

ComponentOne

FinancialChart for WPF

GrapeCity US

GrapeCity
201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206
Tel: 1.800.858.2739 | 412.681.4343
Fax: 412.681.4384
Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com

Table of Contents
FinancialChart for WPF Overview 2

Getting Started with WPF Edition 3

Key Features 4

Quick Start 5

Step 1: Adding FinancialChart to the Application 5-6

Step 2: Binding FinancialChart to a Data Source 6-9

Step 3: Running the Application 9

Financial Chart Types 10-19

Analytics 20

Trendlines 20-22

Moving Average 22-23

Indicators 23-24

Average True Range 24-27

Relative Strength Index 27-30

Commodity Channel Index 30-32

Williams %R 32-34

Stochastic 34-40

Moving Average Convergence Divergence 40-45

Overlays 45

Bollinger Bands 45-50

Envelopes 50-55

Fibonacci Tools 55

Fibonacci Retracements 55-60

Fibonacci Arcs 60-66

Fibonacci Fans 66-71

Fibonacci Time Zones 71-76

Interaction 77

Range Selector 77-79

FinancialChart for WPF 1

Copyright © 2017 GrapeCity, Inc. All rights reserved.

FinancialChart for WPF Overview
FinancialChart for WPF is an easy-to-use visualization control that enables you to create stock trending charts. The
control lets you perform technical analysis in financial applications using predefined financial indicators and special
chart types. In addition, the control allows you to analyze and interact with data trends using analytics, such as
trendlines and moving average and range selector.

Below is a full listing of the sections that provide an extensive coverage on FinancialChart for WPF:

Key Features
Quick Start
Financial Chart Types
Analytics
Interaction

FinancialChart for WPF 2

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Getting Started with WPF Edition
For information on installing ComponentOne Studio WPF Edition, licensing, technical support, namespaces and
creating a project with the control, visit Getting Started with WPF Edition.

FinancialChart for WPF 3

Copyright © 2017 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1studioWPF/#Getting Started with Studio for WPF.html

Key Features
Chart Type: Change a line chart to a scatter chart or any other chart type by setting the ChartType property.
Provides fifteen different chart types to choose from.

Range Selector: Adjust the FinancialChart's visible range of data at runtime.

Trend Lines: Visualize trends in data and analyze the problems of prediction.

Tooltips: Display chart values using tooltips.

Header and Footer: Use simple properties to set a title and footer text.

Legend: Change position of the legend as needed.

Line Break: Illustrate the price changes of an asset or market using lines or vertical boxes.

Annotations: Mark important events or news attached to a specific data point on financial charts

Moving Average: Analyze data points through a series of averages of different subsets of entire data set.

Indicators: Analyze and predict trends in price and volume momentum of trading instruments using technical
indicators, such as Average True Range, Relative Strength Index, Commodity Channel Index, and Williams %R.

FinancialChart for WPF 4

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Quick Start
This quick start illustrates the process of creating a simple application using FinancialChart for WPF and running the
same in Visual Studio.

Perform the following steps to walk through the FinancialChart control quickly:

1. Adding FinancialChart to the Form
2. Binding FinancialChart to a Data Source
3. Running the Application

Step 1: Adding FinancialChart to the Application
This step creates a new Visual Studio project and adds the FinancialChart control to it.

1. Create a new WPF Application in Visual Studio.
1. Select File | New | Project. The New Project dialog box appears.
2. In the New Project dialog box, select a language in the left-hand pane, and then select WPF

Application from the list of applications in the center pane.
3. Give your application a Name, and then select OK.

2. Open the MainWindow.xaml file.
3. Place your cursor between the <Grid> </Grid> tags within either your Window or your UserControl,

depending on the type of application you've created.
4. Locate the C1FinancialChart control in Visual Studio's ToolBox. Double-click the control to add it to your

application. The following references are added to the project:
C1.WPF.4.dll
C1.WPF.FinancialChart.4.dll
C1.WPF.FlexChart.4.dll
If the references are not added, you need to add the same manually - right-click the References folder in the
Solution Explorer and select Add | New Reference.

The XAML markup resembles the following:
XAML

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="FinancialChart.MainWindow"
 Title="MainWindow" Height="387.285" Width="641.667">
 <Grid>

 <c1:C1FinancialChart x:Name="financialChart"
 ChartType="HeikinAshi"
 HorizontalAlignment="Left"
 Height="325" VerticalAlignment="Top"
 Width="523">
 <c1:FinancialSeries AxisX="{x:Null}" AxisY="{x:Null}"
 Binding="High,Low,Open,Close,Volume"
 BindingX="Date"
 Chart="{x:Null}"
 SeriesName="{x:Null}">
 <c1:FinancialSeries.ItemsSource>
 <c1:QuoteCollection>
 <c1:Quote Close="23.23" Date="01/23/15"
 High="24.73" Low="20.16"
 Open="20.2" Volume="42593223"/>

FinancialChart for WPF 5

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 <c1:Quote Close="22.6" Date="01/26/15"
 High="24.39" Low="22.5"
 Open="23.67" Volume="8677164"/>
 <c1:Quote Close="21.3" Date="01/27/15"
 High="22.47" Low="21.17"
 Open="22" Volume="3272512"/>
 <c1:Quote Close="19.78" Date="01/28/15"
 High="21.84" Low="19.6"
 Open="21.62" Volume="5047364"/>
 <c1:Quote Close="18.8" Date="01/29/15"
 High="19.95" Low="18.51"
 Open="19.9" Volume="3419482"/>
 </c1:QuoteCollection>
 </c1:FinancialSeries.ItemsSource>
 </c1:FinancialSeries>
 </c1:C1FinancialChart>

 </Grid>
</Window>

The FinancialChart control is successfully added to the application.

Step 2: Binding FinancialChart to a Data Source
This step binds the FinancialChart control to a valid data source.

1. Create the data source as follows:
1. Right-click the project and select Add | Class.
2. Select Class from the list of templates, name it as DataService.cs, and click Add.
3. Add the following code in DataService class to generate the data.

Visual Basic
Public Class DataService

 Public Shared Function CreateData() As List(Of DataItem)
 Dim data = New List(Of DataItem)()

 Dim dt As DateTime = DateTime.Today

 data.Add(New DataItem(dt.[Date], 79))
 data.Add(New DataItem(dt.[Date].AddDays(-7), 78))
 data.Add(New DataItem(dt.[Date].AddDays(-14), 73))
 data.Add(New DataItem(dt.[Date].AddDays(-21), 74))
 data.Add(New DataItem(dt.[Date].AddDays(-28), 76))
 data.Add(New DataItem(dt.[Date].AddDays(-35), 74))
 data.Add(New DataItem(dt.[Date].AddDays(-42), 75))
 data.Add(New DataItem(dt.[Date].AddDays(-49), 75))
 data.Add(New DataItem(dt.[Date].AddDays(-56), 80))
 Return data
 End Function

End Class

Public Class DataItem
 Public Sub New(date__1 As DateTime, sales__2 As Integer)
 [Date] = date__1
 Sales = sales__2
 End Sub

 Public Property [Date]() As DateTime

FinancialChart for WPF 6

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 Get
 Return m_Date
 End Get
 Set
 m_Date = Value
 End Set
 End Property
 Private m_Date As DateTime
 Public Property Sales() As Integer
 Get
 Return m_Sales
 End Get
 Set
 m_Sales = Value
 End Set
 End Property
 Private m_Sales As Integer
End Class

C#
class DataService
{
 public static List<DataItem> CreateData()
 {
 var data = new List<DataItem>();

 DateTime dt = DateTime.Today;

 data.Add(new DataItem(dt.Date,79));
 data.Add(new DataItem(dt.Date.AddDays(-7), 78));
 data.Add(new DataItem(dt.Date.AddDays(-14), 73));
 data.Add(new DataItem(dt.Date.AddDays(-21), 74));
 data.Add(new DataItem(dt.Date.AddDays(-28), 76));
 data.Add(new DataItem(dt.Date.AddDays(-35), 74));
 data.Add(new DataItem(dt.Date.AddDays(-42), 75));
 data.Add(new DataItem(dt.Date.AddDays(-49), 75));
 data.Add(new DataItem(dt.Date.AddDays(-56), 80));
 return data;
 }
}

public class DataItem
{
 public DataItem(DateTime date, int sales)
 {
 Date = date;
 Sales = sales;
 }

 public DateTime Date { get; set; }
 public int Sales { get; set; }
}

2. Bind the data to FinancialChart as follows:

1. Edit the <Grid> tag to the following markup to provide data to FlexChart:
MainWindow.xaml

<Grid>
 <Finance:C1FinancialChart x:Name="financialChart"
 ChartType="LineSymbols"
 ItemsSource="{Binding DataContext.Data}"
 HorizontalAlignment="Left"

FinancialChart for WPF 7

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 Height="321"
 VerticalAlignment="Top"
 Width="620"
 Margin="81,94,0,0">
 <Finance:FinancialSeries AxisX="{x:Null}"
 AxisY="{x:Null}"
 Binding="Sales"
 BindingX="Date"
 Chart="{x:Null}"
 SeriesName="{x:Null}">
 </Finance:FinancialSeries>
 </Finance:C1FinancialChart>
</Grid>

To specify the binding source, you need to add the DataContext = "{Binding RelativeSource=
{RelativeSource Mode=Self}}" markup in the <Window> tag of the MainWindow.xaml file.

2. Switch to Code View. Add the following code in the MainWindow class to plot the data in the chart
MainWindow.xaml.vb

Partial Public Class MainWindow
 Inherits Window
 Private _data As List(Of DataItem)

 Public Sub New()
 Me.InitializeComponent()
 End Sub

 Public ReadOnly Property Data() As List(Of DataItem)
 Get
 If _data Is Nothing Then
 _data = DataService.CreateData()
 End If

 Return _data
 End Get
 End Property
End Class

MainWindow.xaml.cs
public partial class MainWindow : Window
{
 private List<DataItem> _data;

 public MainWindow()
 {
 this.InitializeComponent();
 }

 public List<DataItem> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataService.CreateData();
 }

 return _data;
 }
 }
}

FinancialChart for WPF 8

Copyright © 2017 GrapeCity, Inc. All rights reserved.

The FinancialChart control is successfully bound to the data source.

Step 3: Running the Application
This step runs the project and observes the output.

The following output appears once the project is run.

You have successfully created a simple FinancialChart application. This concludes quick start.

FinancialChart for WPF 9

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Financial Chart Types
FinancialChart provides you with 15 chart types to cater to your each and every financial data visualization
requirement. You can set the chart type of the FinancialChart control by setting the ChartType property, which accepts
values from the FinancialChartType enumeration.

The following table lists all chart types provided by FinancialChart:

Area chart ArmsCandleVolume chart Candlestick chart CandleVolume chart

Column chart ColumnVolume chart EquiVolume chart HeikinAshi chart

HighLowOpenClose chart Kagi chart Line chart Line Break chart

Line Symbols chart Renko chart Scatter chart Point and Figure chart

The following code snippet sets the ChartType property.

XAML
<c1:C1FinancialChart ChartType="ArmsCandleVolume"
 x:Name="financialChart"
 SelectionMode="Series"
 BindingX="date"
 Binding="high,low,open,close,volume"
 Grid.Row="1">
 <c1:FinancialSeries SeriesName="Series" />
</c1:C1FinancialChart>

Code

Visual Basic

' set the financial chart type
financialChart.ChartType = FinancialChartType.ArmsCandleVolume

C#

// set the financial chart type
financialChart.ChartType = FinancialChartType.ArmsCandleVolume;

Area Chart
The Area Chart draws each series as connected points of data and the area below the connected points is filled with
color to denote volume. Each new series is drawn on top of the preceding series. The series can either be drawn
independently or stacked. These charts are commonly used to show trends between associated attributes over time.

copyCode

copyCode

FinancialChart for WPF 10

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Back to Top

ArmsCandleVolume Chart
Created by Richard Arms, the ArmsCandleVolume Chart is a combination of EquiVolume and CandleVolume chart
types. The data for this chart type can be defined using the FinancialChart or FinancialSeries Binding property as a
comma separated value in the following format: "highProperty, lowProperty, openProperty, closeProperty,
volumeProperty". This chart type can only be used at the FinancialChart level, and should not be applied on
FinancialSeries objects. Only one set of volume data is currently supported per FinancialChart.

Back to Top

Candlestick Chart

FinancialChart for WPF 11

Copyright © 2017 GrapeCity, Inc. All rights reserved.

The Candlestick Chart is a special type of HiLoOpenClose Chart that shows the opening, closing, high, and low prices
of a given stock. It integrates Bar and Line charts to depict a range of values over time. It consists of visual elements
known as candles that are further comprised of three elements: body, wick, and tail.

The body represents the opening and the closing value, while the wick and the tail represent the highest and
the lowest value respectively.
A hollow body indicates a rising stock price (the closing value is greater than the opening value).
A filled body indicates a falling stock price (the opening value is greater than the closing value).

The size of the wick line is determined by the High and Low values, while the size of the bar is determined by the
Open and Close values. The bar is displayed using different colors, depending on whether the close value is higher or
lower than the open value. The data for this chart type can be defined using the FinancialChart or FinancialSeries
binding property as a comma separated value in the following format: "highProperty, lowProperty, openProperty,
closeProperty".

In a Candlestick, there are five values for each data point in the series.

x: Determines the date position along the x axis.
high: Determines the highest price for the day, and plots it as the top of the candle along the y axis.
low: Determines the lowest price for the day, and plots it as the bottom of the candle along the y axis.
open: Determines the opening price for the day.
close: Determines the closing price for the day.

Back to Top

CandleVolume Chart
The CandleVolume Chart is identical to the standard Candlestick Chart except that the width of each bar in
CandleVolume charts is determined by the Volume value. The data for this chart type can be defined using the
FinancialChart or FinancialSeries binding property as a comma separated value in the following format: "highProperty,
lowProperty, openProperty, closeProperty, volumeProperty".

FinancialChart for WPF 12

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Back to Top

Column Chart
The Column Chart shows each series in the form of bars and enables you to compare values of items across different
categories. It displays values of one or more items as vertical bars against Y-axis and arranges items or categories on
X-axis.

Back to Top

ColumnVolume Chart
The ColumnVolume Chart is identical to the standard Column Chart except that the width of each bar is determined
by the Volume value. The data for this chart type can be defined using the FinancialChart or FinancialSeries binding
property as a comma separated value in the following format: "yProperty, volumeProperty".

FinancialChart for WPF 13

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Back to Top

EquiVolume Chart
EquiVolume charts are similar to candlestick charts, but the candlesticks in these charts are replaced with rectangular
boxes of varying width (and no wicks). An EquiVolume box includes high and low price components with a third
dimension, Volume that determines the width of each box. Color represents whether the close number is higher or
lower than the previous box's close.

Back to Top

HeikinAshi Chart
HeikinAshi charts are a variation of Japanese candlestick charts that were designed to remove noise from candlesticks
and behave much like a moving average. These charts can be used to identify trends, potential reversal points, and

FinancialChart for WPF 14

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Analytics
FinancialChart for WPF offers a number of analytics that help you analyze financial data systematically
and effectively. These analytics include trendlines, moving average, and various technical indicators that allow you to
analyze problems of prediction, examine overall data, and forecast the assets' market direction respectively.

Click the following links to know more about FinancialChart analytics:

Trendlines
Moving Average
Indicators
Overlays
Fibonacci Tool

Trendlines
Trendlines are a crucial tool in technical analysis for identifying and confirming trends. A straight line connecting two
or more price points, a trendline can act as a line of resistance or support in future. Basically, trendlines are used to
depict trends in data and to examine problems of prediction. Commonly used with financial charts, these lines can be
used with diversified technical analysis charts, for instance MACD (moving average convergence/divergence) that is a
trading indicator used in technical analysis of stock prices, or RSI (relative strength index) that is a technical indicator
used in the analysis of financial markets.

The supported FitTypes can be set using the FitType property that accepts the following values from the FitType
enumeration. Each trend type is drawn based on the calculation formula of its type.

Type Description

Average X Calculates the average value of X from the chart data and draws a trendline.

Average Y Calculates the average value of Y from the chart data and draws a trendline.

Exponential A curved line that is convenient to use when data values rise or fall at increasingly
higher rates. You cannot create an exponential trendline if your data contains zero or
negative values.

Fourier A way to display a wave like function as a combination of simple sine waves. It is
created by using the fourier series formula.

Linear A linear trendline is a best-fit straight light. Your data is linear if the data point pattern
resembles a line, and a linear trendline is a good fit if the R-squared value is at or near
1.

Logarithmic A best fit curved line used for better visualization of data. Used when the rate of
change in the data increases or decreases quickly and then levels out. It can also use
positive and negative values.

Max X Takes the maximum value of X from the chart and draws a trendline using it.

Max Y Takes the maximum value of Y from the chart and draws a trendline using it.

Min X Takes the minimum value of X from the chart and draws a trendline using it.

Min Y Takes the minimum value of Y from the chart and draws a trendline using it

FinancialChart for WPF 20

Copyright © 2017 GrapeCity, Inc. All rights reserved.

trendline.Order = 10;

// add the Trendline instance to the Series collection
financialChart.Series.Add(trendline);

Moving Average
Moving Average is a moving average trendline used in financial charts. It analyzes data points by creating series of
averages of various subsets of the complete data set.

In FinancialChart, you can create an instance of the MovingAverage class, and set the Type property to any of the
following values from the MovingAverageType enumeration:

Exponential: Weighted average of the last n values, where the weightage decreases exponentially with each
previous value.
Simple: An average of the last n values.
Triangular: Weighted average of the last n values, whose result is equivalent to a double smoothed simple
moving average.
Weighted: Weighted average of the last n values, where the weightage decreases by 1 with each previous
value.

You can set the ChartType property to specify the chart type for the moving average. The property accepts values
from the FinancialChartType enumeration. For more details on chart types, refer to Financial Chart Types.

In addition, you can use the Period property to specify the period of the moving average. Once you have set the
properties, add the moving average to the Series collection.

XAML
<c1:C1FinancialChart Binding="Sales"
 BindingX="Date"
 x:Name="financialChart"

FinancialChart for WPF 22

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 ItemsSource="{Binding DataContext.Data}"
 HorizontalAlignment="Left"
 Height="321"
 VerticalAlignment="Top"
 Width="620"
 Margin="79,85,0,0">
 <c1:FinancialSeries ChartType="LineSymbols"
 AxisX="{x:Null}"
 AxisY="{x:Null}"
 Chart="{x:Null}"
 SeriesName="{x:Null}">
 </c1:FinancialSeries>
 <c1:MovingAverage x:Name="ma"
 Type="Weighted"
 ChartType="Line"
 Period="2"/>
</c1:C1FinancialChart>

Code

Visual Basic

' create an instance of the Moving Average class
Dim ma As New C1.WPF.Chart.Finance.MovingAverage()

' set the properties for the Moving Average instance
ma.Type = C1.Chart.MovingAverageType.Weighted
ma.ChartType = C1.Chart.Finance.FinancialChartType.Line
ma.Period = 2

' Add the Moving Average instance to the Series collection
financialChart.Series.Add(ma)

C#

// create an instance of the Moving Average class
C1.WPF.Chart.Finance.MovingAverage ma = new C1.WPF.Chart.Finance.MovingAverage();

// set the properties for the Moving Average instance
ma.Type = C1.Chart.MovingAverageType.Weighted;
ma.ChartType = C1.Chart.Finance.FinancialChartType.Line;
ma.Period = 2;

// Add the Moving Average instance to the Series collection
financialChart.Series.Add(ma);

copyCode

copyCode

Indicators
A technical indicator is a set of derived data that is calculated by applying one or more formulas to the original set of
data. Technical indicators are generally used to forecast the asset's market direction and generally plotted separately
from the original data since the Y-axis scales differ.

WPF Edition supports technical indicators for its FinancialChart control to be easily used in financial applications.
These financial indicators are plotted as chart patterns and form a basis for technical analysis.

FinancialChart for WPF 23

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Note that the indicators are generally plotted separately from original price or volume data, as Y axis scales for
technical indicators differ from that of price or volume chart data.

The following sections discuss various financial chart indicators that FinanicalChart for WPF supports:

Average True Range
Relative Strength Index
Commodity Channel Index
Williams %R
Stochastic
Moving Average Convergence Divergence

Average True Range
Average True Range (ATR) is a technical indicator for measuring the volatility of an asset. It does not provide an indication of the
price trend, but of the degree of the price volatility. It is typically based on 14 periods, and could be calculated intra daily, daily, weekly
or monthly basis. Stocks having high volatility will have a higher ATR, while low volatility stocks will have a lower ATR.

FinancialChart also enables you to fetch the calculated ATR values at run-time using GetValues() method. This can help in creating
alerts in application or maintaining logs while working with dynamic data.

The following code snippet creates an instance of the ATR class to use Average True Indicator. Also, the sample uses a class
DataService.cs to get data for the financial chart.

DataService.vb

Public Class DataService
 Private _companies As New List(Of Company)()
 Private _cache As New Dictionary(Of String, List(Of Quote))()

 Private Sub New()
 _companies.Add(New Company() With {
 Key.Symbol = "box",
 Key.Name = "Box Inc"
 })
 _companies.Add(New Company() With {
 Key.Symbol = "fb",
 Key.Name = "Facebook"
 })
 End Sub

 Public Function GetCompanies() As List(Of Company)
 Return _companies
 End Function

 Public Function GetSymbolData(symbol As String) As List(Of Quote)
 If Not _cache.Keys.Contains(symbol) Then
 Dim path As String = String.Format("FinancialChartExplorer.Resources.{0}.json", symbol)
 Dim stream = Assembly.GetExecutingAssembly().GetManifestResourceStream(path)
 Dim ser = New DataContractJsonSerializer(GetType(Quote()))
 Dim data = DirectCast(ser.ReadObject(stream), Quote())
 _cache.Add(symbol, data.ToList())
 End If

 Return _cache(symbol)
 End Function

 Shared _ds As DataService
 Public Shared Function GetService() As DataService
 If _ds Is Nothing Then
 _ds = New DataService()
 End If
 Return _ds
 End Function
End Class

DataService.cs

FinancialChart for WPF 24

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 {
 indicatorChart.AxisX.Min = ((IAxis)financialChart.AxisX).GetMin();
 indicatorChart.AxisX.Max = ((IAxis)financialChart.AxisX).GetMax();
 }
 }
}

Relative Strength Index
Relative Strength Index (RSI) indicator for FinancialChart is a momentum oscillator, which measures velocity and magnitude of price
movements. It compares the upward movements in closing price of an asset to the downward movements over a trading period, and
intends to determine strength or weakness of a stock. It fluctuates between 0 and 100. The stocks with strong positive changes have a
higher RSI than the stocks with strong negative changes.

It finds application in comparing the magnitude of recent gains to recent losses, to determine the overbought and oversold conditions
of an asset. Stocks are considered overbought when RSI is above 70, and oversold when below 30.

FinancialChart also enables you to fetch the calculated RSI values at run-time using GetValues() method. This can help in creating alerts
in application or maintaining logs while working with dynamic data.

Notice that the given code snippet uses a class DataService.cs. To see the code, refer to Average True Range. In addition, the sample
creates an instance of the RSI class to work with Relative Strength Index.

DataService.vb

Public Class DataService
 Private _companies As New List(Of Company)()
 Private _cache As New Dictionary(Of String, List(Of Quote))()

 Private Sub New()
 _companies.Add(New Company() With {
 Key.Symbol = "box",
 Key.Name = "Box Inc"
 })
 _companies.Add(New Company() With {
 Key.Symbol = "fb",
 Key.Name = "Facebook"
 })
 End Sub

 Public Function GetCompanies() As List(Of Company)
 Return _companies
 End Function

 Public Function GetSymbolData(symbol As String) As List(Of Quote)
 If Not _cache.Keys.Contains(symbol) Then
 Dim path As String = String.Format("FinancialChartExplorer.Resources.{0}.json", symbol)
 Dim stream = Assembly.GetExecutingAssembly().GetManifestResourceStream(path)
 Dim ser = New DataContractJsonSerializer(GetType(Quote()))

FinancialChart for WPF 27

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 FinancialSeries ser = null;
 if (cbIndicatorType.SelectedIndex == 0)
 ser = rsi;

 if (ser != null && !indicatorChart.Series.Contains(ser))
 {
 indicatorChart.BeginUpdate();
 indicatorChart.Series.Clear();
 indicatorChart.Series.Add(ser);
 indicatorChart.EndUpdate();
 }
 }

 void OnFinancialChartRendered(object sender, C1.WPF.Chart.RenderEventArgs e)
 {
 if (indicatorChart != null)
 {
 indicatorChart.AxisX.Min = ((IAxis)financialChart.AxisX).GetMin();
 indicatorChart.AxisX.Max = ((IAxis)financialChart.AxisX).GetMax();
 }
 }
}

Commodity Channel Index
Commodity Channel Index (CCI) indicator is an oscillator that measures an asset's current price level relative to an average price
level over a specified period of time. It is used to determine a new trend or to warn about extreme conditions.

In FinancialChart, you need to use a CCI object to work with Commodity Channel Index. FinancialChart also enables you to fetch the
calculated CCI values at run-time using GetValues() method. This can help in creating alerts in application or maintaining logs while
working with dynamic data.

See the following code snippet that demonstrates how you can use CCI indicator. The code snippet uses a class DataService.cs
whose code can be seen by referring to Average True Range.

Visual Basic

Partial Public Class Indicators
 Inherits UserControl

 Private dataService As DataService = dataService.GetService()
 Private cci As New CCI() With {
 Key.SeriesName = "CCI"

FinancialChart for WPF 30

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 {
 "Commodity Channel Index",
 };
 }
 }

 void OnIndicatorTypeSelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 FinancialSeries ser = null;
 if (cbIndicatorType.SelectedIndex == 0)
 ser = cci;

 if (ser != null && !indicatorChart.Series.Contains(ser))
 {
 indicatorChart.BeginUpdate();
 indicatorChart.Series.Clear();
 indicatorChart.Series.Add(ser);
 indicatorChart.EndUpdate();
 }
 }

 void OnFinancialChartRendered(object sender, C1.WPF.Chart.RenderEventArgs e)
 {
 if (indicatorChart != null)
 {
 indicatorChart.AxisX.Min = ((IAxis)financialChart.AxisX).GetMin();
 indicatorChart.AxisX.Max = ((IAxis)financialChart.AxisX).GetMax();
 }
 }
}

Williams %R
Williams %R indicator for the FinancialChart is a momentum indicator, which compares the current asset price to the highest price
over the look back period. Its look-back is typically 14 periods. The indicator fluctuates between 0 and -100. It is the inverse of a fast
Stochastic Oscillator.

While the Williams %R displays the level of a stock's close relative to the highest high for the look-back period, the Stochastic
Oscillator shows the level of a stock's close relative to the lowest low. Both the indicators show same lines, however scaling is
different. It finds application in determining Overbought/Oversold levels, providing buy and sell signals, and momentum
confirmations.

FinancialChart for WPF 32

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 public List<Quote> Data
 {
 get
 {
 return dataService.GetSymbolData("box");
 }
 }

 public List<string> IndicatorType
 {
 get
 {
 return new List<string>()
 {
 "Williams %R"
 };
 }
 }

 void OnIndicatorTypeSelectionChanged(object sender, SelectionChangedEventArgs e)
 {
 FinancialSeries ser = null;
 if (cbIndicatorType.SelectedIndex == 0)
 ser = wr;

 if (ser != null && !indicatorChart.Series.Contains(ser))
 {
 indicatorChart.BeginUpdate();
 indicatorChart.Series.Clear();
 indicatorChart.Series.Add(ser);
 indicatorChart.EndUpdate();
 }
 }

 void OnFinancialChartRendered(object sender, C1.WPF.Chart.RenderEventArgs e)
 {
 if (indicatorChart != null)
 {
 indicatorChart.AxisX.Min = ((IAxis)financialChart.AxisX).GetMin();
 indicatorChart.AxisX.Max = ((IAxis)financialChart.AxisX).GetMax();
 }
 }
}

Stochastic

FinancialChart for WPF 34

Copyright © 2017 GrapeCity, Inc. All rights reserved.

}
/// Interaction logic for MainWindow.xaml
public partial class MainWindow : Window
{
 DataService dataService = DataService.GetService();
 public MainWindow()
 {
 InitializeComponent();
 }
 public List<Quote> Data
 {
 get
 {
 return dataService.GetData();
 }
 }

 private void OnFinancialChartRendered(object sender, C1.WPF.Chart.RenderEventArgs e)
 {
 indicatorChart.AxisX.Min = ((IAxis)financialChart.AxisX).GetMin();
 indicatorChart.AxisX.Max = ((IAxis)financialChart.AxisX).GetMax();
 }
 }

Back to Top

Moving Average Convergence Divergence
Moving Average Convergence Divergence (MACD) indicator for FinancialChart is a trend-following momentum indicator. It reveals changes in the
strength, direction, duration and momentum of price of an asset. The indicator is efficient in helping users spot short-term price momentum.

MACD momentum oscillator displays a relationship between 26 day exponential moving average and 12 day exponential moving average. As the
two moving averages converge, cross and diverge, they make the MACD oscillator to fluctuate above and below the zero line. A "signal line" is
plotted on the top of the oscillator. It is a 9 day exponential moving average of MACD, which serves as a trigger for buy and sell signals. A sell
signal is generated with the MACD going below the zero line.

MACD Histogram is an oscillator which measures the difference between the fast MACD line and the signal line. Just like MACD indicator,
histogram also fluctuates above and below zero line. A positive histogram indicates that MACD is above its signal line, while MACD going below
its signal line makes a negative histogram. A negative MACD Histograms generates sell signal.

To use MACD indicator and MACD Histogram in FinancialChart, add a FinancialChart control to your application and bind it to an
appropriate data source or populate data in it through Quote Collection. The ItemsSource object enables data binding or populating data in
FinancialChart. The MacdBase class exposes FastPeriod, SlowPeriod, and Smoothing period properties. Based on the values of these properties,
data points for Macd indicator and Histogram are calculated and plotted on FinancialChart. The appearance of the series can be manipulated
with MacdLineStyle and SignalLineStyle properties.

FinancialChart also enables you to fetch the calculated Macd values, Macd x values, Signal values, and Signal x values at run-time. This can help
in creating alerts in application or maintaining logs while working with dynamic data.

The following example considers stock data for a company Box Inc. over a period of time and plots its MACD Indicator and MACD
Histogram apart from the volume chart, as shown in the image above. The example uses data from a json file, and DataService.cs class is created
to access this json file.

FinancialChart for WPF 40

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 Private Sub OnFinancialChartRendered(sender As Object, e As C1.WPF.Chart.RenderEventArgs)
 indicatorChart.AxisX.Min = DirectCast(financialChart.AxisX, IAxis).GetMin()
 indicatorChart.AxisX.Max = DirectCast(financialChart.AxisX, IAxis).GetMax()
 End Sub
End Class

C#

[DataContract]
public class Quote
{
 [DataMember(Name = "date")]
 public string Date { get; set; }

 [DataMember(Name = "high")]
 public double High { get; set; }

 [DataMember(Name = "low")]
 public double Low { get; set; }

 [DataMember(Name = "open")]
 public double Open { get; set; }

 [DataMember(Name = "close")]
 public double Close { get; set; }

 [DataMember(Name = "volume")]
 public double Volume { get; set; }
}
/// Interaction logic for MainWindow.xaml
public partial class MainWindow : Window
{
 DataService dataService = DataService.GetService();
 public MainWindow()
 {
 InitializeComponent();
 }
 public List<Quote> Data
 {
 get
 {
 return dataService.GetData();
 }
 }

 private void OnFinancialChartRendered(object sender, C1.WPF.Chart.RenderEventArgs e)
 {
 indicatorChart.AxisX.Min = ((IAxis)financialChart.AxisX).GetMin();
 indicatorChart.AxisX.Max = ((IAxis)financialChart.AxisX).GetMax();
 }
}

Back to Top

Overlays
Technical overlays, like indicators, are a series of derived data points calculated by applying formulas to the historic
and current price of financial instruments. They are used to forecast an asset's market direction. Unlike indicators,
overlays are plotted with the original price or volume data, because their Y-axes scales are same.

The following sections discuss the technical overlays that FinanicalChart supports:

Bollinger Bands
Learn about Bollinger Bands overlay.

Envelopes
Learn about Envelopes overlay.

Bollinger Bands

FinancialChart for WPF 45

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 Private dataService As DataService = DataService.GetService()
 Public Sub New()
 InitializeComponent()
 End Sub
 Public ReadOnly Property Data() As List(Of Quote)
 Get
 Return dataService.GetData()
 End Get
 End Property
End Class

C#

 [DataContract]
 public class Quote
 {
 [DataMember(Name = "date")]
 public string Date { get; set; }

 [DataMember(Name = "high")]
 public double High { get; set; }

 [DataMember(Name = "low")]
 public double Low { get; set; }

 [DataMember(Name = "open")]
 public double Open { get; set; }

 [DataMember(Name = "close")]
 public double Close { get; set; }

 [DataMember(Name = "volume")]
 public double Volume { get; set; }
 }
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 DataService dataService = DataService.GetService();
 public MainWindow()
 {
 InitializeComponent();
 }
 public List<Quote> Data
 {
 get
 {
 return dataService.GetData();
 }
 }
 }
}

Back to Top

Envelopes
Envelopes overlay represent Moving Average Envelopes overlay series for the FinancialChart. These moving average envelopes are percentage
based envelopes that are set above and below a standard moving average. The moving average could be simple or exponential moving average.
During Bullish trends, breakthrough above the upper envelope signifies strength and that the uptrend will continue; during Bearish trends,
breakthrough below the lower envelope signifies strength and that the downtrend will continue.

To use Envelopes overlay in FinancialChart, add a FinancialChart control to your application and bind it to an appropriate data source or populate
data in it through Quote Collection. ItemsSource object enables data binding or populating data in FinancialChart.

Envelopes class exposes Size property, takes percentage values to render upper and lower envelopes, and Type property, to specify Simple or
Exponential Moving average. IndicatorBase class provides the Period property, which takes integer value to specify base period for calculating
simple or exponential moving average. Based on the values of these properties, data points for Envelopes overlays are calculated and plotted
on FinancialChart.

FinancialChart also enables you to fetch the calculated Lower y values and Upper y values at run-time. This can help in creating alerts in
application or maintaining logs while working with dynamic data.

FinancialChart for WPF 50

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 End Property
End Class

C#

[DataContract]
 public class Quote
 {
 [DataMember(Name = "date")]
 public string Date { get; set; }

 [DataMember(Name = "high")]
 public double High { get; set; }

 [DataMember(Name = "low")]
 public double Low { get; set; }

 [DataMember(Name = "open")]
 public double Open { get; set; }

 [DataMember(Name = "close")]
 public double Close { get; set; }

 [DataMember(Name = "volume")]
 public double Volume { get; set; }
 }

/// Interaction logic for MainWindow.xaml
public partial class MainWindow : Window
 {
 DataService dataService = DataService.GetService();
 public MainWindow()
 {
 InitializeComponent();
 }
 public List<Quote> Data
 {
 get
 {
 return dataService.GetData();
 }
 }
 }

Back to Top

Fibonacci Tools
Fibonacci tools enable the calculation and plotting of alert levels, in financial charts, useful in technical analysis. The
mathematical relationships, ratios, between the numbers in Fibonacci series are used in technical analysis to help the
traders of financial instruments in anticipating the changes in price and volume of these instruments.

The following sections discuss the Fibonacci tools that are available in FinancialChart:

Fibonacci Retracements
Learn how to implement Fibonacci Retracements in FinancialChart.

Fibonacci Arcs
Learn how to implement Fibonacci Arcs in FinancialChart.

Fibonacci Fans
Learn how to implement Fibonacci Fans in FinancialChart.

Fibonacci TimeZones
Learn how to implement Fibonacci Time Zones in FinancialChart.

Fibonacci Retracements
Fibonacci Retracements are the technical analysis tools comprising of horizontal lines (or retracement levels) in a FinancialChart. These levels are

FinancialChart for WPF 55

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 Set
 m_Volume = Value
 End Set
 End Property
 Private m_Volume As Double
End Class
''' Interaction logic for MainWindow.xaml
Partial Public Class MainWindow
 Inherits Window
 Private dataService As DataService = dataService.GetService()
 Public Sub New()
 InitializeComponent()
 End Sub
 Public ReadOnly Property Data() As List(Of Quote)
 Get
 Return dataService.GetData()
 End Get
 End Property
End Class

C#

[DataContract]
public class Quote
{
 [DataMember(Name = "date")]
 public string Date { get; set; }

 [DataMember(Name = "high")]
 public double High { get; set; }

 [DataMember(Name = "low")]
 public double Low { get; set; }

 [DataMember(Name = "open")]
 public double Open { get; set; }

 [DataMember(Name = "close")]
 public double Close { get; set; }

 [DataMember(Name = "volume")]
 public double Volume { get; set; }
}

public partial class MainWindow : Window
{
 DataService dataService = DataService.GetService();
 public MainWindow()
 {
 InitializeComponent();
 }
 public List<Quote> Data
 {
 get
 {
 return dataService.GetData();
 }
 }
}

Back to Top

Fibonacci Arcs
Fibonacci Arcs are the technical analysis tools composed of a Base Line and three curved lines extending out from a trend line on FinancialChart.
These arcs enable traders to predict resistance or reversal zones for counter trend bounce situations after decline. A small change in price over a
short time period produces narrow arcs with a short Base Line; a big price move over a long time period produces wide arcs with a long Base Line.

To create Fibonacci Arcs a Base Line is drawn through two points, the high (peak) and the low (trough), in a given period. Arcs are drawn
intersecting this base line at key Fibonacci levels 38.2%, 50%, and 61.8%. In contrast with Fibonacci Retracements, which are concerned only with
change in price, Fibonacci Arcs consider time element too.

To use Fibonacci Arcs tool in FinancialChart, add the control to your application, and bind it to an appropriate data source or populate data in it

FinancialChart for WPF 60

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Back to Top

Fibonacci Fans
Fibonacci Fans are the rising and falling trend lines based on the Fibonacci retracement points. These technical indicators help in measuring the
speed of a trend’s movement, and also to construct support and resistance trend lines. The rising fan lines are used to predict support levels,
while the falling fan lines can help predict resistance levels. In uptrend, if prices move below a Fibonacci Fan trend line, then they are expected to
further fall until the next Fibonacci Fan trend line. In such cases, the Fibonacci Fan lines serve as support. Whereas, in a downtrend, if prices rise to
a Fibonacci Fan trend line then that trend line is expected to serve as resistance.

To create Fibonacci Fans a trend line is first drawn through two points, the high and the low, in a given period and vertical distance between the
two points is divided by the key Fibonacci ratios 38.2%, 50% and 61.8%. A point within the vertical distance is obtained as a result of each of these
divisions. Three 'fan' lines are then created by drawing a line from the leftmost point to each of the three points representing a Fibonacci ratio.
These are the trend lines that are based on Fibonacci retracement points.

To use Fibonacci Fans tool in FinancialChart, add the control to your application, and bind it to an appropriate data source or populate data in it
through Quote Collection. ItemsSource object enables data binding or populating data in FinancialChart.

Fibonacci class exposes Uptrend property. Creating object of FibonacciFans class enables Fibonacci fans in a chart. Additionally, the
FibonacciFans class exposes StartX, EndX, StartY, and EndY properties. Based on the values of these properties, Fibonacci Fan lines are plotted
on FinancialChart.

The following example considers stock data for a company Box Inc. over a period of time and plots fan lines on the same financial chart, as shown
in the image above. The example uses data from a json file, and DataService.cs class is created to access this json file.

Make sure that Build Action property of the json file is set to Embedded Resource.

XAML

<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Fibonacci"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="Fibonacci.MainWindowFans"
 mc:Ignorable="d"
 Title="FibonacciFans"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 Height="300" Width="300">
 <Grid>

 <c1:C1FinancialChart x:Name="financialChart"

copyCode

FinancialChart for WPF 66

Copyright © 2017 GrapeCity, Inc. All rights reserved.

 [DataMember(Name = "volume")]
 public double Volume { get; set; }
}

public partial class MainWindowFans : Window
{
 DataService dataService = DataService.GetService();
 public MainWindowFans()
 {
 InitializeComponent();
 }
 public List<Quote> Data
 {
 get
 {
 return dataService.GetData();
 }
 }
}

Back to Top

Fibonacci Time Zones
Fibonacci Time Zones are the technical indicators used by traders to forecast the periods when the price of a financial instrument will show
significant move. The Time Zones are series of vertical lines that correspond to a sequence of numbers, called Fibonacci numbers (1, 2, 3, 5, 8, 13,
21, 34, and so on.).

A starting position for the time zones (following a major price move) on financial chart is decided by a trader, and a vertical line is placed on every
subsequent day that corresponds to the position in the Fibonacci number sequence. The Fibonacci Time Zones enable technical traders to
anticipate future price changes near these vertical time zone lines, and take buy/ sell decisions. Ideally, traders are advised to ignore initial 7 to 8
time zones, as the potential price reversal points are found ahead of 21, 34, 55, 89, and 144 days, which correspond to the 8th , 9th, 10th, 11th, and
12th time zones.

To use Fibonacci Time Zones in FinancialChart, add the control to your application and bind it to an appropriate data source or populate data in it
through Quote Collection. ItemsSource object enables data binding or populating data in FinancialChart.

Fibonacci class exposes Uptrend property. Creating object of FibonacciTimeZones class enables Fibonacci time zones in a chart. Additionally, the
FibonacciTimeZones class exposes StartX and EndX properties. Based on the values of these properties, time zone lines are plotted
on FinancialChart.

The following example considers stock data for a company Box Inc. over a period of time and plots time zone lines on the same financial chart, as
shown in the image above. The example uses data from a json file, and DataService.cs class is created to access this json file.

Make sure that Build Action property of the json file is set to Embedded Resource.

FinancialChart for WPF 71

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Interaction
In FinancialChart for WPF, there is a set of interactive built-in tools that help you customize and further develop
applications. Features like Range Selector allows end users to adjust the FinancialChart's visible range of data at
runtime.

To know more about Range Selector, click the following link:

Range Selector

Range Selector
FinancialChart's RangeSelector lets a user select a specific range of data to be displayed on the chart. A user can easily bind
the RangeSelector with various types of financial charts. It is mostly used by finance industry to perform stock analysis on
different data ranges.

The RangeSelector has a left thumb (for minimum value) and right thumb (for maximum value) that lets you scroll through
particular time periods on the chart. Users can change the minimum and maximum values of the RangeSelector, and adjust the
visible range of data on the chart by dragging these thumbs to left or right. On dragging the thumb towards left on the range
bar, you reduce its value, and dragging it towards the right increases its value on the range bar.

The following code snippet shows how you can use RangeSelector to create your applications.

DataService.cs

public class DataService
{
 List<Company> _companies = new List<Company>();
 Dictionary<string, List<Quote>> _cache = new Dictionary<string, List<Quote>>();

 private DataService()
 {
 _companies.Add(new Company() { Symbol = "box", Name = "Box Inc" });
 _companies.Add(new Company() { Symbol = "fb", Name = "Facebook" });
 }

 public List<Company> GetCompanies()
 {
 return _companies;
 }

 public List<Quote> GetSymbolData(string symbol)
 {
 if (!_cache.Keys.Contains(symbol))
 {
 string path = string.Format("FinancialChartExplorer.Resources.{0}.json", symbol);
 var stream = Assembly.GetExecutingAssembly().GetManifestResourceStream(path);
 var ser = new DataContractJsonSerializer(typeof(Quote[]));
 var data = (Quote[])ser.ReadObject(stream);
 _cache.Add(symbol, data.ToList());
 }

 return _cache[symbol];
 }

 static DataService _ds;
 public static DataService GetService()
 {
 if (_ds == null)
 _ds = new DataService();

FinancialChart for WPF 77

Copyright © 2017 GrapeCity, Inc. All rights reserved.

