBox1.DropDownDirection = ForceAbove;

3. Run the program and click the drop-down arrow. Observe that the drop-down list appears above the

control.

 This Topic Illustrates the Following:

In the following image, a combo box's drop-down list is forced to open above the control.

Disabling AutoComplete
By default, a user can type in the in the combo box's selection box to locate the item they want to select; you can

disable this feature by setting the AutoComplete property to False.

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, clear the AutoComplete check box.

In XAML

To disable AutoComplete, add AutoComplete="False" to the <c1:C1ComboBox> tag so that the markup

resembles the following:

<c1:C1ComboBox HorizontalAlignment="Left" Width="249"

AutoComplete="False">

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.AutoComplete = False

30

 C#

c1ComboBox1.AutoComplete = false;

3. Run the program.

 This Topic Illustrates the Following:

In this topic, you disabled the AutoComplete feature by setting the AutoComplete property to False. If you run the

program and try to enter text, the control will not recommend a selection.

Setting the Maximum Height and Maximum Width of the Drop-Down List
You can specify the maximum height and maximum width of a combo box's drop-down list by setting its

MaxDropDownHeight and MaxDropDownWidth properties. This topic assumes that the DropDownHeight and

DropDownWidth properties are both set to NaN. For more information, see Drop-Down List Sizing (page 15).

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, complete the following:

 Set the MaxDropDownHeight to a value, such as "150".

 Set the MaxDropDownWidth to a value, such as "350".

3. Run the program and click the combo box's drop-down arrow to see the result of your settings.

In XAML

Complete the following steps:

1. Add MaxDropDownHeight="150" and MaxDropDownWidth="350" to the <c1:C1ComboBox>

tag so that the markup resembles the following:

<c1:C1ComboBox HorizontalAlignment="Left" Width="249"

MaxDropDownHeight="150" MaxDropDownWidth="350">

2. Run the program and click the combo box's drop-down arrow to see the result of your settings.

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Add the following code beneath the InitializeComponent() method to set the DropDownHeight property

:

 Visual Basic

C1ComboBox1.MaxDropDownHeight = 150

 C#

c1ComboBox1.MaxDropDownHeight = 150;

3. Add the following code beneath the InitializeComponent() method to set the DropDownWidth property :

 Visual Basic

C1ComboBox1.MaxDropDownWidth = 350

 31

 C#

c1ComboBox1.MaxDropDownWidth = 350;

4. Run the program and click the combo box's drop-down arrow to see the result of your settings.

 This Topic Illustrates the Following:

In this topic, you set the MaxDropDownWidth property to a value of 350 pixels and the MaxDropDownHeight

property to a value of 150 pixels. With these settings, the width of the drop-down list will never be more than 350
pixels and the height will never be more than 150 pixels; however, the height and width can be less than 150 pixels

by 350 pixels that if the items in the list aren't enough to fill that area.

Launching with the Drop-Down List Open
To launch the C1ComboBox with its drop-down list open, set the IsDropDownOpen property to True.

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, select the IsDropDownOpen check box.

3. Run the program and observe that the drop-down list is open upon page load.

In XAML

Complete the following steps:

1. Add IsDropDownOpen="True" to the <c1:C1ComboBox> tag so that the markup resembles the

following:

<c1:C1ComboBox HorizontalAlignment="Left" Width="249"

IsDropDownOpen="True">

2. Run the program and observe that the drop-down list is open upon page load.

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.IsDropDownOpen = True

 C#

c1ComboBox1.IsDropDownOpen = true;

3. Run the program and observe that the drop-down list is open upon page load.

 This Topic Illustrates the Following:

In this topic, you set the IsDropDownOpen property to True so that the drop-down list would be open at run time.

You can also use this property to open the drop-down list when a user mouses over the C1ComboBox control (see

Opening the Drop-Down List on MouseOver (page 32)).

32

Opening the Drop-Down List on MouseOver
By default, the C1ComboBox control's drop-down list is only revealed when a user clicks the drop-down arrow. In

this topic, you will write code that will cause the drop-down list to open whenever a user hovers over the control.

This topic assumes that 1) you have already added a C1ComboBox control with at least one item to your project

and 2) you are working in Expression Blend.

Complete the following:

1. Click the C1ComboBox control to select it.

2. In the Properties window, click the Events button to reveal the control's list of events.

3. Double-click inside of the MouseEnter text box. This will add the C1ComboBox_MouseEnter event

handler to Code view.

4. Add the following code to the C1ComboBox1_MouseEnter event handler:

 Visual Basic

C1ComboBox1.IsDropDownOpen = True

 C#

c1ComboBox1.IsDropDownOpen = true;

5. Run the program.

 This Topic Illustrates the Following:

With the program running, hover over the C1ComboBox control with your cursor. Observe that the drop-down list

appears when you hover over the control. The drop-down list will stay open until you either select an item or click

outside of the control.

Selecting an Item
You can select an item at run-time by setting the SelectedIndex property to the position of the item. This topic

assumes that your project contains one C1ComboBox control with at least two C1ComboBoxItem items.

In the Designer

Complete the following steps:

1. Select the C1ComboBox control.

2. In the Properties window, set the SelectedIndex property to "1" so that the second C1ComboBoxItem will

be selected.

In XAML

To set a selected item, add SelectedIndex="0" to the <c1:C1ComboBoxItem> tag so that the markup

resembles the following:

<c1:C1ComboBoxItem Content="C1ComboBoxItem1" SelectedIndex="1">

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

 33

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBoxItem1.SelectedIndex = 1

 C#

c1ComboBoxItem1.SelectedIndex = 1;

3. Run the program.

 This Topic Illustrates the Following:

When the drop-down list is revealed at run time, the second item will be selected, such as in the following image.

	ComponentOne ComboBox for WPF Overview
	Help with ComponentOne Studio for WPF

	Key Features
	ComboBox for WPF Quick Start
	Step 1 of 4: Creating an Application with a C1ComboBox Control
	Step 2 of 4: Adding Items to the First C1ComboBox Control
	Step 3 of 4: Adding Code to the Control
	Step 4 of 4: Running the Project

	Working with the C1ComboBox Control
	C1ComboBox Elements
	C1ComboBox Features
	Drop-Down List Direction
	Item Selection
	AutoComplete
	Drop-Down List Sizing

	ComboBox for WPF Layout and Appearance
	ComponentOne ClearStyle Technology
	How ClearStyle Works
	C1ComboBox and C1ComboBoxItem ClearStyle Properties
	C1ComboBoxThemes

	ComboBox for WPF Appearance Properties
	Text Properties
	Content Positioning Properties
	Color Properties
	Border Properties
	Size Properties

	Templates
	Item Templates

	ComboBox for WPF Task-Based Help
	Working with ComboBox Items
	Adding ComboBox Items in the Designer
	Adding ComboBox Items in XAML
	Adding ComboBox Items in Code
	Adding ComboBox Items from a Collection

	Changing the Drop-Down List Direction
	Disabling AutoComplete
	Setting the Maximum Height and Maximum Width of the Drop-Down List
	Launching with the Drop-Down List Open
	Opening the Drop-Down List on MouseOver
	Selecting an Item

