

ComponentOne

C1Document
Library for WPF

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $25 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Document Library for WPF 2

Help with WPF Edition 2

Key Features 3

Object Model Summary 4-5

PdfDocumentSource for WPF 6

Key Features 6

Quick Start 6-8

Features 8

Load PDF 8-9

Export PDF 9-10

Export PDF using Format Specific Filter 10-12

Export PDF using ExportProvider 12-15

Print PDF 15-17

Text Search 17-22

PDF Features supported in FlexViewer 22-27

SSRSDocumentSource for WPF 28

Key Features 28

Quick Start 28-30

Features 30

Export SSRS Report 30-31

Specify Parameters to SSRS Report 31-32

Samples 33

API Reference 34

C1Document Library for WPF 1

Document Library for WPF
Document Library for WPF is a collection of classes that provide a cross-platform framework for working with
various document types. The library is used internally by a number of ComponentOne components, such as
FlexReport and can be used directly to access PDF documents and SSRS reports. C1Document enables the FlexViewer
control to load and view the supported document formats, such as FlexReport, PDF, and SSRS. The library also
provides programmatic access to exporting, printing, and other operations such as text search.

Help with WPF Edition
For information on installing and licensing ComponentOne Studio WPF Edition and technical support, please
visit Getting Started with WPF Edition.

C1Document Library for WPF 2

http://helpcentral.componentone.com/nethelp/c1studioWPF/

Key Features
The key features of C1Document Library are as follows:

Cross platform
C1Document is a cross-platform UI-less library, which enables any document objects that are based on it, to
work on all supported platforms – WPF, Winforms, and UWP with minimal differences.

Infrastructure for asynchronous document generation
C1Document library offers C1DocumentSource that provides infrastructure for asynchronous document
generation.

Exporting capabilities
C1Document library provides you with options to export a PDF document into a stream or file by using format
specific filter or export providers. Note that you can use the SupportedExportProviders property to check
which export formats are supported by the current C1DocumentSource.

Printing capabilities
C1Document library allows you to print document directly through code. It provides you the ability to control
how the content of a document is to be printed using printing options .

Searching capabilities
C1Document library enables you to search text within a document through code or with the help of a viewer.

Selection capabilities
C1Document library provides you the ability to select text from a report or document for copying, by opening
it in a viewer.

Supporting features for FlexReport
C1Document library provides various classes, such as Border, C1LinearBrush, C1RadialBrush, ShapeBase,
LineShape, that are used to add formatting in FlexReport and draw various shapes.

Parameter support
C1Document library supports the notion of parameters used while generating the FlexReport and SSRS reports.

C1Document Library for WPF 3

Object Model Summary
Document Library comes with a rich object model, providing various classes, objects, collections, associated methods
and properties for managing background functions. The following table lists some of these objects and their
properties.

C1Document

Properties: Body , CompatibilityOptions , Dictionary , DocumentInfo , Outlines , Style
Method: FindRenderObject

C1DocumentSource

Properties: Credential , Document , DocumentName , PageCount , PageSettings , Paginated , Parameters ,
SupportedExportProviders
Methods: ClearContent , Export , Generate , GetDocumentRange , ValidateParameters

C1PdfDocumentSource

Properties: Credential , Document , DocumentLocation , DocumentName , PageSettings ,
SupportedExportProviders
Methods: LoadFromFile , LoadFromStream

C1SSRSDocumentSource

Properties: ConnectionOptions , Credential , Document , DocumentLocation , DocumentName , PageSettings ,
ReportSession , SupportedExportProviders
Methods: Generate , ValidateParameters

C1PrintOptions

Properties: OutputRange
Method: AssignFrom

C1FoundPosition

Properties: NearText , PositionInNearText
Methods: GetBounds , GetEnd , GetFragmentRange , GetPage , GetStart

C1FindTextParams

Properties: MatchCase , Text , WholeWord

BmpFilter

Property: ExportProvider

GifFilter

Property: ExportProvider

HtmlFilter

Property: ExportProvider

JpegFilter

Property: ExportProvider

PdfFilter

Properties: EmbedFonts , ExportProvider , PdfACompatible , PdfSecurityOptions , UseCompression ,
UseOutlines

C1Document Library for WPF 4

PngFilter

Property: ExportProvider

RtfFilter

Properties: ExportProvider , OpenXml , Paged , ShapesWord2007Compatible

TiffFilter

Properties: ExportProvider , Monochrome

XlsFilter

Properties: ExportProvider , OpenXml

ExportFilter

Properties: DocumentInfo , ExportProvider , FileName , OutputFiles , PageSettings , Preview , Range ,
ShowOptions , UseZipForMultipleFiles
Methods: CanExportRange , ShowOptionsDialog

ExportProvider

Properties: CanShowOptions , DefaultExtension , FormatName

C1Document Library for WPF 5

PdfDocumentSource for WPF
Document library offers C1PdfDocumentSource, a public class which provides PDF parsing and processing
capabilities. C1PdfDocumentSource can be used directly to access PDF documents from code, or it can be assigned to
the DocumentSource property of C1FlexViewer (supported on WinForms, WPF and UWP platforms), allowing the
FlexViewer control to open arbitrary PDF documents.

Key Features
The key features of PdfDocumentSource are as follows:

Load PDF
Load PDF documents from both files and streams.

Export PDF
Export PDF documents to HTML or image formats, such as as JPEG, TIFF, etc.

Print PDF
Print the loaded document to default or specified printer.

Font support
Most PDF features, including embedded fonts, are supported.

Search PDF
Search for text in a PDF document from code.

Independent of third party software
Does not depend on third party software, such as Acrobat.

Limitations of PDFDocumentSource

PDF files with CFF fonts are not supported. Except CFF, all other embedded fonts are supported.
Pencil marks are not supported.

Quick Start
This quick start topic guides you through a step-by-step process of creating a simple application for loading a PDF file
in the FlexViewer control. It uses a PDF file named DefaultDocument.pdf, taken from the C1PdfDocumentSource
product sample.

The following image shows a PDF file loaded in FlexViewer.

C1Document Library for WPF 6

To load a PDF file in FlexViewer programmatically

Step 1: Setting up the application
Step 2: Load the PDF file in FlexViewer
Step 3: Build and run the project

Step 1: Setting up the application

1. Create a new WPF application.
2. Drag and drop C1FlexViewer control in the XAML view.

Step 2: Load the PDF file in FlexViewer

1. Switch to the code view and add the following namespace.

Imports C1.WPF.Document

Visual Basic

C1Document Library for WPF 7

using C1.WPF.Document;

2. Add a PDF file to the project. In our case, we have used PDF file named DefaultDocument.pdf from the product
sample.

3. Add the following code in the MainWindow() class constructor to create an instance
of C1PdfDocumentSource and load the PDF file using LoadFromFile method.

Visual Basic
Dim pds As New C1PdfDocumentSource()
pds.LoadFromFile("..\..\DefaultDocument.pdf")

C#
C1PdfDocumentSource pds = new C1PdfDocumentSource();
pds.LoadFromFile(@"..\..\DefaultDocument.pdf");

4. Render the PDF file in the FlexViewer control using DocumentSource property.
Visual Basic

viewer.DocumentSource = pds
C#

viewer.DocumentSource = pds;

Step 3: Build and run the project

1. Press Ctrl+Shift+B to build the project.
2. Press F5 to run the application.

C#

Features
Features section comprises all the features available in PdfDocumentSource.

Load PDF
Learn how to load a PDF from file and stream through code.

Export PDF
Learn how to export a PDF file through code.

Print PDF
Learn how to print a PDF file through code.

Text Search
Learn how to search text in a PDF file through code.

Load PDF
PdfDocumentSource allows you to load a PDF in FlexViewer control using two methods, LoadFromFile
and LoadFromStream , of C1PdfDocumentSource class. The LoadFromFile method loads PDF from the source file
and the LoadFromStream method loads a PDf from source stream.

To load PDF from file

The following code uses the LoadFromFile method to load a PDF from source file.

Visual Basic

C1Document Library for WPF 8

pds.LoadFromFile("..\..\DefaultDocument.pdf")

C#

pds.LoadFromFile(@"..\..\DefaultDocument.pdf");

To load PDF from stream

The following code uses the LoadFromStream method to load a PDF from source stream.

Dim pds As New C1PdfDocumentSource()
'Load report from stream
Dim asm As Assembly = [GetType]().Assembly
Using stream As Stream = asm.GetManifestResourceStream _

("PDFDocumentSource_LoadFromStream_VB.Resources.DefaultDocument.pdf")
 pds.LoadFromStream(stream)
End Using

C#

C1PdfDocumentSource pds = new C1PdfDocumentSource();
//Load report from stream
Assembly asm = GetType().Assembly;
using (Stream stream = asm.GetManifestResourceStream
 (@"PDFDocumentSource_LoadfromStream.Resources.DefaultDocument.pdf"))
 pds.LoadFromStream(stream);

Visual Basic

Export PDF
PdfDocumentSource allows you to export PDF files to other file formats which can be shared electronically. The
following table lists the export filters along with the description about the export formats to which a PDF document
can be exported:

Filter Description

HtmlFilter This export filter exports the PDF files to HTML streams or files.

JpegFilter This export filter exports the PDF files to JPEG streams or files.

GifFilter This export filter exports the PDF files to GIF streams or files.

PngFilter This export filter exports the PDF files to PNG streams or files.

BmpFilter This export filter exports the PDF files to BMP streams or files.

TiffFilter This export filter exports the PDF files to TIFF streams or files.

PdfDocumentSource provides support for exporting the PDF files to any external format through C1DocumentSource
class. Learn how the C1DocumentSource class supports in exporting PDF file in detail in the following topics.

Export PDF using Format Specific Filter

C1Document Library for WPF 9

Learn how to export a PDF file using format specific filter in code.
Export PDF using ExportProvider

Learn how to export a PDF file using ExportProvider in code.

Export PDF using Format Specific Filter
PdfDocumentSource provides support for exporting a PDF file to an external format through Export method inherited
from C1DocumentSource class.

To export PDF to HTML format

1. Add a button control to the design view for exporting PDF.
2. Switch to the code view and add the following namespaces in the code view.

Imports C1.WPF.Document
Imports C1.WPF.Document.Export

using C1.WPF.Document;
using C1.WPF.Document.Export;

3. Add a PDF file to the project. In our case, we have used PDF file named DefaultDocument.pdf.
4. Initialize the instance of C1PDFDocumentSource class using the following code:

Dim pds As New C1PdfDocumentSource()

C#
C1PdfDocumentSource pds = new C1PdfDocumentSource();

5. Load the PDf file into the object of C1PdfDocumentSource using the LoadFromFile method.

pds.LoadFromFile("..\..\DefaultDocument.pdf")

C#
pds.LoadFromFile(@"..\..\DefaultDocument.pdf");

6. Add the following code to the button's click event to export the PDF to HTML format using HtmlFilter class.

Try
 'Create HTMLFilter object
 Dim filter As New HtmlFilter()
 filter.ShowOptions = False

 'Open document after export

Visual Basic

C#

Visual Basic

Visual Basic

Visual Basic

C1Document Library for WPF 10

 filter.Preview = True

 'Set the output file name
 filter.FileName = "..\..\DefaultDocument.html"

 'Export PDF
 pds.Export(filter)
 MessageBox.Show(Me, "Document was successfully exported.", _
 "Information", MessageBoxButton.OK, _
 MessageBoxImage.Information)
Catch ex As Exception
 MessageBox.Show(Me, ex.Message, "Error",
MessageBoxButton.OK, _
 MessageBoxImage.[Error])
End Try

C#
try
{
 //Create HTMLFilter object
 HtmlFilter filter = new HtmlFilter();
 filter.ShowOptions = false;

 //Open document after export
 filter.Preview = true;

 //Set the output file name
 filter.FileName = @"..\..\DefaultDocument.html";

 //Export PDF
 pds.Export(filter);
 MessageBox.Show(this, "Document was successfully exported.",
 "Information", MessageBoxButton.OK,
 MessageBoxImage.Information);
}
catch (Exception ex)
{
 MessageBox.Show(this, ex.Message, "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
}

To export PDF to an image file format

Similar code as above can be used for exporting a PDF document to a series of page image files in one of the
supported image formats (JPEG, PNG, TIFF, etc.). It is also possible to create a single ZIP file containing the page
images. The following code uses one of the image format filter class, JpegFilter , to export the multi-paged file to
JPEG format and creates a single ZIP file of the exported images.

'Create JpegFilter object
Dim filter As New JpegFilter()
filter.UseZipForMultipleFiles = True
filter.ShowOptions = False

'Open document after export
filter.Preview = True

Visual Basic

C1Document Library for WPF 11

'Set the output file name
filter.FileName = "..\..\DefaultDocument.zip"

'Export PDF
pds.Export(filter)
MessageBox.Show(Me, "Document was successfully exported.", _
 "Information", MessageBoxButton.OK, _
 MessageBoxImage.Information)

C#

 //Create JpegFilter object
 JpegFilter filter = new JpegFilter();
 filter.UseZipForMultipleFiles = true;
 filter.ShowOptions = false;

 //Open document after export
 filter.Preview = true;

 //Set the output file name
 filter.FileName = @"..\..\DefaultDocument.zip";

 //Export PDF
 pds.Export(filter);
 MessageBox.Show(this, "Document was successfully exported.",
 "Information", MessageBoxButton.OK,
 MessageBoxImage.Information);
}

Export PDF using ExportProvider
PdfDocumentSource allows you to enumerate the supported export formats for a document using
the SupportedExportProviders property. The property returns a collection of ExportProvider classes that contain
information about the supported formats, and can be used to create the corresponding export filter by using
the NewExporter method of ExportProvider class.

Different document types support different sets of export formats, therefore enumerating and creating the export
filters via SupportedExportProviders yields the correct results.

To export PDF using supported exporters

1. Drag and drop Button and ComboBox controls from the Toolbox on the design view.
2. Switch to code view and add the following namespaces in the code view.

Imports C1.WPF.Document
Imports C1.WPF.Document.Export
Imports Microsoft.Win32
Imports C1.WPF

using C1.WPF.Document;
using C1.WPF.Document.Export;
using Microsoft.Win32;

Visual Basic

C#

C1Document Library for WPF 12

using C1.WPF;

3. Add a PDF file to the project. In our case, we have used PDF file named DefaultDocument.pdf from the product
sample.

4. Initialize the instances of C1PDFDocumentSource and SaveFileDialog class using the following code:

Dim pds As New C1PdfDocumentSource()
Dim dialog As New SaveFileDialog()

C#
C1PdfDocumentSource pds = new C1PdfDocumentSource();
SaveFileDialog dialog = new SaveFileDialog();

5. Load the PDf file into the object of C1PdfDocumentSource using the LoadFromFile method.

pds.LoadFromFile("..\..\DefaultDocument.pdf")

C#
pds.LoadFromFile(@"..\..\DefaultDocument.pdf");

6. Add the following code below InitializeComponent() method to get the list of supported exporters using
SupportedExportProviders property.

Dim supportedProviders = pds.SupportedExportProviders
For Each sep As var In supportedProviders
 cbExporter.Items.Add(New C1ComboBoxItem() With { _
 Key .Content = [String].Format("Export to {0}...",
sep.FormatName), _
 Key .Tag = sep _
 })
Next

C#
var supportedProviders = pds.SupportedExportProviders;
foreach (var sep in supportedProviders)
 cbExporter.Items.Add(new C1ComboBoxItem()
 {
 Content = String.Format("Export to {0}...",
 sep.FormatName), Tag = sep
 });

7. Add the following code to create a method, DoExport, for exporting the PDF to another format using Export
method.

Private Sub DoExport(pds As C1PdfDocumentSource, ep As
ExportProvider)
 dialog.DefaultExt = "." + ep.DefaultExtension
 dialog.FileName = System.IO.Path.GetFileName("Document")
 dialog.Filter = [String].Format("{0} (*.{1})|*.{1}|All files
(*.*)|*.*", _
 ep.FormatName,

Visual Basic

Visual Basic

Visual Basic

Visual Basic

C1Document Library for WPF 13

ep.DefaultExtension)
 Dim dr As System.Nullable(Of Boolean) =
dialog.ShowDialog(Me)
 If Not dr.HasValue OrElse Not dr.Value Then
 Return
 End If

 Try
 Dim exporter = ep.NewExporter()
 exporter.ShowOptions = False

 'Open document after export
 exporter.Preview = True

 'Set the output file name
 exporter.FileName = dialog.FileName

 'Export PDF
 pds.Export(exporter)
 MessageBox.Show(Me, "Document was successfully
exported.", _
 "Information", MessageBoxButton.OK, _
 MessageBoxImage.Information)
 Catch ex As Exception
 MessageBox.Show(Me, ex.Message, "Error",
MessageBoxButton.OK, _
 MessageBoxImage.[Error])
 End Try
End Sub

C#
private void DoExport(C1PdfDocumentSource pds, ExportProvider ep)
{
 dialog.DefaultExt = "." + ep.DefaultExtension;
 dialog.FileName = System.IO.Path.GetFileName("Document");
 dialog.Filter = String.Format("{0} (*.{1})|*.{1}|All files (*.*)|*.*",
 ep.FormatName, ep.DefaultExtension);
 bool? dr = dialog.ShowDialog(this);
 if (!dr.HasValue || !dr.Value)
 return;

 try
 {
 var exporter = ep.NewExporter();
 exporter.ShowOptions = false;

 //Open document after export
 exporter.Preview = true;

 //Set the output file name
 exporter.FileName = dialog.FileName;

 //Export PDF
 pds.Export(exporter);
 MessageBox.Show(this, "Document was successfully exported.",
 "Information", MessageBoxButton.OK,

C1Document Library for WPF 14

 MessageBoxImage.Information);
 }
 catch (Exception ex)
 {
 MessageBox.Show(this, ex.Message, "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
 }
}

8. Add the following code to the button's click event to call the DoExport method that accepts the object
of C1PdfDocumentSource and ExportProvider as parameters.

DoExport(pds, DirectCast(DirectCast(cbExporter.SelectedItem,
C1ComboBoxItem).Tag, ExportProvider))

C#
DoExport(pds, (ExportProvider)((C1ComboBoxItem)cbExporter.SelectedItem).Tag);

Visual Basic

Print PDF
PdfDocumentSource allows you to print a PDF file. It provides support for printing through the Print method of
the C1DocumentSource abstract class. The Print method has two overloads, Print (PrinterSettings printerSettings)
and Print (C1PrintOptions options). You can add the Print method using C1PdfDocumentSource to print a PDF
without the need of a viewer. Following code explains how the method can be used. The code in the topic uses Print
(C1PrintOptions options) method for printing a PDF file.

To print PDF

1. Add a button control to the design view for exporting PDF.
2. Add the following namespace in the code view.

Imports C1.WPF.Document

using C1.WPF.Document;

3. Add a PDF file to the project. In our case, we have used PDF file named DefaultDocument.pdf from the product
sample.

4. Initialize the instances of C1PdfDocumentSource and PrintDialog class using the following code:

Dim pds As New C1PdfDocumentSource()
Dim pdialog As New PrintDialog()

C#
C1PdfDocumentSource pds = new C1PdfDocumentSource();

Visual Basic

C#

Visual Basic

C1Document Library for WPF 15

PrintDialog pdialog = new PrintDialog();
5. Load the PDf file into the object of C1PdfDocumentSource using LoadFromFile method:

pds.LoadFromFile("..\..\DefaultDocument.pdf")

C#
pds.LoadFromFile(@"..\..\DefaultDocument.pdf");

6. Add the following code to the button's click event to print the PDF file using Print method.

pdialog.MaxPage = CUInt(pds.PageCount)
Dim dr As System.Nullable(Of Boolean) = pdialog.ShowDialog()

Try
 Dim po = New C1PrintOptions()
 po.PrintQueue = pdialog.PrintQueue
 po.PrintTicket = pdialog.PrintTicket
 If pdialog.PageRangeSelection = PageRangeSelection.UserPages Then
 po.OutputRange = New OutputRange(pdialog.PageRange.PageFrom,
_
 pdialog.PageRange.PageTo)
 End If

 'Print PDF
 pds.Print(po)
 MessageBox.Show(Me, "Document was successfully printed.", _
 "Information", MessageBoxButton.OK, _
 MessageBoxImage.Information)
Catch ex As Exception
 MessageBox.Show(Me, ex.Message, "Error", MessageBoxButton.OK, _
 MessageBoxImage.[Error])
End Try

C#
pdialog.MaxPage = (uint)pds.PageCount;
bool? dr = pdialog.ShowDialog();

try
{
 var po = new C1PrintOptions();
 po.PrintQueue = pdialog.PrintQueue;
 po.PrintTicket = pdialog.PrintTicket;
 if (pdialog.PageRangeSelection == PageRangeSelection.UserPages)
 po.OutputRange = new OutputRange(pdialog.PageRange.PageFrom,
 pdialog.PageRange.PageTo);

 //Print PDF
 pds.Print(po);
 MessageBox.Show(this, "Document was successfully printed.",
 "Information", MessageBoxButton.OK,
 MessageBoxImage.Information);
}
catch (Exception ex)

Visual Basic

Visual Basic

C1Document Library for WPF 16

{
 MessageBox.Show(this, ex.Message, "Error",
 MessageBoxButton.OK, MessageBoxImage.Error);
}

Text Search
PDFDocumentSource allows you to implement text search in a PDF file by matching the search criteria and examining
all the words stored in the file through C1TextSearchManager class, member of C1.WPF.Document namespace.
The class provides various methods, such as FindStart to find the first occurrence, FindNext to find the next
occurrence, and FindPrevious to find the previous occurrence of the searched text. You can
use C1FindTextParams(string text, bool wholeWord, bool matchCase) method to initialize a new instance
of C1FindTextParams class with the following parameters:

text: Takes string value as the text to find.
wholeWord: Takes Boolean value that indicates whether to match whole words only.
matchCase: Takes Boolean value that indicates whether to match case.

The following image shows the word searched in a PDF file and the list of matches as search results.

To search text programmatically

Step 1: Setting up the application
Step 2: Browse and search text in a PDF file
Step 3: Build and run the project

In this sample code, we use the FindStart method on the C1TextSearchManager to find instances of the search text.

Step 1: Setting up the application

1. Add C1PdfDocumentSource, OpenFileDialog, ListView, two TextBox, and two Button controls to the Form.
2. Add columns to the ListView control by adding the following XAML code.

XAML

<ListView x:Name="listView1" HorizontalAlignment="Left" Height="203"
Margin="10,106,0,0" VerticalAlignment="Top" Width="497">
 <ListView.View>

copyCode

C1Document Library for WPF 17

 <GridView>
 <GridViewColumn Header="#" x:Name="chNum" Width="50"
DisplayMemberBinding="{Binding ID}" />
 <GridViewColumn Header="Page" x:Name="chPage" Width="60"
DisplayMemberBinding="{Binding Page}"/>
 <GridViewColumn Header="Bounds" x:Name="chBounds" Width="100"
DisplayMemberBinding="{Binding Bounds}"/>
 <GridViewColumn Header="Position in Near Text"
x:Name="chPosInNearText" Width="60" DisplayMemberBinding="{Binding Position}"/>
 <GridViewColumn Header="Near Text" x:Name="chNearText" Width="350"
DisplayMemberBinding="{Binding NearText}"/>
 </GridView>
 </ListView.View>
</ListView>

Step 2: Browse and search text in a PDF file

1. Switch to the code view and add the following namespace.

Imports C1.WPF.Document
Imports Microsoft.Win32
Imports System.IO

C#
using C1.WPF.Document;
using Microsoft.Win32;
using System.IO;

2. Add a PDF file to the project. In our case, we have used PDF file named DefaultDocument.pdf from the product
sample.

3. Add the following code to create an instance of C1TextSearchManager class, initialize the instance of
C1PDFDocumentSource, and declare a variable, loadedFile, of string type.

' C1TextSearchManager instance used by the search
Private tsm As C1TextSearchManager

' File name of the currently loaded document
Private loadedFile As String = Nothing

Private pds As New C1PdfDocumentSource()

C#
// C1TextSearchManager instance used by the search
C1TextSearchManager tsm;

// File name of the currently loaded document
private string loadedFile = null;

C1PdfDocumentSource pds = new C1PdfDocumentSource();

4. Add the following code below the InitializeComponent() method.

' Use sample file:

Visual Basic

Visual Basic

Visual Basic

C1Document Library for WPF 18

tbFile.Text =
System.IO.Path.GetFullPath("..\..\DefaultDocument.pdf")

' Create and initialize the C1TextSearchManager:
tsm = New C1TextSearchManager(pds)
tsm.FoundPositionsChanged += tsm_FoundPositionsChanged

C#
// Use sample file:
tbFile.Text = System.IO.Path.GetFullPath(@"..\..\DefaultDocument.pdf");

// Create and initialize the C1TextSearchManager:
tsm = new C1TextSearchManager(pds);
tsm.FoundPositionsChanged += tsm_FoundPositionsChanged;

5. Add the following code to the click event of btnFile to open the dialog box for browsing and opening a PDF
file.

' Allow the user to choose a PDF file to search.\
Dim dialog As New OpenFileDialog()
If dialog.ShowDialog(Me) = True Then
 tbFile.Text = dialog.FileName
End If

C#
// Allow the user to choose a PDF file to search.\
OpenFileDialog dialog = new OpenFileDialog();
if (dialog.ShowDialog(this) == true)
{
 tbFile.Text = dialog.FileName;
}

6. Add the following code to the click event of btnFind to start the text search.

' Load the specified PDF file into c1PdfDocumentSource1, do the
search:
Try
 pds.LoadFromFile(tbFile.Text)
 loadedFile = tbFile.Text
Catch ex As Exception
 MessageBox.Show(Me, ex.Message, "Error", MessageBoxButton.OK, _
 MessageBoxImage.[Error])
 Return
End Try

' Clear the previously found positions, if any:
listView1.Items.Clear()

' Init C1FindTextParams with values provided by the user:
Dim ftp As New C1FindTextParams(tbFind.Text, True, False)

' Do the search (FindStartAsync is also available):
tsm.FindStart(0, True, ftp)

C#
// Load the specified PDF file into c1PdfDocumentSource1, do the search:

Visual Basic

Visual Basic

C1Document Library for WPF 19

try
{
 pds.LoadFromFile(tbFile.Text);
 loadedFile = tbFile.Text;
}
catch (Exception ex)
{
 MessageBox.Show(this, ex.Message, "Error", MessageBoxButton.OK,
 MessageBoxImage.Error);
 return;
}

// Clear the previously found positions, if any:
listView1.Items.Clear();

// Init C1FindTextParams with values provided by the user:
C1FindTextParams ftp = new C1FindTextParams(tbFind.Text, true, false);

// Do the search (FindStartAsync is also available):
tsm.FindStart(0, true, ftp);

7. Add the following code to create a class named SearchItem.

Public Class SearchItem
 Public Property ID() As Integer
 Get
 Return m_ID
 End Get
 Set
 m_ID = Value
 End Set
 End Property
 Private m_ID As Integer
 Public Property Page() As String
 Get
 Return m_Page
 End Get
 Set
 m_Page = Value
 End Set
 End Property
 Private m_Page As String
 Public Property Bounds() As String
 Get
 Return m_Bounds
 End Get
 Set
 m_Bounds = Value
 End Set
 End Property
 Private m_Bounds As String
 Public Property Position() As String
 Get
 Return m_Position
 End Get

Visual Basic

C1Document Library for WPF 20

 Set
 m_Position = Value
 End Set
 End Property
 Private m_Position As String
 Public Property NearText() As String
 Get
 Return m_NearText
 End Get
 Set
 m_NearText = Value
 End Set
 End Property
 Private m_NearText As String
End Class

C#
public class SearchItem
{
 public int ID { get; set; }
 public string Page { get; set; }
 public string Bounds { get; set; }
 public string Position { get; set; }
 public string NearText { get; set; }
}

8. Add the following event to update the list of found positions in the UI.

' Called when the FoundPositions collection on the
C1TextSearchManager
' has changed (i.e. some new instances of the search text were
found).
' Use this to update the list of the found positions in the UI.
Private Sub tsm_FoundPositionsChanged(sender As Object, e As
EventArgs)
 Dim n As Integer = tsm.FoundPositions.Count
 For i As Integer = listView1.Items.Count To n - 1
 Dim fp As C1FoundPosition = tsm.FoundPositions(i)
 Dim bounds = fp.GetBounds()

 listView1.Items.Add(New SearchItem() With { _
 .ID = i + 1, _
 .Page = fp.GetPage().PageNo.ToString(), _
 .Bounds = String.Format("{0}, {1}, {2}, {3}", _
 CInt(Math.Round(bounds.Left)), _
 CInt(Math.Round(bounds.Top)), _
 CInt(Math.Round(bounds.Width)), _
 CInt(Math.Round(bounds.Height))), _
 .Position = fp.PositionInNearText.ToString(), _
 .NearText = fp.NearText _
 })
 Next
End Sub

Visual Basic

C1Document Library for WPF 21

C#
// Called when the FoundPositions collection on the C1TextSearchManager
// has changed (i.e. some new instances of the search text were found).
// Use this to update the list of the found positions in the UI.
private void tsm_FoundPositionsChanged(object sender, EventArgs e)
{
 int n = tsm.FoundPositions.Count;
 for (int i = listView1.Items.Count; i < n; i++)
 {
 C1FoundPosition fp = tsm.FoundPositions[i];
 var bounds = fp.GetBounds();

 listView1.Items.Add(new SearchItem
 {
 ID = i + 1,
 Page = fp.GetPage().PageNo.ToString(),
 Bounds = string.Format("{0}, {1}, {2}, {3}",
 (int)Math.Round(bounds.Left),
 (int)Math.Round(bounds.Top),
 (int)Math.Round(bounds.Width),
 (int)Math.Round(bounds.Height)),
 Position = fp.PositionInNearText.ToString(),
 NearText = fp.NearText
 });
 }
}

Step 3: Build and run the project

1. Press Ctrl+Shift+B to build the project.
2. Press F5 to run the application.

PDF Features supported in FlexViewer
Here is a list of features that are supported in a PDF file loaded in FlexViewer.

Text selection
Text can be selected for copying from a PDF file by opening it in a viewer, such as FlexViewer.
Following image shows the selected text using Text Select Tool.

C1Document Library for WPF 22

To select text in a PDF file, follow these steps.
1. Load the PDF containing text in the FlexViewer control.
2. Select Text Select Tool from the FlexViewer Ribbon.
3. Select the text in the PDF.
4. Copy the text using Keyboard keys,Ctrl+C, or Copy Text option in FlexViewer Ribbon.

Text search
You can search text in a PDF file once you open it in a viewer, such as FlexViewer.
Following image shows the searched text using Find tool.

C1Document Library for WPF 23

To search text in a PDF file, follow these steps.
1. Load the PDF containing text in the FlexViewer control.
2. Select Find option in the FlexViewer Ribbon.
3. In the Find textbox that appears in status bar, type the text you want to search and press Enter.

Outlines
Most of the large PDF documents contain an outline structure displayed in a pane which makes it easy to browse
through a document's structure. The outlines in a PDF file can be viewed on opening the file in a viewer.

C1Document Library for WPF 24

Hyperlinks
PDF files may contain local links that when clicked take the user to another location within the same PDF document or
to an external web page. The PDF files containing hyperlinks can be opened in a viewer and the links can easily be
accessed from them.

C1Document Library for WPF 25

Embedded fonts support
PDF files with embedded font, such as TTF, OpenType, and Type1, except CFF font, can be opened as it is in a viewer
without impacting the existing font style in the original file, which means the system font does not replace the original
font.

C1Document Library for WPF 26

These are some important features supported by FlexViewer for PDF files. However, there are more features available in
FlexViewer. For information on these features, please refer FlexViewer Key features and related topics.

Note: The following features are disabled at runtime in FlexViewer for PDF files and SSRS reports:

Portrait
Landscape
Page Setup

C1Document Library for WPF 27

http://helpcentral.componentone.com/nethelp/FlexReport/FlexViewerKeyFeatures.html

SSRSDocumentSource for WPF
SQL Server Reporting Services (SSRS) is a component of SQL Server that provides tools and services to create,
deploy, and manage mobile and paginated reports. C1Document library provides a C1SSRSDocumentSource class to
access these reports, and enables viewing them in the FlexViewer control.

Key Features
Load reports
SSRSDocumentSource allows you to load SSRS reports by defining the document location , connection
options , and credentials according to the report server.

Specify parameters
SSRSDocumentSource allows you to specify parameters to SSRS reports.

Export reports
SSRSDocumentSource allows you to export SSRS reports to various formats, such as PDF, DOC/DOCX, CSV,
XLS/XLSX, MHTML, EMF, JPEG, GIF, PNG, BMP, and TIFF.

Quick Start
This quick start topic guides you through a step-by-step process of creating a simple application for loading a SSRS
report in the FlexViewer control. It uses a SSRS report named AdventureWorks, from the ComponentOne report
server.

The following image shows a SSRS report opened in FlexViewer.

C1Document Library for WPF 28

To load a SSRS report in FlexViewer programmatically

Step 1: Setting up the application
Step 2: Load the SSRS report in FlexViewer
Step 3: Build and run the project

Step 1: Setting up the application

1. Create a new WPF application.
2. Drag and drop C1FlexViewer control in the XAML view.
3. Add Loaded="Window_Loaded" to the <Window> tag in XAML view to create the Windows_Loaded event.

Step 2: Load the SSRS report in FlexViewer

1. Switch to the code view and add the following code to initialize the variables to be used as parameters for
NetWorkCredential Property.

Shared ReadOnly
ssrsUrl As String = "http:// server url",
ssrsUserName As String = "*",
ssrsPassword As String = "*",
ssrsDomain As String = String.Empty

Visual Basic

C#

C1Document Library for WPF 29

static readonly string
ssrsUrl = "http:// server url",
ssrsUserName = "*",
ssrsPassword = "*",
ssrsDomain = string.Empty;

2. Add the following code in the Windows_Loaded event to provide the location of the report on the server
using DocumentLocation and set the credentials using Credential property:

Visual Basic
Dim ssrsDocSource As New C1SSRSDocumentSource()
ssrsDocSource.DocumentLocation = New SSRSReportLocation(ssrsUrl,
 "AdventureWorks/Sales Order Detail")
ssrsDocSource.Credential = New NetworkCredential(ssrsUserName,
 ssrsPassword, ssrsDomain)

C#
C1SSRSDocumentSource ssrsDocSource = new C1SSRSDocumentSource();
ssrsDocSource.DocumentLocation = new SSRSReportLocation(ssrsUrl,
 "AdventureWorks/Sales Order Detail");
ssrsDocSource.Credential = new NetworkCredential(ssrsUserName,
 ssrsPassword, ssrsDomain);

3. Render the SSRS report in the FlexViewer control using DocumentSource property.
Visual Basic

viewer.DocumentSource = ssrsDocSource
C#

viewer.DocumentSource = ssrsDocSource;

Step 3: Build and run the project

1. Press Ctrl+Shift+B to build the project.
2. Press F5 to run the application.

C#

Features
Features section comprises all the features available in SSRSDocumentSource.

Export SSRS Report
Learn how to export an SSRS report to another format in code.

Specify Parameter values to SSRS Report
Learn how to specify parameters to an SSRS report in code.

Export SSRS Report
SSRSDocumentSource allows you to export an SSRS report to various file formats, such as PDF, HTML, DOC/DOCX,
EMF, XLS/XLSX, MHTML, CSV, JPEG, GIF, PNG, BMP, and TIFF. It provides support for exporting through Export
method of C1DocumentSource class and object of exporter class with specified formats. The Export method takes
the object of a format specific exporter class as a parameter and exports the report to a particular format.
Following table lists all the available exporter classes, members of C1.WPF.Document.Export.Ssrs namespace, along
with their descriptions and supported formats.

Filter Description

WordExporter Exporter class to export SSRS reports to Microsoft Word (DOC/DOCX) format.

C1Document Library for WPF 30

PdfExporter Exporter class to export SSRS reports to PDF.

MhtmlExporter Exporter class to export SSRS reports to Web archive (MHTML) format.

ExcelExporter Exporter class to export SSRS reports to Microsoft Excel (XLS/XLSX) format.

CsvExporter Exporter class to export SSRS reports to CSV format.

EmfExporter Exporter class to export SSRS reports to EMF format.

JpegExporter Exporter class to export SSRS reports to JPEG format.

GifExporter Exporter class to export SSRS reports to GIF format.

PngExporter Exporter class to export SSRS reports to PNG format.

BmpExporter Exporter class to export SSRS reports to BMP format.

TiffExporter Exporter class to export SSRS reports to TIFF format.

To export an SSRS report programmatically

You can export SSRS reports to other external formats through code. The following code illustrates the use of Export
method for exporting an SSRS report to Microsoft Word (DOCX) format. This example uses the sample created in
Quick Start.

Dim exporter = New WordExporter()
exporter.Preview = True
exporter.FileName = "..\..\Product Catalog.docx"
ssrsDocSource.Export(exporter)

C#

var exporter = new WordExporter();
exporter.Preview = true;
exporter.FileName = @"..\..\Product Catalog.docx";
ssrsDocSource.Export(exporter);

Similarly, you can export the SSRS reports to other formats.

Visual Basic

Filter Description

Specify Parameters to SSRS Report
SSRSDocumentSource allows you to add parameter value to SSRS report through Parameters property
of C1DocumentSource class. Additionally, SSRSDocumentSource class provides ValidateParameters method to
validate the current parameters in the report and refresh the existing parameter value list.

The following code explains the use of Parameters property and ValidateParameters method to add parameter
value to a report.

Dim ssrsDocSource As New C1SSRSDocumentSource()
ssrsDocSource.DocumentLocation = New SSRSReportLocation(ssrsUrl, _
 "AdventureWorks/Sales Order Detail")
ssrsDocSource.Credential = New NetworkCredential(ssrsUserName, _

Visual Basic

C1Document Library for WPF 31

 ssrsPassword, ssrsDomain)

ssrsDocSource.ValidateParameters()
ssrsDocSource.Parameters(0).Value = "SO57060"

C#

C1SSRSDocumentSource ssrsDocSource = new C1SSRSDocumentSource();
ssrsDocSource.DocumentLocation = new SSRSReportLocation(ssrsUrl,
 "AdventureWorks/Sales Order Detail");
ssrsDocSource.Credential = new NetworkCredential(ssrsUserName,
 ssrsPassword, ssrsDomain);

ssrsDocSource.ValidateParameters();
ssrsDocSource.Parameters[0].Value = "SO57060";

C1Document Library for WPF 32

Samples
With the C1Studio installer, you get C1Document samples that help you understand the implementation of the
product. The C# and VB samples are available at the default installation folder-
Documents\ComponentOne Samples\WPF\C1.WPF.Document

The C# sample available at the default installation location is as follows:

Sample Description

PdfDocumentSourceSamples Demonstrates the major features, such as exporting and printing, of
PdfDocumentSource and FlexViewer for WPF.

PdfView Demonstrates how to use C1FlexViewer and C1PdfDocumentSource to create simple
PDF viewer application.

PrintAndExport Demonstrates how C1PdfDocumentSource can be used without a viewer to export
and print documents from code.

SSRSViewerSample Demonstrates how the C1SSRSDocumentSource class can be used with C1FlexViewer
to preview and print reports available on a SSRS server, and to export reports to
various formats.

The VB sample available at the default installation location is as follows:

Sample Description

PdfView Demonstrates how to use C1FlexViewer and C1PdfDocumentSource to create simple PDF viewer
application.

PrintAndExport Demonstrates how C1PdfDocumentSource can be used without a viewer to export and print
documents from code.

C1Document Library for WPF 33

API Reference
This section contains API Reference for Document Library for WPF.

C1Document Library for WPF 34

	Table of Contents
	Document Library for WPF
	Help with WPF Edition

	Key Features
	Object Model Summary
	PdfDocumentSource for WPF
	Key Features
	Quick Start
	Features
	Load PDF
	Export PDF
	Export PDF using Format Specific Filter
	Export PDF using ExportProvider

	Print PDF
	Text Search

	PDF Features supported in FlexViewer

	SSRSDocumentSource for WPF
	Key Features
	Quick Start
	Features
	Export SSRS Report
	Specify Parameters to SSRS Report

	Samples
	API Reference

