

ComponentOne

DragDropManager for WPF

Copyright  1987-2012 GrapeCity, Inc. All rights reserved.

ComponentOne, a division of GrapeCity

201 South Highland Avenue, Third Floor

Pittsburgh, PA 15206 • USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other
trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne DragDropManager for WPF Overview ...1

Help with ComponentOne Studio for WPF .. 1

DragDropManager for WPF Key Features ...3

DragDropManager for WPF Quick Start ...3

Step 1 of 3: Creating a WPF Application... 3

Step 2 of 3: Adding Code to the Application ... 4

Step 3 of 3: Running the Application ... 6

Working with DragDropManager for WPF ..8

Basic Properties .. 8

Basic Methods .. 9

Basic Events ... 9

DragDropManager for WPF Samples ..9

 1

ComponentOne DragDropManager for

WPF Overview
Effortlessly add drag-and-drop operations anywhere with

ComponentOne DragDropManager™ for WPF. The

C1DragDropManager class provides a visually appealing drag-and-
drop UI with custom drag sourcing and drop targeting.

For a list of the latest features added to ComponentOne Studio for

WPF, visit What's New in Studio for WPF.

 Getting Started

Get started with the
following topics:

- Key Features (page 3)

- Quick Start (page 3)

- Samples (page 9)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and

creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

http://www.componentone.com/SuperProducts/StudioWPF/What%27s+New/
http://helpcentral.componentone.com/nethelp/c1studiowpf/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

 3

DragDropManager for WPF Key

Features
ComponentOne DragDropManager for WPF includes several key features, such as:

 Control Drag-and-drop Behavior

C1DragDropManager has an extensive set of methods and events that allow you to control the entire
drag-and-drop process. Just register some elements as drag sources and some as drop targets, and then

handle the DragDrop event to move or copy the elements to their new location.

 Customize Drag Markers

C1DragDropManager exposes properties that allow you to customize the appearance of the drag markers
for both the drag source and drop target. This makes the entire operation more user-friendly and visually
appealing.

 Scrolling Support

Dragging objects near the edges of a scrollable target causes it to scroll automatically, allowing end-users
to drop elements exactly where they want in a single operation.

DragDropManager for WPF Quick Start
The following quick start guide is intended to get you up and running with ComponentOne DragDropManager

for WPF. You'll create a new project in Visual Studio, add a Grid with child elements to the page, and then

implement the C1DragDropManager to allow users to drag elements from one grid cell to another.

Step 1 of 3: Creating a WPF Application
In this step you'll begin in Visual Studio to create a WPF application which will use ComponentOne

DragDropManager for WPF to manage user interactions.

To set up and add controls to your application, complete the following steps:

1. In Visual Studio, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select WPF

Application. Enter a Name for your project, for example "QuickStart", and click OK. The New WPF

Application dialog box will appear.

3. Click OK to accept default settings, close the New WPF Application dialog box, and create your project.

The MainPage.xaml file should open.

4. Right-click the project in the Solution Explorer window and select Add Reference.

5. In the Add Reference dialog box, locate and select the C1.WPF.dll assembly and click OK to add a

reference to your project.

6. In the XAML window of the project, place the cursor between the <Grid> and </Grid> tags and click

once.

7. Add the following XAML markup between the <Grid> and </Grid> tags in the MainPage.xaml file:
<Grid x:Name="ddGrid" Background="Lavender" ShowGridLines="True"

Width="400" Height="300" >

 <Grid.RowDefinitions>

4

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition/>

 <ColumnDefinition/>

 <ColumnDefinition/>

 <ColumnDefinition/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <TextBlock Text="Drag Me" FontSize="14" Grid.Row="1"

Grid.Column="2" />

 <TextBlock Text="Or Me" FontSize="14" Grid.Row="3" Grid.Column="4"

/>

 <Rectangle Fill="Red" Grid.Row="2" Grid.Column="0"/>

 <Rectangle Fill="Blue" Grid.Row="0" Grid.Column="4"/>

</Grid>

This markup creates a grid with row definitions in the grid to keep TextBlock and Rectangle controls in

separate areas.

 What You've Accomplished

You've successfully created and set up a WPF application and added controls to the page. In the next step you'll
add code to add functionality to your application.

Step 2 of 3: Adding Code to the Application
In the last step you set up a WPF application, but you have not added drag-and-drop functionally to the
application. In this step you'll continue by adding code to add functionality to the application.

Complete the following steps:

1. Navigate to the Solution Explorer, right-click MainPage.xaml file, and select View Code to switch to
Code view.

2. In Code view, add the following import statements to the top of the page:

 Visual Basic
Imports C1.WPF

 C#
using C1.WPF;

3. Add code to the MainPage.xaml.cs (or .vb) file in the page constructor so it looks similar to the
following:

 Visual Basic
Public Sub New()

 InitializeComponent()

 ' Initialize the C1DragDropManager

 Dim dd As New C1DragDropManager()

 dd.RegisterDropTarget(_ddGrid, True)

 For Each e As UIElement In _ddGrid.Children

 dd.RegisterDragSource(e, DragDropEffect.Move,

ModifierKeys.None)

 5

 Next

 AddHandler dd.DragDrop, AddressOf dd_DragDrop

End Sub

 C#
public MainPage()

{

 InitializeComponent();

 // Initialize the C1DragDropManager

 C1DragDropManager dd = new C1DragDropManager();

 dd.RegisterDropTarget(_ddGrid, true);

 foreach (UIElement e in _ddGrid.Children)

 {

 dd.RegisterDragSource(e, DragDropEffect.Move, ModifierKeys.None);

 }

 dd.DragDrop += dd_DragDrop;

}

The code initiates a new instance of a C1DragDropManager and then calls the RegisterDropTarget

method to indicate that the grid should act as a drop target by default. It then calls the

RegisterDragSource method to indicate that users should be allowed to drag the elements in the grid and

finally, the code attaches an event handler to the DragDrop event so the application can receive a
notification and move the element being dragged into its new position

4. Add the following event handler to the MainPage.xaml.cs (or .vb) file, below all the other methods in the

MainPage class:

 Visual Basic
Private Sub dd_DragDrop(source As Object, e As DragDropEventArgs)

 ' Get mouse position

 Dim pMouse As Point = e.GetPosition(_ddGrid)

 ' Translate into grid row/col coordinates

 Dim row As Integer, col As Integer

 Dim pGrid As New Point(0, 0)

 For row = 0 To _ddGrid.RowDefinitions.Count - 1

 pGrid.Y += _ddGrid.RowDefinitions(row).ActualHeight

 If pGrid.Y > pMouse.Y Then

 Exit For

 End If

 Next

 For col = 0 To _ddGrid.ColumnDefinitions.Count - 1

 pGrid.X += _ddGrid.ColumnDefinitions(col).ActualWidth

 If pGrid.X > pMouse.X Then

 Exit For

 End If

 Next

 ' Move the element to the new position

 e.DragSource.SetValue(Grid.RowProperty, row)

 e.DragSource.SetValue(Grid.ColumnProperty, col)

End Sub

 C#
private void dd_DragDrop(object source, DragDropEventArgs e)

{

 // Get mouse position

 Point pMouse = e.GetPosition(_ddGrid);

 // Translate into grid row/col coordinates

6

 int row, col;

 Point pGrid = new Point(0, 0);

 for (row = 0; row < _ddGrid.RowDefinitions.Count; row++)

 {

 pGrid.Y += _ddGrid.RowDefinitions[row].ActualHeight;

 if (pGrid.Y > pMouse.Y)

 break;

 }

 for (col = 0; col < _ddGrid.ColumnDefinitions.Count; col++)

 {

 pGrid.X += _ddGrid.ColumnDefinitions[col].ActualWidth;

 if (pGrid.X > pMouse.X)

 break;

 }

 // Move the element to the new position

 e.DragSource.SetValue(Grid.RowProperty, row);

 e.DragSource.SetValue(Grid.ColumnProperty, col);

}

The event handler starts by converting the mouse coordinates into row/column values. Then it uses the

SetValue method to update the Grid.RowProperty and Grid.ColumnProperty values on the element
that was dragged. Similar logic could be used to drag elements within other types of panel or list-type
controls, or from one panel to another.

 What You've Accomplished

In this step you added code to add functionality to your application. In the next step you'll run your application

and observe some of the run-time interactions possible with ComponentOne DragDropManager for WPF.

Step 3 of 3: Running the Application
Now that you've created a WPF application and, set up the application, and added code to add functionality to the
application, the only thing left to do is run your application. To observe your application's run-time interactions,
complete the following steps:

1. Choose Debug | Start Debugging from the menu to run your application. The application will appear
similar to the following image:

 7

2. Click the red Rectangle and drag it to another square in the grid. Notice that as the drag process is in

action an extra border appears around the item you are dragging and a transparent rectangle is moved
with the mouse to indicate where the item will be dropped:

3. Click another item, such as a TextBlock, and move it to a new location.

 What You've Accomplished

Congratulations, you've completed the DragDropManager for WPF quick start! You've created a simple

application that uses DragDropManager for WPF to move items in a grid.

8

To learn more about the features and functionality of ComponentOne DragDropManager for WPF, see the
Working with DragDropManager for WPF (page 8) topic.

Working with DragDropManager for

WPF
ComponentOne DragDropManager™ for WPF provides a simple way to add drag-and-drop interactions to your
WPF application. The C1DragDropManager is a class that provides drag-and-drop services on behalf of other
elements. It is not a control and has no visual representation at design time.

The C1DragDropManager class follows the patterns found in the WinForms drag-and-drop implementation. It
provides a DoDragDrop method that is called to initiate the drag-and-drop operations, and fires events that allow

you to customize the whole process (DragStart, DragEnter, DragOver, DragLeave, DragDrop).

The event parameters provide information on what item is being dragged (e.DragSource) and where it is about to
be dropped (e.DropTarget). The event handlers are responsible for checking this information and setting the value
of the e.Effect parameter to indicate whether the operation is valid or not. The handler for the DragDrop event is
responsible for actually moving or copying the source element to the target location.

The C1DragDropManager class also provides two helper methods that simplify the whole process. The methods
are called RegisterDragSource and RegisterDropTarget. They provide a simple generic implementation that
handles most common drag-and-drop scenarios with very little code. Once you have registered elements as sources
and targets with these methods, the C1DragDropManager will monitor the mouse to automatically initiate and
manage the drag-and-drop operation. In this case, all you have to do is handle the DragDrop event to perform the
move or copy operation.

Basic Properties
ComponentOne DragDropManager for WPF includes several properties that allow you to set the functionality of
the C1DragDropManager control. Some of the more important properties are listed below.

The following properties let you customize the C1DragDropManager control:

Property Description

AutoScroll Gets or sets whether the C1DragDropManager should
automatically scroll the ScrollViewer that contains the drop

target.

AutoScrollDelay Gets or sets the number of milliseconds between auto scroll

steps.

AutoScrollEdge Gets or sets the distance between the mouse and the edges

of a drag target element that triggers the auto scroll process.

AutoScrollStep Gets or sets the number of pixels to scroll in each auto scroll

step.

Canvas Gets a reference to the Canvas being used to show the drag-

and-drop process.

DragThreshold Gets or sets the distance in pixels that the mouse must move
before a drag operation starts.

SourceMarker Gets a reference to the Border used to highlight the drag
source.

TargetMarker Gets the Border used to indicate the drop location.

 9

Basic Methods
ComponentOne DragDropManager for WPF includes several methods that allow you to customize the control.
Some of the more important methods are listed below.

The following methods let you customize the C1DragDropManager control:

Method Description

ClearSources Removes all the registered sources.

ClearTargets Removes all the registered targets.

DoDragDrop Initiates a drag drop operation using a UIElement as a

source, supporting a specified DragDropEffect.

RegisterDragSource Registers a UIElement to act as a drag source.

RegisterDropTarget Registers (or unregisters) an element as a drop target.

Basic Events
ComponentOne DragDropManager for WPF includes several events that allow you to set interaction and

customize the control. Some of the more important events are listed below.

The following events let you customize the C1DragDropManager control:

Event Description

DragAutoScroll Fires after the C1DragDropManager automatically scrolls a
ScrollViewer in order to keep the drop location within view.

DragDrop Fires at the end of a drag drop process, when the user
releases the mouse button over a registered drop target.

DragEnter Fires during a drag drop process, when the cursor enters a
registered drop target.

DragLeave Fires during a drag drop process, when the cursor leaves a
registered drop target.

DragOver Fires during a drag drop process, when the cursor moves
over a registered drop target.

DragStart Fires when a drag drop process starts.

DragDropManager for WPF Samples
ComponentOne DragDropManager for WPF includes C# examples as part of the ControlExplorer sample. By

default samples are installed in the Documents or My Documents folder in the ComponentOne Samples\Studio

for WPF\General\CS\ControlExplorer folder.

The following examples are included within the ControlExplorer sample:

Sample Description

DragDropManager This sample demonstrates how the C1DragDropManager control can be used to create

a simple checkers game.

DragDropManager/List The sample shows how to use C1DragDropManager to drag and drop items between

10

Box list boxes.

	ComponentOne DragDropManager for WPF Overview
	Help with ComponentOne Studio for WPF

	DragDropManager for WPF Key Features
	DragDropManager for WPF Quick Start
	Step 1 of 3: Creating a WPF Application
	Step 2 of 3: Adding Code to the Application
	Step 3 of 3: Running the Application

	Working with DragDropManager for WPF
	Basic Properties
	Basic Methods
	Basic Events

	DragDropManager for WPF Samples

