

ComponentOne

FlexChart for WPF

GrapeCity US

GrapeCity
201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206
Tel: 1.800.858.2739 | 412.681.4343
Fax: 412.681.4384
Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com

Table of Contents
Overview 6

Getting Started with WPF Edition 7

FlexChart 8

Key Features 8-9

Feature Comparison 9

Comparing FlexCharts 9-16

Comparing WPF Charts 16-24

Quick Start 24

Step 1: Adding FlexChart to the Project 24-26

Step 2: Binding FlexChart to a Data Source 26-27

Step 3: Running the Project 27-28

Understanding FlexChart 28

FlexChart Fundamentals 28-29

Header and Footer 29

Legend 29-30

Axes 30-32

Plot Area 32-33

Series 33-34

FlexChart Types 34

Area 34-35

Bar 35-36

Bubble 36-37

Column 37-38

Financial 38-39

Candle 39-40

HighLowOpenClose 40-41

Floating Bar 41

Funnel 42-44

Histogram 44-45

Line 45-46

LineSymbols 46-47

Mixed 47-48

Pareto Chart 48-49

RangedHistogram 49-51

FlexChart for WPF 1

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Scatter 51-52

Spline 52-53

SplineArea 53-54

SplineSymbols 54-55

Step 55-57

Working with FlexChart 57

Data 57

Providing Data 57

Binding Data Using a Data Source 58-60

Plotting Data 60-61

Customizing Series 61

Showing or Hiding a Series 61-62

Interpolating Null Values 62-63

Appearance 63

Colors 63

Choosing Colors Interactively 63-64

Setting FlexChart Palette 64-69

Specifying RGB Colors 69

Specifying Hue, Saturation, and Brightness 69-70

Using Transparent Colors 70

Fonts 70

Symbol Styles for Series 70-71

End-User Interaction 71

ToolTips 71-72

Default Tooltip 72

Customizing Tooltip Content 72-73

Formatting Tooltip Content 73-74

Shared Tooltip 74

Axis Scrollbar 74-76

Range Selector 76-78

Line Marker 78-80

Hit Test 80-83

FlexChart Elements 83

FlexChart Axis 83-84

Axis Position 84-85

Axis Title 85-86

FlexChart for WPF 2

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axis Tick Marks 86

Axis Grid Lines 86-87

Axis Bounds 87-88

Axis Scaling 88

Axis Reversing 88-89

Axis Binding 89-90

Multiple Axes 90-91

FlexChart Axes Labels 91

Axes Labels Format 92

Axes Labels Rotation 92

Axes Labels Visibility 92-93

Axes Labels Overlap 93-94

Axis Grouping 94

Categorical Grouping 94-95

Numerical Axis Grouping 96-97

DateTime Axis Grouping 97-99

Annotations 99-100

Adding Annotations 100-101

Positioning Annotations 101-102

Customizing Annotations 102-103

Types of Annotations 103-104

Shape Annotations 104-106

Text Annotation 106

Image Annotation 106-108

Creating Callouts 108-111

FlexChart Legend 111

Legend Position 111-112

Legend Style 112

Legend Toggle 112-113

Legend Text Wrap 113-115

Legend Grouping 115-116

Custom Legend Icon 116-119

FlexChart Series 119-120

Creating and Adding Series 120-121

Adding Data to Series 121-124

Emphasizing Different Types of Data 124-125

FlexChart for WPF 3

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Customizing Series 125-126

Box-and-Whisker 126-131

Error Bar 131-135

Waterfall Series 135-138

Stacked Groups 138-139

FlexChart Data Labels 139-140

Adding and Positioning Data Labels 140-142

Formatting Data Labels 142-144

Manage Overlapped Data Labels 144-145

Multiple Plot Areas 145-148

Trend Lines 148-150

Export 150

Export to Image 150-152

FlexPie 153

Quick Start 153-158

Doughnut Pie Chart 158-159

Exploded Pie Chart 159-160

Header & Footer 160-161

Legend 161-163

Selection 163-164

Data Labels 164

Adding and Positioning Labels 164-165

Formatting Data Labels 165-167

Manage Overlapped Data Labels 167-168

Sunburst Chart 169

Quick Start 169-178

Key Features 178

Legend and Titles 178-182

Selection 182-184

Drilldown 184-185

Data Labels 185

Adding and Positioning Labels 185-186

Formatting Data Labels 186-189

Manage Overlapped Data Labels 189-190

FlexRadar 191

FlexChart for WPF 4

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Quick Start 191-195

Key Features 195

Chart Types 195-197

Legend and Titles 197-199

TreeMap 200

Key Features 200-201

Quick Start 201-206

Elements 206-207

Layouts 207-209

Data Binding 209-214

Selection 214-216

Drilldown 216-217

FlexChart for WPF 5

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Overview
Modern looking, high performance FlexChart, FlexPie, Sunburst, FlexRadar and TreeMap charts for WPF come with
powerful features, flexible data binding, and simple and easy-to-use API. In addition, they provide several basic to
complex chart types for your data visualization needs.

Following sections help you gain insights into these controls and their advanced capabilities.

FlexChart
FlexPie
Sunburst Chart
FlexRadar
TreeMap

FlexChart for WPF 6

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Getting Started with WPF Edition
For information on installing ComponentOne Studio WPF Edition, licensing, technical support, namespaces and
creating a project with the control, visit Getting Started with WPF Edition.

FlexChart for WPF 7

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1studioWPF/#Getting Started with Studio for WPF.html

FlexChart
FlexChart—a powerful data visualization control for Windows—lets you add feature-rich and visually appealing charts
to your Windows Forms applications. The control empowers end-users to visualize data that resonates with their
audiences.

The FlexChart control provides you with numerous 2D chart types, built-in tools for chart interactivity, and diversified
formats for chart rendering.

Whether it is storytelling with data or interpreting complex data, FlexChart helps you accomplish everything
seamlessly.

Below is a complete listing of the sections to get you started and acquainted with the FlexChart control:

Key Features
Feature Comparison
FlexChart Quick Start
Understanding FlexChart
Working with FlexChart

Key Features
FlexChart for WPF is an impeccable data visualization component in terms of performance, presentation, and overall
quality. The control offers the following features:

1. Automatic Legend generation: Just specify the name of the series, and the Legend is displayed automatically.

2. Axis labels automatic rotation: Let long axis labels get rotated automatically, thereby rendering a clean
appearance.

3. Axis Grouping: Group the axis labels while working with any kind of data (categorical, numeric or date time)
for better readability and analysis.

4. Chart export: You can export your application to different formats, such as SVG, JPG, and PNG.

5. Direct X support: The control supports Direct X rendering engine.

6. Flexible data labels: Set offset, border, and position for data labels. The control also provides various options
to manage overlapping of data labels such as automatic arrangement, hiding overlapped data labels and,
rotation.

7. In-built selection support: Click on the chart and select either a single data point or an entire data series.

8. Interpolate nulls: Handle null values in line and area charts effectively by using the InterpolateNulls property.

9. Legend wrapping: Let the Legend items appear in several rows and columns depending upon the available
space.

FlexChart for WPF 8

Copyright © 2018 GrapeCity, Inc. All rights reserved.

10. Multiple chart types: Add as many series as you want in a single chart. Set the desired chart type at each
series, and thus integrate multiple chart types in a single chart.

11. Pre-defined and custom palettes: Choose from a number of pre-defined palettes or apply a custom palette
to the chart.

12. Powerful and flexible data binding: Specify data source either at the series level or the chart level, as per
your requirements. You can combine multiple data sources in a single chart as well.

13. Series toggling: Toggle the visibility of a series in the plot as well as the legend by using the LegendToggle
property.

14. Simple to use: It is simple to work with the FlexChart control due to its clear object model.

15. Stacked or 100% stacked charts: Make a chart stacked or 100% stacked by setting just one property.

16. Support for categorical, numerical, and data or time axis: Bind to different data types ranging from int,
float, and string to DateTime.

17. ToolTip customization: Leverage powerful tooltip customization features.

18. Flexible data labels: Set offset, border, and position for data labels. The control also provides various options
to manage overlapping of data labels such as automatic arrangement, hiding overlapped data labels and,
rotation.

Feature Comparison
This topic provides you with comparison charts that help you compare features offered by FlexChart across different
platforms and features of FlexChart for WPF with those of another chart.

Comparing FlexCharts
Comparison of FlexChart across three platforms- WPF, WinForms, and UWP.

Comparing WPF Charts
Comparison of FlexChart for WPF with another chart.

Comparing FlexCharts
Explore all of the features offered by FlexChart in WPF, WinForms, and UWP. You can download the matrix in PDF.

Chart Types

Chart Types WPF Win UWP

Area ✓ ✓ ✓

StackedArea ✓ ✓ ✓

StackedArea100 ✓ ✓ ✓

SplineArea ✓ ✓ ✓

FlexChart for WPF 9

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://prerelease.componentone.com/help/WPF/FeatureComparisonMatrix_FlexChart.pdf

StackedSplineArea ✓ ✓ ✓

StackedSplineArea100 ✓ ✓ ✓

StepArea ✓ ✓ ✓

Bar ✓ ✓ ✓

StackedBar ✓ ✓ ✓

StackedBar100 ✓ ✓ ✓

Bubble ✓ ✓ ✓

CandleStick ✓ ✓ ✓

Column ✓ ✓ ✓

StackedColumn ✓ ✓ ✓

StackedColumn100 ✓ ✓ ✓

Histogram ✓ ✓ ✓

RangedHistogram ✓ ✓ ✓

Floating Bar ✓ ✓ ✓

Stock/
HighLowOpenClose

✓ ✓ ✓

Line ✓ ✓ ✓

LineStacked ✓ ✓ ✓

LineStacked100 ✓ ✓ ✓

Spline ✓ ✓ ✓

SplineStacked ✓ ✓ ✓

SplineStacked100 ✓ ✓ ✓

LineSymbols ✓ ✓ ✓

StackedLineSymbols ✓ ✓ ✓

StackedLineSymbols100 ✓ ✓ ✓

SplineSymbols ✓ ✓ ✓

SplineSymbolsStacked ✓ ✓ ✓

StackedSplineSymbols100 ✓ ✓ ✓

Step ✓ ✓ ✓

StepSymbols ✓ ✓ ✓

Pareto ✓ ✓ ✓

Pie ✓ ✓ ✓

Doughnut ✓ ✓ ✓

PieExploded ✓ ✓ ✓

FlexChart for WPF 10

Copyright © 2018 GrapeCity, Inc. All rights reserved.

DoughnutExploded ✓ ✓ ✓

Point/ Scatter ✓ ✓ ✓

Radar ✓ ✓ ✓

Polar ✓ ✓ ✓

Box-and-Whisker ✓ ✓ ✓

ErrorBar ✓ ✓ ✓

Funnel ✓ ✓ ✓

Sunburst ✓ ✓ ✓

Waterfall ✓ ✓ ✓

2D ✓ ✓ ✓

Heikin-Ashi * * *

LineBreak/ThreeLineBreak * * *

Renko * * *

Kagi * * *

ColumnVolume * * *

EquiVolume * * *

CandleVolume * * *

ArmsCandleVolume * * *

* Available in FinancialChart

DataBinding

Data Binding WPF Win UWP

Objects
implementing
IEnumerable

✓ ✓ ✓

Core Features

Core Features WPF Win UWP

Handle Empty/
Null Data Points

✓ ✓ ✓

HitTest ✓ ✓ ✓

Annotations ✓ ✓ ✓

Render Modes Native/Direct2D/Direct3D Native/DirectX Native/Direct3D

Trend Lines ✓ ✓ ✓

Coordinate
Conversion
Methods

✓ ✓ ✓

FlexChart for WPF 11

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWin/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartUWP/FinancialChartTypes.html

Batch Updates ✓ ✓ ✓

Serialization
Support

✓

Sunburst
Drilldown

✓ ✓ ✓

TreeMap
Drilldown

✓ ✓ ✓

Look & Feel

Look & Feel WPF Win UWP

Predefined Palettes 16 16 16

Custom Palette ✓ ✓ ✓

Background Color ✓ ✓ ✓

Background Image ✓ ✓ ✓

Background
Gradient/
HatchStyles

✓ ✓ ✓

Border and Border
Styles

✓ ✓ ✓

Chart Area

Chart Area WPF Win UWP

Header ✓ ✓ ✓

Footer ✓ ✓ ✓

Header/Footer
Borders

✓ ✓ ✓

Header/Footer
Alignment

✓ ✓ ✓

Rotate ChartArea ✓ ✓ ✓

Plot Area

Plot Area WPF Win UWP

Plot margins ✓

Markers for
PlotElements

Supported on FlexChart
with
LineSymbols/SplineSymbols
and Scatter chart types

Supported on FlexChart
with
LineSymbols/SplineSymbols
and Scatter chart types

Supported on FlexChart
with
LineSymbols/SplineSymbols
and Scatter chart types

Markers Size ✓ ✓ ✓

Markers: ✓ ✓ ✓

FlexChart for WPF 12

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Border and
Border
styling

Background
Image/
Gradient/
HatchStyle
for
PlotElements

✓ ✓ ✓

Data Labels

Data Labels WPF Win UWP

Offset ✓ ✓ ✓

ConnectingLines ✓ ✓ ✓

Borders and Border
styling

✓ ✓ ✓

Styling ✓ ✓ ✓

Format String ✓ ✓ ✓

Custom Content ✓ ✓ ✓

Manage Overlapping ✓ ✓ ✓

Positions for Cartesian
charts

Bottom/ Center/ Left/
None/ Right/ Top

Bottom/ Center/ Left/
None/ Right/ Top

Bottom/
Center/
Left/
None/
Right/
Top

Positions for Pie charts Center/ Inside/ Outside/
None

Center/ Inside/ Outside/
None

Center/
Inside/
Outside/
None

Annotations

Annotations Win WPF UWP

Pre-defined Shapes ✓ ✓ ✓

Position ✓ ✓ ✓

Attaching Annotations ✓ ✓ ✓

Offset ✓ ✓ ✓

Styling ✓ ✓ ✓

Tooltip ✓ ✓ ✓

Customization ✓ ✓ ✓

FlexChart for WPF 13

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes

Axes WPF Win UWP

Axes: Primary X/Y ✓ ✓ ✓

Axes: Secondary
X/Y

✓ ✓ ✓

Axes: Multiple
Secondary X/Y

✓ ✓ ✓

Axis Label:
Format strings

✓ ✓ ✓

Axis Label: Hide ✓ ✓ ✓

Axis Label: styling ✓ ✓ ✓

Axis Range
(Min/Max) values

✓ ✓ ✓

Axis: Hide ✓ ✓ ✓

Axis: Logarithmic ✓ ✓ ✓

Axis: Reverse ✓ ✓ ✓

AxisLine Styling ✓ ✓ ✓

Labels: Alignment ✓ ✓ ✓

Labels: Angle ✓ ✓ ✓

Labels: Manage
overlapping

✓ ✓ ✓

Major/ Minor
GridLines

✓ ✓ ✓

Major/ Minor
TickMarks

✓ ✓ ✓

Major/ Minor
Units

✓ ✓ ✓

Title and Title
styling

✓ ✓ ✓

Configure Origin Any value Any value ✓

TickMarks
Position

Cross/ Inside/ Outside/
None

Cross/ Inside/ Outside/
None

Cross/ Inside/ Outside/
None

Position Top/ Bottom/ Left/
Right/ Auto/ None

Top/ Bottom/ Left/
Right/ Auto/ None

Top/ Bottom/ Left/
Right/ Auto/ None

Series

Series WPF Win UWP

Multiple ✓ ✓ ✓

FlexChart for WPF 14

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Series

Data binding ✓ ✓ ✓

Chart types
at series level

✓ ✓ ✓

Styling ✓ ✓ ✓

Visibility Plot/ Legend/ Both Plot
and Legend/ Hidden

Plot/ Legend/ Both Plot
and Legend/ Hidden

Plot/ Legend/ Both Plot
and Legend/ Hidden

Conditional
Formatting

✓ ✓ ✓

Legends

Legends WPF Win UWP

Title ✓ ✓ ✓

Title Style ✓ ✓ ✓

Toggle Series Visibility
from legend

✓ ✓ ✓

Orientation Auto/ Vertical/
Horizontal

Auto/ Vertical/
Horizontal

Auto/ Vertical/
Horizontal

Position Left/ Top/ Right/
Bottom

Left/ Top/ Right/
Bottom

Left/ Top/ Right/
Bottom

Custom Legend Icon ✓ ✓ ✓

Legend Text Wrap ✓ ✓ ✓

Legend Grouping ✓ ✓ ✓

Marker Symbols

Marker Symbols WPF Win UWP

Box ✓ ✓ ✓

Dot ✓ ✓ ✓

User Interactions

User Interactions WPF Win UWP

Tooltips ✓ ✓ ✓

Series selection ✓ ✓ ✓

Point selection ✓ ✓ ✓

LineMarkers aka
Crosshairs

✓ ✓ ✓

Range Selector ✓ ✓ ✓

Zooming ✓ ✓ ✓

FlexChart for WPF 15

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Scrolling ✓ ✓ ✓

Axis Scrollbar ✓ ✓ ✓

Tooltips

Tooltips WPF Win UWP

Auto tooltips ✓ ✓ ✓

Custom content ✓ ✓ ✓

Show Delay ✓ ✓ ✓

Styling ✓ ✓ ✓

Tooltips for
different chart
elements

Pie Charts

Pie Charts WPF Win UWP

Exploded slices ✓ ✓ ✓

Inner Radius ✓ ✓ ✓

Starting Angle of
first slice

✓ ✓ ✓

Exporting/Importing & Printing

Exporting/Importing
& Printing

WPF Win UWP

Export to JPEG/ JPG ✓ ✓ ✓

Export to PNG ✓ ✓ ✓

Export to SVG ✓

Export to BMP ✓ ✓

Printing support ✓ ✓ ✓

Footprint

Footprint WPF Win UWP

Assembly Size 183KB 229KB 218KB

Comparing WPF Charts
Explore all of the features offered by FlexChart and WPF Toolkit Chart. You can download the matrix in PDF.

Chart Types

FlexChart for WPF 16

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://prerelease.componentone.com/help/WPF/FeatureComparisonMatrix_FlexChartWPF.pdf

Features FlexChart WPF Toolkit Chart

Area ✓ ✓

StackedArea ✓

StackedArea100 ✓

SplineArea ✓

StackedSplineArea ✓

StackedSplineArea100 ✓

StepArea ✓

Bar ✓ ✓

StackedBar ✓

Floating Bar ✓

StackedBar100 ✓

Bubble ✓ ✓

CandleStick ✓

Column ✓ ✓

Combination charts ✓ ✓

StackedColumn ✓

StackedColumn100 ✓

Stock/ HighLowOpenClose ✓

Histogram ✓

Pareto ✓

Ranged Histogram ✓

Line ✓

LineStacked ✓

LineStacked100 ✓

Spline ✓

SplineStacked ✓

SplineStacked100 ✓

Step ✓ ✓

StepSymbols ✓ ✓

LineSymbols ✓ ✓

StackedLineSymbols ✓

StackedLineSymbols100 ✓

SplineSymbols ✓

FlexChart for WPF 17

Copyright © 2018 GrapeCity, Inc. All rights reserved.

SplineSymbolsStacked ✓

StackedSplineSymbols100 ✓

Pie ✓ ✓

Doughnut ✓

PieExploded ✓

DoughnutExploded ✓

Point/ Scatter ✓ ✓

Radar ✓ ✓

Polar ✓ ✓

Box-and-whisker ✓ ✓

ErrorBar ✓ ✓

Funnel ✓ ✓

Sunburst ✓

Waterfall ✓

2D ✓ ✓

Heikin-Ashi *

LineBreak/ThreeLineBreak *

Renko *

Kagi *

ColumnVolume *

EquiVolume *

CandleVolume *

ArmsCandleVolume *

Data Binding

Features FlexChart WPF Toolkit Chart

Objects implementing IEnumerable ✓ ✓

Core Features

Features FlexChart WPF Toolkit Chart

Handle Empty/ Null Data Points ✓

HitTest ✓ ✓

Trendlines ✓

Coordinate Conversion Methods ✓

Annotations ✓

FlexChart for WPF 18

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html
http://helpcentral.componentone.com/nethelp/FinancialChartWPF/FinancialChartTypes.html

Render Modes Default/Direct2D/Direct3D

Batch Updates ✓

Moving Average ✓

Chart Optimization

Load Animation ✓

Transition Animation

Grouping and Aggregation

LineMarkers ✓ ✓

Multiple axes ✓

Multiple plot areas ✓

Chart Features

Features FlexChart MS Chart

Annotations ✓ ✓

Axis binding ✓ ✓

Customizable data labels ✓ ✓

Customizable headers and footers ✓ ✓

Data Manipulations

Features FlexChart MS Chart

Aggregation With custom code ✓

Sorting With custom code ✓

TopN With custom code ✓

Look & Feel

Features FlexChart WPF Toolkit Chart

Themes

Predefined Palettes 16

Custom Palette ✓

Background Color ✓ ✓

Background Image ✓ ✓

Background Gradient ✓ ✓

Border and Border Styles ✓ ✓

Chart Area

Features FlexChart WPF Toolkit Chart

FlexChart for WPF 19

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Header ✓ ✓

Footer ✓

Multiple Headers

Header/ Footer Borders ✓ ✓

Header/ Footer Alignment ✓

Rotate ChartArea ✓

Multiple Chart Areas

Toggle Visibility

PlotArea Collection

Plot Area

Features FlexChart WPF Toolkit Chart

Plot margins ✓

Markers for
PlotElements

Supported on FlexChart with
LineSymbols/ SplineSymbols and

Scatter chart types

Markers Size ✓

Plot Areas: Multiple

Plot Elements:
Background Image/
Gradient/Color

✓ ✓

Plot Elements: Border
and Border styling

✓

LineMarkers/CrossHair

Data Labels

Features FlexChart WPF Toolkit Chart

Offset ✓

ConnectingLines ✓

Borders and Border styling ✓

Styling ✓

Format String ✓

Custom Content ✓

Positions for Cartesian charts Bottom/ Center/
Left/ None/ Right/

Top

Manage Overlapping ✓

FlexChart for WPF 20

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Positions for Pie charts Center/ Inside/
Outside/ None

Axis

Features FlexChart WPF Toolkit Chart

Axes: Primary X/Y ✓ ✓

Axes: Secondary X/Y ✓ ✓

Axes: Multiple Secondary X/Y ✓ ✓

Axis Label: Format strings ✓ ✓

Axis Label: Hide ✓

Axis Label: styling ✓

Axis Range (Min/Max) values ✓ ✓

Axis: Hide ✓ ✓

Axis: Logarithmic ✓

Axis: Reverse ✓

AxisLine Styling ✓

Labels: Angle ✓

Labels: Manage overlapping ✓

Major/ Minor GridLines ✓ ✓

Major/ Minor TickMarks ✓ ✓

Major/ Minor Units ✓ Only MajorUnit

TickMarks Thickness

TickMarks Styling ✓

Title and Title Styling ✓ ✓

Configure Origin Any value

TickMarks Position Cross/ Inside/ Outside/
None

Position Top/ Bottom/ Left/ Right/
Auto/ None

Auto/Bottom/Left/Right/Top

Axis Label: Custom

ArrowHead styling

Axis Label: Staggered

ScaleBreaks

Predefined DateTime Interval
Types

✓

Sort Order for CategoryAxis ✓

FlexChart for WPF 21

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Series

Features FlexChart WPF Toolkit Chart

Multiple Series ✓ ✓

Data binding ✓ ✓

Chart types at series level ✓

Styling ✓ ✓

Visibility Plot/ Legend/ Both
Plot and Legend/

Hidden

✓

Conditional Formatting ✓

X and Y value functions

RoundedRadius for Bar Charts

Stacked charts ✓

Legends

Features FlexChart WPF Toolkit Chart

Title ✓ ✓

Title Style ✓

Toggle Series Visibility from legend ✓

Orientation Auto/ Vertical/ Horizontal

Position Left/ Top/ Right/ Bottom

Custom Legend Items ✓

Items Ordering

Multiple Legends

Marker Symbols

Features FlexChart WPF Toolkit Chart

Box ✓

Cross ✓

DiagonalCross

Dot

Diamond

Triangle

Star4

Star8

FlexChart for WPF 22

Copyright © 2018 GrapeCity, Inc. All rights reserved.

User Interactions

Features FlexChart WPF Toolkit Chart

Tooltips ✓ ✓

Series selection ✓

Point selection ✓ ✓

Zooming ✓

Scrolling ✓

Drilldown With custom code With custom code

Axis Scrollbar ✓

Range Selector ✓

Draggable Markers

3D Chart Rotations

Tooltips

Features FlexChart WPF Toolkit Chart

Auto tooltips ✓ ✓

Custom content ✓

Show Delay ✓

Styling ✓

Tooltips for different chart elements

Pie Charts

Features FlexChart WPF Toolkit Chart

Exploded slices ✓

Inner Radius ✓

Starting Angle of first slice ✓

Exporting, Importing & Printing

Features FlexChart WPF Toolkit Chart

Export to JPEG/ JPG ✓

Export to PNG ✓

Export to BMP ✓

Export to GIF

Export to TIFF

Export to PDF

FlexChart for WPF 23

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Export to SVG

Export to EMF

Export to EMfDual

Export to EMfPlus

Export to WMP

Save/ Load to Binary files

Save/ Load to memory streams

Save/ Load to XML

Printing ✓ ✓

Footprint

Feature FlexChart WPF Toolkit Chart

Assembly Size 144KB 276KB

Pricing

Feature FlexChart MS Chart

Pricing $ $

Quick Start
This quick start guides you through a step-by-step process of creating a simple FlexChart application and running the
same in Visual Studio.

Go through the below-mentioned steps to walk through the FlexChart control quickly.

1. Adding FlexChart to the Project
2. Binding FlexChart to a Data Source
3. Running the Project

Step 1: Adding FlexChart to the Project
This step enables you to create a simple chart application using FlexChart for WPF. When you add
the FlexChart control to your Visual Studio project, you would have a functional column chart with dummy data.

Perform the following steps:

1. Create a new WPF Application in Visual Studio.
1. Select File | New | Project. The New Project dialog box appears.
2. In the New Project dialog box, select a language in the left-hand pane, and then select WPF

Application from the list of applications in the center pane.
3. Give your application a Name, and then select OK.

2. Open the MainWindow.xaml file.
3. Place your cursor between the <Grid> </Grid> tags within either your Window or your UserControl,

depending on the type of application you've created.

FlexChart for WPF 24

Copyright © 2018 GrapeCity, Inc. All rights reserved.

4. Locate the FlexChart control in Visual Studio's ToolBox. Double-click the control to add it to your application.
The following reference is added to the project:
C1.WPF.FlexChart.4.dll
If the reference is not added, you need to add the same manually - right-click the References folder in the
Solution Explorer and select Add | New Reference.

The XAML markup resembles the following:

XAML
<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="QuickStart.MainWindow"
 Title="MainWindow" Height="886.465" Width="1182.397">
 <Grid Margin="46,0,0,12">

 <c1:C1FlexChart x:Name="flexChart"
 HorizontalAlignment="Left"
 Height="377"
 VerticalAlignment="Top"
 Width="702"
 Margin="130,179,0,0">
 <c1:Series AxisX="{x:Null}"
 AxisY="{x:Null}"
 Binding="Y"
 BindingX="X"
 Chart="{x:Null}"
 SeriesName="Series 1">
 <c1:Series.ItemsSource>
 <PointCollection>1,8 2,12 3,10 4,12 5,15</PointCollection>
 </c1:Series.ItemsSource>
 </c1:Series>
 <c1:Series AxisX="{x:Null}"
 AxisY="{x:Null}"
 Binding="Y"
 BindingX="X"
 Chart="{x:Null}"
 SeriesName="Series 2">
 <c1:Series.ItemsSource>
 <PointCollection>1,10 2,16 3,17 4,15 5,23</PointCollection>
 </c1:Series.ItemsSource>
 </c1:Series>
 <c1:Series AxisX="{x:Null}"
 AxisY="{x:Null}"
 Binding="Y"
 BindingX="X"
 Chart="{x:Null}"
 SeriesName="Series 3">
 <c1:Series.ItemsSource>
 <PointCollection>1,16 2,19 3,15 4,22 5,18</PointCollection>
 </c1:Series.ItemsSource>
 </c1:Series>
 </c1:C1FlexChart>

 </Grid>
</Window>

5. Run the application.

FlexChart for WPF 25

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The output appears as shown in figure below.

 You have successfully created a WPF Application containing the FlexChart control.

Step 2: Binding FlexChart to a Data Source
This step allows you to bind FlexChart to a data source.

1. Create the data source as follows:
1. Right-click the project and select Add | Class.
2. Select Class from the list of templates, name it as DataCreator.cs, and click Add.
3. Add the following code in DataCreator.cs class to generate the data.

Visual Basic
Public Class DataCreator Public Shared Function CreateData() As List(Of DataItem) Dim data
= New List(Of DataItem)() data.Add(New DataItem("UK", 5, 4)) data.Add(New DataItem("USA",
7, 3)) data.Add(New DataItem("Germany", 8, 5)) data.Add(New DataItem("Japan", 12, 8))
Return data End Function End Class Public Class DataItem Public Sub New(country__1 As
String, sales__2 As Integer, expenses__3 As Integer) Country = country__1 Sales = sales__2
Expenses = expenses__3 End Sub Public Property Country() As String Get Return m_Country End
Get Set m_Country = Value End Set End Property Private m_Country As String Public Property
Sales() As Integer Get Return m_Sales End Get Set m_Sales = Value End Set End Property
Private m_Sales As Integer Public Property Expenses() As Integer Get Return m_Expenses End
Get Set m_Expenses = Value End Set End Property Private m_Expenses As Integer End Class

C#
class DataCreator
{
 public static List<DataItem> CreateData()
 {
 var data = new List<DataItem>();
 data.Add(new DataItem("UK", 5, 4));
 data.Add(new DataItem("USA", 7, 3));
 data.Add(new DataItem("Germany", 8, 5));
 data.Add(new DataItem("Japan", 12, 8));
 return data;
 }
}

public class DataItem
{
 public DataItem(string country, int sales, int expenses)
 {
 Country = country;

FlexChart for WPF 26

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Sales = sales;
 Expenses = expenses;
 }

 public string Country { get; set; }
 public int Sales { get; set; }
 public int Expenses { get; set; }
}

2. Bind the data to FlexChart as follows:

1. Edit the <Grid> tag to the following markup to provide data to FlexChart:
XAML

<Grid>
 <c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}" Rendered="flexChart_Rendered">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>

To specify the binding source, you need to add the DataContext = "{Binding RelativeSource={RelativeSource
Mode=Self}}" markup in the <Window> tag of the MainWindow.xaml file.

2. Switch to Code view (MainWindow.xaml.cs or MainWindow.xaml.vb). Add the following code in the MainWindow class to
plot the data in the chart

MainWindow.xaml.vb
Private _data As List(Of DataItem)
Public Sub New()
 Me.InitializeComponent()
End Sub

Public ReadOnly Property Data() As List(Of DataItem)
 Get
 If _data Is Nothing Then
 _data = DataCreator.CreateData()
 End If

 Return _data
 End Get
End Property

MainWindow.xaml.cs
private List<DataItem> _data;
public MainWindow()
{
 InitializeComponent();

}

public List<DataItem> Data
{
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateData();
 }

 return _data;
 }
}

You have successfully bound FlexChart to the data source.

Step 3: Running the Project

FlexChart for WPF 27

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Now that you've created the WPF Application, the only thing left to do is run your application. Press F5 to run the
application.

The output looks similar to the following image:

Understanding FlexChart
To get started with the FlexChart control, you need thorough understanding of all FlexChart fundamentals
and FlexChart types.

This section, therefore, takes you through the basics of the control in an easy-to-understand manner.

Click the following links to find information on all FlexChart basics and types:

FlexChart Fundamentals
FlexChart Types

FlexChart Fundamentals
FlexChart consists of the following elements:

Header and Footer
Legend
Axes
Plot Area
Series

The control has a rich object model that represents these elements in terms of objects and provides relevant
properties for the same.

FlexChart for WPF 28

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following image displays the various elements:

Header and Footer
Header and Footer are used to display descriptive and relevant information with respect to the chart.

In FlexChart, these elements are set by using the Header and the Footer property. Both properties are the members of
the FlexChartBase class.

FlexChart for WPF 29

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Legend
The Legend displays an entry for each data series in the chart. It represents the mapping between colors, symbols, and
data series.

In FlexChart, the Legend is automatically generated based upon the series that have been added into the chart.
However, you can use different properties to customize the Legend accordingly.

Property Description

LegendPosition Sets the position of the chart legend .

LegendStyle Sets the style of the chart legend.

LegendToggle Indicates whether clicking legend items toggles the series visibility in the chart.

For more details on Legend, refer to FlexChart Legend.

Axes
In a chart, there are two primary axes: X and Y. There are, of course, exceptions when you work with pie charts.

FlexChart for WPF 30

Copyright © 2018 GrapeCity, Inc. All rights reserved.

In FlexChart, X-axis and Y-axis are represented by the AxisX and the AxisY property respectively. Both the properties
return an Axis object comprising the properties given below:

Layout and Style Properties

Property Description

AxisLine Determines whether the axis line is visible.

AxisType Contains the type of the axis.

Position Sets the position of the axis.

Reversed Reverses the direction of the axis.

Style Sets the style of the axis.

Title Sets the titles of the axis.

Axis Label Properties

Property Description

Format Sets the format string for the axis labels.

LabelAlignment Sets the alignment of the axis labels.

LabelAngle Set the rotation angle of the axis labels.

Labels Determines whether the axis labels are visible.

MajorUnit Sets the distance between axis labels.

OverlappingLabels Indicates how to handle overlapping axis labels.

Axis Grouping Properties

Property Description

FlexChart for WPF 31

Copyright © 2018 GrapeCity, Inc. All rights reserved.

GroupNames Sets the group name for the axis labels.

GroupItemsPath Sets the group name for the axis labels in hierarchical data.

GroupSeparator Set the axis group separator.

GroupProvider Sets the axis group provider.

Scaling, Tick Mark, and Grid line Properties

Property Description

MajorGrid Determines whether the axis includes major grid lines.

MajorGridStyle Contains properties to control the appearance of the major grid lines drawn perpendicular
to the major tickmarks.

MinorGrid Determines whether the axis includes minor grid lines.

MinorGridStyle Contains properties to control the appearance of the minor grid lines drawn perpendicular
to the minor tickmarks.

MajorTickMarks Indicates the appearance of major tick marks.

MinorTickMarks Indicates the appearance of minor tick marks.

Max Sets the maximum value for the axis.

Min Sets the minimum value for the axis.

Origin Sets the value at which an axis crosses the perpendicular axis.

 For more information on Axes, refer to FlexChart Axes.

Plot Area
The Plot Area contains data plotted against X-axis and Y-axis.

In FlexChart, the Plot Area can be customized by using the PlotStyle property, which returns the ChartStyle object
containing the following properties:

FlexChart for WPF 32

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Property Description

Fill Sets the fill brush.

Stroke Sets the stroke brush.

StrokeDashArray Sets the stroke dash array.

StrokeThickness Sets the stroke thickness.

In addition, FlexChart allows creating multiple plot areas that increase data visibility by displaying a single series in a
separate plot area.

For more information about multiple plot areas, see Multiple Plot Areas.

Series
Series are the groupings of the related points of data inside the Plot Area of the chart.

The following image illustrates data series in FlexChart:

You can access the series collection in FlexChart by using the Series property. And you can control the chart series by
using the Series object comprising the following properties:

Property Description

ActualBinding Gets the actual binding

ActualBindingX Gets the actual X-binding

ActualChart Gets the actual chart.

ActualItemsSource Gets the actual items source.

AxisX Sets the series X-axis.

AxisY Sets the series Y-axis.

Binding Sets the name of the property that contains Y values for the series.

FlexChart for WPF 33

Copyright © 2018 GrapeCity, Inc. All rights reserved.

BindingX Sets the name of the property that contains X values for the series.

ChartType Sets the series chart type.

ItemsSource Sets the collection of objects containing the series data.

MemberPaths Sets the array of member bindings for the series.

SeriesName Sets the series name.

Style Sets the style of the series.

SymbolMarker Sets the shape of the marker to be used for each data point in the series. This property applies
to Scatter, LineSymbols, and SplineSymbols chart types only.

SymbolSize Sets the size (in pixels) of the symbols used to render the series. This property also applies to
Scatter, LineSymbols, and SplineSymbols chart types only.

Visibility Sets the series visibility.

For more information on series, refer to FlexChart series.

FlexChart Types
FlexChart offers a comprehensive set of chart types to meet all data visualization requirements of your end-users.

Below is a full listing of all the chart types offered by the control. Based upon the chart type you would like to use in
your application, click the corresponding link to avail key information on the same.

Area Chart
Bar Chart
Bubble Chart
Column Chart
Financial Charts
Floating Bar Chart
Funnel Chart
Histogram Chart
Line Chart
LineSymbols Chart
Mixed Chart
Pareto Chart
RangedHistogram Chart
Scatter Chart
Spline Chart
SplineArea Chart
SplineSymbols Chart
Step Chart

Area
The Area Chart depicts change in data over a period of time. It represents data series by connecting data points
against Y-axis and filling the area between the series and X-axis. In addition, the chart displays data series in the same
order in which they are added—back-to-front.

FlexChart for WPF 34

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create the Area Chart, you can set the ChartType property to Area in the Properties window or in XAML. Or you can
also set the same programmatically.

In addition, you can set the Stacking property to Stacked or Stacked100pc to create the stacking Area Chart.

Area Chart

The following code implements the above-mentioned scenario:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Area"
 Margin="0,0,74,0">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Area;

copyCode

Bar
The Bar Chart compares values across various categories or displays variations in a data series over time. The chart
displays horizontal bars for data series plotted against X-axis and arranges categories or items on Y-axis.

FlexChart for WPF 35

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Set the ChartType property to Bar in the Properties window, in XAML, or in code to create the Bar Chart.

To create the stacking Bar Chart, you need to set the Stacking property either to Stacked or Stacked100pc.

Bar Chart

See the following code to implement the scenario:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Bar">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Bar;

copyCode

Bubble
The Bubble Chart, which is basically a type of the Scatter Chart, is used for graphical representation of multi-
dimensional data. It displays an additional data value at each point by changing its size. The chart type represents
data points in the form of bubbles (data markers) whose X and Y coordinates are determined by two data values and
whose size indicates the value of a third variable.

FlexChart for WPF 36

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create the Bubble Chart, you need to set the ChartType property to Bubble either in the Properties window (at
design-time) or code behind (at run-time). You can also set the same in XAML.

Bubble Chart

Below is the implementation in code:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="X"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Bubble">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Bubble"
 Binding="Y,Size"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = ChartType.Bubble;

copyCode

Column
The Column Chart, just like the Bar Chart, represents variation in a data series over time or compares different items. It
displays values of one or more items as vertical bars against Y-axis and arranges items or categories on X-axis.

FlexChart for WPF 37

Copyright © 2018 GrapeCity, Inc. All rights reserved.

You need to set the ChartType property to Column in the Property window, in the code behind, or in XAML to create
the Column Chart.

Set the Stacking property to Stacked or Stacked100pc to create the stacking Column Chart.

Column Chart

The code below demonstrates the implementation:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Column">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Column;

copyCode

Financial
Financial charts are used to represent fluctuation in market or stock prices; nonetheless, these charts can also be used

FlexChart for WPF 38

Copyright © 2018 GrapeCity, Inc. All rights reserved.

to represent scientific data.

The FlexChart control supports two types of financial charts: Candle Chart and HighLowOpenClose Chart.

To use these chart types, you need to set the ChartType property either to Candlestick or to HighLowOpenClose at
design-time or run-time or in XAML.

Following are the financial chart types:

Candle Chart
HighLowOpenClose Chart

Candle
The Candle Chart integrates Bar and Line charts to depict a range of values over time. It consists of visual elements
known as candles that are further comprised of three elements: body, wick, and tail.

The body represents the opening and the closing value, while the wick and the tail represent the highest and
the lowest value respectively.
A hollow body indicates a rising stock price (the closing value is greater than the opening value).
A filled body indicates a falling stock price (the opening value is greater than the closing value).

Candle Chart

The following code shows the implementation:

XAML

FlexChart for WPF 39

Copyright © 2018 GrapeCity, Inc. All rights reserved.

<c1:C1FlexChart x:Name="flexChart"
 BindingX="Time"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Candlestick">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Price"
 Binding="High,Low,Open,Close"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Candlestick;

copyCode

HighLowOpenClose
The HighLowOpenClose Chart is generally used in stock analysis. The chart combines four independent values to
supply high, low, open, and close data values for each data point in a series.

HighLowOpenClose Chart

See the following code for implementing the scenario:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Time"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="HighLowOpenClose">
 <c1:C1FlexChart.Series>

FlexChart for WPF 40

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <c1:Series SeriesName="Price"
 Binding="High,Low,Open,Close"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.HighLowOpenClose;

copyCode

Floating Bar
Floating bar chart provides an interesting way to represent data in charts. In this type of chart, a single or multiple
bars apparently floats between a minimum and maximum value instead of being connected to the axis. It displays
information as a range of data by plotting two Y-values(low and high) per data point. The Y-axis shows the values, and
the X-axis shows the category they belong to. Floating bars can be useful to show highs and lows in a data set, such
as daily high and low temperatures, stock prices, blood pressure readings, etc.

In FlexChart, Floating bar chart can be implemented using the Series class. To begin with, create a new Series object
and specify its properties. Then, use the SymbolRendering event provided by the Series class to plot the data points
on the chart.

To implement Floating bar chart using the FlexChart control, see FloatingBarChart sample. The samples are available
in the default installation folder - Documents\ComponentOne Samples\

FlexChart for WPF 41

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Funnel
A funnel chart allows you to visualize a linear process having connected stages. For instance, a sales process that tracks prospects across the stages, such
as Sales Prospects, Qualified Prospects, Price Quotes, Negotiations, and Closed Sales.

In the process, each stage represents a proportion (percentage) of the total. Therefore, the chart takes the funnel shape with the first stage being the largest
and each following stage smaller than the predecessor.

Funnel charts are useful in identifying potential problem areas in processes where it is noticeable at what stages and rate the values decrease.

FlexChart offers the Funnel chart in two forms, as follows.

Trapezoid chart: Contains a pair of parallel sides.
Stacked Bar chart: Places related values on top of one another in the form of horizontal bars.

The following images show both Trapezoid and Stacked Bar charts displaying the number of orders across seven stages of an order fulfillment evaluation
process.

Trapezoid Chart Stacked Bar Chart

In FlexChart, use the Funnel chart by setting the ChartType property to Funnel from the ChartType enum. Specify the type of the Funnel chart as either
Trapezoid or Stacked Bar chart by setting the FunnelType property to Default or Rectangle from the FunnelChartType enum.

In addition, change the dimensions of the neck of the Funnel chart, when set as Trapezoid chart, by setting the FunnelNeckWidth and FunnelNeckHeight
properties. These properties are available in the ChartOptions class accessible through the Options property of the C1FlexChart class.

The following code creates a class, DataCreator to create data containing values for the amount of orders across seven stages of an order fulfillment
process.

Visual Basic

Class DataCreator
 Public Shared Function CreateFunnelData() As List(Of DataItem)
 Dim data = New List(Of DataItem)()
 data.Add(New DataItem("Received", 99000))
 data.Add(New DataItem("Processed", 85000))
 data.Add(New DataItem("Approved", 60000))
 data.Add(New DataItem("Released", 50000))
 data.Add(New DataItem("Shipped", 45000))
 data.Add(New DataItem("Completed", 30000))
 data.Add(New DataItem("Delivered", 25000))
 Return data
 End Function
End Class

Public Class DataItem
 Public Sub New(order__1 As String, value__2 As Integer)
 Order = order__1
 Value = value__2
 End Sub

 Public Property Order() As String
 Get
 Return m_Order

FlexChart for WPF 42

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 End Get
 Set
 m_Order = Value
 End Set
 End Property
 Private m_Order As String
 Public Property Value() As Integer
 Get
 Return m_Value
 End Get
 Set
 m_Value = Value
 End Set
 End Property
 Private m_Value As Integer
End Class

C#

class DataCreator
{
 public static List<DataItem> CreateFunnelData()
 {
 var data = new List<DataItem>();
 data.Add(new DataItem("Received", 99000));
 data.Add(new DataItem("Processed", 85000));
 data.Add(new DataItem("Approved", 60000));
 data.Add(new DataItem("Released", 50000));
 data.Add(new DataItem("Shipped", 45000));
 data.Add(new DataItem("Completed", 30000));
 data.Add(new DataItem("Delivered", 25000));
 return data;
 }
}

public class DataItem
{
 public DataItem(string order, int value)
 {
 Order = order;
 Value = value;
 }

 public string Order { get; set; }
 public int Value { get; set; }
}

The following code sets the chart type as Funnel, specifies the dimensions of the Funnel neck, and sets Header, Legend, and Data Labels of the chart.

XAML
 <Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:FunnelChart"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="FunnelChart.MainWindow"
 mc:Ignorable="d"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 Title="MainWindow" Height="705.284" Width="905.322">
 <Grid Margin="0,0,0,-117">

 <c1:C1FlexChart x:Name="flexChart"
 BindingX ="Order"
 ChartType="Funnel"
 ItemsSource="{Binding Data}"
 HorizontalAlignment="Left"
 Height="471"
 Margin="6,169,0,0"
 VerticalAlignment="Top"
 Width="792"
 Header="Order Fulfillment Evaluation for Last Year"
 HeaderAlignment="Center"
 LegendPosition="Bottom">
 <c1:C1FlexChart.HeaderStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="13"
 FontWeight="Bold"
 Stroke="DarkCyan"/>

FlexChart for WPF 43

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 </c1:C1FlexChart.HeaderStyle>
 <c1:Series Binding="Value">
 </c1:Series>
 <c1:C1FlexChart.DataLabel>
 <c1:DataLabel Content="{}{Order}: {y}"
 Position="Center"/>
 </c1:C1FlexChart.DataLabel>
 <c1:C1FlexChart.Options>
 <c1:ChartOptions FunnelType="Default"
 FunnelNeckHeight="0.05"
 FunnelNeckWidth="0.2"/>
 </c1:C1FlexChart.Options>
 </c1:C1FlexChart>
 </Grid>
</Window>

Code

MainWindow.xaml.vb

Partial Public Class MainWindow
 Inherits Window
 Private _data As List(Of DataItem)

 Public Sub New()
 InitializeComponent()
 End Sub

 Public ReadOnly Property Data() As List(Of DataItem)
 Get
 If _data Is Nothing Then
 _data = DataCreator.CreateFunnelData()
 End If

 Return _data
 End Get
 End Property
End Class

MainWindow.xaml.cs

public partial class MainWindow : Window
{
 private List<DataItem> _data;

 public MainWindow()
 {
 InitializeComponent();
 }

 public List<DataItem> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateFunnelData();
 }

 return _data;
 }
 }
}

copyCode

copyCode

Histogram

FlexChart for WPF 44

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Histogram chart plots the frequency distribution of data against the defined class intervals or bins. These bins
are created by dividing the raw data values into a series of consecutive and non-overlapping intervals. Based on the
number of values falling in a particular bin, frequencies are then plotted as rectangular columns against continuous x-
axis.

Following image illustrates a classic histogram chart, which depicts frequency distribution of scores obtained by
students of a university in half yearly examinations.

To create a histogram, you need to add the Histogram series and set the ChartType property to Histogram. Once you
provide relevant data, FlexChart generates frequency distribution for the data and plots the same in histogram. The
chart automatically calculates the intervals in which your data is grouped. However, if required, you can also specify
the width of these intervals by setting the BinWidth property.

The following code snippet demonstrates how to generate Histogram chart for a particular data.

Xaml

<Chart:C1FlexChart x:Name="flexChart"
 ChartType="Histogram"
 ItemsSource="{Binding DataContext.Data}"
 Binding="Y"
 BindingX="X">
 <Chart:C1FlexChart.AxisX>
 <Chart:Axis Format="0.00"></Chart:Axis>
 </Chart:C1FlexChart.AxisX>
 <Chart:Histogram x:Name="histogramSeries" SeriesName="Frequency"/>
</Chart:C1FlexChart>

Note that x-axis of Histogram chart can be shared by other chart series, which can be displayed together with
the classic histogram series.

Back to Top

Line
The Line Chart displays trends over a period of time by connecting different data points in a series with a straight line.
It treats the input as categorical information that is evenly spaced along the X-axis.

You can create the Line Chart by setting the ChartType property to Line in XAML, at design-time, or using code.

To create the stacking Line Chart, you need to set the Stacking property to Stacked or Stacked100pc.

FlexChart for WPF 45

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Line Chart

Below is the code that implements the aforementioned example:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Line">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Line;

copyCode

LineSymbols
The LineSymbols Chart is a combination of the Line Chart and the Scatter Chart. The chart displays trends in data at
equal intervals and visualizes relationship between two variables related to the same event. It plots data points by
using symbols and connects the data points by using straight lines.

You need to set the ChartType property to LineSymbols either at design-time, in XAML, or at run-time to create the
LineSymbols Chart.

You can set the Stacking property to Stacked or Stacked100pc to create the stacking LineSymbols Chart.

FlexChart for WPF 46

Copyright © 2018 GrapeCity, Inc. All rights reserved.

LineSymbols Chart

Below is the implementation in code:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="LineSymbols">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.LineSymbols;

copyCode

Mixed
FlexChart allows you to create mixed charts that offer two key advantages, as follows:

Combining chart types: Combine two or more chart types in a single chart, for instance, area-bar, bar-line,
bar-scatter etc. Plot different metrics in a chart using different chart types and let the end user interpret data
easily. In FlexChart, specify a chart type for each series to combine several chart types. To specify the chart type
for a series, set the ChartType property of the Series class. Setting this property overrides the ChartType
property set for the chart.
Plotting multiple datasets: Plot data from multiple datasets in a single chart by specifying data source for a

FlexChart for WPF 47

Copyright © 2018 GrapeCity, Inc. All rights reserved.

series. This is useful when the data to plot lies at multiple places. To specify the data source for a series, set
the ItemsSource property of the Series class. Setting this property overrides the ItemsSource property set for
the chart.

The following image displays a mixed chart that combines column and line symbols chart types. The chart plots and
compares sales and expenses data of four countries.

The following code sets the Column chart type for FlexChart and overrides it by setting the LineSymbols chart type for
the Sales series, thereby implementing mixed charts.

XAML

<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ChartType="Column"
 ItemsSource="{Binding DataContext.Data}">
 <c1:Series SeriesName="Sales"
 Binding="Sales"
 ChartType="LineSymbols"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
</c1:C1FlexChart>

Pareto Chart
Pareto chart is a type of chart that contains both bar and a line chart. It is a vertical bar chart in which values are
plotted in decreasing order of relative frequency from left to right. The categories or factors that represent the bigger
bars on the left are more important than those on the right. The line chart plots the cumulative total percentage of
frequencies that are represented by the bars.

Pareto chart is essentially used in scenarios where the data is broken into different categories, and when the

FlexChart for WPF 48

Copyright © 2018 GrapeCity, Inc. All rights reserved.

developer needs to highlight the most important factors from a given set of factors. For example, quality control,
inventory control, and customer grievance handling are some areas where Pareto chart analysis can be frequently
used.

In FlexChart, Pareto chart can be easily created by combining RangedHistogram chart with any of Line, Spline,
LineSymbol, or SplineSymbol chart. First, plot the relative frequency on a RangedHistogram in descending order. Then,
calculate the cumulative relative frequency in percentage using original data to create another series which is plotted
on any of the Line, Spline, LineSymbol, or SplineSymbol chart. This forms Pareto line of the chart which helps in
identifying the added contribution of each category.

To implement Pareto chart using the FlexChart control, see FlexChartExplorer sample. The samples are available in
the default installation folder - Documents\ComponentOne Samples\

RangedHistogram
RangedHistogram is a modern Excel-like histogram chart that helps visualize frequency distribution on y axis,
against ranged x axis. Like Histogram chart type, bins are created by dividing the raw data values into a series of
consecutive, non-overlapping intervals. Based on the number of values falling in a particular bin, frequencies
are then plotted as rectangular columns against x-axis.

RangedHistogram plots frequency distribution for the provided data in non-category and category modes.

Non-Category Mode
In non-category mode, the original data points are binned into intervals or ranges. These intervals are then plotted on
x-axis, and y-axis shows frequency distribution for respective ranges. FlexChart automatically calculates the intervals in
which your data is grouped.
However, you can control this behavior by specifying the HistogramBinning through BinMode property. Moreover,
you can further set BinWidth, NumberOfBins, values for UnderflowBin and OverflowBin, and specify whether to

FlexChart for WPF 49

Copyright © 2018 GrapeCity, Inc. All rights reserved.

ShowUnderflowBin and ShowOverflowBin.

The following image illustrates frequency distribution for units sold of various products of a retail store in non-
category mode.

To create a RangedHistogram, for a given data in non-category mode, you need to add the RangedHistogram series
and set the ChartType property to RangedHistogram, as shown in the following code snippet.

Xaml

<Chart:C1FlexChart x:Name="flexChart"
 ChartType="RangedHistogram"
 ItemsSource="{Binding DataContext.Data}"
 Binding="Value">
 <Chart:RangedHistogram x:Name="RangedhistogramSeries"
 SeriesName="Frequency"
 BinMode="NumberOfBins"
 NumberOfBins="5"
 OverflowBin="89"
 UnderflowBin="20"
 ShowOverflowBin="True"
 ShowUnderflowBin="True"/>
</Chart:C1FlexChart>

Category Mode
In Category mode, frequency data is exclusively grouped in categories (which are plotted on x-axis) as provided by the
original data and y-axis depicts cumulative frequency for the respective categories. Category mode is enabled for
RangedHistogram series by setting the BindingX property.

In this mode, BinMode, BinWidth, NumberOfBins, OverflowBin, and UnderflowBin properties for RangedHistogram
series are ignored.

The following image illustrates frequency distribution for units sold of 3 categories of products Stationery items,
Books, and Toys and Games of a retail store in category mode.

FlexChart for WPF 50

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create a RangedHistogram for a given data in category mode, you need to add the RangedHistogram series, set
the ChartType property to RangedHistogram and set the BindingX property, as shown in the following code snippet.

Xaml

<Chart:C1FlexChart x:Name="flexChart"
 ChartType="RangedHistogram"
 ItemsSource="{Binding DataContext.Data}"
 Binding="Value"
 BindingX="Name">
 <Chart:RangedHistogram x:Name="RangedhistogramSeries"
 SeriesName="Frequency" />
</Chart:C1FlexChart>

Note that unlike traditional Histogram, other chart types cannot be plotted using the same x axis values as
RangedHistogram.

Scatter
The Scatter Chart, which is also known as the XY Chart, depicts relationship among items of different data series. In
simple terms, it is a plot of X values and Y values along the two axes. The data points are not connected and can be
customized using different symbols. This chart type is normally used to represent scientific data, and can highlight the
deviation of assembled data from predicted data or result.

To create the Scatter Chart, you can set the ChartType property to Scatter at design-time, in the code behind, or in
XAML.

Set the Stacking property to Stacked or Stacked100pc to create the stacking Scatter Chart.

Scatter Chart

FlexChart for WPF 51

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Below is the code implementing the scenario:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Scatter">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Scatter;

copyCode

Spline
The Spline Chart is similar to the line chart except that it connects data points by using splines rather than straight
lines. The chart is used as an alternative to the line chart, but more specifically for representing data that requires the
use of curve fittings.

You need to set the ChartType property to Spline either from the Properties window, in the code behind, or in XAML
to create the Spline Chart.

You can set the Stacking property to Stacked or Stacked100pc to create the stacking Spline Chart.

Spline Chart

FlexChart for WPF 52

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Here is the code demonstrating the implementation:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Spline">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.Spline;

copyCode

SplineArea
The SplineArea chart is just like the area chart with the only difference in the manner in which data points are
connected. The SplineArea chart connects data points by using splines instead of straight lines, and fills the area
enclosed by the splines.

Set the ChartType property to SplineArea in the Properties window, in the code behind, or in XAML to create the
SplineArea Chart.

To create the stacking SplineArea Chart, set the Stacking property to Stacked or Stacked100pc.

SplineArea Chart

FlexChart for WPF 53

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Here is the implementation in code:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="SplineArea">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.SplineArea;

copyCode

SplineSymbols
The SplineSymbols Chart combines the Spline Chart and the Scatter Chart. The chart plots data points by using
symbols and connects those data points by using splines.

To create the SplineSymbols Chart, you can set the ChartType property to SplineSymbols in the Properties window, in
XAML, or programmatically.

Set the Stacking property to Stacked or Stacked100pc to create the stacking SplineSymbols Chart.

SplineSymbols Chart

FlexChart for WPF 54

Copyright © 2018 GrapeCity, Inc. All rights reserved.

See the following code for implementation:

XAML
<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="SplineSymbols">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

C#

flexChart.ChartType = C1.Chart.ChartType.SplineSymbols;

copyCode

Step
Step charts use horizontal and vertical lines to present data that show sudden changes along y-axis by discrete
amount. These charts help display changes that are sudden and irregular but stay constant till the next change. Step
charts enable judging trends in data along with the duration for which the trend remained constant.

Consider a use case where you want to visualize and compare weekly sales and units downloaded of a software.
As both of these values vary with discrete amounts, you can use step chart to visualize them. As shown in the image
below, apart from depicting the change in sales these charts also show the exact time of change and the duration for
which sales were constant. Moreover, you can easily identify the magnitude of respective changes by simply looking
at the chart.

FlexChart supports Step chart, StepSymbols chart, and StepArea or filled step chart. The following table gives detailed
explanation of these chart types.

FlexChart for WPF 55

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Step Chart

Step chart is similar to the Line chart, except that Line
chart uses shortest distance to connect consecutive data
points, while Step chart connects them with horizontal
and vertical lines. These horizontal and vertical lines give
the chart step-like appearance.

While the line charts depict change and its trend, the
Step charts also help in judging the magnitude and the
intermittent pattern of the change.

StepSymbols Chart

StepSymbols chart combines the Step chart and the
Scatter chart. FlexChart plots data points by using
symbols and connects those data points with horizontal
and vertical step lines.

Here, the data points are marked using symbols and,
therefore, help mark the beginning of an intermittent
change.

StepArea Chart

StepArea chart combines the Step chart and the Area
chart. It is similar to Area chart with the difference in the
manner in which data points are connected. FlexChart
plots the data points using horizontal and vertical step
lines, and then fills the area between x-axis and the step
lines.

These are based on Step charts, and are commonly used
to compare discrete and intermittent changes between
two or more quantities. This gives the chart stacked
appearance, where related data points of the multiple
series seem stacked above the other.

For example, number of units downloaded and sales of
a software for a particular time duration can be easily
compared as shown in the image.

To create Step chart, you need to populate appropriate data in chart and set the ChartType property to Step in XAML,
at design-time, or using code. However, to create a StepArea or a StepSymbol chart, you need to set the ChartType
property to StepArea or StepSymbols respectively.

XAML

<c1:C1FlexChart x:Name="flexChart"
 BindingX="Date"
 ItemsSource="{Binding DataContext.Data}"

FlexChart for WPF 56

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 ChartType="Step"
 HorizontalAlignment="Stretch" Margin="5,5,5,195">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Downloads" Binding="Downloads"></c1:Series>
 <c1:Series SeriesName="Sales" Binding="Sales"></c1:Series>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

flexChart.ChartType = C1.Chart.ChartType.Step;

C#

Working with FlexChart
To work with FlexChart for WPF and use it for developing your applications, you should know how to leverage
several features and functionality offered by the control.

This section provides important conceptual, task-based information on features and functionality offered by FlexChart.

The below-mentioned links take you to the sections that discuss the different ways in which you can work with
FlexChart.

Data
Appearance
End-User Interaction
FlexChart Elements
Trend Lines
Export

Data
Data is the first and foremost requirement of a chart. Without data, a chart cannot possibly visualize or display
anything. Thus, while working with a chart, your first job is to get your chart to display data, so that you can work with
and interpret the data accordingly.

When it comes to your chart data, there are two primary stages that sum up the specification, representation, and
interpretation of the data:

Providing data
Plotting data

 Access these sections to go through these stages with reference to FlexChart at length.

Providing Data
To get your chart to plot data, you first need to provide data to the chart.

The most common and widely used approach for providing data to the chart is data binding.

Click the following link to know how you can bind data to FlexChart:

Binding data using a data source

FlexChart for WPF 57

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Binding Data Using a Data Source
Binding data means connecting one or more data consumers to a data provider in a synchronized manner. When data
bound, the chart uses all of the bound data as its source of data for the specified series, and represents the data on
the chart surface as per the series and chart properties.

Since there is a layer between the data source and the actual chart, the data often needs to be summarized before it
can be plotted; however, the data to be plotted sometimes may already be available in a data view or another data
source object. And therefore, you can bind the chart directly to the data source object in such cases.

To bind the FlexChart control to the data source, you first need to set the ItemsSource property to the data source
object. Next, you need to bind individual series of the chart to the fields present in the data source object by using
the BindingX and the Binding property.

To specify the binding source, you need to add the DataContext = "{Binding RelativeSource=
{RelativeSource Mode=Self}}" markup in the <Window> tag of the MainWindow.xaml file.

The below-mentioned code uses a class DataCreator to generate the data for the chart.

Here is the code that demonstrates a fully-functional program implementing data binding:

XAML
<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Data_Binding"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:Chart="using:C1.Xaml.Chart"
 xmlns:Xaml="using:C1.Xaml"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 xmlns:local1="clr-namespace:Data_Binding"
 x:Name="window"
 x:Class="Data_Binding.MainWindow"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 mc:Ignorable="d">

 <Grid>

 <c1:C1FlexChart x:Name="flexChart"
 BindingX="Fruit"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Bar">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Function1"
 Binding="March"/>
 <c1:Series SeriesName="Function2"
 Binding="April"/>
 </c1:C1FlexChart.Series>
 </c1:C1FlexChart>

 </Grid>

Code

DataCreator.cs copyCode

FlexChart for WPF 58

Copyright © 2018 GrapeCity, Inc. All rights reserved.

class DataCreator
{
 public static List<FruitDataItem> CreateFruit()
 {
 var fruits = new string[] { "Oranges", "Apples", "Pears", "Bananas" };
 var count = fruits.Length;
 var result = new List<FruitDataItem>();
 var rnd = new Random();
 for (var i = 0; i < count; i++)
 result.Add(new FruitDataItem()
 {
 Fruit = fruits[i],
 March = rnd.Next(20),
 April = rnd.Next(20),
 May = rnd.Next(20),
 });
 return result;
 }

}
public class FruitDataItem
{
 public string Fruit { get; set; }
 public double March { get; set; }
 public double April { get; set; }
 public double May { get; set; }
}

public class DataPoint
{
 public double XVals { get; set; }
 public double YVals { get; set; }
}

MainWindow.xaml.cs

public partial class MainWindow : Window
{

 #region plotdata
 private List<FruitDataItem> _fruits;

 public MainWindow()
 {
 this.InitializeComponent();

 }

 public List<FruitDataItem> Data
 {
 get

copyCode

FlexChart for WPF 59

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 if (_fruits == null)
 {
 _fruits = DataCreator.CreateFruit();
 }

 return _fruits;
 }
 }

The following output appears once you have run the code:

Plotting Data
FlexChart plots data bound in the form of fields or data arrays when relevant values are set in the BindingX and
the Binding property.

You require setting the values in the BindingX and the Binding property as per the desired chart type . For instance, in
case of the Scatter Chart, you need to set a single value (field) in both the BindingX and the Binding
property. However, in case of the Bubble Chart, you need to set a single value (field) in the BindingX property and two
values (fields, one for specifying Y-values and another for specifying the size of the bubble) in the Binding property.

See the following code snippets for reference:

1. In case of Scatter Chart

XAML

<c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Scatter">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>

FlexChart for WPF 60

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

2. In case of Bubble Chart

XAML

<c1:C1FlexChart x:Name="flexChart"
 BindingX="X"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Bubble">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Bubble"
 Binding="Y,Size"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Once the data is plotted, you can work on it to visualize data that suits your requirements.

Go through the sections given below to learn how to customize series and plot irregular data.

Customizing Series
Interpolating Null Values

Customizing Series
Once the series have been displayed in the chart, you can customize the displayed series to manage the same more
efficiently.

FlexChart allows you to customize series by showing or hiding a series either in the Plot Area or the Legend or both.

The following sections detail the different customizations:

Showing or Hiding a Series

Showing or Hiding a Series
If there are hundreds of series to be displayed in your chart, you would certainly need to manage the same due to the
space limitation of the chart.

In FlexChart, you can manage series by using the Visibility property of a series. The Visibility property accepts values
of the SeriesVisibility enumerated type.

You can set the property to the following different values to show or hide a series:

Value Description

SeriesVisibility.Visible The series is displayed in the Plot as well as the Legend.

SeriesVisibility.Plot The series is displayed in the Plot, but hidden in the Legend.

SeriesVisibility.Legend The series is displayed in the Legend, but hidden in the Plot.

FlexChart for WPF 61

Copyright © 2018 GrapeCity, Inc. All rights reserved.

SeriesVisibility.Hidden The series is hidden in the Plot as well as the Legend.

Here's the code snippet showing how to set the Visibility property:

XAML
<c1:Series SeriesName="March"
 Binding="March"
 Visibility="Legend"/>
<c1:Series SeriesName="April"
 Binding="April"
 Visibility="Plot"/>
<c1:Series SeriesName="May"
 Binding="May"/>

Code

C#

series1.SeriesName = "March";
series2.SeriesName = "April";

series1.Visibility = C1.Chart.SeriesVisibility.Legend;
series2.Visibility = C1.Chart.SeriesVisibility.Plot;

copyCode

Interpolating Null Values
Often, there are null values in the data fields of a data table that you bind to FlexChart for plotting data. Due to the
presence of null values, FlexChart creates gaps once it has plotted the data. The gaps present in the plotted data make
data look inconsistent and incomplete.

FlexChart allows you to deal with such inconsistencies by using the InterpolateNulls property. You can

FlexChart for WPF 62

Copyright © 2018 GrapeCity, Inc. All rights reserved.

set the InterpolateNulls property, so that the chart automatically fills in gaps created by null values in data.

The InterpolateNulls property is applicable only for the Line Chart and the Area Chart.

Here is how you can set the InterpolateNulls property:

C#

flexChart.Options.InterpolateNulls = true;

Appearance
The appearance of a chart determines its overall look and feel. A good and clean appearance draws your audiences
toward the visual representation of your data. And it also adds to the ease of interpreting the data.

You can customize the appearance of FlexChart in a variety of ways that are mentioned below:

Colors
Fonts
Symbol Styles for Series

Colors
Colors are used to enhance the visual impact of a chart. You can customize colors by choosing colors
interactively, setting chart palette, specifying RGB values, specifying hue, saturation, and brightness, or using
transparent colors.

FlexChart lets you customize colors for the entire chart as well as the following elements:

Series
Header and Footer
Legend
Plot Area
Label

Click the links given below to learn how to use colors in different ways.

Choosing Colors Interactively
Setting Chart Palette
Specifying RGB Colors
Specifying Hue, Saturation, and Brightness
Using Transparent Colors

Choosing Colors Interactively

FlexChart for WPF 63

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Colors can be chosen interactively by using .NET's color dialog that works like the standard windows color dialog. You
can choose from Windows basic colors or customer colors, or you can interactively choose from a full color spectrum.

Setting FlexChart Palette
You can set the desired FlexChart palette by using the Palette property. By default, FlexChart uses
the Palette.Standard setting that specifies the standard chart palette.

Here are the available palettes in FlexChart:

Palette Setting Preview

Standard (default)

Cocoa

FlexChart for WPF 64

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Coral

Dark

Highcontrast

FlexChart for WPF 65

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Light

Midnight

Modern

FlexChart for WPF 66

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Organic

Slate

Zen

FlexChart for WPF 67

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Cyborg

Superhero

Flatly

FlexChart for WPF 68

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Darkly

Cerulan

Custom Copies the currently specified palette into the custom group.

Specifying RGB Colors
A color can be specified by its RGB components, useful for matching another RGB color. RGB color values combine
hexadecimal values for the red, green, and blue components of a color. "00" is the smallest value a component can
have; "ff" is the largest value. For example, "#ff00ff" specifies magenta (the maximum value of red and blue combined
with no green).

Specifying Hue, Saturation, and Brightness
In addition to a color being specified by its RGB components, it can also be represented by its hue, saturation, and
brightness. The hue, saturation, and brightness are all aspects of the red, green, and blue color scheme. The hue is the
specific tone of the color wheel made up of red, green, and blue tones. The saturation is the intensity of the hue from

FlexChart for WPF 69

Copyright © 2018 GrapeCity, Inc. All rights reserved.

gray tone to a pure vivid tone. And the brightness is the lightness or darkness of a tone.

Using Transparent Colors
The background and foreground of all elements except the chart itself can be "Transparent".

When a background or foreground is transparent, the chart uses the color of the element outside it for the
background. For example, the header would have the background of the chart itself when its background is set to
Transparent.

In other words, if the background color of the element is transparent then its background is not drawn. If the
foreground color of the element is transparent, then the foreground (for example, the text of a title) is not drawn.

The transparent color properties are located under the Style nodes, found at design time on the Control, Header,
Footer, Legend, ChartArea, and ChartLabels objects in the Visual Studio Properties window.

Fonts
Fonts, when customized with respect to various chart elements, enhance the impact of the chart. You can adjust the
font size of an element to make it more suitable as per the overall size of the chart.

To change or customize fonts in FlexChart, you can use the following properties provided by the ChartStyle object:

Property Description

FontFamily Sets the font family.

FontSize Sets the font size.

FontStretch Sets the font stretch.

FontStyle Sets the font style.

FontWeight Sets the font weight.

Symbol Styles for Series
Depending upon the requirements, you may need to customize the appearance of series in the chart.

FlexChart allows you to customize series in the chart with the SymbolMarker and the SymbolSize property.

The SymbolMarker property allows you to set the shape of the marker to be used for each data point in the series.
The SymbolSize property enables you to set the size (in pixels) of the symbols used to render the series.

Below is a table that lists how these properties affect each chart type:

Value Effect for SymbolMarker Effect for SymbolSize

ChartType.Column No effect No effect

ChartType.Bar No effect No effect

ChartType.Line No effect No effect

ChartType.Scatter Changes the symbol marker Changes the symbol size

FlexChart for WPF 70

Copyright © 2018 GrapeCity, Inc. All rights reserved.

ChartType.LineSymbols Changes the symbol marker Changes the symbol size

ChartType.Area No effect No effect

ChartType.Spline No effect No effect

ChartType.SplineSymbols Changes the symbol marker Changes the symbol size

ChartType.SplineArea No effect No effect

ChartType.Bubble Changes the symbol marker No effect

ChartType.Candlestick No effect Changes the symbol size

ChartType.HighLowOpenClose No effect Changes the symbol size

The SymbolSize property has no effect on the Bubble Chart; however, you can change the size of the bubble in
the Bubble Chart by setting the BubbleMaxSize and the BubbleMinSize property located in the Options node of
the Properties window.

End-User Interaction
When it comes to the functionality and features of the chart, you may have specific requirements that can be
accommodated only through a few specific tools.

Therefore, to accommodate such requirements, FlexChart renders a set of conversion methods and interactive built-
in tools. These tools help you customize and develop your applications further.

Go to the following sections for information on end-user interaction:

ToolTips
Axis Scrollbar
Range Selector
Line Marker
Hit test

ToolTips
Tooltips are pop-ups that appear while hovering over data points or series in a chart. They provide additional,
valuable information about chart data in scenarios, as follows:

Single series chart: Tooltips display data values and series name.
Mixed charts: Tooltips display multiple data values for multiple series for a single category.
Pie charts: Tooltips display name and percentage share or value of slices.

A tooltip displays Y value of a data point in FlexChart by default. However, FlexChart allows creating and formatting
custom content in tooltips using pre-defined parameters and formats. In addition, the control allows creating a shared
tooltip in the case of mixed charts.

To know more about tooltips in FlexChart, see the following topics:

Default Tooltip
Customizing Tooltip Content

FlexChart for WPF 71

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Formatting Tooltip Content
Shared Tooltip

Default Tooltip
FlexChart displays a default tooltip when you hover over a data point or series. The default tooltip shows the Y value
of the hovered data point. FlexChart generates the default tooltip using the underlying data when custom content is
not present.

The following image displays the default tooltip showing the data value of a data point.

Customizing Tooltip Content
FlexChart simplifies customizing tooltip content by allowing you to set pre-defined parameters in the ToolTipContent property of the
tooltip.

To customize content in a tooltip, set the pre-defined parameters in the template string of the ToolTipContent property of
the FlexChartBase class.

The table below lists the pre-defined parameters applicable for tooltip content customization.

Parameter Description

x Shows the X value of the data point.

y Shows the Y value of the data point.

value Shows the Y value of the data point.

name Shows the X value of the data point.

seriesName Shows the name of the series.

FlexChart for WPF 72

Copyright © 2018 GrapeCity, Inc. All rights reserved.

pointIndex Shows the index of the data point.

The following image displays customized tooltip content showing the index and the data point values.

The following code compares and displays data of number of daily website visitors in a specific week. The code shows how to
configure the ToolTipContent property to customize tooltip content.

XAML
<c1:C1FlexChart Name="flexChart"
 ToolTipContent="Index: {pointIndex}Day: {name}{seriesName}: {Visitors}">
</c1:C1FlexChart>

Formatting Tooltip Content
In FlexChart, it is possible to display number separators, current symbols, or date/time formats to add more details into tooltips.

FlexChart enables you to format the custom content in the tooltip by using standard and custom format strings. These format strings are
a variety of Numeric and DateTime formats provided by .NET.

For information about these format strings, refer to Numeric and DateTime format strings.

The following image displays customized tooltip content showing the index and formatted values of the data point.

FlexChart for WPF 73

Copyright © 2018 GrapeCity, Inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/dwhawy9k(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

The following code compares and displays data of number of daily website visitors in a specific week. The code shows how to configure
the ToolTipContent property to format tooltip content.

XAML
<c1:C1FlexChart Name="flexChart"
 ToolTipContent="Index: {pointIndex}Day: {name}{seriesName}: {Visitors:F}">
</c1:C1FlexChart>

Shared Tooltip
A shared tooltip is a single tooltip that highlights all data values for a single X value in the chart.

In a chart containing mixed chart types, you often require displaying multiple Y values for a common X value through a single tooltip. In such cases, FlexChart tooltips can be used as shared tooltips by setting
the ToolTipContent property accordingly.

The following image displays a shared tooltip showing Y values for all series at a single X value.

The code compares and displays data of number of daily website visitors, unique visitors, and link clicks in a specific week. The code shows how to set the ToolTipContent property to create a shared tooltip.

XAML
<c1:C1FlexChart Name="flexChart"
 ToolTipContent="Index: {pointIndex}Day: {name}Visitors: {Visitors}Unique Visitors: {UniqueVisitors}Link Click: {LinkClick}">
</c1:C1FlexChart>

FlexChart for WPF 74

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axis Scrollbar
The presence of a large number of values or data in charts makes data interpretation difficult, especially in compact user
interfaces. Axis Scrollbars solve this problem by letting you easily interpret closely related data within a specific range.

FlexChart allows you to add Axis Scrollbar to primary axes (X and Y axes) as well as secondary axes. To add Axis Scrollbar
to an axis, you need to create an instance of the C1.WPF.Chart.Interaction.C1AxisScrollbar class.

The C1AxisScrollbar class provides the ScrollButtonsVisible property that accepts Boolean values to set the visibility of
the scrollbar buttons. To set the current lower and the current upper magnitude of the scrollbar, you can use
the LowerValue and the UpperValue property provided by C1RangeSlider class respectively. The lower and upper values
change when the scrollbar is resized or moved. When any of the LowerValue or the UpperValue property changes,
the ValueChanged event provided by the C1RangeSlider class fires.

See the following code snippet for reference:

XAML
<c1:Axis.Scrollbar>
 <c1:C1AxisScrollbar x:Name="axisYScrollbar" ScrollButtonsVisible="False" Width="30"/>
</c1:Axis.Scrollbar>

Code

C#

public class AxisScrollbarModel
{
 Random rnd = new Random();

 public List<DataItem> Data
 {
 get
 {
 var pointsCount = rnd.Next(1, 30);
 var pointsList = new List<DataItem>();
 for (DateTime date = new DateTime(DateTime.Now.Year - 3, 1, 1); date.Year <
DateTime.Now.Year; date = date.AddDays(1))
 {
 pointsList.Add(new DataItem()
 {
 Date = date,
 Series1 = rnd.Next(100)
 });
 }

 return pointsList;
 }
 }
}

VB

Public Class AxisScrollbarModel
 Private rnd As New Random()

copyCode

copyCode

FlexChart for WPF 75

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Public ReadOnly Property Data() As List(Of DataItem)
 Get
 Dim pointsCount = rnd.[Next](1, 30)
 Dim pointsList = New List(Of DataItem)()
 Dim [date] As New DateTime(DateTime.Now.Year - 3, 1, 1)
 While [date].Year < DateTime.Now.Year
 pointsList.Add(New DataItem() With {
 .[Date] = [date],
 .Series1 = rnd.[Next](100)
 })
 [date] = [date].AddDays(1)
 End While

 Return pointsList
 End Get
 End Property
End Class

Range Selector
While scrollbars are a traditional way of scrolling the chart, Range Selector is a more modern approach, which lets the
user visualize where the selected range sits in the complete data range.

FlexChart's Range Selector lets you select a range of numeric data with lower value thumb and upper value thumb.
These thumbs define the start and end values of the range. On dragging the thumb towards left (or down) on the
range bar, you reduce its value, and dragging it towards the right (or up) increases the value on the range bar.

FlexChart for WPF 76

Copyright © 2018 GrapeCity, Inc. All rights reserved.

In FlexChart, you can work with Range Selector by creating an instance of
the C1.WPF.Chart.Interaction.C1RangeSelector class and adding it to the Layers collection of the chart by using
the Layers property of C1FlexChart. The C1RangeSelector class inherits the C1.WPF.C1RangeSlider class. You can use
the LowerValue and the UpperValue property provided by C1RangeSlider to set the lower and the upper value of the
range selector respectively. The ValueChanged event fires when any of the LowerValue or the UpperValue property is
changed.

To set the horizontal or the vertical orientation of the range selector, you can use the Orientation property. When the
property is changed, the OrientationChanged event fires.

Here is the code snippet showing the implementation:

XAML
<c1:C1FlexChart.Layers>
 <c1:C1RangeSelector x:Name="rangeSelector" Grid.Row="4" Margin="110 10 0 10"/>
</c1:C1FlexChart.Layers>

Code

C#

void OnChartRendered(object sender, RenderEventArgs e)
{
 var flexChart = sender as C1FlexChart;
 if (flexChart == null)
 return;

 var rect = flexChart.PlotRect;
 e.Engine.SetFill(Colors.Transparent);
 e.Engine.SetStroke(new SolidColorBrush(Colors.DimGray));
 e.Engine.SetStrokeThickness(1d);
 e.Engine.DrawRect(rect.X, rect.Y, rect.Width, rect.Height);
}

VB

Private Sub OnChartRendered(sender As Object, e As RenderEventArgs)
 Dim flexChart = TryCast(sender, C1FlexChart)
 If flexChart Is Nothing Then
 Return
 End If

 Dim rect = flexChart.PlotRect
 e.Engine.SetFill(Colors.Transparent)
 e.Engine.SetStroke(New SolidColorBrush(Colors.DimGray))
 e.Engine.SetStrokeThickness(1.0)
 e.Engine.DrawRect(rect.X, rect.Y, rect.Width, rect.Height)
End Sub

copyCode

copyCode

FlexChart for WPF 77

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Line Marker
LineMarker displays the precise data values for a given position on the chart by dragging horizontal and/or vertical
lines over the plot with an attached label. It is useful in scenarios, where a user has a lot of data in a line or area chart,
or if a user wants to display data from multiple series in a single label. With built-in interactions, such as Drag and
Move. a user can drag the line marker and more precisely select the data point on the chart.

To create a line marker and use it in FlexChart, you need to create an instance of
the C1.WPF.Chart.Interaction.C1LineMarker class and add it to the Layers collection of the chart by using the Layers
property of C1FlexChart.

You need to use the Lines property provided by C1LineMarker to set the visibility of the LineMarker lines. The Lines
property accepts the following values from the LineMarkerLines enumeration:

Both: Shows both vertical and horizontal lines
Horizontal: Shows a horizontal line
Vertical: Shows a vertical line
None: Shows no line

The C1LineMarker class also provides the Alignment property to set the alignment of the line marker. In addition, you
can set the interaction mode of the line marker by setting the Interaction property to any of the following values in
the LineMarkerInteraction enumeration:

Drag: The line marker moves when the user drags the line
Move (Default): The line marker moves with the pointer

FlexChart for WPF 78

Copyright © 2018 GrapeCity, Inc. All rights reserved.

None: The user specifies the position by clicking.

If you set the Interaction property to Drag, you need to set the DragContent and the DragLines property to specify
whether the content and values linked with the line marker lines are draggable or not.

Below is the code snippet with the implementation.

XAML
<Chart:C1FlexChart.Layers>
 <Chart:C1LineMarker x:Name="lineMarker" Lines="Vertical"
 Grid.Row="2" PositionChanged="OnLineMarkerPositionChanged"
 VerticalAlignment="Top"/>
</Chart:C1FlexChart.Layers>

Code

C#

private void OnLineMarkerPositionChanged(object sender, PositionChangedArgs e)
{
 if (flexChart != null)
 {
 var info = flexChart.HitTest(e.Position);
 int pointIndex = info.PointIndex;
 var tb = new TextBlock();
 tb.Inlines.Add(new Run()
 {
 Text = info.X.ToString()
 });
 for (int index = 0; index < flexChart.Series.Count; index++)
 {
 var series = flexChart.Series[index];
 var value = series.GetValues(0)[pointIndex];
 var fill = (int)((IChart)flexChart).GetColor(index);
 string content = string.Format("{0}{1} = {2}", "\n",
 series.SeriesName, value.ToString());
 tb.Inlines.Add(new Run()
 {
 Text = content,
 Foreground = new SolidColorBrush() { Color = FromArgb(fill) }
 });
 }
 lineMarker.Content = tb;
 }
}

VB

 Private Sub OnLineMarkerPositionChanged(sender As Object, e As
PositionChangedArgs)
 If flexChart IsNot Nothing Then
 Dim info = flexChart.HitTest(e.Position)

copyCode

copyCode

FlexChart for WPF 79

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Dim pointIndex As Integer = info.PointIndex
 Dim tb = New TextBlock()
 tb.Inlines.Add(New Run() With {
 .Text = info.X.ToString()
 })
 For index As Integer = 0 To flexChart.Series.Count - 1
 Dim series = flexChart.Series(index)
 Dim value = series.GetValues(0)(pointIndex)
 Dim fill = CInt(DirectCast(flexChart, IChart).GetColor(index))
 Dim content As String = String.Format("{0}{1} = {2}",
vbLf, series.SeriesName, value.ToString())
 tb.Inlines.Add(New Run() With {
 .Text = content,
 .Foreground = New SolidColorBrush() With {
 .Color = FromArgb(fill)
 }
 })
 Next
 lineMarker.Content = tb
 End If
 End Sub

Hit Test
FlexChart supports hit testing, which enables you to fetch information about a specific point in the control at run-time. The information

FlexChart for WPF 80

Copyright © 2018 GrapeCity, Inc. All rights reserved.

obtained about the pointed coordinate can then be reused to drill down the chart data, to set alerts, or to enable other user interaction
functionalities.

FlexChart supports hit testing by utilizing HitTest() method. This method takes the location (coordinates) of the pointed entity; and
returns an object of HitTestInfo class, which provides the following information about the pointer location:

Chart element comprising the pointer
Distance of the pointer location from the closest data point in chart, if the pointer is within plot area. Distance is returned as
Double.Nan, if the pointer is outside the plot area.
Data object corresponding to the closest data point
Index of the nearest data point
Series name that the nearest data point belongs to
X value of the nearest data point
Y value of the nearest data point

Note that, the mouse coordinates that are passed to HitTest() method are in pixels and are relative to the upper left corner of
the window.

In this example, HitTest() method is called on MouseMove event of the FlexChart control. Here, the point coordinates of pointer
location are passed as parameter to HitTest() method.

To enable hit testing in FlexChart, follow these steps:

1. Add a data bound FlexChart control
2. Subscribe to a Mouse event
3. Invoke chart’s HitTest method in mouse event handler
4. Use the information returned by HitTestInfo object

Back to Top

1. Add a data bound FlexChart control

Add an instance of FlexChart control to your WPF application, and bind it to an appropriate data source, as shown in the below
code snippet.

<c1:C1FlexChart x:Name="flexChart"
 Binding="YVals"
 BindingX="XVals"
 ChartType="SplineSymbols"
 Margin="10,10,0,52"

Xaml

FlexChart for WPF 81

Copyright © 2018 GrapeCity, Inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/system.windows.point(v=vs.110).aspx

 HorizontalAlignment="Left"
 Grid.RowSpan="2"
 Width="490">
 <c1:Series x:Name="series0" SeriesName="Series 0"/>
 <c1:Series x:Name="series1" SeriesName="Series
1" />
 </c1:C1FlexChart>

Back to Top

2. Subscribe to a Mouse event

Subscribe to a mouse event to capture the pointer coordinates, as shown in the below code snippet.

Xaml
 <c1:C1FlexChart Binding="YVals"
 BindingX="XVals"
 ChartType="SplineSymbols"
 x:Name="flexChart"
 MouseLeftButtonDown="flexChart_MouseLeftButtonDown"
 Margin="10,10,0,52"
 HorizontalAlignment="Left"
 Grid.RowSpan="2" Width="490">
 <c1:Series x:Name="series0" SeriesName="Series 0"/>
 <c1:Series x:Name="series1" SeriesName="Series 1" />
</c1:C1FlexChart>

Back to Top

3. Invoke chart’s HitTest method in mouse event handler

In the respective event handler, invoke the HitTest() method and pass the captured mouse pointer coordinates, as shown in the
below code snippet.

VB
 Private Sub flexChart_MouseLeftButtonDown(sender As Object, e As MouseButtonEventArgs)

 HitTestOnFlexChart(e.GetPosition(flexChart))
End Sub

C#
private void flexChart_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 HitTestOnFlexChart(e.GetPosition(flexChart));
}

Back to Top

4. Use the information returned by HitTestInfo object

The information regarding mouse pointer location, as returned by the HitTestInfo object, can then be reused. For example in
the below code snippet, the values returned by HitTestInfo object are converted to string and displayed in a TextBlock.

VB
 Private Sub HitTestOnFlexChart(p As Point)
 ' Show information about chart element under mouse/touch.
 Dim ht = flexChart.HitTest(p)

 Dim result = New StringBuilder()

 result.AppendLine(String.Format("Chart element:{0}", ht.ChartElement))
 If ht.Series IsNot Nothing Then
 result.AppendLine(String.Format("Series name:{0}", ht.Series.Name))
 End If

 If ht.PointIndex > 0 Then
 result.AppendLine(String.Format("Point index={0:0}", ht.PointIndex))
 End If

FlexChart for WPF 82

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 If ht.Distance > 0 Then
 result.AppendLine(String.Format("Distance={0:0}", ht.Distance))
 End If

 If ht.X IsNot Nothing Then
 result.AppendLine(String.Format("X={0:0:0}", ht.X))
 End If

 If ht.Y IsNot Nothing Then
 result.AppendLine(String.Format("Y={0:0:0}", ht.Y))
 End If

 tbPosition1.Text = result.ToString()
End Sub

C#
void HitTestOnFlexChart(Point p)
{
 // Show information about chart element under mouse/touch.
 var ht = flexChart.HitTest(p);
 var result = new StringBuilder();
 result.AppendLine(string.Format("Chart element:{0}", ht.ChartElement));
 if (ht.Series != null)
 result.AppendLine(string.Format("Series name:{0}", ht.Series.Name));
 if (ht.PointIndex > 0)
 result.AppendLine(string.Format("Point index={0:0}", ht.PointIndex));
 if (ht.Distance > 0)
 result.AppendLine(string.Format("Distance={0:0}", ht.Distance));
 if (ht.X != null)
 result.AppendLine(string.Format("X={0:0:0}", ht.X));
 if (ht.Y != null)
 result.AppendLine(string.Format("Y={0:0:0}", ht.Y));
 tbPosition1.Text = result.ToString();
}

Back to Top

FlexChart Elements
You can customize the elements of a chart to make the chart look more professional and visually appealing.

FlexChart consists of Axes, Legend, and Titles. These elements have already been discussed briefly in FlexChart
Fundamentals.

Below are the sections that focus upon the customization of these elements with respect to FlexChart.

FlexChart Axes
FlexChart Axes Labels
Annotations
FlexChart Legend
FlexChart Series
FlexChart Data Labels
Multiple Plot Areas

FlexChart Axis
Charts generally have two axes for measuring and categorizing data: a vertical axis (Y-axis) and a horizontal axis (X-
axis). The vertical axis is also known as value axis, and the horizontal axis is also called category axis.

Not all charts depict axes in the same manner. For instance, Scatter charts and Bubble charts depict numeric values on
the vertical axis as well as the horizontal axis to represent discreet or continuous numerical data. A real-time example
could be how Internet Usage (Hours per Week) is plotted against different Age Groups. Here, both the items will have
numeric values, and data points will be plotted corresponding to their numeric values on X and Y axes.

FlexChart for WPF 83

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Other charts, such as Line, Column, Bar, and Area display numeric values on the vertical axis and categories on the
horizontal axis. A real-time example could be how Internet Usage (Hours per Week) is plotted against different
regions. Here, regions will be textual categories plotted on the horizontal axis.

However, FlexChart provides great flexibility, thereby allowing you to display numeric values on both X and Y axes
even in case of Bar, Line, and Area charts. Also, FlexChart doesn't require any additional settings to display different
types of values.

An axis in FlexChart is represented by the Axis class. You can access the primary axes of FlexChart by using the AxisX
and the AxisY property.

The primary X-axis is rendered horizontally at the bottom, and the primary Y-axis is rendered vertically at the left. You
can, however, create exceptions to this rule by customizing the primary axes and also by using multiple axes.

While working with FlexChart, you can change the way tick marks and axes labels appear. You can even lessen the
number of axes labels on X and Y axes by specifying the number of units between values on the axes. In addition, you
can modify the alignment and orientation of the labels and change the format of the numbers to be depicted. You can
style the axes and change their position as per your requirements as well.

The sections, which are mentioned below, explain different customizations and modifications possible with respect to
the FlexChart axes.

Axes Position
Axes Title
Axes Tick Marks
Axes Gridlines
Axes Bounds
Axis Scaling
Axes Reversing
Axis Binding
Multiple Axes

Axis Position
FlexChart lets you change the position of the axes by using the Position property.

The Position property for an axis can be set to the following values in the Position enumeration:

Property Description

Position.Auto Positions the item automatically.

Position.Bottom Positions the item at the bottom.

Position.Left Positions the item at the left.

Position.None Hides the item.

Position.Right Positions the item at the right.

Position.Top Positions the item at the top.

Here is the sample code:

C#

flexChart.AxisX.Position = C1.Chart.Position.Bottom;
flexChart.AxisY.Position = C1.Chart.Position.Right;

FlexChart for WPF 84

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axis Title
After creating a chart, you can add a title to any vertical or horizontal axis in the chart. An axis title displays
information regarding what is displayed along the axis. And it enables end-users viewing the chart to understand what
the data is about. It is however not possible to add axis titles to charts without axes, for instance Pie Chart.

In FlexChart, you can set the axis title by using the Title property, which accepts a string.

See the following code snippet:

C#

flexChart.AxisX.Title = "Fruits";

FlexChart for WPF 85

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Tick Marks
Axes tick marks are the points at which labels are plotted on the axes. In other words, they are the small marks that
identify the position of items on the axes. In addition, they divide axes into equal sections by a value determined
by specific properties of an axis. And their location controls the location of grid lines.

When it comes to axes tick marks, a chart is rendered with two types basically: major tick marks and minor tick marks.
Major tick marks are rendered automatically when an axis intersects the interval grid lines. And minor tick marks are
rendered between major tick marks.

By default, FlexChart sets up X-axis with major tick marks and Y-axis with no tick marks.

You can, however, use the MajorTickMarks and the MinorTickMarks property to manipulate the position of the major
tick marks and the minor tick marks respectively.

Both the properties can be set to any of the following TickMark enumeration values:

Values Description

TickMark.Cross Tick marks cross the axis.

TickMark.Inside Tick marks appear inside the plot.

TickMark.None Tick marks don't appear.

TickMark.Outside Tick marks appear outside the plot.

See the following code sample:

C#

flexChart.AxisX.MajorTickMarks = C1.Chart.TickMark.Inside;
flexChart.AxisY.MajorTickMarks = C1.Chart.TickMark.Inside;

FlexChart for WPF 86

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axis Grid Lines
Axes grid lines extend from any vertical or horizontal axis across the plot area of the chart. They are displayed for
major and minor units and aligned with major and minor tick marks displayed on the axes. These auxiliary lines form a
grid that improves the readability of the chart, especially when you are looking for exact values.

Primarily, axes grid lines are of two types: major grid lines and minor grid lines. The lines perpendicular to major tick
marks at major unit intervals are major gridlines, while those perpendicular to minor tick marks at minor unit intervals
are minor grid lines.

In FlexChart, major grid lines are controlled by the MajorGrid property, while minor grid lines are controlled by
the MinorGrid property. In addition, the appearances of the major and the minor grid lines are controlled by
the MajorGridStyle and the MinorGridStyle property respectively.

Using these properties, you can display horizontal as well as vertical grid lines to make the FlexChart data easier to
read.

The code below illustrates how to set these properties.

C#

flexChart.AxisY.MajorGrid = true;
flexChart.AxisX.MajorGrid = true;

Axis Bounds
If you want to display a specific portion of the chart in terms of data, you can do so by fixing the axes bounds. With
axes bounds, the chart determines the extent of each axis by reckoning the lowest and the highest data values.

FlexChart enables you to set axes bounds by setting the Min and the Max property for the axes.

The following code shows how to set the Min and the Max property:

C#

FlexChart for WPF 87

Copyright © 2018 GrapeCity, Inc. All rights reserved.

flexChart.AxisY.Min = 0;
flexChart.AxisY.Max = 8;

Axes Scaling
Sometimes, you require distinguishing the data plotted by the series in the chart. The need arises when the data
points of the series do not fall in the same range. In other words, the Y axes of the series contain values in different
ranges. For instance, there could be two series. The Y values for one might lie between 0 and 100 and that for the
other between 0 and -100. In addition, the data of the series could require different scales altogether. In such cases,
displaying the Y values of the series on a single Y-axis can confuse the interpretation of the data and overlap the same
as well.

FlexChart allows you to deal with such cases by letting you scale the axes (primary and additional) by using the Min,
the Max, and the MajorUnit properties. You can even apply these properties to an additional Y-axis for plotting the Y
values for one of the series for better data representation.

Axis Reversing
When a dataset contains X or Y values that lie in a large range, the general chart setup sometimes doesn't display the
information most effectively. Often, the chart data may look more appealing with the axes reversed.

You can reverse the axes in FlexChart by using the Reversed property.

Setting the Reversed property for the axes to True reverses the axes. This means that the maximum value along the
axis takes the place of the minimum value, and the minimum value along the axis takes the place of the maximum
value.

Initially, the chart displays the minimum value on the left of X-axis, and at the bottom of Y-axis. However, the
Reversed property for the axes juxtaposes the maximum and minimum values.

FlexChart for WPF 88

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Here is the sample code:

C#

flexChart.AxisX.Reversed = true;
flexChart.AxisY.Reversed = true;

Axis Binding
Axis binding enables you to override the default axes labels that the axes display based on the chart binding. In other
words, axis binding lets you show axes labels from a data source other than the chart data source.

FlexChart allows you to bind axes to a data source using the ItemsSource property of the Axis class. Specify the fields
containing values for the axes labels in the data source using the Binding property of the Axis class.

The following image displays labels on Y-axis from the fields not part of the chart data source.

FlexChart for WPF 89

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code uses revenue data of an organization in a given year. The chart datasource contains the revenue
data in the Euro currency. To replace euro currency axis labels with USD currency labels, the code binds Y-axis to a
data source containing USD data.

Visual Basic

' bind Y axis to a data source
flexChart.AxisY.ItemsSource = AxisData

' specify fields containing values for axis labels
flexChart.Binding = "Value,Text"

C#

// bind Y axis to a data source
flexChart.AxisY.ItemsSource = AxisData;

// specify fields containing values for axis labels
flexChart.Binding = "Value,Text";

Multiple Axis
Although a chart contains primary X and Y axes, you may still sometimes require additional axes to fulfill your requirements. For example, you may want to plot series of a
significantly different range of values in a chart. In addition, you may want to plot entirely different values (of different types) within a single chart. With just two axes, it would
not be possible to display data in such scenarios effectively. In such cases, using secondary axes would come in handy. To use secondary axes, you can plot multiple series in a
single chart with their own X and Y axes.

FlexChart allows you to work with multiple axes easily. You just need to create additional axes as per your requirements, and then bind the same to the AxisX and the AxisY
property of a series.

The following image shows two Y axes. one primary and another auxiliary, along with X axis in FlexChart.

FlexChart for WPF 90

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code snippet demonstrates how you can create and use multiple axes in FlexChart:

XAML

<c1:C1FlexChart x:Name="flexChart" ItemsSource="{Binding DataContext.Data}" BindingX="Time"
 Grid.Row="1">
 <c1:Series x:Name="precSeries" SeriesName="prec" Binding="Precipitation">
 <c1:Series.AxisY>
 <c1:Axis Position="Right" Min="0" Max="100" Title="precipitation, mm" MajorGrid="False"/>
 </c1:Series.AxisY>
 </c1:Series>
 <c1:Series x:Name="avgSeries" SeriesName="t, avg" ChartType="LineSymbols" Binding="Temperature"/>
 <c1:C1FlexChart.AxisY>
 <c1:Axis Title="temperature, C" Min="0" MajorGrid="True" AxisLine="False" Position="Left" MajorTickMarks="None"></c1:Axis>
 </c1:C1FlexChart.AxisY>
</c1:C1FlexChart>

FlexChart Axes Labels
Axes labels are the values that appear along the axes. By default, axes labels are determined on the basis of the axes
data points and the generated intervals.

In FlexChart, you can change the look, format, and alignment of the axes labels using the properties listed below.

Property Description

Format Specifies the format string used for the axes labels.

LabelAlignment Sets the alignment of the axes labels.

LabelAngle Specifies the rotation angle of the labels.

Labels Indicates whether the axes labels are visible.

OverlappingLabels Indicates how to handle overlapping labels.

The following sections discuss how to work with these properties:

Axes Labels Format
Axes Labels Rotation
Axes Labels Visibility
Axes Labels Overlap
Axis Grouping

FlexChart for WPF 91

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Labels Format
By default, axis labels are determined automatically based on the data points and generated intervals of the axes.
However, you can still format the axis labels by using the Format property to cover your requirements better.

The Format property accepts values from the Standard .Net Format string.

Axes Labels Rotation
When the horizontal axis is crowded with axis labels, you need to rotate the labels to avoid the cluttered look.
Rotating the labels allows you to accommodate a large number of labels in a limited space on the axis.

You can use the LabelAngle property to rotate axes labels in anticlockwise direction in FlexChart.

See the code given below for reference.

C#

flexChart.AxisX.LabelAngle = 45;

Axes Labels Visibility
FlexChart enables you to show or hide axis labels with the Labels property. You can set the property to False for a
specific axis, if you want to hide axis labels along the axis. The default value of the Labels property is True.

See the following code snippet:

C#

flexChart.AxisX.Labels = false;

FlexChart for WPF 92

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Axes Labels Overlap
In case there are less number of data points and shorter label text, axis labels are rendered without any overlapping.
However, axis labels may overlap due to its long text or large numbers of data points in chart.

To manage overlapped axis labels in FlexChart, use the following options.

Trim or Wrap Axis Labels
Staggered Axis Labels

Trim or Wrap Axis Labels

In case there are overlapping labels in the chart for any reason, you can manage the same using the
OverlappingLabels property.

The OverlappingLabels property accepts the following values in the OverlappingLabels enumeration:

Property Description

Auto Hides overlapping labels.

Show Shows all labels including the overlapping ones.

Trim Trim label, if it's larger than the available width.

WordWrap Wrap label, if it's larger than the available width.

Here is the code snippet:

C#

flexChart.AxisX.OverlappingLabels = C1.Chart.OverlappingLabels.Auto;
flexChart.AxisY.OverlappingLabels = C1.Chart.OverlappingLabels.Show;

Staggered Axis Lines

FlexChart for WPF 93

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Another way to handle overlapping of axis labels is to stagger them for better visibility. Staggered axis labels can
generated by using StaggeredLines property. This property accepts an integer value and the default value is set to 1.

// Set StaggeredLines property
flexChart1.AxisX.StaggeredLines = 2;

C#

Axis Grouping
FlexChart provides the flexibility to group axis labels as per the requirement. Axis grouping helps in improving the
readability of the chart and makes it easy for analyzing data from different levels. Implementation of axis grouping in
FlexChart depends on the data you are using, it can be either categorical data, numerical data, or DateTime data.

FlexChart supports the following axis grouping depending upon the data.

Categorical Axis Grouping
Learn how to perform axis grouping while working with categorical data.

Numerical Axis Grouping
Learn how to perform axis grouping while working with numerical data.

DateTime Axis Grouping
Learn how to perform axis grouping while working with date time format data.

Categorical Grouping
Categorical axis grouping is applicable in scenarios where the data displayed on the axis is categorical in
nature. Categorical data can either be flat or hierarchical. In case you are using flat data, use the GroupNames
property to apply axis grouping. And, in case you are using hierarchical data, use the GroupNames

FlexChart for WPF 94

Copyright © 2018 GrapeCity, Inc. All rights reserved.

and GroupItemsPath property to apply axis grouping. Moreover, FlexChart allows you to set the group separator using
the GroupSeparator property.

The following image shows how FlexChart appears after setting the categorical axis grouping using flat data.

Add the following code in Index.xaml.

XAML

<c1:C1FlexChart x:Name="flexChart" Background="White" ChartType="Column"
BindingX="Country"
ItemsSource="{Binding Data}" ToolTipContent="{}{x}
{seriesName}{y:n0}" Header="World GDP Ranking" Grid.Row="1" >
 <c1:C1FlexChart.HeaderStyle>
 <c1:ChartStyle FontSize="20" FontFamily="GenericSansSerif"/>
 </c1:C1FlexChart.HeaderStyle>
 <c1:Series SeriesName="GDP, current prices" Binding="CurrentPrices"/>
 <c1:Series SeriesName="GDP based on PPP valuation"
Binding="PPPValuation"/>
 <c1:C1FlexChart.AxisX>
 <c1:Axis GroupSeparator="Gird" GroupNames="Continent" />
 </c1:C1FlexChart.AxisX>
 <c1:C1FlexChart.AxisY>
 <c1:Axis Title="GDP (billion USD)" MajorGrid="True"/>
 </c1:C1FlexChart.AxisY>
 </c1:C1FlexChart>

FlexChart for WPF 95

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Numerical Axis Grouping
Numerical axis grouping is applicable in scenarios where the data displayed on the axis represents numeric values. To
implement numerical axis grouping in FlexChart, set the GroupProvider property to an object of the
IAxisGroupProvider implementation.

In the example code below, we have created a class NumericAxisGroupProvider that implements the
IAxisGroupProvider interface. The interface provides GetLevels method that returns the group levels and GetRanges
method that returns the group ranges for a given level. Moreover, FlexChart allows you to set the group separator
using the GroupSeparator property.

The following image shows how FlexChart appears after setting the numerical axis grouping.

Add the following code in Index.xaml.

XAML

<c1:C1FlexChart x:Name="flexChart" Background="White" ChartType="SplineSymbols"
BindingX="Month"
 ItemsSource="{Binding Data}" Grid.Row="1" >
 <c1:Series Binding="Temperature" />
 <c1:C1FlexChart.AxisY>
 <c1:Axis Title="Temperature in Celsius" MajorGrid="True"
GroupSeparator="Horizontal" Min="0" Max="40"/>
 </c1:C1FlexChart.AxisY>
</c1:C1FlexChart>

Code

FlexChart for WPF 96

Copyright © 2018 GrapeCity, Inc. All rights reserved.

public NumericAxisGrouping()
 {
 InitializeComponent();
 flexChart.AxisY.GroupProvider = new NumericAxisGroupProvider();
 }
 class NumericAxisGroupProvider : IAxisGroupProvider
 {
 public int GetLevels(IRange range)
 {
 return 1;
 }

 public IList<IRange> GetRanges(IRange range, int level)
 {
 var ranges = new List<IRange>();
 if (level == 1)
 {
 ranges.Add(new DoubleRange("Low", 0, 10));
 ranges.Add(new DoubleRange("Medium", 10, 25));
 ranges.Add(new DoubleRange("High", 25, 40));
 }
 return ranges;
 }
 }

DateTime Axis Grouping
DateTime axis grouping is applicable in scenarios where the data displayed on the axis represents date time values. To
implement date axis grouping in FlexChart, set the GroupProvider property to an object of the IAxisGroupProvider
implementation.

In the example code below, we have created a class DateTimeGroupProvider that implements the
IAxisGroupProvider interface. The interface provides GetLevels method that returns the group levels and GetRanges
method that returns the group ranges for a given level. Moreover, FlexChart allows you to set the group separator
using the GroupSeparator property.

The following image shows how FlexChart appears after setting the date axis grouping.

FlexChart for WPF 97

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Add the following code in Index.xaml.

XAML

<c1:C1FlexChart x:Name="flexChart" Background="White" ChartType="Line"
BindingX="Time"
 ItemsSource="{Binding Data}" Grid.Row="1" >
 <c1:Series Binding="Price"/>
 <c1:C1FlexChart.AxisX>
 <c1:Axis GroupSeparator="Grid" Format="MMM"/>
 </c1:C1FlexChart.AxisX>
 </c1:C1FlexChart>

Code

public DateTimeAxisGrouping()
 {
 InitializeComponent();
 flexChart.AxisX.GroupProvider = new DateTimeGroupProvider();
 }
 public class DateTimeGroupProvider : IAxisGroupProvider
 {
 public int GetLevels(IRange range)

FlexChart for WPF 98

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 return 2;
 }

 public IList<IRange> GetRanges(IRange range, int level)
 {
 var timeRange = range as TimeRange;
 if (timeRange == null)
 return null;
 var min = timeRange.TimeMin;
 var max = timeRange.TimeMax;
 var span = max - min;

 List<IRange> ranges = new List<IRange>();
 DateTime start;
 if (level == 1)
 {
 start = new DateTime(min.Year,
((int)Math.Ceiling((double)min.Month / 3) - 1) * 3 + 1, 1);
 ranges = Enumerable.Range(0, ((max.Month - start.Month) / 3 + 1)
+ 4 * (max.Year - start.Year)).Select(a => start.AddMonths(a * 3))
 .TakeWhile(a => a <= max)
 .Select(a => (IRange)(new TimeRange("Q" +
(int)Math.Ceiling((double)a.Month / 3), a, a.AddMonths(3)))).ToList();
 }
 else
 {
 start = new DateTime(min.Year, 1, 1);
 ranges = Enumerable.Range(0, max.Year - start.Year + 1).Select(a
=> start.AddYears(a))
 .TakeWhile(a => a <= max)
 .Select(a => (IRange)(new TimeRange(a.ToString("yyyy"), a,
a.AddYears(1)))).ToList();
 }

 return ranges;
 }
 }

Annotations
Annotations are visual elements used to mark or highlight specific areas in a chart. They include texts, images, and
shapes that can be used to display and highlight important information about specific data points. The primary
purpose of using annotations in a chart is to communicate the chart data clearly.

FlexChart provides eight types of annotations in three categories: shape, text, and image annotations. Each annotation
type allows you to make chart data informative in different ways. Those include displaying information in circle,
rectangle, polygon, and other shapes, and highlighting data through explanatory notes or images.

In addition, annotations in FlexChart can be positioned in the chart using attachment modes, such as Absolute,
Relative, Data Index, and Data Coordinate. Both annotations and their content are customizable through styling
properties of font, color, and stroke. They can be made interactive by adding tooltips, especially image annotations.

FlexChart for WPF 99

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To explore annotations, refer to the following sections:

Adding Annotations
Positioning Annotations
Customizing Annotations
Types of Annotations
Creating Callouts

Adding Annotations
FlexChart enables you to add annotations in an annotation layer, which contains the collection of all annotations in
the chart.

To add annotations in FlexChart, follow these steps:

1. Create an annotation layer in FlexChart.
2. Add the annotation instance in the annotation layer.

To create an annotation layer in FlexChart, create an instance of the AnnotationLayer class and add it to the Layers
collection of FlexChart. To add an annotation into the annotation layer, create an instance of the annotation class
based on its type. Add the annotation instance to the Annotations collection of the annotation layer.

The following code snippet illustrates how to create and add the Rectangle annotation to Annotation Layer in
FlexChart.

XAML
<c1:C1FlexChart.Layers>
 <c1:AnnotationLayer>
 <c1:AnnotationLayer.Annotations>
 <c1:Rectangle Content="Maximum Tax Revenue201345000">

FlexChart for WPF 100

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 </c1:Rectangle>
 </c1:AnnotationLayer.Annotations>
 </c1:AnnotationLayer>
</c1:C1FlexChart.Layers>

Positioning Annotations
In FlexChart, positioning annotations includes two mechanisms (not necessarily in the same order), as follows:

Positioning annotations relative to the chart.
Positioning annotations relative to the data points.

Positioning Annotations Relative to the Chart

Positioning annotations relative to the chart includes specifying the attachment and the location of the annotations in
the chart.

FlexChart provides four ways of attaching annotations, as follows:

Absolute: This attachment indicates that the annotation is fixed and cannot move, irrespective of the resizing
of the application. To set the absolute attachment, set the Attachment property to Absolute from
the AnnotationAttachment enum. To set the location of the annotation in the absolute attachment mode, set
the annotation’s coordinates in pixels.
DataCoordinate: This attachment indicates that the annotation is attached to a specific data point. To set this
attachment, set the Attachment property to DataCoordinate from the AnnotationAttachment enum. To set the
annotation’s location, specify the annotation’s data coordinates by setting the Location property.
DataIndex: This attachment indicates that the annotation is attached to the series as per the series index and
to the point as per the point index. To set this attachment, set the Attachment property to DataIndex from the
AnnotationAttachment enum. To specify the annotation’s location, set the SeriesIndex and the PointIndex
properties.
Relative: This attachment indicates that the annotation retains its location and dimensions relative to the chart.
To set this attachment, set the Attachment property to Relative from the AnnotationAttachment enum. Specify
the annotation’s location using the Location property in terms of relative position inside the chart where (0, 0)
is the top left corner and (1, 1) is the bottom right corner.

Positioning Annotations Relative to the Data Points

Specify the position of annotations with respect to the data points by setting the Position property from
the AnnotationPosition enum.

The following image displays the Rectangle annotation highlighting the maximum tax revenue in the year, 2013.

FlexChart for WPF 101

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code compares tax revenue data of nine consecutive years to display the maximum tax revenue. The
code shows how to specify the attachment, location, and position of the Rectangle annotation to Annotation Layer in
FlexChart.

XAML
<c1:Rectangle Content="Maximum Tax Revenue201345000"
 Attachment="DataIndex"
 SeriesIndex="0"
 PointIndex="5"
 Position="Top"
 Width="140"
 Height="50">
</c1:Rectangle>

Customizing Annotations
FlexChart annotations are customizable in terms of dimensions (for shapes), scaling (for images), and content style (for
all except images).

Dimensions: Change the dimensions of all shapes using dimension properties of the respective classes. For
instance, to change the dimensions of the Rectangle annotation, set the Height and the Width properties of
the Rectangle class.
Style: Customize the appearance of shape and text annotations in terms of color, font, and stroke by using
the Style property of the AnnotationBase class.
Content Style: Customize the appearance of content present in shape annotations by using the ContentStyle
property of the Shape class.

FlexChart for WPF 102

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following image displays the Rectangle annotation customized to further highlight the maximum tax revenue in
the year, 2013.

The following code compares tax revenue data of nine consecutive years to display the maximum tax revenue. The
code shows how to set the Rectangle annotation's dimensions, customize its appearance and content.

XAML
<c1:Rectangle.Style>
 <c1:ChartStyle Fill="DarkBlue"
 Stroke="OrangeRed"
 StrokeThickness="2"
 StrokeDashArray="1,2"
 FontFamily="GenericSansSerif"
 FontWeight="Regular" />
</c1:Rectangle.Style>
<c1:Rectangle.ContentStyle>
 <c1:ChartStyle Stroke="Yellow"
 FontFamily="GenericSansSerif"
 FontSize="8.5"
 FontWeight="Bold">
 </c1:ChartStyle>
</c1:Rectangle.ContentStyle>

Types of Annotations
FlexChart provides eight types of annotations in three categories, as follows:

FlexChart for WPF 103

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Shapes: Include useful information at specific areas and highlight the areas within chart data by using shapes,
such as Circle, Ellipsis, Rectangle, Square, Line, or Polygon.
Text: Add descriptive notes or informative comments at specific points in the chart by using text annotations.
Image: Add self-explanatory images to readily communicate chart data by using image annotations.

To explore different types of annotations provided by FlexChart, refer to the following sections:

Shape Annotations
Text Annotations
Image Annotations

Shape Annotations
Shapes are beneficial for drawing the user’s attention at specific areas where important data is highlighted.

FlexChart offers six shape annotations, as follows:

Circle
Ellipsis
Line
Polygon
Rectangle
Square

The following image shows the Line annotation highlighting the maximum customs duty and fees in the year, 2016.

FlexChart for WPF 104

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To create any of these specific shapes, create an instance of the shape annotation’s class. Set the dimensions of the
shape by using the dimension properties from the corresponding class. For example, to create a line annotation,
create an instance of the Line class. Specify the length of the line annotation or rotate it by setting the Start and
the End properties of the Line class.

For any shape annotation, specify the text by setting the Content property of the Shape class, the base class for all
shape annotations. In addition, other shapes like triangles and arrows can be created using the Polygon annotation in
FlexChart.

The following code uses customs tax data on importation of goods for representing its increment or decrement for
the year, 2016. The code shows how to add, position, and customize the Line annotation in FlexChart.

XAML
<c1:C1FlexChart.Layers>
 <c1:AnnotationLayer>
 <c1:AnnotationLayer.Annotations>
 <c1:Line Content="Maximum Customs Duty and Fees: 31000"
 Attachment="DataCoordinate"
 Start="0,31000"
 End="12,31000"
 Position="Top">
 <c1:Line.Style>
 <c1:ChartStyle Stroke="DarkTurquoise"
 StrokeThickness="3"/>
 </c1:Line.Style>
 <c1:Line.ContentStyle>
 <c1:ChartStyle Stroke="Black"
 FontFamily="GenericSansSerif"
 FontSize="9"
 FontWeight="Bold">
 </c1:ChartStyle>
 </c1:Line.ContentStyle>
 </c1:Line>

FlexChart for WPF 105

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 </c1:AnnotationLayer.Annotations>
 </c1:AnnotationLayer>
</c1:C1FlexChart.Layers>

Text Annotation
Text annotations let you add additional information at specific data points to make the data informative. FlexChart lets you add single
line as well as multiline text in text annotations.

The following image shows the Text annotation displaying the maximum population growth rate between 1961 and 2011.

To work with text annotation in FlexChart, create an instance of the Text class and set the Content property for the instance.

The following code compares population growth rates at specific years in five consecutive decades. The code shows how to add,
position, and customize the Text annotation in FlexChart.

XAML
<c1:C1FlexChart.Layers>
 <c1:AnnotationLayer>
 <c1:AnnotationLayer.Annotations>
 <c1:Text Content="Maximum Population Growth Over Preceding Year
(24.7 From 21.6)"
 Attachment="DataCoordinate"
 Location="1961,25.15"
 Position="Top">
 <c1:Text.Style>
 <c1:ChartStyle Stroke="Green"
 FontFamily="GenericSansSerif"
 FontSize="8"
 FontWeight="Bold" />
 </c1:Text.Style>
 </c1:Text>
 </c1:AnnotationLayer.Annotations>
 </c1:AnnotationLayer>
</c1:C1FlexChart.Layers>

FlexChart for WPF 106

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Image Annotation
Image annotations create visual impact and allow users to quickly interpret the chart data. A great way to communicate informative
data through image annotations is by adding tooltips.

The following image displays highest earning of a fast food chain among others using a tooltip with an image annotation.

To use image annotations in FlexChart, create an instance of the Image class and set an image for the instance by specifying the image
path in the Source property. Scale the image or adjust its size by setting the Height and the Width properties. To add tooltips to image
annotations, set the TooltipText property of the AnnotationBase class for the image annotation instance.

The following code compares earnings of the top fast food chains in United States. The code shows how to add, position, and
customize the Image annotation in FlexChart.

XAML
<c1:C1FlexChart.Layers>
 <c1:AnnotationLayer>
 <c1:AnnotationLayer.Annotations>
 <c1:Image Source="C:\\Resources\\image1.png"
 Attachment="DataCoordinate"
 Location="1,35"
 Position="Center"
 Width="68"
 Height="62"
 TooltipText="Highest Earning Among the Top Fast Food Chains\n35 Billion ($)">
 </c1:Image>
 <c1:Image Source="C:\\Resources\\image2.png"
 Attachment="DataCoordinate"
 Location="2,15"
 Position="Center"
 Width="60"
 Height="61">
 </c1:Image>
 <c1:Image Source="C:\\Resources\\image3.png"
 Attachment="DataCoordinate"
 Location="3,11"
 Position="Center">
 </c1:Image>
 <c1:Image Source="C:\\Resources\\image4.png"
 Attachment="DataCoordinate"

FlexChart for WPF 107

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Location="4,8"
 Position="Center">
 </c1:Image>
 <c1:Image Source="C:\\Resources\\image5.png"
 Attachment="DataCoordinate"
 Location="5,7"
 Position="Center">
 </c1:Image>
 </c1:AnnotationLayer.Annotations>
 </c1:AnnotationLayer>
</c1:C1FlexChart.Layers>

Creating Callouts
Callouts in charts are used to display the details of a data series or individual data points in an easy-to-read format. Callouts being connected with data points, help better visualize and comprehend chart data by minimizing
visual disturbances in the chart area. In FlexChart, Polygon type annotations can be customized to create chart callouts with line or arrow connectors.

In this example, we are using sample created in the Quick Start topic to further create an arrow callout and polygon annotation with line connection. This is done with the help of the Points property and the ContentCenter
property that define the coordinates of polygon vertices and annotation content center respectively.

To create callouts connected with respective data points, follow these steps:

Step 1: Create annotation with line connector
Step 2: Create arrow annotation callout
Step 3: Render the annotations in chart

The following image illustrates polygon annotations connected to data points through arrow and line connectors.

Step 1: Create annotation with line connector

To create a line callout, use the following code.

Visual Basic

 ...
 ' Create and stylize a line callout annotation of polygon type
 Dim lineCallout = New C1.WPF.Chart.Annotation.Polygon() With {
 .Content = "High",
 .Style = New ChartStyle() With {
 .Fill = New SolidColorBrush(Colors.Red) With {
 .Opacity = 200.0 / 255
 },
 .Stroke = New SolidColorBrush(Colors.Red)
 },
 .Attachment = AnnotationAttachment.DataIndex,
 .SeriesIndex = 0,
 .PointIndex = 1,
 .ContentCenter = New Point(25, -40),
 .Points = New PointCollection(New Point() {New Point(0, 0), New Point(25, -25), New Point(50, -25), New Point(50, -50), New Point(25, -75), New Point(0, -50),
 New Point(0, -25), New Point(25, -25), New Point(0, 0)})
}
 ...

C#

 ...
 // Create a line callout annotation of polygon type
 var lineCallout = new C1.WPF.Chart.Annotation.Polygon()
 {
 Content = "High",
 //Stylise the line callout annotation of polygon type
 Style = new ChartStyle()
 {
 Fill = new SolidColorBrush(Colors.Red) { Opacity = 200.0 / 255 },
 Stroke = new SolidColorBrush(Colors.Red),
 },
 Attachment = AnnotationAttachment.DataIndex,
 SeriesIndex = 0,
 PointIndex = 1,
 ContentCenter = new Point(25, -40),
 Points = new PointCollection(new Point[] { new Point(0, 0), new Point(25, -25),
new Point(50, -25), new Point(50, -50), new Point(25, -75),
new Point(0, -50), new Point(0, -25), new Point(25, -25), new Point(0, 0) })
 };
 ...

Back to Top

Step 2: Create arrow annotation callout

1. To create an arrow callout use the following code.
Visual Basic

Private Sub SetUpAnnotations()
 annotationLayer.Annotations.Clear()
 ' Create an arrow callout annotation of polygon type
 Dim contentCenter = New Point(25, -50)
 'Stylise the arrow callout annotation

FlexChart for WPF 108

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Dim arrowCallout = New Annotation.Polygon() With {
 .Content = "Low",
 .Style = New ChartStyle() With {
 .Fill = New SolidColorBrush(Colors.Green) With {
 .Opacity = 200.0 / 255
 },
 .Stroke = New SolidColorBrush(Colors.Green)
 },
 .Attachment = AnnotationAttachment.DataIndex,
 .SeriesIndex = 1,
 .PointIndex = 1,
 .ContentCenter = contentCenter,
 .Points = GetPointsForArrowCallout(contentCenter.X, contentCenter.Y, "Low")
}
 ...

C#
private void SetUpAnnotations()
{
 annotationLayer.Annotations.Clear();
 // Create an arrow callout annotation of polygon type
 var contentCenter = new Point(25, -50);
 var arrowCallout = new Annotation.Polygon()
 {
 Content = "Low",
 //Stylise the arrow callout annotation
 Style = new ChartStyle()
 {
 Fill = new SolidColorBrush(Colors.Green) { Opacity = 200.0 / 255 },
 Stroke = new SolidColorBrush(Colors.Green),
 },
 Attachment = AnnotationAttachment.DataIndex,
 SeriesIndex = 1,
 PointIndex = 1,
 ContentCenter = contentCenter,
 Points = GetPointsForArrowCallout(contentCenter.X, contentCenter.Y, "Low")
 };
 ...

2. Define the GetPointsForArrowCallout() method to specify the points for arrow callout.
1. To measure the size of content string in arrow callout, and reuse it to calculate and set the dimensions of arrow annotation, use the following code.

Visual Basic
Private Function GetPointsForArrowCallout(centerX As Double, centerY As Double, content As String) As PointCollection
 Dim size As _Size = _engine.MeasureString(content)
 Return GetPointsForArrowCallout(centerX, centerY, CSng(size.Width) + 10, CSng(size.Height) + 10)
End Function

C#
PointCollection GetPointsForArrowCallout(double centerX, double centerY, string content)
{
 _Size size = _engine.MeasureString(content);
 return GetPointsForArrowCallout(centerX, centerY, (float)size.Width + 10, (float)size.Height + 10);
}

2. To calculate the dimensions and points for arrow annotations, define the method overload GetPointsForArrowCallout() as shown below.
Visual Basic

Private Function GetPointsForArrowCallout(centerX As Double, centerY As Double, rectWidth As Double, rectHeight As Double) As PointCollection
 Dim points = New PointCollection()

 Dim rectLeft As Double = centerX - rectWidth / 2
 Dim rectRight As Double = centerX + rectWidth / 2
 Dim rectTop As Double = centerY - rectHeight / 2
 Dim rectBottom As Double = centerY + rectHeight / 2

 Dim angle As Double = Math.Atan2(-centerY, centerX)
 Dim angleOffset1 As Double = 0.4
 Dim angleOffset2 As Double = 0.04
 Dim arrowHeight As Double = 0.4 * rectHeight
 Dim hypotenuse As Double = arrowHeight / Math.Cos(angleOffset1)
 Dim subHypotenuse As Double = arrowHeight / Math.Cos(angleOffset2)

 Dim isNearBottom As Boolean = Math.Abs(rectTop) > Math.Abs(rectBottom)
 Dim nearHorizontalEdge As Double = If(isNearBottom, rectBottom, rectTop)
 Dim isNearRight As Boolean = Math.Abs(rectLeft) > Math.Abs(rectRight)
 Dim nearVerticalEdge As Double = If(isNearRight, rectRight, rectLeft)
 Dim isHorizontalCrossed As Boolean = Math.Abs(nearHorizontalEdge) > Math.Abs(nearVerticalEdge)
 Dim nearEdge As Double = If(isHorizontalCrossed, nearHorizontalEdge, nearVerticalEdge)

 Dim factor As Integer = If(nearEdge > 0, -1, 1)
 Dim crossedPointOffsetToCenter As Double = If(isHorizontalCrossed, rectHeight / (2 * Math.Tan(angle)) * factor, rectWidth * Math.Tan(angle) * factor / 2)

 ' Arrow points
 points.Add(New Point(0, 0))
 points.Add(New Point(Math.Cos(angle + angleOffset1) * hypotenuse, -Math.Sin(angle + angleOffset1) * hypotenuse))
 points.Add(New Point(Math.Cos(angle + angleOffset2) * subHypotenuse, -Math.Sin(angle + angleOffset2) * subHypotenuse))

 ' Rectangle points
 If isHorizontalCrossed Then
 points.Add(New Point(-nearEdge / Math.Tan(angle + angleOffset2), nearEdge))
 If isNearBottom Then
 points.Add(New Point(rectLeft, rectBottom))
 points.Add(New Point(rectLeft, rectTop))
 points.Add(New Point(rectRight, rectTop))
 points.Add(New Point(rectRight, rectBottom))
 Else
 points.Add(New Point(rectRight, rectTop))
 points.Add(New Point(rectRight, rectBottom))
 points.Add(New Point(rectLeft, rectBottom))
 points.Add(New Point(rectLeft, rectTop))
 End If
 points.Add(New Point(-nearEdge / Math.Tan(angle - angleOffset2), nearEdge))
 Else
 points.Add(New Point(nearEdge, -nearEdge * Math.Tan(angle + angleOffset2)))
 If isNearRight Then
 points.Add(New Point(rectRight, rectBottom))
 points.Add(New Point(rectLeft, rectBottom))
 points.Add(New Point(rectLeft, rectTop))
 points.Add(New Point(rectRight, rectTop))
 Else
 points.Add(New Point(rectLeft, rectTop))
 points.Add(New Point(rectRight, rectTop))
 points.Add(New Point(rectRight, rectBottom))
 points.Add(New Point(rectLeft, rectBottom))
 End If
 points.Add(New Point(nearEdge, -nearEdge * Math.Tan(angle - angleOffset2)))
 End If

 ' Arrow points
 points.Add(New Point(Math.Cos(angle - angleOffset2) * subHypotenuse, -Math.Sin(angle - angleOffset2) * subHypotenuse))
 points.Add(New Point(Math.Cos(angle - angleOffset1) * hypotenuse, -Math.Sin(angle - angleOffset1) * hypotenuse))

FlexChart for WPF 109

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Return points
End Function

C#
PointCollection GetPointsForArrowCallout(double centerX, double centerY, double rectWidth, double rectHeight)
{
 var points = new PointCollection();

 double rectLeft = centerX - rectWidth / 2;
 double rectRight = centerX + rectWidth / 2;
 double rectTop = centerY - rectHeight / 2;
 double rectBottom = centerY + rectHeight / 2;

 double angle = Math.Atan2(-centerY, centerX);
 double angleOffset1 = 0.4;
 double angleOffset2 = 0.04;
 double arrowHeight = 0.4 * rectHeight;
 double hypotenuse = arrowHeight / Math.Cos(angleOffset1);
 double subHypotenuse = arrowHeight / Math.Cos(angleOffset2);

 bool isNearBottom = Math.Abs(rectTop) > Math.Abs(rectBottom);
 double nearHorizontalEdge = isNearBottom ? rectBottom : rectTop;
 bool isNearRight = Math.Abs(rectLeft) > Math.Abs(rectRight);
 double nearVerticalEdge = isNearRight ? rectRight : rectLeft;
 bool isHorizontalCrossed = Math.Abs(nearHorizontalEdge) > Math.Abs(nearVerticalEdge);
 double nearEdge = isHorizontalCrossed ? nearHorizontalEdge : nearVerticalEdge;

 int factor = nearEdge > 0 ? -1 : 1;
 double crossedPointOffsetToCenter = isHorizontalCrossed ?
 rectHeight / (2 * Math.Tan(angle)) * factor : rectWidth * Math.Tan(angle) * factor / 2;

 // Arrow points
 points.Add(new Point(0, 0));
 points.Add(new Point(Math.Cos(angle + angleOffset1) * hypotenuse, -Math.Sin(angle + angleOffset1) * hypotenuse));
 points.Add(new Point(Math.Cos(angle + angleOffset2) * subHypotenuse, -Math.Sin(angle + angleOffset2) * subHypotenuse));

 // Rectangle points
 if (isHorizontalCrossed)
 {
 points.Add(new Point(-nearEdge / Math.Tan(angle + angleOffset2), nearEdge));
 if (isNearBottom)
 {
 points.Add(new Point(rectLeft, rectBottom));
 points.Add(new Point(rectLeft, rectTop));
 points.Add(new Point(rectRight, rectTop));
 points.Add(new Point(rectRight, rectBottom));
 }
 else
 {
 points.Add(new Point(rectRight, rectTop));
 points.Add(new Point(rectRight, rectBottom));
 points.Add(new Point(rectLeft, rectBottom));
 points.Add(new Point(rectLeft, rectTop));
 }
 points.Add(new Point(-nearEdge / Math.Tan(angle - angleOffset2), nearEdge));
 }
 else
 {
 points.Add(new Point(nearEdge, -nearEdge * Math.Tan(angle + angleOffset2)));
 if (isNearRight)
 {
 points.Add(new Point(rectRight, rectBottom));
 points.Add(new Point(rectLeft, rectBottom));
 points.Add(new Point(rectLeft, rectTop));
 points.Add(new Point(rectRight, rectTop));
 }
 else
 {
 points.Add(new Point(rectLeft, rectTop));
 points.Add(new Point(rectRight, rectTop));
 points.Add(new Point(rectRight, rectBottom));
 points.Add(new Point(rectLeft, rectBottom));
 }
 points.Add(new Point(nearEdge, -nearEdge * Math.Tan(angle - angleOffset2)));
 }

 // Arrow points
 points.Add(new Point(Math.Cos(angle - angleOffset2) * subHypotenuse, -Math.Sin(angle - angleOffset2) * subHypotenuse));
 points.Add(new Point(Math.Cos(angle - angleOffset1) * hypotenuse, -Math.Sin(angle - angleOffset1) * hypotenuse));
 return points;
}

Back to Top

Step 3: Render the annotations in chart

To Render the annotations in chart, follow these steps:

1. Define global field of render engine.
Visual Basic

Dim _engine As IRenderEngine
C#

IRenderEngine _engine;

2. To create an instance of AnnotationLayer use the following code.
XAML

<c1:C1FlexChart.Layers>
 <c1:AnnotationLayer x:Name="annotationLayer" />
</c1:C1FlexChart.Layers>

3. To add the annotation callouts in annotationLayer, use the following code.
Visual Basic

 annotationLayer.Annotations.Add(arrowCallout)
 annotationLayer.Annotations.Add(lineCallout)
End Sub

C#
 annotationLayer.Annotations.Add(arrowCallout);
 annotationLayer.Annotations.Add(lineCallout);
}

4. To render the callouts use the following code in the Rendered event of chart.
Visual Basic

Private Sub flexChart_Rendered(sender As Object, e As C1.WPF.Chart.RenderEventArgs) Handles flexChart.Rendered
 If _engine Is Nothing Then
 _engine = e.Engine

copyCode

FlexChart for WPF 110

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 SetUpAnnotations()
 End If
End Sub

C#
private void flexChart_Rendered(object sender, C1.WPF.Chart.RenderEventArgs e)
{
 if (_engine == null)
 {
 _engine = e.Engine;
 SetUpAnnotations();
 }
}

Back to Top

FlexChart Legend
Legends are important aspects of charts. They are key to better understand and interpret information conveyed by
charts. FlexChart provides API members to customize the appearance and behavior of the chart legend.

The following topics demonstrate how to customize the FlexChart legend.

Legend Position
Legend Style
Legend Toggle
Legend Text Wrap
Legend Grouping

Legend Position
You can use the LegendPosition property to position the Legend relative to the Plot Area, as per your requirements.

The LegendPosition property can be set to any of the following values in the Position enumeration:

Property Description

Position.Auto Positions the legend automatically.

Position.Bottom Positions the legend below the plot.

Position.Left Positions the legend to the left of the plot.

Position.None Hides the legend.

Position.Right (default value) Positions the legend to the right of the plot.

Position.Top Positions the legend above the plot.

Here is the code snippet for setting the property:

C#

flexChart.LegendPosition = C1.Chart.Position.Top;

FlexChart for WPF 111

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Legend Style
FlexChart lets you can customize the Legend using the LegendStyle property.

The table below lists the properties available for customizing the Legend:

Property Description

Fill Specifies the fill color.

FontSize Sets the font of the Legend.

FontStyle Sets the font of the Legend.

FontWeight Sets the font of the Legend.

FontFamily Sets the font of the Legend.

Stroke Sets the stroke color.

StrokeThickness Sets the stroke width.

Legend Toggle
FlexChart allows you to toggle the visibility of a series in the plot, when you click the series item in the legend by
means of the LegendToggle property.

The default value of the LegendToggle property is False. To enable series toggling, you need to set
the LegendToggle property to True.

Here is the code snippet:

C#

flexChart.LegendToggle = true;

FlexChart for WPF 112

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Legend Text Wrap
Legend text wrap is a feature to shorten the legend entries by either truncating or wrapping them into multiple
lines. This feature gives user the flexibility to effectively utilize chart display area by adjusting the space occupied
by legends.

FlexChart provides text wrapping for the legend text that exceeds the value specified in LegendMaxWidth property,
which sets the maximum width of each legend entry. The control enables you to manage legend entries in following
two ways:

Wrap: This mode allows you to wrap or break the legend entries into multiple lines. Wrapping text is
useful when you need the entire legend text to be visible in chart area. To wrap legend texts in FlexChart, set
the LegendTextWrapping property to Wrap.
Truncate: This mode allows you to shorten legend entries by cutting off the text from the end. If you want to
truncate legend texts in FlexChart, set the LegendTextWrapping property to Truncate.

In FlexChart, the maximum width set for the legend entries affects both text wrapping and text truncating. The greater
the value set for maximum legend entry width, the less the legend text is wrapped or truncated.

The following image displays legend texts wrapped into multiple lines.

FlexChart for WPF 113

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following image displays truncated legend texts.

The following code compares fruit data for three consecutive months. The code shows how to implement legend text
wrapping in FlexChart.

XAML

<Chart:C1FlexChart x:Name="flexChart"
 ItemsSource="{Binding DataContext.Data}"
 BindingX="Fruit"

FlexChart for WPF 114

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 LegendTextWrapping="Wrap"
 LegendMaxWidth="80"
 LegendPosition="Right">
 <Chart:Series SeriesName="系列１ (凡例テキストを折り返す)"
 Binding="March"/>
 <Chart:Series SeriesName="系列2 (凡例テキストを折り返す)"
 Binding="April"/>
 <Chart:Series SeriesName="系列3 (凡例テキストを折り返す)"
 Binding="May"/>
</Chart:C1FlexChart>

Visual Basic

flexChart.LegendTextWrapping = C1.Chart.TextWrapping.Wrap
flexChart.LegendPosition = C1.Chart.Position.Right
flexChart.LegendMaxWidth = 80

C#

flexChart.LegendTextWrapping = C1.Chart.TextWrapping.Wrap;
flexChart.LegendPosition = C1.Chart.Position.Right;
flexChart.LegendMaxWidth = 80;

Legend Grouping
Legend group, as the name suggests, categorizes the legend entries of chart series based on the data represented by them. So, the multiple chart series
with similar data can be better presented as groups in legend. This organizes the legends, which helps in better visualization and analysis of charts
depicting multiple series.

FlexChart supports grouping respective legend items of different series in chart through LegendGroup property exposed by the Series class. By setting
the LegendGroup property to a string value, you can specify the group name to which a particular series or legend item belongs. The series for which
value of LegendGroup property is same are grouped together in the legend. However, if the LegendGroup property is not defined for a series then the
series becomes a part of 0th group.

The value of LegendGroup property gets displayed as group title above the corresponding legend items. However, legend items that belong to the 0th
group get displayed without any group title.

Positioning Legend Groups
The legend groups get positioned automatically with respect to each other depending on legend's position. For example, if the legends are positioned on
top or bottom of the chart, then the legend groups are stacked horizontally one alongside the other. Whereas, if the legends are positioned to left or
right of the chart, then the legend groups are stacked vertically one above the other.

Styling Legend Groups
FlexChart also supports styling and formatting of the legend group titles. The appearance of legend group titles can be customized by specifying
the LegendGroupHeaderStyle property.

Following image shows a stacked chart that plots country-wise sales and profit of a company for different quarters of a year. Here, the legend items have
been grouped together as per the stacked series for quick and easy analysis. The image also shows how legend and the legend groups have got
positioned vertically and how appearance of the group titles can be customized.

FlexChart for WPF 115

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Following code snippet demonstrates how to group the legends of respective series together by setting the Series.LegendGroup property of those series
to the desired group name. The code snippet also shows how GroupHeaderStyle property can be used to style headers of the legend groups.

Xaml

<Chart:C1FlexChart x:Name="flexChart" ItemsSource="{Binding DataContext.Data}"
 BindingX="Country" Stacking="Stacked">
 <!--Grouping the legend items-->
 <Chart:Series SeriesName="Q1" Binding="SalesQ1" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q1" Binding="ProfitQ1" LegendGroup="Profit" StackingGroup="1" />
 <Chart:Series SeriesName="Q2" Binding="SalesQ2" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q2" Binding="ProfitQ2" LegendGroup="Profit" StackingGroup="1" />
 <Chart:Series SeriesName="Q3" Binding="SalesQ3" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q3" Binding="ProfitQ3" LegendGroup="Profit" StackingGroup="1" />
 <Chart:Series SeriesName="Q4" Binding="SalesQ4" LegendGroup="Sales" StackingGroup="0" />
 <Chart:Series SeriesName="Q4" Binding="ProfitQ4" LegendGroup="Profit" StackingGroup="1" />

 <Chart:C1FlexChart.AxisY>
 <Chart:Axis Format="$0M"
 Labels="True"
 Title="Sales and Profit"/>
 </Chart:C1FlexChart.AxisY>

 <Chart:C1FlexChart.AxisX>
 <Chart:Axis Title="Countries"/>
 </Chart:C1FlexChart.AxisX>

 <!--Styling the legend group headers-->
<Chart:C1FlexChart.LegendGroupHeaderStyle>
 <Chart:ChartStyle Stroke="DarkBlue" FontFamily="Cambria" FontStyle="Normal" FontSize="15" FontWeight="Bold"/>
</Chart:C1FlexChart.LegendGroupHeaderStyle>
</Chart:C1FlexChart>

Custom Legend Icon
FlexChart allows you to apply custom image or icon for customizing the legend items. To enable FlexChart to display
custom legend icon, implement the GetLegendItemImageSource method provided by ISeries interface. This method
primarily accepts two parameters; index and _size. The index parameter refers to the legend item position and _size
parameter refers to the default legend icon size.

In the example code below, we have implemented the GetLegendItemImageSource method to customize the image
size and draw a border around it. This method then returns the image object. To apply the custom legend icon add
object of the class SeriesWithPointLegendItems to the chart Series collection.

The image shows how FlexChart appears after using custom legend icon.

FlexChart for WPF 116

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Use the following code snippet to implement custom legend icon.

XAML

<c1:C1FlexChart x:Name="flexChart" ItemsSource="{Binding SmartPhoneVendors}"
Binding="Sales" BindingX="Name" Header="Top Smartphone Vendors" Grid.Row="1">
 <c1:C1FlexChart.HeaderStyle>
 <c1:ChartStyle FontSize="15" FontFamily="GenericSansSerif"/>
 </c1:C1FlexChart.HeaderStyle>
</c1:C1FlexChart>

Code

HTML

public partial class LegendItems
 {
 static List<SmartPhoneVendor> vendors = new List<SmartPhoneVendor>();
 static Image LegendIconImage = Properties.Resources.usa;
 Series customSeries;
 public LegendItems()
 {
 InitializeComponent();
 vendors = SmartPhoneVendors();

 //Add custom series
 customSeries = new SeriesWithPointLegendItems();
 customSeries.Name = "Sales in USA";

FlexChart for WPF 117

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 flexChart1.Series.Add(customSeries);
 flexChart1.Legend.Position = Position.Left;
 flexChart1.ToolTip.Content = "{seriesName}\r\n{value}";

 }
 public class SeriesWithPointLegendItems : Series, ISeries
 {
 object ISeries.GetLegendItemImageSource(int index, ref C1.Chart._Size
imageSize)
 {
 {
 // Original images/logos are all 50x50 pixels.
 // Here they are replaced with new images where a 5 pixel border
is added
 // around the logos.
 imageSize.Height = 60;
 imageSize.Width = 60;

 SmartPhoneVendor vendor = vendors.ElementAt(index);
 if (LegendIconImage != null && LegendIconImage.Width != 60)
 {
 Bitmap bmp = new Bitmap(60, 60);
 using (SolidBrush sb = new SolidBrush(vendor.Color))
 {
 using (Graphics g = Graphics.FromImage(bmp))
 {
 Rectangle r = new Rectangle(0, 0,
(int)imageSize.Width, (int)imageSize.Height);
 using (Pen p = new Pen(sb))
 {
 g.DrawRectangle(p, r);
 }
 g.FillRectangle(sb, r);

 Point ci = new Point((int)(0.5 * (imageSize.Width -
LegendIconImage.Width)),
 (int)(0.5 * (imageSize.Height -
LegendIconImage.Height)));
 g.DrawImage(LegendIconImage, ci);
 }
 }
 LegendIconImage = bmp;
 }
 // Keep the original size of the logo bitmaps, but reduce their
size if the chart window
 // is too small to display the bitmaps properly.
 Size bounds = this.Chart.ClientSize;
 double divadj = (bounds.Height > 800) ? 12 : 25;
 double fracHeight = bounds.Height / divadj;
 if (fracHeight < imageSize.Height)
 imageSize.Width = imageSize.Height = fracHeight;

FlexChart for WPF 118

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 return LegendIconImage;
 }
 }
 }
 private static List<SmartPhoneVendor> SmartPhoneVendors()
 {

 vendors.Add(new SmartPhoneVendor()
 {
 Name = "Apple",
 Color = Color.FromArgb(136, 189, 230),
 Sales = 350,
 });
 vendors.Add(new SmartPhoneVendor()
 {
 Name = "LG",
 Color = Color.FromArgb(251, 178, 88),
 Sales = 120,
 });

 vendors.Add(new SmartPhoneVendor()
 {
 Name = "Samsung",
 Color = Color.FromArgb(188, 153, 199),
 Sales = 280,
 });

 vendors.Add(new SmartPhoneVendor()
 {
 Name = "Xiaomi",
 Color = Color.FromArgb(240, 126, 110),
 Sales = 68,
 });

 return vendors;
 }
 public class SmartPhoneVendor
 {
 public string Name { get; set; }
 public double Sales { get; set; }
 public Color Color { get; set; }
 }
 }

FlexChart Series
A series is a set of data or more specifically related data points that are plotted on a chart.

In FlexChart, a series is represented by the Series object, which provides the entire data plotted on the chart. And the
Flexchart.Series collection comprises all data series (Series objects) in the control.

You can assign any of the following properties to a series in FlexChart:

FlexChart for WPF 119

Copyright © 2018 GrapeCity, Inc. All rights reserved.

An X-axis (Series.AxisX)
A Y-axis (Series.AxisY)
A property containing Y values for the series (Series.Binding)
A property containing X values for the series (Series.BindingX)
A chart type (Series.ChartType)
A collection of objects containing the series data (Series.ItemsSource)
A name (Series.SeriesName)

A series consists of a collection of data points that you can customize using the following properties:

To set the shape of the marker to be used for each data point in the series (Series.SymbolMarker)
To set the size of the symbol used to render the series (Series.SymbolSize)
To set the symbol style used in the data points in the series (Series.SymbolStyle)

Once you have set these properties in a series, the same settings are inherited by all data points.

Here are the links to key information regarding the Series object in FlexChart:

Creating and Adding a Series
Adding Data to Series
Emphasizing Different Types of Data
Customizing Series

Creating and Adding Series
By default, FlexChart for WPF displays three series containing dummy data at design-time as well as run-time.
However, you can provide your own data and display the series with that data. For information on how to provide
data to FlexChart, refer to Providing Data.

FlexChart enables you to create and add a series at design-time as well as run-time. So if you want to add more series,
you can do so by performing any of the methods mentioned below.

At Design-Time
Perform the following steps to create and add a series in FlexChart at design-time:

1. In the Properties window, click the Miscellaneous drop down.
2. Navigate to the Series field.
3. Click the Ellipsis button next to the Series field.

Series Collection Editor: Series appears.

By default, FlexChart contains three series added in the Series collection. Thus, Series Collection Editor
appears with the pre-added series.

4. Click the Add button to add an additional series in the Series collection.
5. Repeat step 3 to add the required number of series.
6. Click the OK button.

At Run-Time
At run-time, you first need to create a series by using the Series object. And then, you need to add the series to the
FlexChart Series collection using the Add method in the FlexChart.Series collection property.

The following code shows how to create and add a series in FlexChart at run-time.

XAML

FlexChart for WPF 120

Copyright © 2018 GrapeCity, Inc. All rights reserved.

<c1:Series AxisX="{x:Null}"
 AxisY="{x:Null}"
 Binding="Y"
 BindingX="X"
 Chart="{x:Null}"
 SeriesName="Series 4">
 <c1:Series.ItemsSource>
 <PointCollection>1,16 2,19 3,15 4,22 5,18</PointCollection>
 </c1:Series.ItemsSource>
</c1:Series>

Code

C#

C1.WPF.Chart.Series series4 = new C1.WPF.Chart.Series();
flexChart.Series.Add(series4);

copyCode

Adding Data to Series
When it comes to adding data to series, FlexChart provides a powerful way through binding. You can bind series in
FlexChart with multiple data sources, which enables you to combine data from multiple data sources. To plot data
from multiple data sources, you need to use the Series.ItemsSource property.

See the following code for reference. Notice that the following code user the DataCreator.cs class to generate data.

XAML
<c1:C1FlexChart x:Name="flexChart"
 ItemsSource="{Binding DataContext.Data}"
 ChartType="Scatter">
 <c1:C1FlexChart.Series>
 <c1:Series x:Name="Function1"
 SeriesName="Function1"
 BindingX ="XVals"
 Binding="YVals"/>
 <c1:Series x:Name="Function2"
 SeriesName="Function2"
 BindingX ="XVals"
 Binding="YVals"/>
 </c1:C1FlexChart.Series>
</c1:C1FlexChart>

Code

DataCreator.cs

class DataCreator
{
 public delegate double MathActionDouble(double num);

copyCode

FlexChart for WPF 121

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 public delegate double MathActionInt(int num);

 public static List<DataPoint> Create(MathActionDouble function, double from,
double to, double step)
 {
 var result = new List<DataPoint>();
 var count = (to - from) / step;

 for (double r = from; r < to; r += step)
 {
 result.Add(new DataPoint()
 {
 XVals = r,
 YVals = function(r)
 });
 }
 return result;
 }

 public static List<DataPoint> Create(MathActionInt function, int from, int to,
int step)
 {
 var result = new List<DataPoint>();
 var count = (to - from) / step;

 for (int r = from; r < to; r += step)
 {
 result.Add(new DataPoint()
 {
 XVals = r,
 YVals = function(r)
 });
 }
 return result;
 }

 public static List<DataPoint> Create(MathActionDouble functionX, MathActionDouble
functionY, int ptsCount)
 {
 var result = new List<DataPoint>();

 for (double i = 0; i < ptsCount; i++)
 {
 result.Add(new DataPoint()
 {
 XVals = functionX(i),
 YVals = functionY(i)
 });
 }
 return result;
 }

FlexChart for WPF 122

Copyright © 2018 GrapeCity, Inc. All rights reserved.

}

public class DataPoint
{
 public double XVals { get; set; }
 public double YVals { get; set; }
}

MainWindow.xaml.cs

public partial class MainWindow : Window
{

 List<DataPoint> _function1Source;
 List<DataPoint> _function2Source;

 public MainWindow()
 {
 this.InitializeComponent();
 this.Loaded += Form_Loaded;
 }

 private void Form_Loaded(object sender, EventArgs e)
 {
 SetupChart();
 }

 void SetupChart()
 {
 flexChart.BeginUpdate();
 this.Function1.ItemsSource = Function1Source;
 this.Function2.ItemsSource = Function2Source;
 flexChart.EndUpdate();
 }

 public List<DataPoint> Function1Source
 {
 get
 {
 if (_function1Source == null)
 {
 _function1Source = DataCreator.Create(x => 2 * Math.Sin(0.16 * x), y
=> 2 * Math.Cos(0.12 * y), 160);
 }

 return _function1Source;
 }
 }

 public List<DataPoint> Function2Source
 {

copyCode

FlexChart for WPF 123

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 get
 {
 if (_function2Source == null)
 {
 _function2Source = DataCreator.Create(x => Math.Sin(0.1 * x), y =>
Math.Cos(0.15 * y), 160);
 }

 return _function2Source;
 }
 }
}

Emphasizing Different Types of Data
In a chart, there is often a common but crucial requirement to emphasize different types of data. Emphasizing or
distinguishing different types of data is vital because chart data that is distinguishable is easier to interpret and
understand.

FlexChart caters to this requirement by allowing you to combine two or more chart types in a single chart. For
instance, you can combine the LineSymbols Chart with the Column Chart to make the chart data easier to interpret.
You can use the ChartType property to specify the chart type at the series level for each series, thereby creating charts
with multiple chart types.

The following code combines two chart types in a single chart.

XAML
<c1:C1FlexChart.Series>
 <c1:Series ChartType="Line"
 x:Name="Function1"
 SeriesName="Function1"
 BindingX ="XVals"

FlexChart for WPF 124

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Binding="YVals"/>
 <c1:Series ChartType="LineSymbols"
 x:Name="Function2"
 SeriesName="Function2"
 BindingX ="XVals"
 Binding="YVals"/>
</c1:C1FlexChart.Series>

Customizing Series
Once the series have been displayed in the chart, you can customize the displayed series to manage the same more
efficiently.

FlexChart allows you to customize series by showing or hiding a series either in the Plot Area or the Legend or both. If
there are hundreds of series to be displayed in your chart, you would certainly need to manage the same due to the
space limitation of the chart.

In FlexChart, you can manage series by using the Visibility property of a series. The Visibility property accepts values of
the SeriesVisibility enumerated type.

You can set the property to the following different values to show or hide a series:

Value Description

SeriesVisibility.Visible The series is displayed in the Plot as well as the Legend.

SeriesVisibility.Plot The series is displayed in the Plot, but hidden in the Legend.

SeriesVisibility.Legend The series is displayed in the Legend, but hidden in the Plot.

SeriesVisibility.Hidden The series is hidden in the Plot as well as the Legend.

Here's the code snippet for reference:

XAML

FlexChart for WPF 125

Copyright © 2018 GrapeCity, Inc. All rights reserved.

<c1:C1FlexChart.Series>
 <c1:Series Visibility="Legend"
 x:Name="Function1"
 SeriesName="Function1"
 BindingX ="XVals"
 Binding="YVals"/>
 <c1:Series Visibility="Plot"
 x:Name="Function2"
 SeriesName="Function2"
 BindingX ="XVals"
 Binding="YVals"/>
</c1:C1FlexChart.Series>

In addition, you can enhance the visual appeal of the series by setting different palettes for FlexChart. For more
details, refer to Setting FlexChart Palette.

You can also work with different symbol styles to render visually appealing series in the chart. For more information,
refer to Symbol styles for Series.

Box-and-Whisker
Box-and-Whisker series allows you to display groups of data into the range, quartiles, and median. The name itself suggests that the series depicts
data through boxes and whiskers.

A box is the range showing the quartiles (lower and upper) and the median. Whiskers, on the other hand, are the lines extending vertically from the
boxes. These lines indicate the data variability outside the lower and the upper quartiles. In addition, points that lie outside of these lines are known
as outliers.

Box-and-Whisker series is ideal for visualizing statistical distribution or examining multiple sets of data graphically.

Box-and-Whisker series in FlexChart allows working with different features, as follows:

Quartile: Specify whether you would like to calculate quartiles by including or excluding median. To specify quartile calculation, set
the QuartileCalculation property from the QuartileCalculation enumeration.
Inner points: Indicate whether to show or hide inner points by setting the ShowInnerPoints property.

FlexChart for WPF 126

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Outliers: Indicate whether to show outliers by setting the ShowOutliers property.
Mean line: Display the mean line by setting the ShowMeanLine property.
Mean marks: Show mean marks by setting the ShowMeanMarks property.

The following image displays quartiles, median, and whiskers for the data that compares scores of students in three subjects across different schools.

The following code uses data regarding scores obtained by students of schools A, B, and C in three subjects. The code illustrates how to implement
Box-and-Whisker series in FlexChart.

DataCreator.vb

Class DataCreator
 Public Shared Function CreateSchoolScoreData() As List(Of ClassScore)
 Dim result = New List(Of ClassScore)()
 result.Add(New ClassScore() With {
 .ClassName = "English",
 .SchoolA = 46,
 .SchoolB = 53,
 .SchoolC = 66
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 61,
 .SchoolB = 55,
 .SchoolC = 65
 })
 result.Add(New ClassScore() With {
 .ClassName = "English",
 .SchoolA = 58,
 .SchoolB = 56,
 .SchoolC = 67
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 58,
 .SchoolB = 51,
 .SchoolC = 64
 })
 result.Add(New ClassScore() With {
 .ClassName = "English",
 .SchoolA = 63,
 .SchoolB = 53,
 .SchoolC = 45
 })
 result.Add(New ClassScore() With {
 .ClassName = "English",
 .SchoolA = 63,

FlexChart for WPF 127

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 .SchoolB = 50,
 .SchoolC = 65
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 60,
 .SchoolB = 45,
 .SchoolC = 67
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 62,
 .SchoolB = 53,
 .SchoolC = 66
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 63,
 .SchoolB = 54,
 .SchoolC = 64
 })
 result.Add(New ClassScore() With {
 .ClassName = "English",
 .SchoolA = 63,
 .SchoolB = 52,
 .SchoolC = 67
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 69,
 .SchoolB = 66,
 .SchoolC = 71
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 48,
 .SchoolB = 67,
 .SchoolC = 50
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 54,
 .SchoolB = 50,
 .SchoolC = 56
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 60,
 .SchoolB = 56,
 .SchoolC = 64
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 71,
 .SchoolB = 65,
 .SchoolC = 50
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 48,
 .SchoolB = 70,
 .SchoolC = 72
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 53,
 .SchoolB = 40,
 .SchoolC = 80
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 60,
 .SchoolB = 56,
 .SchoolC = 67
 })
 result.Add(New ClassScore() With {
 .ClassName = "Math",
 .SchoolA = 61,

FlexChart for WPF 128

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 .SchoolB = 56,
 .SchoolC = 45
 })
 result.Add(New ClassScore() With {
 .ClassName = "English",
 .SchoolA = 63,
 .SchoolB = 58,
 .SchoolC = 64
 })
 result.Add(New ClassScore() With {
 .ClassName = "Physics",
 .SchoolA = 59,
 .SchoolB = 54,
 .SchoolC = 65
 })

 Return result
 End Function
End Class

Public Class ClassScore
 Public Property ClassName() As String
 Get
 Return m_ClassName
 End Get
 Set
 m_ClassName = Value
 End Set
 End Property
 Private m_ClassName As String
 Public Property SchoolA() As Double
 Get
 Return m_SchoolA
 End Get
 Set
 m_SchoolA = Value
 End Set
 End Property
 Private m_SchoolA As Double
 Public Property SchoolB() As Double
 Get
 Return m_SchoolB
 End Get
 Set
 m_SchoolB = Value
 End Set
 End Property
 Private m_SchoolB As Double
 Public Property SchoolC() As Double
 Get
 Return m_SchoolC
 End Get
 Set
 m_SchoolC = Value
 End Set
 End Property
 Private m_SchoolC As Double
End Class

DataCreator.cs

namespace BoxWhiskers
{
 class DataCreator
 {
 public static List<ClassScore> CreateSchoolScoreData()
 {
 var result = new List<ClassScore>();
 result.Add(new ClassScore() { ClassName = "English", SchoolA = 46, SchoolB = 53, SchoolC = 66 });
 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 61, SchoolB = 55, SchoolC = 65 });
 result.Add(new ClassScore() { ClassName = "English", SchoolA = 58, SchoolB = 56, SchoolC = 67 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 58, SchoolB = 51, SchoolC = 64 });
 result.Add(new ClassScore() { ClassName = "English", SchoolA = 63, SchoolB = 53, SchoolC = 45 });
 result.Add(new ClassScore() { ClassName = "English", SchoolA = 63, SchoolB = 50, SchoolC = 65 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 60, SchoolB = 45, SchoolC = 67 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 62, SchoolB = 53, SchoolC = 66 });
 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 63, SchoolB = 54, SchoolC = 64 });
 result.Add(new ClassScore() { ClassName = "English", SchoolA = 63, SchoolB = 52, SchoolC = 67 });

FlexChart for WPF 129

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 69, SchoolB = 66, SchoolC = 71 });
 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 48, SchoolB = 67, SchoolC = 50 });
 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 54, SchoolB = 50, SchoolC = 56 });
 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 60, SchoolB = 56, SchoolC = 64 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 71, SchoolB = 65, SchoolC = 50 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 48, SchoolB = 70, SchoolC = 72 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 53, SchoolB = 40, SchoolC = 80 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 60, SchoolB = 56, SchoolC = 67 });
 result.Add(new ClassScore() { ClassName = "Math", SchoolA = 61, SchoolB = 56, SchoolC = 45 });
 result.Add(new ClassScore() { ClassName = "English", SchoolA = 63, SchoolB = 58, SchoolC = 64 });
 result.Add(new ClassScore() { ClassName = "Physics", SchoolA = 59, SchoolB = 54, SchoolC = 65 });

 return result;
 }
 }

 public class ClassScore
 {
 public string ClassName { get; set; }
 public double SchoolA { get; set; }
 public double SchoolB { get; set; }
 public double SchoolC { get; set; }
 }

Visual Basic

Partial Public Class MainWindow
 Private _data As List(Of ClassScore) = Nothing
 Public Sub New()
 InitializeComponent()

 ' show mean lines
 boxWhiskerA.ShowMeanLine = True
 boxWhiskerB.ShowMeanLine = True
 boxWhiskerC.ShowMeanLine = True

 ' show inner points
 boxWhiskerA.ShowInnerPoints = True
 boxWhiskerB.ShowInnerPoints = True
 boxWhiskerC.ShowInnerPoints = True

 ' show outliers
 boxWhiskerA.ShowOutliers = True
 boxWhiskerB.ShowOutliers = True
 boxWhiskerC.ShowOutliers = True

 ' show mean marks
 boxWhiskerA.ShowMeanMarks = True
 boxWhiskerB.ShowMeanMarks = True
 boxWhiskerC.ShowMeanMarks = True

 ' specify quartile calculation
 boxWhiskerA.QuartileCalculation = QuartileCalculation.InclusiveMedian
 boxWhiskerB.QuartileCalculation = QuartileCalculation.InclusiveMedian
 boxWhiskerC.QuartileCalculation = QuartileCalculation.InclusiveMedian
 End Sub

End Class

Public ReadOnly Property Data() As List(Of ClassScore)
 Get
 If _data Is Nothing Then
 _data = DataCreator.CreateSchoolScoreData()
 End If

 Return _data
 End Get
End Property

C#

namespace BoxWhiskers
{
 public partial class BoxWhisker : UserControl
 {
 private List<ClassScore> _data = null;
 public BoxWhisker()
 {

FlexChart for WPF 130

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 InitializeComponent();

 // show mean lines
 boxWhiskerA.ShowMeanLine = true;
 boxWhiskerB.ShowMeanLine = true;
 boxWhiskerC.ShowMeanLine = true;

 // show inner points
 boxWhiskerA.ShowInnerPoints = true;
 boxWhiskerB.ShowInnerPoints = true;
 boxWhiskerC.ShowInnerPoints = true;

 // show outliers
 boxWhiskerA.ShowOutliers = true;
 boxWhiskerB.ShowOutliers = true;
 boxWhiskerC.ShowOutliers = true;

 // show mean marks
 boxWhiskerA.ShowMeanMarks = true;
 boxWhiskerB.ShowMeanMarks = true;
 boxWhiskerC.ShowMeanMarks = true;

 // specify quartile calculation
 boxWhiskerA.QuartileCalculation = QuartileCalculation.InclusiveMedian;
 boxWhiskerB.QuartileCalculation = QuartileCalculation.InclusiveMedian;
 boxWhiskerC.QuartileCalculation = QuartileCalculation.InclusiveMedian;
 }
 public List<ClassScore> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateSchoolScoreData();
 }

 return _data;
 }
 }
 }
}

Error Bar
Error Bar series allows you to indicate variability of data or uncertainty in values. It enables you to display standard
deviations and a range of error in variable data using error bars. Generally, results of scientific studies or experimental
sciences use error bars in charts to depict variations in data from original values.

FlexChart lets you use Error Bar series in different chart types including Area, Column, Line, LineSymbols, Scatter,
Spline, SplineArea, and SplineSymbols.

Error Bar series in FlexChart offers several features, as follows:

Error amount: Set up error bars on all data points using different ways, such as a fixed value, percentage,
standard error, or standard deviation. In addition, it is possible to set a custom value to show a precise error
amount, if required. To display error bars in any of these ways, set the ErrorAmount property from
the ErrorAmount enumeration.
Direction: Show error bars in the Plus, the Minus, or even both directions by setting the Direction property
from the ErrorBarDirection enumeration.
End style: Display error bars with or without caps by setting the EndStyle property from the ErrorBarEndStyle
enumeration.
Bar style: Customize the appearance of error bars using the ErrorBarStyle property.

The following image displays Plus and Minus error amounts in the mean MCA (Middle Cerebral Artery) velocity data
for different seizure types observed in children.

FlexChart for WPF 131

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code uses mean percentage values of MCA velocity during different kinds of seizures in children. The
codes shows how to implement ErrorBar series in FlexChart.

DataCreator.vb

Class DataCreator
 Public Shared Function CreateData() As List(Of DataItem)
 Dim data = New List(Of DataItem)()
 data.Add(New DataItem("Generalize", 15))
 data.Add(New DataItem("Unilateral Clonic", 22))
 data.Add(New DataItem("Subclinical", 20))
 data.Add(New DataItem("Tonic", 11))
 Return data
 End Function
End Class
Public Class DataItem
 Public Sub New(seizuretype__1 As String, meanmca__2 As Integer)
 SeizureType = seizuretype__1
 MeanMCA = meanmca__2
 End Sub

 Public Property SeizureType() As String
 Get
 Return m_SeizureType
 End Get
 Set
 m_SeizureType = Value
 End Set
 End Property
 Private m_SeizureType As String
 Public Property MeanMCA() As Integer
 Get

FlexChart for WPF 132

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Return m_MeanMCA
 End Get
 Set
 m_MeanMCA = Value
 End Set
 End Property
 Private m_MeanMCA As Integer
End Class

DataCreator.cs

class DataCreator
{
 public static List<DataItem> CreateData()
 {
 var data = new List<DataItem>();
 data.Add(new DataItem("Generalize", 15));
 data.Add(new DataItem("Unilateral Clonic", 22));
 data.Add(new DataItem("Subclinical", 20));
 data.Add(new DataItem("Tonic", 11));
 return data;
 }
}
public class DataItem
{
 public DataItem(string seizuretype, int meanmca)
 {
 SeizureType = seizuretype;
 MeanMCA = meanmca;
 }

 public string SeizureType { get; set; }
 public int MeanMCA { get; set; }
}

Visual Basic

Partial Public Class MainWindow
 Inherits Window
 Private _data As List(Of DataItem)
 Public Sub New()
 InitializeComponent()

 ' clear data series collection
 flexChart.Series.Clear()

 ' create ErrorBar series
 Dim errorBar As New C1.WPF.Chart.ErrorBar()

 ' add the series to the data series collection
 flexChart.Series.Add(errorBar)

 ' bind X-axis and Y-axis
 flexChart.BindingX = "SeizureType"
 errorBar.Binding = "MeanMCA"

 ' specify error amount of the series
 errorBar.ErrorAmount = C1.Chart.ErrorAmount.Percentage

 ' specify the direction of the error
 errorBar.Direction = C1.Chart.ErrorBarDirection.Both

FlexChart for WPF 133

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 ' specify the error value of the series
 errorBar.ErrorValue = 0.3

 ' style the ErrorBar series
 errorBar.EndStyle = C1.Chart.ErrorBarEndStyle.Cap
 End Sub
 Public ReadOnly Property Data() As List(Of DataItem)
 Get
 If _data Is Nothing Then
 _data = DataCreator.CreateData()
 End If

 Return _data
 End Get
 End Property
End Class

C#

public partial class MainWindow : Window
{
 private List<DataItem> _data;
 public MainWindow()
 {
 InitializeComponent();

 // clear data series collection
 flexChart.Series.Clear();

 // create ErrorBar series
 C1.WPF.Chart.ErrorBar errorBar = new C1.WPF.Chart.ErrorBar();

 // add the series to the data series collection
 flexChart.Series.Add(errorBar);

 // bind X-axis and Y-axis
 flexChart.BindingX = "SeizureType";
 errorBar.Binding = "MeanMCA";

 // specify error amount of the series
 errorBar.ErrorAmount = C1.Chart.ErrorAmount.Percentage;

 // specify the direction of the error
 errorBar.Direction = C1.Chart.ErrorBarDirection.Both;

 // specify the error value of the series
 errorBar.ErrorValue = .3;

 // style the ErrorBar series
 errorBar.EndStyle = C1.Chart.ErrorBarEndStyle.Cap;

 }
 public List<DataItem> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateData();
 }

 return _data;

FlexChart for WPF 134

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 }
 }
}

Waterfall Series
Waterfall series allows you to understand the cumulative effect of sequential positive or negative values. It is useful to understand
the effect of a series of positive and negative values on an initial value. The series depicts color coded columns to easily distinguish
positive values from negative values. Generally initial and final values are depicted by total columns, while intermediate values are
represented by floating columns. It is recommended to use Waterfall series when there is a column of category text and a mix of
positive and negative values. Such cases are mostly found in quantitative analysis like inventory analysis or performance analysis,
where the chart shows the gradual transition in the quantitative value of an entity subjected to increment or decrement.

FlexChart provides features that can be implemented and customized for enhanced data visualization through Waterfall series.

Connector lines: Connector lines are the lines that connect color coded columns to display the flow of data in the chart. To
show connector lines, set the ConnectorLines property of the WaterFall class to True.
Connector lines customization: Once displayed, connector lines can be customized using the ConnectorLineStyle property
that allows you to access styling properties of the ChartStyle class.
Columns customization: To clearly differentiate positive values from negative values or total, you can apply various styles to
the columns showing these values. For that, you can use various properties, such as RisingStyle, FallingStyle, TotalStyle,
or StartStyle provided by the Waterfall class.

The following image displays Waterfall series displaying the cumulative effect of sequential positive and negative values.

To use the Waterfall series in FlexChart, create an instance of the Waterfall class, which inherits the Series class, and add the created
instance to the FlexChart Series collection using the Series property provided by the C1FlexChart class.

The following code snippet illustrates how to set various properties while working with Waterfall series in FlexChart. The code
snippet first creates a class DataCreator to generate data for the chart, and then binds the series to the data source.

Visual Basic

Class DataCreator
 Public Shared Function CreateData() As List(Of DataItem)
 Dim data = New List(Of DataItem)()
 data.Add(New DataItem("製品の収入", 420))
 data.Add(New DataItem("サービスの収入", -180))
 data.Add(New DataItem("固定費", 130))
 data.Add(New DataItem("変動費用", -20))
 Return data
 End Function
End Class

Public Class DataItem

FlexChart for WPF 135

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Public Sub New(costs__1 As String, amount__2 As Integer)
 Costs = costs__1
 Amount = amount__2
 End Sub

 Public Property Costs() As String
 Get
 Return m_Costs
 End Get
 Set
 m_Costs = Value
 End Set
 End Property
 Private m_Costs As String
 Public Property Amount() As Integer
 Get
 Return m_Amount
 End Get
 Set
 m_Amount = Value
 End Set
 End Property
 Private m_Amount As Integer
End Class

C#

using System.Collections.Generic;

namespace Waterfall
{
 class DataCreator
 {
 public static List<DataItem> CreateData()
 {
 var data = new List<DataItem>();
 data.Add(new DataItem("製品の収入", 420));
 data.Add(new DataItem("サービスの収入", -180));
 data.Add(new DataItem("固定費", 130));
 data.Add(new DataItem("変動費用", -20));
 return data;
 }
 }

 public class DataItem
 {
 public DataItem(string costs, int amount)
 {
 Costs = costs;
 Amount = amount;
 }

 public string Costs { get; set; }
 public int Amount { get; set; }
 }
}

Here is the code snippet for binding the FlexChart to the data source.

XAML
<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:Waterfall"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml" x:Class="Waterfall.MainWindow"

FlexChart for WPF 136

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 mc:Ignorable="d"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 Title="MainWindow" Height="528.558" Width="712.292">

 <Grid>

 <c1:C1FlexChart x:Name="flexChart"
 BindingX="Costs"
 ItemsSource="{Binding DataContext.Data}"
 Margin="55,161,51,28">
 <c1:C1FlexChart.Series>
 <c1:Waterfall Binding="Amount"
 ConnectorLines="True"
 ShowTotal="True"
 ShowIntermediateTotal="True">
 <c1:Waterfall.StartStyle>
 <c1:ChartStyle Fill="#7dc7ed" />
 </c1:Waterfall.StartStyle>
 <c1:Waterfall.FallingStyle>
 <c1:ChartStyle Fill="#dd2714" />
 </c1:Waterfall.FallingStyle>
 <c1:Waterfall.RisingStyle>
 <c1:ChartStyle Fill="#0f9d58"
 Stroke="#0f9d58" />
 </c1:Waterfall.RisingStyle>
 <c1:Waterfall.IntermediateTotalStyle>
 <c1:ChartStyle Fill="#7dc7ed" />
 </c1:Waterfall.IntermediateTotalStyle>
 <c1:Waterfall.TotalStyle>
 <c1:ChartStyle Fill="#7dc7ed" />
 </c1:Waterfall.TotalStyle>
 <c1:Waterfall.ConnectorLineStyle>
 <c1:ChartStyle Stroke="#333"
 StrokeDashArray="5,5"/>
 </c1:Waterfall.ConnectorLineStyle>
 </c1:Waterfall>
 </c1:C1FlexChart.Series>
 <c1:C1FlexChart.AxisY>
 <c1:Axis Min="0"></c1:Axis>
 </c1:C1FlexChart.AxisY>
 </c1:C1FlexChart>

 </Grid>
</Window>

Code

C#

// clear the FlexChart series collection
flexChart.Series.Clear();

// create an instance of the Waterfall series
C1.WPF.Chart.Waterfall waterFall = new C1.WPF.Chart.Waterfall();

// add the instance to Series collection
flexChart.Series.Add(waterFall);

// bind the field containing Y values for the series
waterFall.Binding = "Amount";

// bind the field containing X values for the FlexChart
flexChart.BindingX = "Costs";

// set the ConnectorLines property

copyCode

FlexChart for WPF 137

Copyright © 2018 GrapeCity, Inc. All rights reserved.

waterFall.ConnectorLines = true;

// set the ShowTotal property
waterFall.ShowTotal = true;

VB

' clear the FlexChart series collection
flexChart.Series.Clear()

' create an instance of the Waterfall series
Dim waterFall As New C1.WPF.Chart.Waterfall()

' add the instance to Series collection
flexChart.Series.Add(waterFall)

' bind the field containing Y values for the series
waterFall.Binding = "Amount"

' bind the field containing X values for the FlexChart
flexChart.BindingX = "Costs"

' set the ConnectorLines property
waterFall.ConnectorLines = True

' set the ShowTotal property
waterFall.ShowTotal = True

copyCode

Stacked Groups
FlexChart supports stacking and grouping of data items in column and bar charts. Stacking provides capabilities for
stacking data items one on top of the other (in column chart) or side-by-side (in bar chart). Whereas, grouping
enables clustering of the stacked data items in bar and column charts.

Stacked groups allow you to compare items across categories in a group. In addition, you can visualize relative
difference between items in each group.

The following image displays stacked groups in FlexChart.

FlexChart for WPF 138

Copyright © 2018 GrapeCity, Inc. All rights reserved.

To stack specific series in a specific stacked group, set the index value of that stacked group in the StackingGroup
property for the series. Note that Stacked groups in FlexChart are implementable when the Stacking property for
FlexChart is set to either Stacked or Stacked100pc, which specifies how the data values of chart will be stacked.

The following code compares fruit data for three consecutive months and shows how to implement stacked groups in
FlexChart.

XAML

<Chart:C1FlexChart x:Name="flexChart"
 Stacking="Stacked"
 ItemsSource="{Binding DataContext.Data}"
 BindingX="Fruit">
 <Chart:Series SeriesName="March" Binding="March"
 StackingGroup="0"/>
 <Chart:Series SeriesName="April" Binding="April"
 StackingGroup="0"/>
 <Chart:Series SeriesName="May" Binding="May"
 StackingGroup="1"/>
</Chart:C1FlexChart>

FlexChart Data Labels
Data labels are the labels associated with data points to provide additional information about the data points. In other
words, these labels can be defined as descriptive texts or values displayed over data points of the series. These labels
are primarily used to highlight crucial data points, thereby enhancing the readability of the chart and allowing you to
identify data quickly.

FlexChart offers support for highly customizable data labels that enable you to conveniently highlight chart data. And
that in turn helps end-users to identify and interpret the chart data more efficiently. When it comes to working with
data labels in FlexChart, the DataLabel property allows you to do so. By default, FlexChart does not display data labels;
however, you can not only display data labels, but also customize them as per your requirements using various
properties of the DataLabel and the DataLabelBase classes.

Below are the sections that describe how you can add data labels to data points and how you can control data labels

FlexChart for WPF 139

Copyright © 2018 GrapeCity, Inc. All rights reserved.

in terms of their appearance and the data they display:

Adding and Positioning Data Labels
Formatting Data Labels
Manage Overlapped Data Labels

Adding and Positioning Data Labels
When added to data points in the chart, data labels make it easier to understand the chart data because they display
details about individual data points. These labels quickly highlight data that is both relevant and important.

There is a simple method to add data labels to data points while working with FlexChart. You just need to configure
the Content property as per the type of entry you want to display in data labels. And you need to set the position of
data labels using the Position property to display the data labels in the chart.

The table below lists the pre-defined parameters applicable for data label content customization.

Parameter Description

x Shows the X value of the data point.

y Shows the Y value of the data point.

value Shows the Y value of the data point.

name Shows the X value of the data point.

seriesName Shows the name of the series.

pointIndex Shows the index of the data point.

P Shows the percentage share with respect to the parent slice in Sunburst.

p Shows the percentage share with respect to the whole chart in Sunburst.

See the following code snippet for reference.

Here is the code that demonstrates a fully-functional program implementing data binding:

XAML
<Chart:C1FlexChart.DataLabel>
 <Chart:DataLabel Content="{}{y}" Position="Top"/>
</Chart:C1FlexChart.DataLabel>

Code

C#

flexChart.DataLabel.Content = "{y}";
flexChart.DataLabel.Position = LabelPosition.Top;

copyCode

FlexChart for WPF 140

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Depending upon the chart type, you can select from different positioning options to position data labels perfectly in
the chart. The Position property accepts the following values from the LabelPosition enumeration:

Property Description

Top Sets the labels above the data points.

Bottom Sets the labels below the data points.

Left Sets the labels to the left of the data points.

Right Sets the labels to the right of the data points.

Center Sets the labels centered on the data points.

None Hides the labels.

Using the Content property, you can customize the content of the data labels to further include series names, index
values, or names of data points.

The following code shows how to set the Content property to include series names and data point values in data
labels.

XAML
<c1:C1FlexChart.DataLabel>
 <c1:DataLabel Content="{}{seriesName}
{y}"/>
</c1:C1FlexChart.DataLabel>

Code

C#

// set the Content property
flexChart.DataLabel.Content = "{seriesName}\n{value}";

copyCode

FlexChart for WPF 141

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Formatting Data Labels
FlexChart provides a number of options to format data labels the way you want. You can set and style borders of data
labels, connect them with their corresponding data points, and customize the way data labels appear.

Setting and Styling Borders of Data Labels
Borders add an extra appeal to data labels and make them more highlighted. This comes in handy to seamlessly highlight
really crucial data in the chart, so that end users can focus on what is important.

In FlexChart, borders can be enabled and customized by using different properties, such as Border and BorderStyle.

Here is the code snippet illustrating the setting and the customization of borders.

C#

flexChart.DataLabel.Border = true;

Connecting Data Labels to Data Points
If you have placed data labels away from their corresponding data points, you can connect them using leader lines. A leader
line is a line that connects a data label to its data point. Leader lines are beneficial to use, especially when you need to
display a visual connection between data labels and their associated data points.

FlexChart does not display leader lines by default when you add data labels; nevertheless, you can enable leader lines and
even set their appropriate length to create better visual connections for data labels in the chart. To enable leader lines, you

FlexChart for WPF 142

Copyright © 2018 GrapeCity, Inc. All rights reserved.

need to use the ConnectingLine property. And to set the distance between data labels and their data points, you need to
use the Offset property.

The following code snippet sets both the properties.

C#

flexChart.DataLabel.ConnectingLine = true;
flexChart.DataLabel.Offset = 10;

Changing the Appearance of Data Labels
You can make data visualization powerful and appealing by changing the way data labels appear in the chart. FlexChart
contains various styling options, which you can use to enhance the clarity and look of data labels. You can use the Style
property to change the appearance of data labels.

See the following code snippet for reference.

C#

flexChart.DataLabel.Style.FontFamily = new System.Windows.Media.FontFamily("GenericSerif");
flexChart.DataLabel.Style.FontSize = 13;
flexChart.DataLabel.Style.StrokeThickness = 2;

FlexChart for WPF 143

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Manage Overlapped Data Labels
A common issue pertaining to charts is the overlapping of data labels that represent data points. In most
cases, overlapping occurs due to long text in data labels or large numbers of data points.

In case of overlapped data labels in FlexChart, it provides the following ways to manage the overlapping.

Auto Arrangement of Data Labels
Hide Overlapped Labels
Control Appearance of Overlapped Labels
Rotate Data Labels
Trim or Wrap Data Labels

Auto Arrangement of Data Labels

The easiest way to handle overlapping of data labels is to set the FlexChart to position the data labels automatically.
For automatic positioning of data labels, you can set the Position property to Auto. Moreover, you can also set
the MaxAutoLabels property to set the maximum number of labels that can be positioned automatically.

When the Position property is set to Auto, the number of created data labels is limited by MaxAutoLabels property
which is 100 by default. You can increase the value of MaxAutoLabels property if necessary, but it may slow down the
chart rendering since the label positioning algorithm becomes expensive in terms of performance when number of
labels is large.

This approach may not provide an optimal layout when working with large data set and when there is not enough
space for all data labels. In this case, it's recommended to reduce the number of data labels. For example, create a
series with limited number of data points that should have labels, that is, chose to hide the labels at the individual
series level.

// Set Position and MaxAutoLabels property
flexChart.DataLabel.Position = LabelPosition.Auto;
flexChart.DataLabel.MaxAutoLabels = 150;

Hide Overlapped Labels

In case of overlapped data labels in FlexChart, you can use the Overlapping property provided by DataLabel class. This
approach is helpful when the developer wants to completely hide or show the overlapped data labels.

// Set Overlapping property
flexChart.DataLabel.Overlapping = LabelOverlapping.Hide;

The Overlapping property accepts the following values in the LabelOverlapping enumeration.

Enumeration Description

Hide Hide overlapped data labels.

Show Show overlapped data labels.

C#

C#

FlexChart for WPF 144

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Control Appearance of Overlapped Labels

Furthermore, you can use the OverlappingOptions property to specify additional label overlapping options that will
help the user to effectively manage overlapping of data labels.

// Set OverlappingOptions property
flexChart.DataLabel.OverlappingOptions =
LabelOverlappingOptions.OutsidePlotArea;

The OverlappingOptions property accepts the following values in the LabelOverlappingOptions enumeration.

Enumeration Description

None No overlapping is allowed.

OutsidePlotArea Allow labels outside plot area.

OverlapDataPoints Allow overlapping with data points.

Rotate Data Labels

Another option to manage overlapping of data labels in FlexChart is to use the Angle property. The Angle property
enables the user to set a specific rotation angle for data labels.

// Set the Angle property
flexChart.DataLabel.Angle = 50;

Trim or Wrap Data Labels

To manage the content displayed in the data labels, in case of overlapping, you can either trim the data labels or wrap
the data labels using ContentOptions property. Managing of data labels using the ContenOptions property is
dependent on MaxWidth and MaxLines property.

The MaxWidth property allows you to set the maximum width of a data label. In case the width of data label text
exceeds the specified width, then you can either trim the data labels or wrap the data labels using the ContentOptions
property.

The MaxLines property allows you to set the maximum number of lines in data label. This property helps you to limit
the wrapped text to grow vertically. In case the wrapped text does not fit within the specified MaxWidth and MaxLines
property values, then the last line gets trimmed with an ellipses(…).

// Set MaxWidth property
flexChart.DataLabel.MaxWidth = 25; // Set ContentOptions property
flexChart.DataLabel.ContentOptions = ContentOptions.Trim;

C#

C#

C#

FlexChart for WPF 145

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Multiple Plot Areas
Multiple plot areas allow you to increase the visibility of data by displaying each series in a separate plot area across
one axis, keeping the other axis fixed.

FlexChart enables you to create multiple plot areas for different series within the same chart area. In FlexChart, create
different plot areas and add them to the C1FlexChart.PlotAreas collection. In addition, you can customize the plot
areas in terms of row index, column index, height, and width.

The following image displays multiple plot areas showing data for one series each in FlexChart.

The following code uses data regarding four metrics, namely, Acceleration, Velocity, Distance, and Time of a vehicle.
The code demonstrates how to implement multiple plot areas in FlexChart.

Visual Basic

' create and add multiple plot areas
flexChart.PlotAreas.Add(New PlotArea() With {
 .PlotAreaName = "plot1",
 .Row = 0
})
flexChart.PlotAreas.Add(New PlotArea() With {
 .PlotAreaName = "plot2",
 .Row = 2
})
flexChart.PlotAreas.Add(New PlotArea() With {
 .PlotAreaName = "plot3",
 .Row = 4
})

' specify the chart type
flexChart.ChartType = C1.Chart.ChartType.Area

FlexChart for WPF 146

Copyright © 2018 GrapeCity, Inc. All rights reserved.

' create, add, and bind series
flexChart.Series.Add(New Series() With {
 .SeriesName = "Acceleration",
 .Binding = "Acceleration"
})

flexChart.Series.Add(New Series() With {
 .SeriesName = "Velocity",
 .Binding = "Velocity",
 .AxisY = New Axis() With {
 .Position = C1.Chart.Position.Left,
 .MajorGrid = True,
 .PlotAreaName = "plot2"
 }
})

flexChart.Series.Add(New Series() With {
 .SeriesName = "Distance",
 .Binding = "Distance",
 .AxisY = New Axis() With {
 .Position = C1.Chart.Position.Left,
 .MajorGrid = True,
 .PlotAreaName = "plot3"
 }
})

C#

// create and add multiple plot areas
flexChart.PlotAreas.Add(new PlotArea { PlotAreaName = "plot1", Row = 0 });
flexChart.PlotAreas.Add(new PlotArea { PlotAreaName = "plot2", Row = 2 });
flexChart.PlotAreas.Add(new PlotArea { PlotAreaName = "plot3", Row = 4 });

// specify the chart type
flexChart.ChartType = C1.Chart.ChartType.Area;

// create, add, and bind series
flexChart.Series.Add(new Series()
{
 SeriesName = "Acceleration",
 Binding = "Acceleration",

});

flexChart.Series.Add(new Series()
{
 SeriesName = "Velocity",
 Binding = "Velocity",
 AxisY = new Axis()
 {
 Position = C1.Chart.Position.Left,
 MajorGrid = true,
 PlotAreaName = "plot2"
 },

});

flexChart.Series.Add(new Series()
{
 SeriesName = "Distance",
 Binding = "Distance",
 AxisY = new Axis()

FlexChart for WPF 147

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 Position = C1.Chart.Position.Left,
 MajorGrid = true,
 PlotAreaName = "plot3"
 }
});

Trend Lines
Trend lines are an important tool for analyzing data. Trend line indicates the general rate of increase or decrease of Y
data over X data in a chart. A common scenario is measuring the rate change of sales price over time. FlexChart
control supports trend lines through a built-in TrendLine class for ease of use during implementation. Trend lines are
most commonly used in Line, Column, Bar, or Scatter charts.

FlexChart supports the following regression and non-regression trend lines.

TrendLine.FitType Description

Linear A linear trend line is the straight line that most closely approximates the data
in the chart. The data is linear, if the data pattern resembles a line.
Equation - Y(x) = C0 + C1*x

Polynomial Polynomial trend lines are curved lines that are used with fluctuating data.
They are useful for analyzing gains or losses over a large data set. When using
a polynomial trend line, it is important to also set the Order of the line, which
can be determined by the number of fluctuations in the data.
Equation - Y(x) = C0 + C1*x + C2*x2 + : + Cn-1*xn-1

Logarithmic Logarithmic trend line is a best-fit curved line that is most useful when the
rate of change in the data increases or decreases quickly and then levels out.
A logarithmic trend line can use negative and/or positive values.
Equation - Y(x) = C0 * ln(C1*x)

Power Power trend line is a curved line that is best used with data sets that compare
measurements that increase at a specific rate — for example, the acceleration
of a race car at one-second intervals. You cannot create a power trend line if
your data contains zero or negative values.
Equation - Y(x) = C0 * pow(x, C1)

Exponent Exponential trend line is a curved line that is most useful when data values
rise or fall at increasingly higher rates. You cannot create an exponential trend
line if your data contains zero or negative values.
Equation - Y(x) = C0 * exp(C1*x)

Fourier Fourier trend line identifies patterns or cycles in a series data set. It removes
the effects of trends or other complicating factors from the data set, thereby
providing a good estimate of the direction that the data under analysis will
take in the future.
Equation - Y(x) = C0 + C1 * cos(x) + C2 * sin(x) + C3 * cos(2*x) + C4 * sin(2*x)
+ ...

MinX The minimum X-value on the chart.

MinY The minimum Y-value on the chart.

MaxX The maximum X-value on the chart.

FlexChart for WPF 148

Copyright © 2018 GrapeCity, Inc. All rights reserved.

MaxY The maximum Y-value on the chart.

AverageX The average X-value on the chart.

AverageY The average Y-value on the chart.

To implement trend line in FlexChart, use the TrendLine class that inherits the Series class. To begin with, create an
instance of TrendLine class, and then use the TrendLine object to specify its properties. Once, the associated
properties are set, add the trend line to the FlexChart using Series.Add method.

The following image shows how FlexChart appears after adding a linear trend line.

XAML

<c1:C1FlexChart x:Name="flexChart" Background="White" ChartType="Scatter"
ItemsSource="{Binding Data}" ToolTipContent="{}{y}" Grid.Row="1">
 <c1:C1FlexChart.AxisY>
 <c1:Axis Min="0" Max="100" AxisLine="False" MajorGrid="True"
MajorTickMarks="None" />
 </c1:C1FlexChart.AxisY>
 <c1:Series SeriesName="Base Data" BindingX="X" Binding="Y"/>
 <c1:TrendLine SeriesName="Trend Line" x:Name="trendLine" Binding="Y"
BindingX="X" Order="4"/>
 </c1:C1FlexChart>

FlexChart for WPF 149

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Code

HTML

public partial class Trendline
 {
 ObservableCollection<DataItem> dataList = new ObservableCollection<DataItem>
();
 public Form1()
 {
 InitializeComponent();
 var rnt = new Random();
 for (int i = 1; i < 30; i++)
 {
 dataList.Add(new DataItem() { X = i, Y = rnt.Next(100) });
 }
 }
 public class DataItem
 {
 int _y;
 public int X { get; set; }

 public int Y
 {
 get { return _y; }
 set
 {
 if (value == _y) return;
 _y = value;
 }
 }}
 }
 }

Export

Export to Image
FlexChart for WPF allows you to export the chart to multiple image formats. The supported formats are PNG, JPEG,
BMP and SVG.

To export a FlexChart to an image format, use SaveImage method. The method saves the chart as an image to the
specified stream in the given ImageFormat. You can optionally specify the height, width, and back color of the image
to be saved.

This topic uses the sample created in QuickStart topic to explain the implementation for exporting a FlexChart to an
image on button click event.

The following image shows a chart with a button to be clicked to export chart to a desired image format.

FlexChart for WPF 150

Copyright © 2018 GrapeCity, Inc. All rights reserved.

XAML

MainWindow.xaml

<Grid>
 <c1:C1FlexChart x:Name="flexChart"
 BindingX="Country"
 Height="200"
 Width="500"
 ItemsSource="{Binding DataContext.Data}">
 <c1:C1FlexChart.Series>
 <c1:Series SeriesName="Sales"
 Binding="Sales"/>
 <c1:Series SeriesName="Expenses"
 Binding="Expenses"/>
 </c1:C1FlexChart.Series>
 </c1:C1FlexChart>
 <Button Content="Export FlexChart" Height="30" Width="40"
Click="OnSaveButtonClick" Margin="0,0,412,269" />
</Grid>

Code

MainWindow.xaml.cs

public partial class MainWindow : Window
 {
 private List _data;
 public MainWindow()
 {
 InitializeComponent();

FlexChart for WPF 151

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 }
 public List Data
 {
 get
 {
 if (_data == null)
 {
 _data = DateCreator.CreateData();
 }

 return _data;
 }
 }

 private void OnSaveButtonClick(object sender, RoutedEventArgs e)
 {
 var dialog = new SaveFileDialog()
 {
 Filter = "PNG|*.png|JPEG |*.jpeg|BMP|*.bmp|SVG|*.svg"
 };
 if (dialog.ShowDialog() == true)
 {
 using (Stream stream = dialog.OpenFile())
 {
 var extension = dialog.SafeFileName.Split('.')[1];
 ImageFormat fmt = (ImageFormat)Enum.Parse(typeof(ImageFormat),
extension, true);
 flexChart.SaveImage(stream, fmt);
 }
 }
 }
 }

FlexChart for WPF 152

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexPie
Pie charts are generally used to represent size of items in a series as a percentage of the entire pie. Ideally, the Pie
Chart is to be used when you want to plot only one series comprising non-zero and positive values. And the number
of categories are not more than seven.

The FlexPie control enables you to create customized pie charts that depict data points as slices of a pie. The arc
length of each slice represents the value of that specific slice.

The multi-colored slices make pie charts easy to understand, and usually the value represented by each slice is
displayed with the help of labels.

Key Features
Header and Footer: Use simple properties to set a title and footer text.

Legend: Change position of the legend as needed.

Selection: Change the selection mode and customize the selected pie slice appearance.

Exploding and Donut Pie Charts: Use simple properties to convert it into an exploding pie chart or a donut
pie chart.

Data Labels: Add, style, format, set the position of data labels and manage the overlapped data labels on the
chart.

Quick Start
This quick start is intended to guide you through a step-by-step process of creating a simple FlexPie application and
running the same in Visual Studio.

Complete the following steps to see how FlexPie appears on running the application:

Step1: Adding FlexPie to the Application

FlexChart for WPF 153

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Step 2: Binding FlexPie to a Data Source
Step 3: Running the Application

Step 1: Adding FlexPie to the Application

1. Create a WPF Application in Visual Studio.
2. Drag and drop the C1FlexPie control to the MainWindow.

The following dlls are automatically added to the application:
C1.WPF.4.dll
C1.WPF.DX.4.dll
C1.WPF.FlexChart.4.dll

The XAML markup resembles the following code in the <Grid></Grid> tags.
XAML

<c1:C1FlexPie x:Name="flexPie"
 Binding="Value"
 BindingName="Name"
 HorizontalAlignment="Left"
 Height="300"
 VerticalAlignment="Top"
 Width="300">
 <c1:C1FlexPie.ItemsSource>
 <c1:FlexPieSliceCollection>
 <c1:FlexPieSlice Name="Slice1" Value="1"/>
 <c1:FlexPieSlice Name="Slice2" Value="2"/>
 <c1:FlexPieSlice Name="Slice3" Value="3"/>
 <c1:FlexPieSlice Name="Slice4" Value="4"/>
 </c1:FlexPieSliceCollection>
 </c1:C1FlexPie.ItemsSource>
</c1:C1FlexPie>

Step 2: Binding FlexPie to a Data Source

1. Add a class DataCreator and add the following code.
Visual Basic

Public Class DataCreator

 Public Shared Function CreateFruit() As List(Of FruitDataItem)
 Dim fruits = New String() {"Oranges", "Apples", "Pears", "Bananas"}
 Dim count = fruits.Length
 Dim result = New List(Of FruitDataItem)()
 Dim rnd = New Random()
 For i As Object = 0 To count - 1
 result.Add(New FruitDataItem() With {
 .Fruit = fruits(i),
 .March = rnd.[Next](20),
 .April = rnd.[Next](20),
 .May = rnd.[Next](20)
 })
 Next
 Return result
 End Function
End Class

Public Class FruitDataItem
 Public Property Fruit() As String
 Get
 Return m_Fruit
 End Get
 Set

FlexChart for WPF 154

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 m_Fruit = Value
 End Set
 End Property
 Private m_Fruit As String
 Public Property March() As Double
 Get
 Return m_March
 End Get
 Set
 m_March = Value
 End Set
 End Property
 Private m_March As Double
 Public Property April() As Double
 Get
 Return m_April
 End Get
 Set
 m_April = Value
 End Set
 End Property
 Private m_April As Double
 Public Property May() As Double
 Get
 Return m_May
 End Get
 Set
 m_May = Value
 End Set
 End Property
 Private m_May As Double
End Class

C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace FlexPieQuickStart
{
 class DataCreator
 {
 public static List<FruitDataItem> CreateFruit()
 {
 var fruits = new string[] { "Oranges", "Apples", "Pears", "Bananas" };
 var count = fruits.Length;
 var result = new List<FruitDataItem>();
 var rnd = new Random();
 for (var i = 0; i < count; i++)
 result.Add(new FruitDataItem()
 {
 Fruit = fruits[i],
 March = rnd.Next(20),
 April = rnd.Next(20),
 May = rnd.Next(20),
 });
 return result;
 }
 }

 public class FruitDataItem

FlexChart for WPF 155

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 public string Fruit { get; set; }
 public double March { get; set; }
 public double April { get; set; }
 public double May { get; set; }
 }
}

2. Edit the XAML markup to provide data to FlexPie.

XAML
<Window
 x:Class="FlexPieQuickStart.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:FlexPieQuickStart"
 mc:Ignorable="d"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 xmlns:Chart="http://schemas.componentone.com/winfx/2006/xaml"
 Title="MainWindow" Height="800" Width="800">
 <Grid>

 <Chart:C1FlexPie
 x:Name="flexPie"
 Binding="April"
 BindingName="Fruit"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle Stroke="Red"
 StrokeThickness="2"/>
 </Chart:C1FlexPie.SelectionStyle>
 <Chart:C1FlexPie.DataLabel>
 <Chart:PieDataLabel Content="{}{y}"/>
 </Chart:C1FlexPie.DataLabel>
 </Chart:C1FlexPie>
 </Grid>

To specify the binding source, you need to add the DataContext = "{Binding RelativeSource=
{RelativeSource Mode=Self}}" markup in the <Window> tag of the MainWindow.xaml file.

3. Switch to Code view and add the following code.
Visual Basic

Partial Public Class MainWindow
 Inherits Window
 Private _data As List(Of FruitDataItem)
 Public Sub New()
 InitializeComponent()
 End Sub
 Public ReadOnly Property Data() As List(Of FruitDataItem)
 Get
 If _data Is Nothing Then
 _data = DataCreator.CreateFruit()
 End If
 Return _data
 End Get
 End Property
End Class

C#
using System;
using System.Collections.Generic;
using System.Linq;

FlexChart for WPF 156

Copyright © 2018 GrapeCity, Inc. All rights reserved.

using System.Text;
using System.Threading.Tasks;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace FlexPieQuickStart
{
 public partial class MainWindow : Window
 {
 List<FruitDataItem> _data;
 public MainWindow()
 {
 InitializeComponent();
 }
 public List<FruitDataItem> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateFruit();
 }
 return _data;
 }
 }
 }
}

Step 3: Running the Application

Press F5 to run the application and observe the following output.

FlexChart for WPF 157

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Doughnut Pie Chart
FlexPie allows you to create the doughnut Pie Chart by using the InnerRadius property.

The inner radius is measured as a fraction of the radius of the Pie Chart. The default value of the InnerRadius property
is zero, which creates the Pie Chart. Setting this property to values greater than zero creates the Pie Chart with a hole
in the middle, also known as the Doughnut Chart.

The following code snippets demonstrate how to set the InnerRadius property.

XAML
<Grid>

 <Chart:C1FlexPie
 x:Name="flexPie"
 InnerRadius="0.5"
 Offset="0.5"
 Header="Fruit Sales Data"
 Footer="2015"
 LegendOrientation="Horizontal"
 LegendPosition="Bottom"
 SelectionMode="Point"
 SelectedItemPosition="Top"
 SelectedItemOffset="2"
 Margin="95,99,328,275"
 Binding="April"
 BindingName="Fruit"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle Stroke="Red"
 StrokeThickness="2"/>
 </Chart:C1FlexPie.SelectionStyle>
 <Chart:C1FlexPie.DataLabel>

FlexChart for WPF 158

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <Chart:PieDataLabel Content="{}{y}"/>
 </Chart:C1FlexPie.DataLabel>
 </Chart:C1FlexPie>
</Grid>

Code

C#

flexPie.InnerRadius = 0.5;

copyCode

Exploded Pie Chart
The Offset property can be used to push the pie slices away from the center of FlexPie, producing the exploded Pie
Chart. This property accepts a double value to determine how far the pie slices should be pushed from the center.

Here is the code snippet:

XAML
<Grid>

 <Chart:C1FlexPie
 x:Name="flexPie"
 InnerRadius="0.5"
 Offset="0.5"
 Header="Fruit Sales Data"
 Footer="2015"
 LegendOrientation="Horizontal"
 LegendPosition="Bottom"
 SelectionMode="Point"
 SelectedItemPosition="Top"
 SelectedItemOffset="2"
 Margin="95,99,328,275"
 Binding="April"

FlexChart for WPF 159

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 BindingName="Fruit"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle Stroke="Red"
 StrokeThickness="2"/>
 </Chart:C1FlexPie.SelectionStyle>
 <Chart:C1FlexPie.DataLabel>
 <Chart:PieDataLabel Content="{}{y}"/>
 </Chart:C1FlexPie.DataLabel>
 </Chart:C1FlexPie>
</Grid>

Code

C#

flexPie.Offset = 0.5;

copyCode

Header & Footer
You can add a header to the FlexPie control by setting the Header property of FlexChartBase. Besides a header, you
can add a footer to the control by setting the Footer property of FlexChartBase.

See the following code snippet for setting the two properties:

XAML
<Grid>

 <Chart:C1FlexPie
 x:Name="flexPie"
 InnerRadius="0.5"
 Offset="0.5"
 Header="Fruit Sales Data"
 Footer="2015"

FlexChart for WPF 160

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 LegendOrientation="Horizontal"
 LegendPosition="Bottom"
 SelectionMode="Point"
 SelectedItemPosition="Top"
 SelectedItemOffset="2"
 Margin="95,99,328,275"
 Binding="April"
 BindingName="Fruit"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle Stroke="Red"
 StrokeThickness="2"/>
 </Chart:C1FlexPie.SelectionStyle>
 <Chart:C1FlexPie.DataLabel>
 <Chart:PieDataLabel Content="{}{y}"/>
 </Chart:C1FlexPie.DataLabel>
 </Chart:C1FlexPie>
</Grid>

Code

C#

flexPie.Header = "Fruit Sales Data";
flexPie.Footer = "2015";

copyCode

Legend
FlexPie enables you to specify the position where you want to display the Legend by using the Legend property
of FlexChartBase.

FlexChart for WPF 161

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The below-mentioned code snippet shows how to set the property.

XAML
<Grid>

 <Chart:C1FlexPie
 x:Name="flexPie"
 InnerRadius="0.5"
 Offset="0.5"
 Header="Fruit Sales Data"
 Footer="2015"
 LegendOrientation="Horizontal"
 LegendPosition="Bottom"
 SelectionMode="Point"
 SelectedItemPosition="Top"
 SelectedItemOffset="2"
 Margin="95,99,328,275"
 Binding="April"
 BindingName="Fruit"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle Stroke="Red"
 StrokeThickness="2"/>
 </Chart:C1FlexPie.SelectionStyle>
 <Chart:C1FlexPie.DataLabel>
 <Chart:PieDataLabel Content="{}{y}"/>
 </Chart:C1FlexPie.DataLabel>
 </Chart:C1FlexPie>
</Grid>

Code

C#

flexPie.LegendOrientation = C1.Chart.Orientation.Horizontal;
flexPie.LegendPosition = C1.Chart.Position.Bottom;

copyCode

FlexChart for WPF 162

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Selection
You can choose what element of FlexPie is selected when you click anywhere on the control by setting
the SelectionMode property. This property provides three options:

None: Does not select any element.
Point: Highlights the pie slice that the user clicks.
Series: Highlights the entire pie.

After setting the SelectionMode property to Point, you can change the position of the selected pie slice by setting
the SelectedItemPosition property. And also, you can move the selected pie slice away from the center of FlexPie by
setting the SelectedItemOffset property.

XAML
<Grid>

 <Chart:C1FlexPie
 x:Name="flexPie"
 InnerRadius="0.5"
 Offset="0.5"
 Header="Fruit Sales Data"
 Footer="2015"
 LegendOrientation="Horizontal"
 LegendPosition="Bottom"
 SelectionMode="Point"
 SelectedItemPosition="Top"
 SelectedItemOffset="2"
 Margin="95,99,328,275"
 Binding="April"
 BindingName="Fruit"
 ItemsSource="{Binding DataContext.Data}">
 <Chart:C1FlexPie.SelectionStyle>
 <Chart:ChartStyle Stroke="Red"
 StrokeThickness="2"/>
 </Chart:C1FlexPie.SelectionStyle>
 <Chart:C1FlexPie.DataLabel>

FlexChart for WPF 163

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <Chart:PieDataLabel Content="{}{y}"/>
 </Chart:C1FlexPie.DataLabel>
 </Chart:C1FlexPie>
</Grid>

Code

C#

flexPie.SelectionMode = C1.Chart.ChartSelectionMode.Point;
flexPie.SelectedItemPosition = C1.Chart.Position.Top;
flexPie.SelectedItemOffset = 2;

copyCode

Data Labels
Data labels provide additional information about the data points. These labels make a chart easier to understand
because they show details about a slice in the pie.

To understand the working of data labels in FlexPie chart, refer to the following sections.

Adding and Positioning Data Labels
Learn how to add data labels and set their position on the chart.

Formatting Data Labels
Learn how to perform styling and formatting of data labels.

Managing Overlapped Data Labels
Learn how to manage overlapping data labels in FlexPie chart.

Adding and Positioning Labels
With FlexPie chart, you can configure the arrangement and display properties for data labels depending on what suits
your needs the best. By default, the data labels are not displayed on the chart, however, you can enable them by
setting the Position and Content properties of DataLabel class.

The example code below uses the Position and Content properties to enable data labels and set their position.

XAML

<c1:C1FlexPie.DataLabel> <c1:PieDataLabel Content="{}{y}" Position="Circular"/>

FlexChart for WPF 164

Copyright © 2018 GrapeCity, Inc. All rights reserved.

</c1:C1FlexPie.DataLabel>

Code

HTML

flexPie.DataLabel.Content = "{}{y}";
flexPie.DataLabel.Position = C1.Chart.PieLabelPosition.Circular;

ccf

Formatting Data Labels
FlexPie provides various options to format data labels according to your requirements. You can use connecting lines
to connect the data labels, set and style borders of data labels, and customize the appearance of data labels.

The topic comprises of three sections:

Setting and Styling Borders
Connecting DataLabels to Data Points
Modifying Appearance

Setting and Styling Borders

To add and style borders to FlexPie data labels, set the Border and BorderStyle properties provided by DataLabel class.

Use the following code snippet to add borders to data labels of FlexPie.

// Enable Border
flexPie.DataLabel.Border = true;

C#

FlexChart for WPF 165

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Connecting DataLabels to Data Points

In case the data labels are placed away from the data points, you can connect them using connecting lines.

To enable connecting lines in FlexPie chart, you need to use the ConnectingLine property.

Use the following code snippet to set the connecting lines.

//Enable connecting line
flexPie.DataLabel.ConnectingLine = true;

Modifying Appearance

C#

FlexChart for WPF 166

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexPie includes various styling options, to enhance the clarity of data labels. To modify the appearance of FlexPie
chart, you need to use the Style property. It allows you to modify the font family, fill color, use stroke brush for data
labels, set width for stroke brush and more.

In the example code, we have modified the font used in the chart and set the stroke width property. Use the following
code snippet to modify the appearance of the chart.

// Modifying appearance of data labels
flexPie.DataLabel.Style.FontFamily = new FontFamily("GenericSerif");
flexPie.DataLabel.Style.StrokeThickness = 2;

C#

Manage Overlapped Data Labels
A common issue pertaining to charts is overlapping of data labels that represent data points. In most
cases, overlapping occurs due to long text in data labels or large numbers of data points.

To manage overlapped data labels in FlexPie chart, you can make use of Overlapping property provided
by PieDataLabel class. The Overlapping property accepts the following values from the PieLabelOverlapping
enumeration.

Enumeration Description

PieLabelOverlapping.Default Show all labels including the overlapping ones.

PieLabelOverlapping.Hide Hides the overlapping labels, if its content is larger than the corresponding pie
segment.

PieLabelOverlapping.Trim Trim overlapping data labels, if its width is larger than the corresponding pie segment.

Use the following code to manage overlapping data labels.

//Set Overlapping property
flexPie.DataLabel.Overlapping = C1.Chart.PieLabelOverlapping.Trim;

C#

FlexChart for WPF 167

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following image shows how FlexPie appears after setting the Overlapping property.

FlexChart for WPF 168

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Sunburst Chart
Sunburst, also known as a multi-level pie chart, is ideal for visualizing multi-level hierarchical data depicted by
concentric circles.The circle in the center represents the root node, with the data moving outside from the center. A
section of the inner circle supports a hierarchical relationship to those sections of the outer circle which lie within the
angular area of the parent section.

Using Sunburst chart helps the end user to visualize the relationship between outer rings and inner rings. For instance,
you might want to display sales report for each quarter of three years. Using SunBurst chart, a sales report of a specific
month can be highlighted, thereby depicting relationship with the respective quarter.

 To explore the features of Sunburst chart, click the following links:

Quick Start
Key Features
Legend and Titles
Selection
Drilldown

Quick Start
This quick start is intended to guide you through a step-by-step process of creating a simple Sunburst application and running the same in Visual Studio.

To quickly get started with Sunburst chart and observe how it appears on running the application, follow these steps:

1. Add Sunburst Chart to the Application
2. Bind Sunburst Chart to a Data Source

FlexChart for WPF 169

Copyright © 2018 GrapeCity, Inc. All rights reserved.

3. Run the Application

The following image displays how a basic Sunburst chart appears after completing the steps mentioned above.

Step 1: Add Sunburst Chart to the Application

1. Create a WPF Application in Visual Studio.
2. Drag and drop the C1Sunburst control to the MainWindow.

The following dlls are automatically added to the application:
C1.WPF.4.dll
C1.WPF.DX.4.dll
C1.WPF.FlexChart.4.dll

The XAML markup resembles the following code in the <Grid></Grid> tags.
XAML

<c1:C1Sunburst x:Name="flexPie"
 Binding="Value"
 BindingName="Name"
 HorizontalAlignment="Left"
 Height="300"
 VerticalAlignment="Top"
 Width="300">
 <c1:C1Sunburst.ItemsSource>
 <c1:FlexPieSliceCollection>
 <c1:FlexPieSlice Name="Slice1" Value="1"/>
 <c1:FlexPieSlice Name="Slice2" Value="2"/>
 <c1:FlexPieSlice Name="Slice3" Value="3"/>
 <c1:FlexPieSlice Name="Slice4" Value="4"/>
 </c1:FlexPieSliceCollection>
 </c1:C1Sunburst.ItemsSource>
</c1:C1Sunburst>

Step 2: Bind Sunburst Chart to a Data Source

In this step, first create a class DataService that generates random sales data for four quarters, namely Q1, Q2, Q3, and Q4 in 2013, 2014, and 2015. Next, bind Sunburst to
the created class using the ItemsSource property provided by the FlexChartBase class. Then, specify numeric values and labels for the Sunburst slices using the Binding and
the BindingName property, respectively of the FlexChartBase and the C1FlexPie class.

1. Add a class, DataService and add the following code.
Visual Basic

Imports System.Collections.Generic
Imports System.Linq
Imports System.Text
Imports System.Threading.Tasks

Public Class DataService
 Private rnd As New Random()
 Shared _default As DataService

 Public Shared ReadOnly Property Instance() As DataService
 Get
 If _default Is Nothing Then
 _default = New DataService()
 End If

 Return _default
 End Get
 End Property

 Public Shared Function CreateHierarchicalData() As List(Of DataItem)
 Dim rnd As Random = Instance.rnd

 Dim years As New List(Of String)()
 Dim times As New List(Of List(Of String))() From {
 New List(Of String)() From {
 "Jan",
 "Feb",
 "Mar"
 },
 New List(Of String)() From {
 "Apr",
 "May",

FlexChart for WPF 170

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 "June"
 },
 New List(Of String)() From {
 "Jul",
 "Aug",
 "Sep"
 },
 New List(Of String)() From {
 "Oct",
 "Nov",
 "Dec"
 }
 }

 Dim items As New List(Of DataItem)()
 Dim yearLen = Math.Max(CInt(Math.Round(Math.Abs(5 - Instance.rnd.NextDouble() * 10))), 3)
 Dim currentYear As Integer = DateTime.Now.Year
 For i As Integer = yearLen To 1 Step -1
 years.Add((currentYear - i).ToString())
 Next
 Dim quarterAdded = False

 years.ForEach(
 Function(y)
 Dim i = years.IndexOf(y)
 Dim addQuarter = Instance.rnd.NextDouble() > 0.5
 If Not quarterAdded AndAlso i = years.Count - 1 Then
 addQuarter = True
 End If
 Dim year = New DataItem() With {
 .Year = y
 }
 If addQuarter Then
 quarterAdded = True
 times.ForEach(Function(q)
 Dim addMonth = Instance.rnd.NextDouble() > 0.5
 Dim idx As Integer = times.IndexOf(q)
 Dim quar As String = "Q" + (idx + 1).ToString()
 Dim quarters = New DataItem() With {
 .Year = y,
 .Quarter = quar
 }
 If addMonth Then
 q.ForEach(
 Function(m)
 quarters.Items.Add(New DataItem() With {
 .Year = y,
 .Quarter = quar,
 .Month = m,
 .Value = rnd.[Next](20, 30)
 })

 End Function)
 Else
 quarters.Value = rnd.[Next](80, 100)
 End If
 year.Items.Add(quarters)

 End Function)
 Else
 year.Value = rnd.[Next](80, 100)
 End If
 items.Add(year)

 End Function)

 Return items
 End Function

 Public Shared Function CreateFlatData() As List(Of FlatDataItem)
 Dim rnd As Random = Instance.rnd
 Dim years As New List(Of String)()
 Dim times As New List(Of List(Of String))() From {
 New List(Of String)() From {
 "Jan",
 "Feb",
 "Mar"
 },
 New List(Of String)() From {
 "Apr",
 "May",
 "June"
 },
 New List(Of String)() From {
 "Jul",
 "Aug",
 "Sep"
 },
 New List(Of String)() From {
 "Oct",

FlexChart for WPF 171

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 "Nov",
 "Dec"
 }
 }

 Dim items As New List(Of FlatDataItem)()
 Dim yearLen = Math.Max(CInt(Math.Round(Math.Abs(5 - rnd.NextDouble() * 10))), 3)
 Dim currentYear As Integer = DateTime.Now.Year
 For i As Integer = yearLen To 1 Step -1
 years.Add((currentYear - i).ToString())
 Next
 Dim quarterAdded = False
 years.ForEach(
 Function(y)
 Dim i = years.IndexOf(y)
 Dim addQuarter = rnd.NextDouble() > 0.5
 If Not quarterAdded AndAlso i = years.Count - 1 Then
 addQuarter = True
 End If
 If addQuarter Then
 quarterAdded = True
 times.ForEach(Function(q)
 Dim addMonth = rnd.NextDouble() > 0.5
 Dim idx As Integer = times.IndexOf(q)
 Dim quar As String = "Q" + (idx + 1).ToString()
 If addMonth Then
 q.ForEach(Function(m)
 items.Add(New FlatDataItem() With {
 .Year = y,
 .Quarter = quar,
 .Month = m,
 .Value = rnd.[Next](30, 40)
 })

 End Function)
 Else
 items.Add(New FlatDataItem() With {
 .Year = y,
 .Quarter = quar,
 .Value = rnd.[Next](80, 100)
 })
 End If

 End Function)
 Else
 items.Add(New FlatDataItem() With {
 .Year = y.ToString(),
 .Value = rnd.[Next](80, 100)
 })
 End If

 End Function)

 Return items
 End Function
End Class

C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SunburstQuickStart
{
 public class DataService
 {
 Random rnd = new Random();
 static DataService _default;

 public static DataService Instance
 {
 get
 {
 if (_default == null)
 {
 _default = new DataService();
 }

 return _default;
 }
 }

 public static List<DataItem> CreateHierarchicalData()
 {
 Random rnd = Instance.rnd;

 List<string> years = new List<string>();
 List<List<string>> times = new List<List<string>>()

FlexChart for WPF 172

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 new List<string>() { "Jan", "Feb", "Mar"},
 new List<string>() { "Apr", "May", "June"},
 new List<string>() { "Jul", "Aug", "Sep"},
 new List<string>() { "Oct", "Nov", "Dec" }
 };

 List<DataItem> items = new List<DataItem>();
 var yearLen = Math.Max((int)Math.Round(Math.Abs(5 - Instance.rnd.NextDouble() * 10)), 3);
 int currentYear = DateTime.Now.Year;
 for (int i = yearLen; i > 0; i--)
 {
 years.Add((currentYear - i).ToString());
 }
 var quarterAdded = false;

 years.ForEach(y =>
 {
 var i = years.IndexOf(y);
 var addQuarter = Instance.rnd.NextDouble() > 0.5;
 if (!quarterAdded && i == years.Count - 1)
 {
 addQuarter = true;
 }
 var year = new DataItem() { Year = y };
 if (addQuarter)
 {
 quarterAdded = true;
 times.ForEach(q =>
 {
 var addMonth = Instance.rnd.NextDouble() > 0.5;
 int idx = times.IndexOf(q);
 var quar = "Q" + (idx + 1);
 var quarters = new DataItem() { Year = y, Quarter = quar };
 if (addMonth)
 {
 q.ForEach(m =>
 {
 quarters.Items.Add(new DataItem()
 {
 Year = y,
 Quarter = quar,
 Month = m,
 Value = rnd.Next(20, 30)
 });
 });
 }
 else
 {
 quarters.Value = rnd.Next(80, 100);
 }
 year.Items.Add(quarters);
 });
 }
 else
 {
 year.Value = rnd.Next(80, 100);
 }
 items.Add(year);
 });

 return items;
 }

 public static List<FlatDataItem> CreateFlatData()
 {
 Random rnd = Instance.rnd;
 List<string> years = new List<string>();
 List<List<string>> times = new List<List<string>>()
 {
 new List<string>() { "Jan", "Feb", "Mar"},
 new List<string>() { "Apr", "May", "June"},
 new List<string>() { "Jul", "Aug", "Sep"},
 new List<string>() { "Oct", "Nov", "Dec" }
 };

 List<FlatDataItem> items = new List<FlatDataItem>();
 var yearLen = Math.Max((int)Math.Round(Math.Abs(5 - rnd.NextDouble() * 10)), 3);
 int currentYear = DateTime.Now.Year;
 for (int i = yearLen; i > 0; i--)
 {
 years.Add((currentYear - i).ToString());
 }
 var quarterAdded = false;
 years.ForEach(y =>
 {
 var i = years.IndexOf(y);
 var addQuarter = rnd.NextDouble() > 0.5;
 if (!quarterAdded && i == years.Count - 1)
 {

FlexChart for WPF 173

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 addQuarter = true;
 }
 if (addQuarter)
 {
 quarterAdded = true;
 times.ForEach(q =>
 {
 var addMonth = rnd.NextDouble() > 0.5;
 int idx = times.IndexOf(q);
 var quar = "Q" + (idx + 1);
 if (addMonth)
 {
 q.ForEach(m =>
 {
 items.Add(new FlatDataItem()
 {
 Year = y,
 Quarter = quar,
 Month = m,
 Value = rnd.Next(30, 40)
 });
 });
 }
 else
 {
 items.Add(new FlatDataItem()
 {
 Year = y,
 Quarter = quar,
 Value = rnd.Next(80, 100)
 });
 }
 });
 }
 else
 {
 items.Add(new FlatDataItem()
 {
 Year = y.ToString(),
 Value = rnd.Next(80, 100)
 });
 }
 });

 return items;
 }
 }
}

2. Add a class, SunburstViewModel and add the following code.
Visual Basic

Imports C1.Chart
Imports System.Linq
Imports System.Collections.Generic
Public Class SunburstViewModel

 Public ReadOnly Property HierarchicalData() As List(Of DataItem)
 Get
 Return DataService.CreateHierarchicalData()
 End Get
 End Property

 Public ReadOnly Property FlatData() As List(Of FlatDataItem)
 Get
 Return DataService.CreateFlatData()
 End Get
 End Property

 Public ReadOnly Property Positions() As List(Of String)
 Get
 Return [Enum].GetNames(GetType(Position)).ToList()
 End Get
 End Property

 Public ReadOnly Property Palettes() As List(Of String)
 Get
 Return [Enum].GetNames(GetType(Palette)).ToList()
 End Get
 End Property
End Class

C#
using C1.Chart;
using System;
using System.Linq;
using System.Collections.Generic;

namespace SunburstQuickStart
{
 public class SunburstViewModel
 {

FlexChart for WPF 174

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 public List<DataItem> HierarchicalData
 {
 get
 {
 return DataService.CreateHierarchicalData();
 }
 }

 public List<FlatDataItem> FlatData
 {
 get
 {
 return DataService.CreateFlatData();
 }
 }

 public List<string> Positions
 {
 get
 {
 return Enum.GetNames(typeof(Position)).ToList();
 }
 }

 public List<string> Palettes
 {
 get
 {
 return Enum.GetNames(typeof(Palette)).ToList();
 }
 }
 }
}

3. Add a class, DataItem and add the following code.
Visual Basic

Public Class DataItem
 Private _items As List(Of DataItem)

 Public Property Year() As String
 Get
 Return m_Year
 End Get
 Set
 m_Year = Value
 End Set
 End Property
 Private m_Year As String
 Public Property Quarter() As String
 Get
 Return m_Quarter
 End Get
 Set
 m_Quarter = Value
 End Set
 End Property
 Private m_Quarter As String
 Public Property Month() As String
 Get
 Return m_Month
 End Get
 Set
 m_Month = Value
 End Set
 End Property
 Private m_Month As String
 Public Property Value() As Double
 Get
 Return m_Value
 End Get
 Set
 m_Value = Value
 End Set
 End Property
 Private m_Value As Double
 Public ReadOnly Property Items() As List(Of DataItem)
 Get
 If _items Is Nothing Then
 _items = New List(Of DataItem)()
 End If

 Return _items
 End Get
 End Property
End Class

Public Class FlatDataItem
 Public Property Year() As String
 Get
 Return m_Year
 End Get

FlexChart for WPF 175

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Set
 m_Year = Value
 End Set
 End Property
 Private m_Year As String
 Public Property Quarter() As String
 Get
 Return m_Quarter
 End Get
 Set
 m_Quarter = Value
 End Set
 End Property
 Private m_Quarter As String
 Public Property Month() As String
 Get
 Return m_Month
 End Get
 Set
 m_Month = Value
 End Set
 End Property
 Private m_Month As String
 Public Property Value() As Double
 Get
 Return m_Value
 End Get
 Set
 m_Value = Value
 End Set
 End Property
 Private m_Value As Double
End Class

C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace SunburstQuickStart
{
 public class DataItem
 {
 List<DataItem> _items;

 public string Year { get; set; }
 public string Quarter { get; set; }
 public string Month { get; set; }
 public double Value { get; set; }
 public List<DataItem> Items
 {
 get
 {
 if (_items == null)
 {
 _items = new List<DataItem>();
 }

 return _items;
 }
 }
 }

 public class FlatDataItem
 {
 public string Year { get; set; }
 public string Quarter { get; set; }
 public string Month { get; set; }
 public double Value { get; set; }
 }
}

4. Add a class, Converter and add the following code.
Visual Basic

Imports C1.Chart
Imports System.Collections.Generic
Imports System.Globalization
Imports System.Linq
Imports System.Text
Imports System.Threading.Tasks
Imports System.Windows.Data
Public Class EnumToStringConverter
 Implements IValueConverter
 Public Function Convert(value As Object,
 targetType As Type,
 parameter As Object,
 culture As CultureInfo) As Object
 Return value.ToString()
 End Function

FlexChart for WPF 176

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Public Function ConvertBack(value As Object,
 targetType As Type,
 parameter As Object,
 culture As CultureInfo) As Object
 If targetType = GetType(Position) Then
 Return DirectCast([Enum].Parse(GetType(Position),
 value.ToString()),
 Position)
 Else
 Return DirectCast([Enum].Parse(GetType(Palette),
 value.ToString()),
 Palette)
 End If
 End Function

 Private Function IValueConverter_Convert(value As Object,
 targetType As Type,
 parameter As Object,
 culture As CultureInfo) As Object Implements IValueConverter.Convert
 Throw New NotImplementedException()
 End Function

 Private Function IValueConverter_ConvertBack(value As Object,
 targetType As Type,
 parameter As Object,
 culture As CultureInfo) As Object Implements IValueConverter.ConvertBack
 Throw New NotImplementedException()
 End Function
End Class

C#
using C1.Chart;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Data;

namespace SunburstQuickStart
{
 public class EnumToStringConverter : IValueConverter
 {
 public object Convert(object value, Type targetType, object parameter, CultureInfo culture)
 {
 return value.ToString();
 }

 public object ConvertBack(object value, Type targetType, object parameter, CultureInfo culture)
 {
 if (targetType == typeof(Position))
 return (Position)Enum.Parse(typeof(Position), value.ToString());
 else
 return (Palette)Enum.Parse(typeof(Palette), value.ToString());
 }
 }
}

5. Edit the XAML code to provide data to Sunburst.

XAML
<Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:SunburstQuickStart"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="SunburstQuickStart.MainWindow"
 mc:Ignorable="d"
 Title="MainWindow" Height="800" Width="691.337">
 <Grid Margin="0,0,0,-120">
 <Grid.Resources>
 <local:EnumToStringConverter x:Key="PaletteConverter" />
 </Grid.Resources>
 <Grid.DataContext>
 <local:SunburstViewModel />
 </Grid.DataContext>
 <c1:C1Sunburst x:Name="sunburst"
 Offset="0"
 ItemsSource="{Binding HierarchicalData}"
 Binding="Value"
 BindingName="Year,Quarter,Month"
 ChildItemsPath="Items"
 ToolTipContent="{}{name}
{y}"
 Margin="0,121,73,0" >
 <c1:C1Sunburst.DataLabel>
 <c1:PieDataLabel Position="Inside"
 Content="{}{name}"

FlexChart for WPF 177

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 ConnectingLine="True"
 Border="True">
 </c1:PieDataLabel>
 </c1:C1Sunburst.DataLabel>
 </c1:C1Sunburst>
 </Grid>
</Window>

Step 3: Running the Application

Press F5 to run the application and observe how Sunburst chart appears.

Key Features
The Sunburst control includes a number of features that make it efficient and useful for creating professional-looking
applications.

Doughnut Sunburst chart: Create a doughnut Sunburst chart by setting the InnerRadius property that has
a default value of zero. Setting this property to a value greater than zero creates a hole in the middle, thereby
creating the doughnut Sunburst chart.
Exploded Sunburst chart: Create an exploded Sunburst chart by setting the Offset property that has a default
value of zero. Setting the property pushes the slices away from the center of Sunburst chart, thereby producing
the exploded Sunburst chart.
Reversed Sunburst chart: Create a reversed Sunburst chart by setting the Reversed property that has False as
the default value. Setting the property to True creates the reversed Sunburst chart that contains angles drawn
in the counter-clockwise direction.
Start angle: Set the start angle by setting the StartAngle property that accepts values of the double type. A
start angle is the angle that is set in degrees to start drawing Sunburst slices in the clockwise direction. The
default value is the 9 o'clock position.
Palette: Use different color palettes to make Sunburst chart more appealing and presentable. To specify the
chart palette, set the Palette property that lets you specify an array of default colors to be used when rendering
slices. The property accepts values from the Palette enumeration.
Legend: Perform various customizations including setting orientation, position, or styling the legend of
Sunburst chart. For more information, refer to Legend and Titles.
Header and Footer: Use simple properties to set and customize Header and Footer of Sunburst chart. For
more information, refer to Legend and Titles.
Selection: Change the selection mode and customize the position, appearance of the selected pie slice. For
more information, refer to Selection.
Data Labels: Add, style, format, set the position of data labels and manage the overlapped data labels on the
chart. For more information, refer Data Labels.

Legend and Titles
Legend

The legend displays entries for series with their names and predefined symbols. In Sunburst, you can perform various
customizations with the legend, as follows:

Orientation: Set the orientation of the legend as horizontal, vertical, or automatic by using
the LegendOrientation property provided by the FlexChartBase class. The property can be set to any of the
values from the Orientation enumeration.
Position: Set the legend on top, bottom, left, right, or let it be positioned automatically by using
the LegendPosition property that accepts values from the Position enumeration. Setting the Position property
to None hides the legend.
Styling: Customize the overall appearance of the legend, such as setting stroke color or changing font by using
styling properties accessible through the LegendStyle property. The styling properties Stroke, FontSize,
and FontStyle are provided by the ChartStyle class.

FlexChart for WPF 178

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Title and title styling: Specify the legend title using the LegendTitle property that accepts a string. Once you
have set the title, you can style it using the LegendTitleStyle property that provides access to the customization
properties of the ChartStyle class.

Header and Footer

Header and Footer are descriptive texts at the top and bottom of the chart that provide information about the overall
chart data. You can access Header and Footer of Sunburst chart by using the Header and the Footer property
respectively, of the FlexChartBase class. Possible customizations with Header and Footer are as follows:

Font: Change the font family, font size, and font style of Header and Footer using the various font properties of
the ChartStyle class accessible through the HeaderStyle or FooterStyle property of the FlexChartBase class.
Stroke: Set stroke of the titles for enhanced appeal by using the Stroke property.

The following image displays Sunburst chart with the legend and titles set.

The following code snippet illustrates how to set respective properties for the legend and titles customization. This
code uses the sample created in Quick Start.

XAML
<c1:C1Sunburst x:Name="sunburst"
 SelectionMode="Point"
 SelectedItemOffset="0.1"
 SelectedItemPosition="Top"
 Header="Quarterly Sales"
 Footer="Company XYZ"
 Reversed="True"
 Palette="Dark"
 Offset="0.1"
 ItemsSource="{Binding HierarchicalData}"

FlexChart for WPF 179

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 Binding="Value"
 BindingName="Year,Quarter,Month"
 ChildItemsPath="Items"
 ToolTipContent="{}{name}
{y}"
 Height="439"
 VerticalAlignment="Bottom"
 LegendOrientation="Vertical"
 LegendTitle="Year" >
 <c1:C1Sunburst.LegendStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="9"
 Stroke="DarkCyan"/>
 </c1:C1Sunburst.LegendStyle>
 <c1:C1Sunburst.LegendTitleStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="10"
 Stroke="Blue"/>
 </c1:C1Sunburst.LegendTitleStyle>
 <c1:C1Sunburst.HeaderStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="11"
 FontWeight="Bold"
 Stroke="Brown"/>
 </c1:C1Sunburst.HeaderStyle>
 <c1:C1Sunburst.FooterStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="10"
 FontWeight="Bold"
 Stroke="Brown"/>
 </c1:C1Sunburst.FooterStyle>
 <c1:C1Sunburst.DataLabel>
 <c1:PieDataLabel Position="Center"
 Content="{}{name}" />
 </c1:C1Sunburst.DataLabel>
</c1:C1Sunburst>

Code

C#

// set the legend orientation
sunburst.LegendOrientation = C1.Chart.Orientation.Vertical;

// set the legend position
sunburst.LegendPosition = C1.Chart.Position.Auto;

// Set the legend font
sunburst.LegendStyle.FontSize = 9;

// Set the legend font style
sunburst.LegendStyle.FontStyle = FontStyles.Normal;

// set the legend title
sunburst.LegendTitle = "Year";

// set the legend title font
sunburst.LegendTitleStyle.FontSize = 10;

copyCode

FlexChart for WPF 180

Copyright © 2018 GrapeCity, Inc. All rights reserved.

// set the legend title font style
sunburst.LegendTitleStyle.FontStyle = FontStyles.Normal;

// set the header
sunburst.Header = "Quarterly Sales";

// set the header font
sunburst.HeaderStyle.FontSize = 11;

// set the header font style
sunburst.HeaderStyle.FontStyle = FontStyles.Normal;

// set the header stroke
sunburst.HeaderStyle.Stroke = Brushes.Brown;

// set the footer
sunburst.Footer = "Company XYZ";

// set the footer font size
sunburst.FooterStyle.FontSize = 10;

// set the footer font style
sunburst.FooterStyle.FontStyle = FontStyles.Normal;

// set the footer stroke
sunburst.FooterStyle.Stroke = Brushes.Brown;

VB

' set the legend orientation
sunburst.LegendOrientation = C1.Chart.Orientation.Vertical

' set the legend position
sunburst.LegendPosition = C1.Chart.Position.Auto

' Set the legend font
sunburst.LegendStyle.FontSize = 9

' Set the legend font style
sunburst.LegendStyle.FontStyle = FontStyles.Normal

' set the legend title
sunburst.LegendTitle = "Year"

' set the legend title font
sunburst.LegendTitleStyle.FontSize = 10

' set the legend title font style
sunburst.LegendTitleStyle.FontStyle = FontStyles.Normal

' set the header

copyCode

FlexChart for WPF 181

Copyright © 2018 GrapeCity, Inc. All rights reserved.

sunburst.Header = "Quarterly Sales"

' set the header font
sunburst.HeaderStyle.FontSize = 11

' set the header font style
sunburst.HeaderStyle.FontStyle = FontStyles.Normal

' set the header stroke
sunburst.HeaderStyle.Stroke = Brushes.Brown

' set the footer
sunburst.Footer = "Company XYZ"

' set the footer font size
sunburst.FooterStyle.FontSize = 10

' set the footer font style
sunburst.FooterStyle.FontStyle = FontStyles.Normal

' set the footer stroke
sunburst.FooterStyle.Stroke = Brushes.Brown

Selection
The Sunburst chart lets you select data points by clicking a Sunburst slice. You can set the SelectionMode property
provided by the FlexChartBase class to either of the following values in the ChartSelectionMode enumeration:

None (default): Selection is disabled.
Point: A point is selected.

To customize the selection, you can use the SelectedItemOffset and the SelectedItemPosition property provided by
the C1FlexPie class. The SelectedItemOffset property enables you to specify the offset of the selected Sunburst slice
from the center of the control. And the SelectedItemPosition property allows you to specify the position of the
selected Sunburst slice. The SelectedItemPosition property accepts values from the Position enumeration. Setting this
property to a value other than 'None' causes the pie to rotate when an item is selected.

In addition, the FlexChartBase class provides the SelectionStyle property that can be used to access the properties
provided by the ChartStyle class to style the Sunburst chart.

The following image displays Sunburst chart with a data point selected.

FlexChart for WPF 182

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code snippet sets these properties:

XAML
<c1:C1Sunburst x:Name="sunburst"
 SelectionMode="Point"
 SelectedItemOffset="0.1"
 SelectedItemPosition="Top"
 Header="Quarterly Sales"
 Footer="Company XYZ"
 Reversed="True"
 Palette="Dark"
 Offset="0.1"
 ItemsSource="{Binding HierarchicalData}"
 Binding="Value"
 BindingName="Year,Quarter,Month"
 ChildItemsPath="Items"
 ToolTipContent="{}{name}
{y}"
 Height="439"
 VerticalAlignment="Bottom"
 LegendOrientation="Vertical"
 LegendTitle="Year" >
 <c1:C1Sunburst.LegendStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="9"
 Stroke="DarkCyan"/>
 </c1:C1Sunburst.LegendStyle>
 <c1:C1Sunburst.LegendTitleStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="10"
 Stroke="Blue"/>
 </c1:C1Sunburst.LegendTitleStyle>
 <c1:C1Sunburst.HeaderStyle>
 <c1:ChartStyle FontFamily="Arial"
 FontSize="11"
 FontWeight="Bold"
 Stroke="Brown"/>
 </c1:C1Sunburst.HeaderStyle>
 <c1:C1Sunburst.FooterStyle>

FlexChart for WPF 183

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <c1:ChartStyle FontFamily="Arial"
 FontSize="10"
 FontWeight="Bold"
 Stroke="Brown"/>
 </c1:C1Sunburst.FooterStyle>
 <c1:C1Sunburst.DataLabel>
 <c1:PieDataLabel Position="Center"
 Content="{}{name}" />
 </c1:C1Sunburst.DataLabel>
</c1:C1Sunburst>

Code

C#

// set the SelectionMode property
sunburst.SelectionMode = C1.Chart.ChartSelectionMode.Point;

// set the SelectedItemOffset property
sunburst.SelectedItemOffset = 0.1;

// set the SelectedItemPosition property
sunburst.SelectedItemPosition = C1.Chart.Position.Top;

VB

' set the SelectionMode property
sunburst.SelectionMode = C1.Chart.ChartSelectionMode.Point

' set the SelectedItemOffset property
sunburst.SelectedItemOffset = 0.1

' set the SelectedItemPosition property
sunburst.SelectedItemPosition = C1.Chart.Position.Top

copyCode

copyCode

Drilldown
Drilling down data to get in to the details and access lower levels in data hierarchy of Sunburst chart can be quite
helpful while analysis. Sunburst chart provides Drilldown property to enable the functionality of drilling down and
drilling back up the data at run-time.

End users can focus and drill down a data item in a Sunburst chart by simply clicking the desired slice. Whereas, to
move up in the hierarchy, users simply need to right-click in the plot area.

The following gif image demonstrates drilling-down by showing data points of the clicked Sunburst slice.

FlexChart for WPF 184

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Note that drill down feature of Sunburst works only when selection of Sunburst slice is disabled, that
is, SelectionMode property is set to None. For more information on selection, see Selection in Sunburst.

Data Labels
Data labels provide additional information about the data points. These labels make a chart easier to understand
because they show details about a slice in the pie.

To understand the working of data labels in Sunburst chart, refer to the following sections.

Adding and Positioning Data Labels
Learn how to add data labels and set their position on the chart.

Formatting Data Labels
Learn how to perform styling and formatting of data labels.

Managing Overlapped Data Labels
Learn how to manage overlapping data labels in Sunburst chart.

Adding and Positioning Labels
With Sunburst chart, you can configure the arrangement and display properties for data labels depending on what
suits your needs the best. By default, the data labels are not displayed on the chart, however, you can enable them by
setting the Position and Content properties of DataLabel class.

The example code below uses the Position and Content properties to enable data labels and set their position.

XAML

<c1:C1Sunburst.DataLabel>
<c1:PieDataLabel Position="Inside"
Content="{}{name}">
</c1:PieDataLabel>
</c1:C1Sunburst.DataLabel>

FlexChart for WPF 185

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Code

HTML

sunburst.DataLabel.Content = "{Name}{value}";
sunburst.DataLabel.Position = C1.Chart.PieLabelPosition.Inside;

Formatting Data Labels
Sunburst provides various options to format data labels according to your requirements. You can use connecting lines
to connect the data labels, set and style borders of data labels, and customize the appearance of data labels.

The topic comprises of three sections:

Setting and Styling Borders
Connecting DataLabels to Data Points
Modifying Appearance

Setting and Styling Borders

To add and style borders to Sunburst data labels, set the Border and BorderStyle properties provided
by DataLabelBase class.

Use the following code snippet to add borders to data labels of Sunburst.

C#

FlexChart for WPF 186

Copyright © 2018 GrapeCity, Inc. All rights reserved.

// Enable Border
sunburst.DataLabel.Border = true;
sunburst.DataLabel.BorderStyle.StrokeThickness = 2;

Connecting DataLabels to Data Points

In case the data labels are placed away from the data points, you can connect them using connecting lines.

To enable connecting lines in Sunburst chart, you need to use the ConnectingLine property.

Use the following code snippet to set the connecting lines.

//Enable connecting line
sunburst.DataLabel.ConnectingLine = true;

C#

FlexChart for WPF 187

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Modifying Appearance

Sunburst includes various styling options, to enhance the clarity of data labels. To modify the appearance of Sunburst
chart, you need to use the Style property. It allows you to modify the font family, fill color, use stroke brush for data
labels, set width for stroke brush and more.

In the example code, we have modified the font used in the chart and set the stroke width property. Use the following
code snippet to modify the appearance of the chart.

// Modifying appearance of data labels
sunburst.DataLabel.Style.FontFamily = new
FontFamily("GenericSansSerif");
sunburst.DataLabel.Style.StrokeThickness = 2;

C#

FlexChart for WPF 188

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Manage Overlapped Data Labels
A common issue pertaining to charts is overlapping of data labels that represent data points. In most
cases, overlapping occurs due to long text in data labels or large numbers of data points.

To manage overlapped data labels in Sunburst chart, you can make use of Overlapping property provided
by PieDataLabel class. The Overlapping property accepts the following values from the PieLabelOverlapping
enumeration.

Enumeration Description

PieLabelOverlapping.Default Show all labels including the overlapping ones.

PieLabelOverlapping.Hide Hides the overlapping labels, if its content is larger than the corresponding pie
segment.

PieLabelOverlapping.Trim Trim overlapping data labels, if its width is larger than the corresponding pie segment.

Use the following code to manage overlapping data labels.

//Set Overlapping property
sunburst.DataLabel.Overlapping = C1.Chart.PieLabelOverlapping.Trim;

The following image shows how Sunburst appears after setting the Overlapping property.

C#

FlexChart for WPF 189

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexChart for WPF 190

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexRadar
FlexRadar is a radar chart that is also known as polar chart, star chart, web chart, or spider chart due to its appearance.
The chart plots value of each category along a separate axis that starts from the center and ends on the outer ring. All
axes are arranged radially, with equal distances between each other, while maintaining the same scale between all
axes. Each category value is plotted along its individual axis and all the values are connected together to form a
polygon. Common business applications of FlexRadar can include skill analysis of employees and product comparison.
It is important to note that the FlexRadar control represents a polar chart when X values are numbers that specify
angular values in degrees.

To know more about FlexRadar, click the following links:

Quick Start
Key Features
Chart Types
Legend and Titles

Quick Start

FlexChart for WPF 191

Copyright © 2018 GrapeCity, Inc. All rights reserved.

This quick start is intended to guide you through a step-by-step process of creating a simple FlexRadar application and
running the same in Visual Studio.

To quickly get started with FlexRadar and observe how it appears on running the application, follow these steps:

1. Add FlexRadar to the Application
2. Bind FlexRadar to the Data Source
3. Run the Application

The following image displays how a basic FlexRadar appears after completing the steps mentioned above.

Step 1: Add FlexRadar to the Application

1. Create a WPF Application in Visual Studio.
2. Drag and drop the C1FlexRadar control from the Toolbox to the MainWindow.

The .dll files which are automatically added to the application, are as follows:
C1.WPF.4.dll
C1.WPF.DX.4.dll
C1.WPF.FlexChart.4.dll

The XAML markup resembles the following code in the <Grid></Grid> tags.
XAML

<c1:C1FlexRadar HorizontalAlignment="Left"
 Height="100"
 Margin="0"
 VerticalAlignment="Top"
 Width="100"/>

Step 2: Bind FlexRadar to the Data Source

In this step, first create a class DataCreator that generates sales and expenses data for different countries. Next, bind

FlexChart for WPF 192

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexRadar to the created data source using the ItemsSource property provided by the FlexChartBase class. Then, specify
fields containing X values and Y values for FlexRadar using the BindingX and the Binding property, respectively.

1. Add a class, DataCreator and add the following code.
Visual Basic

Class DataCreator
 Public Shared Function CreateData() As List(Of DataItem)
 Dim data = New List(Of DataItem)()
 data.Add(New DataItem("UK", 5, 4))
 data.Add(New DataItem("USA", 7, 3))
 data.Add(New DataItem("Germany", 8, 5))
 data.Add(New DataItem("Japan", 12, 8))
 Return data
 End Function
End Class

Public Class DataItem
 Public Sub New(country__1 As String, sales__2 As Integer, expenses__3 As Integer)
 Country = country__1
 Sales = sales__2
 Expenses = expenses__3
 End Sub

 Public Property Country() As String
 Get
 Return m_Country
 End Get
 Set
 m_Country = Value
 End Set
 End Property
 Private m_Country As String
 Public Property Sales() As Integer
 Get
 Return m_Sales
 End Get
 Set
 m_Sales = Value
 End Set
 End Property
 Private m_Sales As Integer
 Public Property Expenses() As Integer
 Get
 Return m_Expenses
 End Get
 Set
 m_Expenses = Value
 End Set
 End Property
 Private m_Expenses As Integer
End Class

C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace FlexRadarQuickStart
{
 class DataCreator
 {
 public static List<DataItem> CreateData()
 {

FlexChart for WPF 193

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 var data = new List<DataItem>();
 data.Add(new DataItem("UK", 5, 4));
 data.Add(new DataItem("USA", 7, 3));
 data.Add(new DataItem("Germany", 8, 5));
 data.Add(new DataItem("Japan", 12, 8));
 return data;
 }
 }

 public class DataItem
 {
 public DataItem(string country, int sales, int expenses)
 {
 Country = country;
 Sales = sales;
 Expenses = expenses;
 }

 public string Country { get; set; }
 public int Sales { get; set; }
 public int Expenses { get; set; }
 }
}

2. Edit the XAML markup to provide data to FlexRadar.

XAML
 <Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:FlexRadarQuickStart"
 xmlns:Chart="clr-namespace:C1.WPF.Chart;assembly=C1.WPF.FlexChart.4"
 x:Class="FlexRadarQuickStart.MainWindow"
 mc:Ignorable="d"
 DataContext = "{Binding RelativeSource={RelativeSource Mode=Self}}">

 <Grid>
 <Chart:C1FlexRadar ItemsSource="{Binding DataContext.Data}"
 BindingX="Country"
 Margin="84,50,216,142">
 <Chart:Series SeriesName="Sales"
 Binding="Sales"/>
 <Chart:Series SeriesName="Expenses"
 Binding="Expenses" />
 </Chart:C1FlexRadar>
 </Grid>

</Window>

3. Switch to Code view and add the following code.
Visual Basic

Partial Public Class MainWindow
 Inherits Window
 Private _data As List(Of DataItem)
 Public Sub New()
 Me.InitializeComponent()
 Dim flexradar As New C1.WPF.Chart.C1FlexRadar()
 End Sub

 Public ReadOnly Property Data() As List(Of DataItem)
 Get
 If _data Is Nothing Then

FlexChart for WPF 194

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 _data = DataCreator.CreateData()
 End If

 Return _data
 End Get
 End Property
End Class

C#
using System.Collections.Generic;
using System.Windows;

namespace FlexRadarQuickStart
{
 public partial class MainWindow : Window
 {
 private List<DataItem> _data;
 public MainWindow()
 {
 this.InitializeComponent();
 }

 public List<DataItem> Data
 {
 get
 {
 if (_data == null)
 {
 _data = DataCreator.CreateData();
 }

 return _data;
 }
 }
 }
}

Step 3: Run the Application

Press F5 to run the application and observe the output.

Key Features
Some of the key features of FlexRadar are as follows:

Reversed FlexRadar: Create a reversed FlexRadar by setting the Reversed property to True. A reversed
FlexRadar is the one in which direction of plotting is reversed.
Start angle: Set the start angle of FlexRadar by setting the StartAngle property provided by the C1FlexRadar
class to double type values. A start angle is the angle that is set in degrees to start drawing radial axes in the
clockwise direction.
Header and Footer: Use simple properties to set and customize Header and Footer of FlexRadar. For more
information, refer to Legend and Titles.
Legend: Perform various customizations including setting orientation, position, or styling the legend of
FlexRadar. For more information, refer to Legend and Titles
Chart types: Visualize data using different chart types within FlexRadar. For more information, refer to Chart
Types.

Chart Types

FlexChart for WPF 195

Copyright © 2018 GrapeCity, Inc. All rights reserved.

FlexRadar allows you to work with different chart types to meet your data visualization needs. You can use chart types
from Area to Scatter to display areas filled with colors or patterns within data depicted within FlexRadar. To set
different chart types for FlexRadar, set the ChartType property of C1FlexRadar to any of the following values in
the RadarChartType enumeration:

Area: Shows area below the line filled with color.
Line: Shows trends over a period of time or across categories.
LineSymbols: Shows line chart with a symbol on each data point.
Scatter: Shows patterns within data using X and Y coordinates.

The following image displays FlexRadar with the chart type as Area.

The following code snippet sets the ChartType property in code using the sample created in Quick Start.

XAML
<Chart:C1FlexRadar Header="Country Wise Comparison"
 LegendOrientation="Vertical"
 LegendPosition="Right"
 LegendTitle="Parameters"
 ChartType="Area"
 Reversed="True"
 StartAngle="10"
 ItemsSource="{Binding DataContext.Data}"
 BindingX="Country"
 Margin="54,78,58,10" Palette="Standard">
 <Chart:C1FlexRadar.HeaderStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="14"
 FontWeight="Bold"
 Stroke="Blue"/>
 </Chart:C1FlexRadar.HeaderStyle>
 <Chart:C1FlexRadar.FooterStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="12"
 FontWeight="Bold"/>
 </Chart:C1FlexRadar.FooterStyle>
 <Chart:C1FlexRadar.LegendStyle>
 <Chart:ChartStyle FontFamily="Arial"

FlexChart for WPF 196

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 FontSize="11"
 FontWeight="Bold"
 Stroke="DarkCyan"/>
 </Chart:C1FlexRadar.LegendStyle>
 <Chart:C1FlexRadar.LegendTitleStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="11"
 FontWeight="Bold"
 Stroke="Brown"/>
 </Chart:C1FlexRadar.LegendTitleStyle>
 <Chart:Series SeriesName="Sales"
 Binding="Sales"/>
 <Chart:Series SeriesName="Expenses"
 Binding="Expenses" />
</Chart:C1FlexRadar>

Code

C#

// set the FlexRadar chart type
flexRadar.ChartType = C1.Chart.RadarChartType.Area;

VB

' set the FlexRadar chart type
flexRadar.ChartType = C1.Chart.RadarChartType.Area

copyCode

copyCode

Legend and Titles
Legend

The legend displays entries for series with their names and predefined symbols. In FlexRadar, you can perform various
customizations with the legend of FlexRadar, as follows:

Orientation: Set the orientation of the legend as horizontal, vertical, or automatic by using
the LegendOrientation property provided by the FlexChartBase class. The property can be set to any of the
values from the Orientation enumeration.
Position: Set the legend on top, bottom, left, right, or let it be positioned automatically by using
the LegendPosition property that accepts values from the Position enumeration. Setting the LegendPosition
property to None hides the legend.
Styling: Customize the overall appearance of the legend, such as setting stroke color or changing font by using
styling properties accessible through the LegendStyle property. The styling properties Stroke, FontSize,
and FontStyle are provided by the ChartStyle class.
Title and title styling: Specify the legend title using the LegendTitle property that accepts a string. Once you
have set the title, you can style it using the LegendTitleStyle property that provides access to the customization
properties of the ChartStyle class.

Header and Footer

Header and Footer are descriptive texts at the top and bottom of the chart that provide information about the overall
chart data. You can access Header and Footer of FlexRadar by using the Header and the Footer property respectively,
of the FlexChartBase class. Possible customizations with Header and Footer are as follows:

FlexChart for WPF 197

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Font: Change the font family, font size, and font style of Header and Footer using the various font properties of
the ChartStyle class accessible through the HeaderStyle or FooterStyle property of the FlexChartBase class.
Stroke: Set stroke of the titles for enhanced appeal by using the Stroke property.

The following image displays FlexRadar with the legend and titles set.

The following code snippet demonstrates how to set various properties.

XAML
<Chart:C1FlexRadar Header="Country Wise Comparison"
 LegendOrientation="Vertical"
 LegendPosition="Right"
 LegendTitle="Parameters"
 ChartType="Area"
 Reversed="True"
 StartAngle="10"
 ItemsSource="{Binding DataContext.Data}"
 BindingX="Country"
 Margin="54,78,58,10" Palette="Standard">
 <Chart:C1FlexRadar.HeaderStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="14"
 FontWeight="Bold"
 Stroke="Blue"/>
 </Chart:C1FlexRadar.HeaderStyle>
 <Chart:C1FlexRadar.FooterStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="12"

FlexChart for WPF 198

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 FontWeight="Bold"/>
 </Chart:C1FlexRadar.FooterStyle>
 <Chart:C1FlexRadar.LegendStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="11"
 FontWeight="Bold"
 Stroke="DarkCyan"/>
 </Chart:C1FlexRadar.LegendStyle>
 <Chart:C1FlexRadar.LegendTitleStyle>
 <Chart:ChartStyle FontFamily="Arial"
 FontSize="11"
 FontWeight="Bold"
 Stroke="Brown"/>
 </Chart:C1FlexRadar.LegendTitleStyle>
 <Chart:Series SeriesName="Sales"
 Binding="Sales"/>
 <Chart:Series SeriesName="Expenses"
 Binding="Expenses" />
</Chart:C1FlexRadar>

Code

C#

// set the FlexRadar header
flexRadar.Header = "Country Wise Comparison";

// set the legend orientation
flexRadar.LegendOrientation = C1.Chart.Orientation.Horizontal;

// set the legend position
flexRadar.LegendPosition = C1.Chart.Position.Bottom;

VB

' set the FlexRadar header
flexRadar.Header = "Country Wise Comparison"

' set the legend orientation
flexRadar.LegendOrientation = C1.Chart.Orientation.Horizontal

' set the legend position
flexRadar.LegendPosition = C1.Chart.Position.Bottom

copyCode

copyCode

FlexChart for WPF 199

Copyright © 2018 GrapeCity, Inc. All rights reserved.

TreeMap
Hierarchical information and data are useful in varied walks of life and setups, be it family tree, programming,
organization structure, or directories. Visualizing such data and spotting information in them is a difficult task,
especially if the data is huge. Treemap charts enable visualization of hierarchical data as nested rectangles on a limited
space. They are useful in having a quick glimpse of patterns in large data and in comparing proportions.

The TreeMap chart control supports binding to data to show hierarchy, and allows user to drill down the data further
to numerous levels for detailed analysis. The control can be customized to display data in horizontal, vertical, and
squarified layouts of constituting rectangles.

Both TreeMap and Sunburst charts are ideal for displaying and visualizing hierarchical data, but treemap is preferred
when space is a constraint as it can show humongous data in a limited area.

The following topics help you get accustomed with the TreeMap control, and explore its advanced capabilities.

Key Features
TreeMap control has numerous features to enable users display hierarchical data in a limited area, and analyze data by
comparing the size of tree nodes (or nested rectangles). These are as follows:

Hierarchical representation of data
TreeMap control is an ideal tool to help users visualize and compare proportions in data values within a
hierarchy.
Layout
TreeMap supports multiple display arrangements, where the tree branches can be shown as squares, horizontal
rectangles or vertical rectangles.

FlexChart for WPF 200

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Customizable hierarchical levels
TreeMap control enables users to vary the depth of data to be visualized and further drill down (or reverse drill
down) the data for analysis and comparison.
Customizable appearance
TreeMap enables users to stylize the control and vary its appearance as per their preference. A set of varied
color palettes are available to clearly display categories in a tree map chart.
Data binding
TreeMap can be bound to different data sources that contain data of varied size, allowing you to display such a
data in limited rectangular area.
Selection
TreeMap enables selecting tree nodes and group of nodes to draw focus on specific data items in the
hierarchical data.
Optimum space utilization
TreeMap is ideal for compact display and visualization of huge data. The nested rectangles and
groups constituting the treemap chart adjust their size to fit the display area.

Drill down the hierarchy
TreeMap allows detailed analysis of hierarchical data by drilling down the data points on a mouse click. This
is enabled by specifying the maximum depth of TreeMap hierarchy.

Quick Start
This quick start topic provides step-by-step instructions for adding a TreeMap chart to WPF application, and show
hierarchical data in it. In this topic, we consider an example where user wants to compare sales of books, music,
videos, and gadgets (like computers and tablets) in XYZ city in a particular year.

The steps to display hierarchical data in TreeMap control are as follows:

Step 1: Add TreeMap to project
Step 2: Create a hierarchical data source
Step 3: Bind the TreeMap to data source
Step 4: Build and run the project

The following image exhibits and compares sales of different varieties of books, music, videos, and gadgets (like
computers and tablets) in XYZ city in a particular year.

FlexChart for WPF 201

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Back to Top

You need to set the ItemsSource property, of FlexChartBase class, to point to the collection of objects that contain
data points to be plotted on the chart. To generate data items and display them in TreeMap chart,
set BindingName and Binding properties. Set the BindingName property to the string value that specifies the name
of the data item to display as chart rectangles, and Binding property to the string value that specifies the name of
property of chart items that contain chart values (numeric values that help calculate the size of tree nodes).

To specify the level of hierarchical items to drill down and display in the chart set the MaxDepth property. Also, the
display layout of the TreeMap is specified through its ChartType property. Additionally, color palette can be used to
stylize the control and change its appearance.

Step 1: Add TreeMap to project

1. Create a Windows application in Visual Studio.
2. Drag and drop C1TreeMap control from Toolbox to page.

The following DLLs get added to your application:
C1.WPF.dll
C1.WPF.FlexChart.dll

Back to Top

Step 2: Create a hierarchical data source

Switch to the code view and add the following code to generate sales data of Books, Music, Electronic items, Videos,
and Computers and tablets.

Visual Basic

Private rnd As New Random()
Private Function rand() As Integer
 Return rnd.[Next](10, 100)
End Function

Public ReadOnly Property Data() As Object()
 Get
 Dim data__1 = New Object() {New With {
 .type = "Music",
 .items = New () {New With {
 .type = "Country",
 .items = New () {New With {
 .type = "Classic Country",
 .sales = rand()
 }}
 }, New With {
 .type = "Rock",
 .items = New () {New With {
 .type = "Funk Rock",
 .sales = rand()
 }}
 }, New With {
 .type = "Classical",
 .items = New () {New With {
 .type = "Symphonies",
 .sales = rand()
 }}
 }}
 }, New With {
 .type = "Books",
 .items = New () {New With {
 .type = "Arts & Photography",
 .items = New () {New With {

FlexChart for WPF 202

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 .type = "Architecture",
 .sales = rand()
 }}
 }, New With {
 .type = "Children's Books",
 .items = New () {New With {
 .type = "Beginning Readers",
 .sales = rand()
 }}
 }, New With {
 .type = "History",
 .items = New () {New With {
 .type = "Ancient",
 .sales = rand()
 }}
 }, New With {
 .type = "Mystery",
 .items = New () {New With {
 .type = "Thriller & Suspense",
 .sales = rand()
 }}
 }, New With {
 .type = "Sci-Fi & Fantasy",
 .items = New () {New With {
 .type = "Fantasy",
 .sales = rand()
 }}
 }}
 }, New With {
 .type = "Electronics",
 .items = New () {New With {
 .type = "Wearable Technology",
 .items = New () {New With {
 .type = "Activity Trackers",
 .sales = rand()
 }}
 }, New With {
 .type = "Cell Phones",
 .items = New () {New With {
 .type = "Accessories",
 .sales = rand()
 }}
 }, New With {
 .type = "Headphones",
 .items = New () {New With {
 .type = "Earbud headphones",
 .sales = rand()
 }}
 }, New With {
 .type = "Camera",
 .items = New () {New With {
 .type = "Digital Cameras",
 .sales = rand()
 }}
 }}
 }, New With {
 .type = "Video",
 .items = New () {New With {
 .type = "Movie",
 .items = New () {New With {
 .type = "Children & Family",
 .sales = rand()

FlexChart for WPF 203

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 }}
 }, New With {
 .type = "TV",
 .items = New () {New With {
 .type = "Comedy",
 .sales = rand()
 }}
 }}
 }}
 Return data__1
 End Get
End Property

C#

 Random rnd = new Random();
 int rand()
 {
 return rnd.Next(10, 100);
 }

 public object[] Data
 {
 get
 {
 var data = new object[] { new {
 type = "Music",
 items = new [] { new {
 type = "Country",
 items= new [] { new {
 type= "Classic Country",
 sales = rand()
 }}
 }, new {
 type= "Rock",
 items= new [] { new {
 type= "Funk Rock",
 sales= rand()
 } }
 }, new {
 type= "Classical",
 items= new [] { new {
 type= "Symphonies",
 sales= rand()
 } }
 }}
}, new {
 type= "Books",
 items= new [] { new {
 type= "Arts & Photography",
 items= new [] { new {
 type= "Architecture",
 sales= rand()
 }}
 }, new {
 type= "Children's Books",
 items= new [] { new {
 type= "Beginning Readers",
 sales= rand()
 } }
 }, new {
 type= "History",

FlexChart for WPF 204

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 items= new [] { new {
 type= "Ancient",
 sales= rand()
 } }
 }, new {
 type= "Mystery",
 items= new [] { new {
 type= "Thriller & Suspense",
 sales= rand()
 } }
 }, new {
 type= "Sci-Fi & Fantasy",
 items= new [] { new {
 type= "Fantasy",
 sales= rand()
 }}
 } }
}, new {
 type= "Electronics",
 items= new [] { new {
 type= "Wearable Technology",
 items= new [] { new {
 type= "Activity Trackers",
 sales= rand()
 }}
 }, new {
 type= "Cell Phones",
 items= new [] { new {
 type= "Accessories",
 sales= rand()
 } }
 }, new {
 type= "Headphones",
 items= new [] { new {
 type= "Earbud headphones",
 sales= rand()
 } }
 }, new {
 type= "Camera",
 items= new [] { new {
 type= "Digital Cameras",
 sales= rand()
 } }
 } }
}, new {
 type= "Video",
 items= new [] { new {
 type= "Movie",
 items= new [] { new {
 type= "Children & Family",
 sales= rand()
 } }
 }, new {
 type= "TV",
 items= new [] { new {
 type= "Comedy",
 sales= rand()
 } }
 } }
} };
 return data;
 }

FlexChart for WPF 205

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Back to Top

Step 3: Bind the TreeMap to data source

To bind the TreeMap control to the data source, use the following code.

XAML

 <Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfTreeMapCS"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="WpfTreeMapCS.QuickStart"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 mc:Ignorable="d"
 Title="QuickStart"
 Height="312" Width="434">
 <Grid Margin="10,0,0,0">
 <c1:C1TreeMap Binding="sales"
 MaxDepth="2"
 BindingName="type"
 ChildItemsPath="items"
 ItemsSource="{Binding DataContext.Data}" >
 <c1:C1TreeMap.DataLabel>
 <c1:DataLabel Content="{}{type}"
 Position="Center">
 <c1:DataLabel.Style>
 <c1:ChartStyle/>
 </c1:DataLabel.Style>
 </c1:DataLabel>
 </c1:C1TreeMap.DataLabel>
 </c1:C1TreeMap>
 </Grid>
</Window>

Back to Top

Step 4: Build and run the project

1. Click Build | Build Solution to build the project.
2. Press F5 to run the project.

Back to Top

copyCode

Elements
A tree map chart is composed of rectangles, representing individual data items, which are grouped into categories, to
represent the hierarchical nature of data. The individual data items which make group are known as leaf nodes. The
size of these nodes are proportional to the data they represent

The following image exhibits main elements of TreeMap Control.

FlexChart for WPF 206

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Layouts
TreeMap enables its data items and groups, represented as rectangles, to be displayed in a variety of arrangements.
The tree map rectangles can be arranged into squarified, horizontal, and vertical layouts. To set the desired tree map
layout, you need to use ChartType property of TreeMap class, which takes TreeMapType enum. The default layout of
TreeMap chart control is squarified.

Squarified

The squarified layout tries to arrange the tree map rectangles (data items and groups) as approximate squares. This
layout makes it easier to make comparisons and point patterns, as the accuracy of presentation is enhanced in
squarified arrangement. This layout is very useful for large data sets.

FlexChart for WPF 207

Copyright © 2018 GrapeCity, Inc. All rights reserved.

XAML

<c1:C1TreeMap Binding="Value"
 BindingName="Name"
 ChartType="Squarified">

Horizontal

The horizontal layout stacks the tree map rectangles one over the other as rows. Here the width of the rectangles is
greater than their height.

XAML

<c1:C1TreeMap Binding="Value"
 BindingName="Name"
 ChartType="Horizontal">

Vertical

The vertical layout arranges the tree map rectangles adjacent to each other as columns. Here the height of the
rectangles is greater than their width.

copyCode

copyCode

FlexChart for WPF 208

Copyright © 2018 GrapeCity, Inc. All rights reserved.

XAML

<c1:C1TreeMap Binding="Value"
 BindingName="Name"
 ChartType="Vertical">

Horizontal and vertical treemaps are helpful in preserving and displaying the order of information.

copyCode

Data Binding
The TreeMap chart control binds to hierarchical data, to represent the elements of tree-like data as nested rectangles. Once the control binds to the data
source and displays data items as rectangles, the size and color of these constituting rectangles enable analysis and comparison of data items.

FlexChartBase class exposes ItemsSource property, which takes collection of the objects, that contain data, to populate in tree map chart. The Binding and
BindingName properties are instrumental in generating rectangular nodes for data items and their respective categories or groups. While Binding property
takes string value depicting the name of the property of data item that contains numeric data value, helpful in calculating the size of rectangular nodes,
BindingName takes string value depicting the name of data items. ChildItemPath property ensures that a hierarchical structure of the provided data
collection is maintained, by communicating to the control about the child items within the data.

To elaborate how data is populated in a tree map chart, let’s consider a use case where we try to compare yearly sales (in units sold) of a multi-brand retail
store. The analysis can then further be drilled down to quarters in a year and then to months in a quarter, by using Treemap chart. Here yearly sales are
represented by the top level rectangles, quarterly sales in those years represent the subsequent level, and monthly sales form the next level that is leaf nodes
in tree map.

The following image illustrates sales in a retail store, in terms of units sold, through TreeMap chart control. Note that the image shows hierarchical data up to
third level, that is months in respective quarters of the years.

FlexChart for WPF 209

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Back to Top

In this example, data generated in DataService class is serving as the source for tree map chart.

1. Create a hierarchical data source
1. In the code view, create a DataService class to generate hierarchical data, as shown in the following code.

Visual Basic
Public Class DataService
 Private rnd As New Random()
 Shared _default As DataService

 Public Shared ReadOnly Property Instance() As DataService
 Get
 If _default Is Nothing Then
 _default = New DataService()
 End If

 Return _default
 End Get
 End Property

 Public Shared Function CreateHierarchicalData() As List(Of DataItem)
 Dim rnd As Random = Instance.rnd

 Dim years As New List(Of String)()
 Dim times As New List(Of List(Of String))() From {
 New List(Of String)() From {
 "Jan",
 "Feb",
 "Mar"
 },
 New List(Of String)() From {
 "Apr",
 "May",
 "June"
 },
 New List(Of String)() From {
 "Jul",
 "Aug",
 "Sep"
 },
 New List(Of String)() From {
 "Oct",
 "Nov",
 "Dec"
 }
 }

 Dim items As New List(Of DataItem)()
 Dim yearLen = Math.Max(CInt(Math.Round(Math.Abs(5 - Instance.rnd.NextDouble() * 10))), 3)
 Dim currentYear As Integer = DateTime.Now.Year
 For i As Integer = yearLen To 1 Step -1
 years.Add((currentYear - i).ToString())
 Next
 Dim quarterAdded = False

FlexChart for WPF 210

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 years.ForEach(Function(y)
 Dim i = years.IndexOf(y)
 Dim addQuarter = Instance.rnd.NextDouble() > 0.5
 If Not quarterAdded AndAlso i = years.Count - 1 Then
 addQuarter = True
 End If
 Dim year = New DataItem() With {
 .Year = y
 }
 If addQuarter Then
 quarterAdded = True
 times.ForEach(Function(q)
 Dim addMonth = Instance.rnd.NextDouble() > 0.5
 Dim idx As Integer = times.IndexOf(q)
 Dim quar As String
 quar = "Q" + (idx + 1).ToString
 Dim quarters = New DataItem() With {
 .Year = y,
 .Quarter = quar
 }
 If addMonth Then
 q.ForEach(Function(m)
 quarters.Items.Add(New DataItem() With {
 .Year = y,
 .Quarter = quar,
 .Month = m,
 .Value = rnd.[Next](20, 30)
 })

 End Function)
 Else
 quarters.Value = rnd.[Next](80, 100)
 End If
 year.Items.Add(quarters)

 End Function)
 Else
 year.Value = rnd.[Next](80, 100)
 End If
 items.Add(year)

 End Function)

 Return items
 End Function

End Class
C#

public class DataService
{
 Random rnd = new Random();
 static DataService _default;

 public static DataService Instance
 {
 get
 {
 if (_default == null)
 {
 _default = new DataService();
 }

 return _default;
 }
 }

 public static List<DataItem> CreateHierarchicalData()
 {
 Random rnd = Instance.rnd;

 List<string> years = new List<string>();
 List<List<string>> times = new List<List<string>>()
 {
 new List<string>() { "Jan", "Feb", "Mar"},
 new List<string>() { "Apr", "May", "June"},
 new List<string>() { "Jul", "Aug", "Sep"},
 new List<string>() { "Oct", "Nov", "Dec" }
 };

 List<DataItem> items = new List<DataItem>();
 var yearLen = Math.Max((int)Math.Round(Math.Abs(5 - Instance.rnd.NextDouble() * 10)), 3);
 int currentYear = DateTime.Now.Year;
 for (int i = yearLen; i > 0; i--)

FlexChart for WPF 211

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 {
 years.Add((currentYear - i).ToString());
 }
 var quarterAdded = false;

 years.ForEach(y =>
 {
 var i = years.IndexOf(y);
 var addQuarter = Instance.rnd.NextDouble() > 0.5;
 if (!quarterAdded && i == years.Count - 1)
 {
 addQuarter = true;
 }
 var year = new DataItem() { Year = y };
 if (addQuarter)
 {
 quarterAdded = true;
 times.ForEach(q =>
 {
 var addMonth = Instance.rnd.NextDouble() > 0.5;
 int idx = times.IndexOf(q);
 var quar = "Q" + (idx + 1);
 var quarters = new DataItem() { Year = y, Quarter = quar };
 if (addMonth)
 {
 q.ForEach(m =>
 {
 quarters.Items.Add(new DataItem()
 {
 Year = y,
 Quarter = quar,
 Month = m,
 Value = rnd.Next(20, 30)
 });
 });
 }
 else
 {
 quarters.Value = rnd.Next(80, 100);
 }
 year.Items.Add(quarters);
 });
 }
 else
 {
 year.Value = rnd.Next(80, 100);
 }
 items.Add(year);
 });

 return items;
 }

}
2. Create a DataItem class to define list of objects to represent data items and their categories.

Visual Basic
Public Class DataItem
 Private _items As List(Of DataItem)

 Public Property Year() As String
 Get
 Return m_Year
 End Get
 Set
 m_Year = Value
 End Set
 End Property
 Private m_Year As String
 Public Property Quarter() As String
 Get
 Return m_Quarter
 End Get
 Set
 m_Quarter = Value
 End Set
 End Property
 Private m_Quarter As String
 Public Property Month() As String
 Get
 Return m_Month
 End Get
 Set
 m_Month = Value

FlexChart for WPF 212

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 End Set
 End Property
 Private m_Month As String
 Public Property Value() As Double
 Get
 Return m_Value
 End Get
 Set
 m_Value = Value
 End Set
 End Property
 Private m_Value As Double
 Public ReadOnly Property Items() As List(Of DataItem)
 Get
 If _items Is Nothing Then
 _items = New List(Of DataItem)()
 End If

 Return _items
 End Get
 End Property
End Class

C#
public class DataItem
{
 List<DataItem> _items;

 public string Year { get; set; }
 public string Quarter { get; set; }
 public string Month { get; set; }
 public double Value { get; set; }
 public List<DataItem> Items
 {
 get
 {
 if (_items == null)
 {
 _items = new List<DataItem>();
 }

 return _items;
 }
 }
}

Back to Top

2. Bind TreeMap to the data source

To bind the TreeMap control to the data source use the following code.

XAML

 <Window
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:WpfTreeMapCS"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 x:Class="WpfTreeMapCS.DataBinding"
 DataContext="{Binding RelativeSource={RelativeSource Mode=Self}}"
 mc:Ignorable="d"
 Title="DataBinding" Height="300" Width="300">
 <Grid>
 <Grid.DataContext>
 <local:TreeMapViewModel />
 </Grid.DataContext>
 <c1:C1TreeMap Binding="Value"
 BindingName="Year,Quarter,Month"
 ChildItemsPath="Items"
 ItemsSource="{Binding HierarchicalData}"
 MaxDepth="3">
 <c1:C1TreeMap.DataLabel>
 <c1:DataLabel Content="{}{name}"
 Position="Center">
 <c1:DataLabel.Style>

copyCode

FlexChart for WPF 213

Copyright © 2018 GrapeCity, Inc. All rights reserved.

 <c1:ChartStyle/>
 </c1:DataLabel.Style>
 </c1:DataLabel>
 </c1:C1TreeMap.DataLabel>
 </c1:C1TreeMap>
 </Grid>
</Window>

Back to Top

Visual Basic
Public Class TreeMapViewModel
 Public ReadOnly Property HierarchicalData() As List(Of DataItem)
 Get
 Return DataService.CreateHierarchicalData()
 End Get
 End Property
End Class

C#
public class TreeMapViewModel
{
 public List<DataItem> HierarchicalData
 {
 get
 {
 return DataService.CreateHierarchicalData();
 }
 }
}

3. Build and run the project
1. Click Build | Build Solution to build the project.
2. Press F5 to run the project.

Back to Top

Selection
TreeMap chart lets you enable selection of its data items and groups. User can select a node and draw focus on it by
simply clicking it. You need to set the SelectionMode property provided by the FlexChartBase class to either of the
following values in the ChartSelectionMode enumeration:

None (default): Selection is disabled.

Point: A point is selected.

The following image illustrates default selection of data point in TreeMap.

FlexChart for WPF 214

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code snippet shows how to set the SelectionMode property for a tree map chart.

XAML

<c1:C1TreeMap Binding="sales"
 MaxDepth="2"
 BindingName="type"
 ChildItemsPath="items"
 ItemsSource="{Binding DataContext.Data}"
 SelectionMode="Point">

Customized TreeMap Selection

To customize the TreeMap selection, you can use SelectionStyle property and stylize the selected item as illustrated in
the following image.

copyCode

FlexChart for WPF 215

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code snippet demonstrates utilizing SelectionStyle property to change fill color of the TreeMap node
that is selected.

XAML

<c1:C1TreeMap Binding="sales"
 MaxDepth="2"
 BindingName="type"
 ChildItemsPath="items"
 ItemsSource="{Binding DataContext.Data}"
 SelectionMode="Point">
 <c1:C1TreeMap.SelectionStyle>
 <c1:ChartStyle Fill="Wheat"/>
 </c1:C1TreeMap.SelectionStyle>

Additionally, you can customize the behavior of TreeMap selection by handling SelectionChanged event. Also, you can
utilize SelectedIndex and SelectedItem properties, and reuse the obtained information in your application.

copyCode

Drilldown
TreeMap allows drilling down the data items of its data further for detailed analysis. End users can access the lower
levels in the data hierarchy by simply clicking the desired node. Whereas, to move back up in the hierarchy, users
simply need to right-click in the plot area.

Note that, drilldown functionality in TreeMap is possible only if MaxDepth property is set to a value greater than 0.
This property defines the levels of hierarchical data in the TreeMap chart.

The following gif image demonstrates drilling-down by showing data points of the clicked TreeMap node.

FlexChart for WPF 216

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Note that drill down feature of TreeMap works only when selection of TreeMap nodes is disabled, that
is, SelectionMode property is set to None. For more information on selection, see Selection in TreeMap.

FlexChart for WPF 217

Copyright © 2018 GrapeCity, Inc. All rights reserved.

	Table of Contents
	Overview
	Getting Started with WPF Edition
	FlexChart
	Key Features
	Feature Comparison
	Comparing FlexCharts
	Comparing WPF Charts

	Quick Start
	Step 1: Adding FlexChart to the Project
	Step 2: Binding FlexChart to a Data Source
	Step 3: Running the Project

	Understanding FlexChart
	FlexChart Fundamentals
	Header and Footer
	Legend
	Axes
	Plot Area
	Series

	FlexChart Types
	Area
	Bar
	Bubble
	Column
	Financial
	Candle
	HighLowOpenClose

	Floating Bar
	Funnel
	Histogram
	Line
	LineSymbols
	Mixed
	Pareto Chart
	RangedHistogram
	Scatter
	Spline
	SplineArea
	SplineSymbols
	Step

	Working with FlexChart
	Data
	Providing Data
	Binding Data Using a Data Source

	Plotting Data
	Customizing Series
	Showing or Hiding a Series

	Interpolating Null Values

	Appearance
	Colors
	Choosing Colors Interactively
	Setting FlexChart Palette
	Specifying RGB Colors
	Specifying Hue, Saturation, and Brightness
	Using Transparent Colors

	Fonts
	Symbol Styles for Series

	End-User Interaction
	ToolTips
	Default Tooltip
	Customizing Tooltip Content
	Formatting Tooltip Content
	Shared Tooltip

	Axis Scrollbar
	Range Selector
	Line Marker
	Hit Test

	FlexChart Elements
	FlexChart Axis
	Axis Position
	Axis Title
	Axis Tick Marks
	Axis Grid Lines
	Axis Bounds
	Axis Scaling
	Axis Reversing
	Axis Binding
	Multiple Axes

	FlexChart Axes Labels
	Axes Labels Format
	Axes Labels Rotation
	Axes Labels Visibility
	Axes Labels Overlap
	Axis Grouping
	Categorical Grouping
	Numerical Axis Grouping
	DateTime Axis Grouping

	Annotations
	Adding Annotations
	Positioning Annotations
	Customizing Annotations
	Types of Annotations
	Shape Annotations
	Text Annotation
	Image Annotation

	Creating Callouts

	FlexChart Legend
	Legend Position
	Legend Style
	Legend Toggle
	Legend Text Wrap
	Legend Grouping
	Custom Legend Icon

	FlexChart Series
	Creating and Adding Series
	Adding Data to Series
	Emphasizing Different Types of Data
	Customizing Series
	Box-and-Whisker
	Error Bar
	Waterfall Series
	Stacked Groups

	FlexChart Data Labels
	Adding and Positioning Data Labels
	Formatting Data Labels
	Manage Overlapped Data Labels

	Multiple Plot Areas

	Trend Lines
	Export
	Export to Image

	FlexPie
	Quick Start
	Doughnut Pie Chart
	Exploded Pie Chart
	Header & Footer
	Legend
	Selection
	Data Labels
	Adding and Positioning Labels
	Formatting Data Labels
	Manage Overlapped Data Labels

	Sunburst Chart
	Quick Start
	Key Features
	Legend and Titles
	Selection
	Drilldown
	Data Labels
	Adding and Positioning Labels
	Formatting Data Labels
	Manage Overlapped Data Labels

	FlexRadar
	Quick Start
	Key Features
	Chart Types
	Legend and Titles

	TreeMap
	Key Features
	Quick Start
	Elements
	Layouts
	Data Binding
	Selection
	Drilldown

