
 

ComponentOne

GanttView for WPF



 
GrapeCity US

GrapeCity
201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206
Tel: 1.800.858.2739 | 412.681.4343
Fax: 412.681.4384
Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com


Table of Contents
GanttView for WPF 3

Help with WPF Edition 3

Key Features 4

GanttView Elements 5

GanttView Toolbar 5-7

Quick Start: GanttView for WPF 8-12

Data Binding 13-16

Design-Time Support 17

BaseColumn Collection Editor 17

CustomCalendar Collection Editor 17-18

CalendarException Collection Editor 18

Task Collection Editor 18-19

WorkWeek Collection Editor 19

BarStyle Collection Editor 19-20

FieldStyle Collection Editor 20-21

Predecessor Collection Editor 21

ResourceRef Collection Editor 21-22

Runtime Interaction 23

Grid Columns Dialog 23

Task Information Dialog 23-26

Field Styles Dialog 26-27

Group Dialog 27-28

DateRange Dialog 28

Using Resource Dialog 28-29

Advanced Filter Dialog 29-30

More Filter Dialog 30

Sort Dialog 30-31

Project Information Dialog 31-34

Change Working Time Dialog 34-38

Progress Line Dialog 38-39

Resources Dialog 39

Timescale Dialog 39-41

Bar Styles Dialog 41-42

Zoom Dialog 42

GanttView for WPF 1

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Print- Dialog 42-45

Features 46

Task Management 46

Tasks 46-48

Columns 48-49

Custom Columns 49-50

Scheduling Mode 50-51

Percent Complete 51-52

Task Deadline 52-53

Timescale 53-54

Timescale Formats 54-56

Milestone Task 56-57

Progress Line 57-58

Resources 58-60

Constraints 60-61

Filtering 61-62

Custom Filtering 62-65

Sorting 65-66

Multicolumn Sorting 66

Saving Content in XML 66-67

Loading Content from XML 67-68

Task Dependency 68-70

Task Splitting 70-72

Project Summary Task 72-73

Style and Appearance 73

Custom Bar Styles 73-75

Custom Field Styles 75-76

Apply Themes 76-77

Set Back Color of Day 77-78

GanttView for WPF 2

Copyright © 2017 GrapeCity, Inc. All rights reserved.



GanttView for WPF
GanttView for WPF is a project management control designed to efficiently create, schedule, execute and complete
projects. The GanttView control is derived from gantt charts, which are one of the oldest and most effective tools for
project scheduling and management.

GanttView enables users to track various aspects related to project management and scheduling as follows:

Various tasks/activities involved in the project.
Beginning and end of each task/activity.
Time duration assigned to each task/activity.
Overlapping tasks/activities.
Closely follow deadlines and overall project completion.
Start and end date of the entire project.

Help with WPF Edition
For information on installing ComponentOne Studio WPF Edition, licensing, technical support, namespaces, and
creating a project with the controls, please visit Getting Started with WPF Edition.

GanttView for WPF 3

Copyright © 2017 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1studioWPF/


Key Features
Being a data management tool, GanttView comes with a number of in-built features to make it an efficient tool for
various real-world applications such as project scheduling and resource management. Here is a quick look at the key
feature that GanttView provides.

Key Features Description

Scheduling Modes GanttView supports both automatic and manual scheduling modes to provide
greater flexibility and control over project planning. For more information, see
Scheduling mode.

Built-In Toolbar GanttView comes with a built-in toolbar to help users quickly access various
operations that can be performed at runtime. For information on toolbar, see
GanttView toolbar.

Custom Calendars GanttView provides you with the capability to create and save custom calendars for
specifying work weeks, work timings and exceptions.

Timescales GanttView provides timescales with three visible tiers, namely Top, Bottom and
Middle tiers. The appearance of these tiers can customized through runtime dialogs.
For more information on timescale, see Timescale.

Percent Complete GanttView displays task related attributes through task bars. In addition, you can
display the task bar as progress bar to visualize the current status of your tasks.

Milestones GanttView supports creating Milestones to define landmarks in various phases of
project management and scheduling. Milestones are created as tasks with zero
duration.

Resource Handling GanttView allows you to manage resource pools throughout your project plan. You
can handle three types of resources including people, material and cost. For
information on resource handling, see Resources.

Dependencies GanttView supports task dependencies to create a feasible scheduling relationship
between dependent tasks. For more information on handling dependencies
in GanttView, see Tasks dependency. 

Load and Save Project
Schedule as XML

GanttView lets you store as well as load your project schedule in XML format. The
built-in toolbar provides buttons to directly save or load project schedules from XML
files.

Import Project Schedules
from Microsoft Project

GanttView lets you import project schedule from Microsoft Project as well. To know
about this, see Loading content from XML.

Custom Appearance GanttView provides various options to customize the default appearance of its
elements such as task bars, fields. To know more, see Style and appearance.

Themes GanttView supports built-in ComponentOne themes to provide consistent and
custom look and feel to your application. To know more, see Applying themes.

GanttView for WPF 4

Copyright © 2017 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowpf/AvailableThemes.html


GanttView Elements
The GanttView control provides an interactive user interface to display the complete project lifecycle. GanttView
comprises two major elements, a grid and a chart, separated by a draggable splitter. The grid and the chart remain in
sync with each other. If the user makes any changes in the task within the grid, the same gets reflected in the chart.

Here is how a GanttView control presents various project-related attributes, such as task/activity name, mode,
duration, etc.

Major UI Elements

Grid: The grid displays various attributes pertaining to a particular task/activity. You can edit these attributes
through the grid.
Chart: The chart provides visual representation of the task details presented on the grid. These details are
presented through bars on the chart.
Splitter: The draggable splitter divides the chart and grid.
Task: Each task/activity is represented by a bar whose position and length indicate the start date, end date, and
task duration.
Timescale: GanttView displays a timescale along a horizontal timeline, which comprises three tiers.
Toolbar: The toolbar provides quick access to various operations that one can perform in GanttView. For more
information on Toolbar, refer to GanttView Toolbar.

GanttView Toolbar
GanttView comes with a built-in toolbar that provides quick access to various operations you can perform in
GanttView. For example, you can use the toolbar to load and save files, apply filters on tasks, sort tasks, move tasks up
and down, set the time scale, etc. The toolbar remains hidden by default. However, this behavior can be changed by
setting the ShowToolbar property to true/false as required.

Here is how the toolbar in GanttView control appears.

The toolbar provides specific buttons to perform various operations. On hovering over each of these buttons, you find

GanttView for WPF 5

Copyright © 2017 GrapeCity, Inc. All rights reserved.



a tooltip that provides the information about the operation that can be performed by that button. The following table
summarizes each of these toolbar buttons along with their tooltips and operations.

Button Tooltip Operation

Load Opens the Load From XML File dialog that lets you browse the
XML file that you wish to load in GanttView.

Save Opens the Save As XML dialog that lets you save the GanttView as
an XML file.

Undo Undo the last action performed.

Redo Redo the last action performed.

Grid Columns Opens the Grid Columns dialog to enable or disable default
columns available in GanttView.

Move Task Up Moves a particular task one place up in the grid.

Move Task Down Moves a particular task one place down in the grid.

Task Information Opens Task Information dialog that summarizes various attributes
such as task name, duration, start date, finish date, etc. pertaining
to a particular task/activity.

Field Styles Opens the Field Styles dialog that lets you customize the text
fields appearing in the grid.

Add Task Adds a new task in GanttView.

Add Summary Task Adds a summary task in GanttView.

Inactive Inactivates/reactivates the selected task in the grid.

Split Task Splits the selected task in the grid.

Add Blank Row Adds a blank row in GanttView.

Delete Task Deletes a particular task from the grid.

Outdent Task Increases the outline level of a task.

Indent Task Decreases the outline level of a task.

Show Project Summary Shows/hides the project summary task.

Group By Opens the Filter menu that lets you filter tasks by Completed
Tasks, Incomplete Tasks, Late Tasks, Milestones, Summary
Tasks, Tasks with Duration Only. The menu also provides No
Filter option to clear the existing filter; Date Range option that
opens the Date Range filter dialog to apply custom filter by date
range; Using Resource option that opens the Using Resource

GanttView for WPF 6

Copyright © 2017 GrapeCity, Inc. All rights reserved.



dialog to apply custom filter by specific resource; Advance Filter
option that opens the Advanced Filter dialog to apply custom
filters; More Filters option that opens the More Filter dialog to
choose specific advanced filters. The Show Related Summary Rows
option lets you view the related summary.

Filter Applies filter on the tasks displayed in GanttView.

Sort Opens the Sort menu that lets you sort tasks by Name, Start Date,
Finish Date, and Duration. The menu also provides Remove Sort
option to clear existing sort, and Sort By option that opens the
Sort By dialog to apply custom sort.     

Project Information Opens Project Information dialog that lets you view various project
details such as Start Date, Finish Date, Default Working Times,
Default Days Off, etc.

Change Working Time Opens Change Working Time dialog that lets you view and
change the default working time, working weeks, etc.

Progress Line Opens the Progress Line dialog to create and customize progress
lines in GanttView.

Project Resources Opens the Resources dialog that lets you assign resources to tasks.

Timescale Opens Timescale dialog that lets you customize the Timescale
settings in your GanttView.

Bar Styles Opens the Bar Styles dialog that lets you customize the task bars.  

Scroll to Task Scrolls to tasks represented by bars in the chart area of GanttView.

Zoom Provides Zoom In, Zoom Out and Zoom options. Selecting the
Zoom option opens the Zoom dialog that lets you zoom the
GanttView to custom ranges.

Zoom Entire Project Zooms the entire project schedule in the GanttView.

Zoom Selected task Zooms the selected task in the GanttView.

Print Opens the Print dialog that lets you print the information
displayed in GanttView.

GanttView for WPF 7

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Quick Start: GanttView for WPF
This quick start section is intended to familiarize you with the GanttView control. You begin by creating a WPF
application in Visual Studio, adding GanttView control to the MainWindow, and add tasks to GanttView in unbound
mode through code.

Complete the steps given below to see how GanttView control appears on running the application

Step 1: Setting up the application
Step 2: Adding tasks to GanttView in unbound mode through code
Step 3: Running the application

Here is how a basic GanttView control appears with tasks displayed.

Step 1: Setting up the application

1. Create a WPF application in Visual Studio.
2. Drag and drop the C1GanttView control to the MainWindow
3. Edit the XAML code to include relevant namespaces and set some basic properties of the GanttView control.

XAML

    <Window
        xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
        xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
        xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml" 
        xmlns:GanttView="clr-namespace:C1.GanttView;assembly=C1.WPF.GanttView.4" 
        x:Class="QuickStart.MainWindow"
        Title="MainWindow" Height="350" Width="525">
    <Grid>

        <c1:C1GanttView Name="gv">
            <c1:C1GanttView.Columns>
                <GanttView:TaskPropertyColumn ID="682738157" Property="Mode"/>
                <GanttView:TaskPropertyColumn ID="200464275" Property="Name"/>
                <GanttView:TaskPropertyColumn ID="1932261525" Property="Duration" 
Visible="False"/>
                <GanttView:TaskPropertyColumn ID="2041428170" 

GanttView for WPF 8

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Property="DurationUnits" Visible="False"/>
                <GanttView:TaskPropertyColumn ID="877817002" Property="Start" 
Visible="False"/>
                <GanttView:TaskPropertyColumn ID="1833319410" Property="Finish" 
Visible="False"/>
                <GanttView:TaskPropertyColumn ID="204763723" 
Property="PercentComplete" Visible="False"/>
                <GanttView:TaskPropertyColumn ID="2112691121" 
Property="ConstraintType" Visible="False"/>
                <GanttView:TaskPropertyColumn ID="1026682979" 
Property="ConstraintDate" Visible="False"/>
                <GanttView:TaskPropertyColumn ID="46763901" 
Property="Predecessors" Visible="False"/>
                <GanttView:TaskPropertyColumn ID="1809421465" Property="Deadline" 
Visible="False"/>
                <GanttView:TaskPropertyColumn ID="1041667598" Property="Calendar" 
Visible="False"/>
                <GanttView:TaskPropertyColumn ID="223524084" 
Property="ResourceNames" Visible="False"/>
                <GanttView:TaskPropertyColumn ID="2142090402" Property="Notes" 
Visible="False"/>
            </c1:C1GanttView.Columns>
        </c1:C1GanttView>
        

    </Grid>
</Window>

Step 2: Adding tasks to GanttView in unbound mode through code

You can add tasks to the GanttView control in unbound mode. For this, you can define tasks in a delegate and add
them to the Tasks collection of GanttView using the Add method.

1. Switch to the code view, that is MainWindow.xaml.cs file, and add the following import statements.

2. Switch to the MainWindow.xaml.cs and add the following code to subscribe the Loaded event of the
C1GanttView class.

3. Add the following code in the Loaded event for configuring tasks and adding them to the GanttView control.

Imports C1.GanttView
Imports C1.WPF.GanttView

Visual Basic

using C1.GanttView;
using C1.WPF.GanttView;

C#

AddHandler gv.Loaded, AddressOf gv_Loaded

Visual Basic

gv.Loaded += gv_Loaded;

C#

GanttView for WPF 9

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Private Sub gv_Loaded(sender As Object, e As RoutedEventArgs)
    'Configure tasks
    Dim t As New Task()
    t.Mode = TaskMode.Manual
    t.Name = "Requirement Gathering"
    t.Start = New DateTime(2016, 4, 5)
    t.Duration = 5
    t.PercentComplete = 0.5

    Dim t1 As New Task()
    t1.Mode = TaskMode.Manual
    t1.Name = "Analysis"
    t1.Start = New DateTime(2016, 4, 20)
    t1.Duration = 8
    t1.PercentComplete = 0

    Dim t2 As New Task()
    t2.Mode = TaskMode.Manual
    t2.Name = "Design"
    t2.Start = New DateTime(2016, 4, 8)
    t2.Duration = 4
    t2.PercentComplete = 0.6

    Dim t3 As New Task()
    t3.Mode = TaskMode.Manual
    t3.Name = "Development"
    t3.Start = New DateTime(2016, 5, 1)
    t3.Duration = 10
    t3.PercentComplete = 0.2

    Dim t4 As New Task()
    t4.Mode = TaskMode.Manual
    t4.Name = "Quality Assurance"
    t4.Start = New DateTime(2016, 4, 16)
    t4.Duration = 7
    t4.PercentComplete = 0.2

    Dim t5 As New Task()
    t5.Mode = TaskMode.Manual
    t5.Name = "Deployment and Release"
    t5.Start = New DateTime(2016, 3, 29)
    t5.Duration = 1
    t5.PercentComplete = 0.5

    Dim t6 As New Task()
    t6.Mode = TaskMode.Manual
    t6.Name = "Maintenance"
    t6.Start = New DateTime(2016, 5, 3)
    t6.Duration = 4
    t6.PercentComplete = 1

    Dim t7 As New Task()
    t7.Mode = TaskMode.Manual
    t7.Name = "Enhancements"
    t7.Start = New DateTime(2016, 5, 11)
    t7.Duration = 2
    t7.PercentComplete = 0.8

    'Add the tasks to the GanttView
    gv.Tasks.Add(t)

Visual Basic

GanttView for WPF 10

Copyright © 2017 GrapeCity, Inc. All rights reserved.



    gv.Tasks.Add(t1)
    gv.Tasks.Add(t2)
    gv.Tasks.Add(t3)
    gv.Tasks.Add(t4)
    gv.Tasks.Add(t5)
    gv.Tasks.Add(t6)
    gv.Tasks.Add(t7)
End Sub

void gv_Loaded(object sender, RoutedEventArgs e)
{
    //Configure tasks
    Task t = new Task();
    t.Mode = TaskMode.Manual;
    t.Name = "Requirement Gathering";
    t.Start = new DateTime(2016, 4, 5);
    t.Duration = 5;
    t.PercentComplete = 0.5;

    Task t1 = new Task();
    t1.Mode = TaskMode.Manual;
    t1.Name = "Analysis";
    t1.Start = new DateTime(2016, 4, 20);
    t1.Duration = 8;
    t1.PercentComplete = 0;

    Task t2 = new Task();
    t2.Mode = TaskMode.Manual;
    t2.Name = "Design";
    t2.Start = new DateTime(2016, 4, 8);
    t2.Duration = 4;
    t2.PercentComplete = 0.6;

    Task t3 = new Task();
    t3.Mode = TaskMode.Manual;
    t3.Name = "Development";
    t3.Start = new DateTime(2016, 5, 1);
    t3.Duration = 10;
    t3.PercentComplete = 0.2;

    Task t4 = new Task();
    t4.Mode = TaskMode.Manual;
    t4.Name = "Quality Assurance";
    t4.Start = new DateTime(2016, 4, 16);
    t4.Duration = 7;
    t4.PercentComplete = 0.2;

    Task t5 = new Task();
    t5.Mode = TaskMode.Manual;
    t5.Name = "Deployment and Release";
    t5.Start = new DateTime(2016, 3, 29);
    t5.Duration = 1;
    t5.PercentComplete = 0.5;

    Task t6 = new Task();
    t6.Mode = TaskMode.Manual;
    t6.Name = "Maintenance";
    t6.Start = new DateTime(2016, 5, 3);
    t6.Duration = 4;
    t6.PercentComplete = 1;

C#

GanttView for WPF 11

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Step 3: Running the application

Press F5 to run the application and observe how task attributes get displayed in the control.

    Task t7 = new Task();
    t7.Mode = TaskMode.Manual;
    t7.Name = "Enhancements";
    t7.Start = new DateTime(2016, 5, 11);
    t7.Duration = 2;
    t7.PercentComplete = 0.8;

    //Add the tasks to the GanttView
    gv.Tasks.Add(t);
    gv.Tasks.Add(t1);
    gv.Tasks.Add(t2);
    gv.Tasks.Add(t3);
    gv.Tasks.Add(t4);
    gv.Tasks.Add(t5);
    gv.Tasks.Add(t6);
    gv.Tasks.Add(t7);
}

GanttView for WPF 12

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Data Binding
Data binding refers to the process of binding a data provider to a data consumer in a synchronized manner. You can bind
GanttView control to any .NET data source requiring little code and display your project related attributes. GanttView
supports data binding with various ADO.NET objects such as DataTable, DataView and DataSet.

The instructions given below explain step-by-step procedure for binding the GanttView control to a data source. This
example uses a sample database file, Nwind.mdb, as the data source for binding.

Binding to a Data Source

Complete the steps given below to bind the GanttView control to a data source.

1. Create a WPF application (by the name DataBinding) and place C1GanttView control onto the MainWindow.
2. Set the Name property of the control to 'gv' in the XAML markup.

XAML

<c1:C1GanttView x:Name="gv" Margin="0,37,0,0">

3. Click View | Other Windows | Data Sources to add a data source to your project.
4. In Data Sources window, click Add New Data Source option to open the Data Configuration Wizard window.
5. In the Data Configuration Wizard window, select Database as the Data Source Type and click Next.
6. Select Dataset as the Database Model and click Next.
7. Click New Connection to connect to a database file. The Add Connection dialog appears.
8. In the Add Connection dialog, browse to the database file with which you want to set the connection.

The Nwind.mdb database file is by default kept in the installed folder at the following location.

C:\Users\...\Documents\ComponentOne Samples\Common\Nwind.mdb

9. Click Test Connection to test that the connection is successful and click OK.
10. Click Next and then OK to copy the database file in your project.
11. In the Tables drop-down list, select Calendars, Properties, Resources and Tasks tables as the object models and

click Finish.

Storing and Retrieving Data

Complete the following steps to store data in your dataset and retrieve the same to display various project related attributes
in GanttView.

1. Add the following import statements.

2. Create the objects of the NwindDataSet and data adapters for Calendars, Properties, Resources and Tasks tables.

Imports C1.GanttView
Imports DataBinding.C1NWindDataSetTableAdapters

Visual Basic

using C1.GanttView;
using DataBinding.C1NWindDataSetTableAdapters;

C#

Private c1NwindDataSet1 As New C1NWindDataSet()
Private tasksTableAdapter As New TasksTableAdapter()
Private calendarsTableAdapter As New CalendarsTableAdapter()
Private resourcesTableAdapter As New ResourcesTableAdapter()
Private propertiesTableAdapter As New PropertiesTableAdapter()

Visual Basic

C#

GanttView for WPF 13

Copyright © 2017 GrapeCity, Inc. All rights reserved.



3. Fill the tables using the data adapters and set different storage mappings for C1GanttViewStorage using the given
code.

4. Subscribe the Loaded event of the C1GanttView class.

5. Add the following code to set different storage mappings for C1GanttViewStorage class in the Loaded event.

private C1NWindDataSet c1NwindDataSet1 = new C1NWindDataSet();
private TasksTableAdapter tasksTableAdapter = new TasksTableAdapter();
private CalendarsTableAdapter calendarsTableAdapter = new CalendarsTableAdapter();
private ResourcesTableAdapter resourcesTableAdapter = new ResourcesTableAdapter();
private PropertiesTableAdapter propertiesTableAdapter = new 
PropertiesTableAdapter();

Me.tasksTableAdapter.Fill(c1NwindDataSet1.Tasks)
Me.resourcesTableAdapter.Fill(c1NwindDataSet1.Resources)
Me.propertiesTableAdapter.Fill(c1NwindDataSet1.Properties)
Me.calendarsTableAdapter.Fill(c1NwindDataSet1.Calendars)

Visual Basic

this.tasksTableAdapter.Fill(c1NwindDataSet1.Tasks);
this.resourcesTableAdapter.Fill(c1NwindDataSet1.Resources);
this.propertiesTableAdapter.Fill(c1NwindDataSet1.Properties);
this.calendarsTableAdapter.Fill(c1NwindDataSet1.Calendars);

C#

AddHandler gv.Loaded, AddressOf gv_Loaded

Visual Basic

gv.Loaded+=gv_Loaded;

C#

Private Sub gv_Loaded(sender As Object, e As RoutedEventArgs)

    Dim storage As C1GanttViewStorage = gv.DataStorage

    storage.CalendarStorage.Mappings.CalendarID.MappingName = "CalendarID"
    storage.CalendarStorage.Mappings.Data.MappingName = "Data"
    storage.CalendarStorage.Mappings.IdMapping.MappingName = "Id"
    storage.CalendarStorage.Mappings.Name.MappingName = "Name"
    storage.CalendarStorage.DataMember = "Calendars"
    storage.CalendarStorage.DataSource = Me.c1NwindDataSet1

    storage.PropertyStorage.Key.MappingName = "Key"
    storage.PropertyStorage.Value.MappingName = "Value"
    storage.PropertyStorage.DataMember = "Properties"
    storage.PropertyStorage.DataSource = Me.c1NwindDataSet1

    storage.ResourceStorage.Mappings.Cost.MappingName = "Cost"
    storage.ResourceStorage.Mappings.IdMapping.MappingName = "Id"
    storage.ResourceStorage.Mappings.Name.MappingName = "Name"
    storage.ResourceStorage.Mappings.Notes.MappingName = "Notes"
    storage.ResourceStorage.Mappings.ResourceID.MappingName = "ResourceID"
    storage.ResourceStorage.Mappings.ResourceType.MappingName = "ResourceType"
    storage.ResourceStorage.Mappings.UnitOfMeasure.MappingName = "UnitOfMeasure"
    storage.ResourceStorage.DataMember = "Resources"
    storage.ResourceStorage.DataSource = Me.c1NwindDataSet1

    storage.TasksStorage.Mappings.CalendarID.MappingName = "CalendarID"
    storage.TasksStorage.Mappings.ConstraintDate.MappingName = "ConstraintDate"
    storage.TasksStorage.Mappings.ConstraintType.MappingName = "ConstraintType"

Visual Basic

GanttView for WPF 14

Copyright © 2017 GrapeCity, Inc. All rights reserved.



    storage.TasksStorage.Mappings.CustomFields.MappingName = "CustomFields"
    storage.TasksStorage.Mappings.Deadline.MappingName = "Deadline"
    storage.TasksStorage.Mappings.Duration.MappingName = "Duration"
    storage.TasksStorage.Mappings.DurationUnits.MappingName = "DurationUnits"
    storage.TasksStorage.Mappings.Finish.MappingName = "Finish"
    storage.TasksStorage.Mappings.HideBar.MappingName = "HideBar"
    storage.TasksStorage.Mappings.IdMapping.MappingName = "Id"
    storage.TasksStorage.Mappings.Initialized.MappingName = "Initialized"
    storage.TasksStorage.Mappings.Mode.MappingName = "Mode"
    storage.TasksStorage.Mappings.Name.MappingName = "Name"
    storage.TasksStorage.Mappings.NextID.MappingName = "NextID"
    storage.TasksStorage.Mappings.Notes.MappingName = "Notes"
    storage.TasksStorage.Mappings.Parts.MappingName = "Parts"
    storage.TasksStorage.Mappings.PercentComplete.MappingName = "PercentComplete"
    storage.TasksStorage.Mappings.Predecessors.MappingName = "Predecessors"
    storage.TasksStorage.Mappings.Resources.MappingName = "Resources"
    storage.TasksStorage.Mappings.Start.MappingName = "Start"
    storage.TasksStorage.Mappings.TaskID.MappingName = "TaskID"
    storage.TasksStorage.DataMember = "Tasks"
    storage.TasksStorage.DataSource = Me.c1NwindDataSet1

End Sub

private void gv_Loaded(object sender, RoutedEventArgs e)
{
     C1GanttViewStorage storage = gv.DataStorage;
    storage.CalendarStorage.Mappings.CalendarID.MappingName = "CalendarID";
    storage.CalendarStorage.Mappings.CalendarID.MappingName = "CalendarID";
    storage.CalendarStorage.Mappings.Data.MappingName = "Data";
    storage.CalendarStorage.Mappings.IdMapping.MappingName = "Id";
    storage.CalendarStorage.Mappings.Name.MappingName = "Name";
    storage.CalendarStorage.DataMember = "Calendars";
    storage.CalendarStorage.DataSource = this.c1NwindDataSet1;

    storage.PropertyStorage.Key.MappingName = "Key";
    storage.PropertyStorage.Value.MappingName = "Value";
    storage.PropertyStorage.DataMember = "Properties";
    storage.PropertyStorage.DataSource = this.c1NwindDataSet1;

    storage.ResourceStorage.Mappings.Cost.MappingName = "Cost";
    storage.ResourceStorage.Mappings.IdMapping.MappingName = "Id";
    storage.ResourceStorage.Mappings.Name.MappingName = "Name";
    storage.ResourceStorage.Mappings.Notes.MappingName = "Notes";
    storage.ResourceStorage.Mappings.ResourceID.MappingName = "ResourceID";
    storage.ResourceStorage.Mappings.ResourceType.MappingName = "ResourceType";
    storage.ResourceStorage.Mappings.UnitOfMeasure.MappingName = "UnitOfMeasure";
    storage.ResourceStorage.DataMember = "Resources";
    storage.ResourceStorage.DataSource = this.c1NwindDataSet1;

    storage.TasksStorage.Mappings.CalendarID.MappingName = "CalendarID";
    storage.TasksStorage.Mappings.ConstraintDate.MappingName = "ConstraintDate";
    storage.TasksStorage.Mappings.ConstraintType.MappingName = "ConstraintType";
    storage.TasksStorage.Mappings.CustomFields.MappingName = "CustomFields";
    storage.TasksStorage.Mappings.Deadline.MappingName = "Deadline";
    storage.TasksStorage.Mappings.Duration.MappingName = "Duration";
    storage.TasksStorage.Mappings.DurationUnits.MappingName = "DurationUnits";
    storage.TasksStorage.Mappings.Finish.MappingName = "Finish";
    storage.TasksStorage.Mappings.HideBar.MappingName = "HideBar";
    storage.TasksStorage.Mappings.IdMapping.MappingName = "Id";
    storage.TasksStorage.Mappings.Initialized.MappingName = "Initialized";
    storage.TasksStorage.Mappings.Mode.MappingName = "Mode";
    storage.TasksStorage.Mappings.Name.MappingName = "Name";
    storage.TasksStorage.Mappings.NextID.MappingName = "NextID";

C#

GanttView for WPF 15

Copyright © 2017 GrapeCity, Inc. All rights reserved.



6. Run the application and notice that the GanttView gets bound to the tables in the NwindDataSet.

    storage.TasksStorage.Mappings.Notes.MappingName = "Notes";
    storage.TasksStorage.Mappings.Parts.MappingName = "Parts";
    storage.TasksStorage.Mappings.PercentComplete.MappingName = "PercentComplete";
    storage.TasksStorage.Mappings.Predecessors.MappingName = "Predecessors";
    storage.TasksStorage.Mappings.Resources.MappingName = "Resources";
    storage.TasksStorage.Mappings.Start.MappingName = "Start";
    storage.TasksStorage.Mappings.TaskID.MappingName = "TaskID";
    storage.TasksStorage.DataMember = "Tasks";
    storage.TasksStorage.DataSource = this.c1NwindDataSet1;
}

GanttView for WPF 16

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Design-Time Support
The GanttView control provides various collection editors to apply properties to various GanttView elements at design
time. To know about these editors, click the links below:

BaseColumn collection editor
CustomCalendars collection editor
CalendarException collection editor
Task collection editor
WorkWeek collection editor
BarStyle collection editor
FieldStyle collection editor
ResourceRef collection editor

 

BaseColumn Collection Editor
The BaseColumn Collection Editor allows users to add TaskPropertyColumns and CustomFieldColumns, and modifying
properties at design-time. To access BaseColumn Collection Editor, select the GanttView control placed on the
designer, that is MainWindow, navigate to the Properties window and click the ellipsis button next to the Columns
property.

The given image shows the BaseColumn Collection Editor:

CustomCalendar Collection Editor
The CustomCalendar Collection Editor is used to add, modify or remove custom calendars at design-time. To access
CustomCalendar Collection Editor, select the GanttView control placed on the designer, that is MainWindow, navigate
to the Properties window and click the ellipsis button next to CustomCalendarCollection property.

GanttView for WPF 17

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The given image shows the CustomCalendar Collection Editor:

CalendarException Collection Editor
The CalendarException Collection Editor is used for adding, removing, or modifying exceptions in custom calendars at
design-time. To access CalendarException Collection Editor, select the GanttView control placed on the designer, that
is MainWindow, navigate to the Properties windows and click the ellipsis button next to CalendarExceptionCollection
property.

The given image shows the CalendarException Collection Editor:

Task Collection Editor
The Task Collection Editor is used for adding, modifying and removing tasks from GanttView at design-time. To access
Task Collection Editor, select the GanttView control placed on the designer, that is MainWindow, navigate to the
Properties window and click the ellipsis button next to the Tasks property.

GanttView for WPF 18

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The given image shows the Task Collection Editor:

WorkWeek Collection Editor
The WorkWeek Collection Editor is used for adding, modifying and removing work weeks in custom calendars at
design-time. The WorkWeek Collection Editor can be accessed from the CustomCalendar Collection Editor.

The given image shows the WorkWeek Collection Editor:

BarStyle Collection Editor

GanttView for WPF 19

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The BarStyle Collection Editor allows users to add bar styles, and modify its properties at design time. To
access BarStyle Collection Editor, select the GanttView control placed on the MainWindow, navigate to the Properties
window and click the ellipsis button next to the BarStyles property.

The given image shows the BarStyle Collection Editor:

FieldStyle Collection Editor
The FieldStyle Collection Editor allows users to add FieldStyles, and modify its properties at design time. The FieldStyle
Collection Editor can be accessed from the Task Collection Editor.

The following image shows the FieldStyle Collection Editor:

GanttView for WPF 20

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Predecessor Collection Editor
The Predecessor Collection Editor allows users to add a predecessor task(s), and modify its properties at design time.
The Predecessor Collection Editor can be accessed from the Task Collection Editor.

The following image shows the Predecessor Collection Editor:

 

ResourceRef Collection Editor

GanttView for WPF 21

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The ResourceRef Collection Editor is used to add various resources to a particular task. The ResourceRef Collection
Editor can be accessed from the Task Collection Editor.

The following image shows the ResourceRef Collection Editor:

 

GanttView for WPF 22

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Runtime Interaction
GanttView comes with various runtime features to help users seamlessly interact with the control. You can create
a new task, delete a task, configure grid columns, view and modify project schedule, etc. without writing even a single
line of code.

GanttView provides the following dialogs at runtime to access various features.

Grid columns dialog
Task information dialog
Field styles dialog
Group dialog
DateRange dialog
Using resource dialog
Advanced filter dialog
More filter dialog
Sort dialog
Project information dialog
Change working time dialog
Progress line dialog
Resources dialog
Timescale dialog
Bar styles dialog
Zoom dialog
Print dialog 

Grid Columns Dialog
The Grid Columns dialog is used to specify various attributes appearing in the columns of GanttView. This dialog
appears on clicking the Grid Columns button on the toolbar at runtime. You can select the check box corresponding
to the columns names to display them on the GanttView.

The following image shows the Grid Columns dialog with default visible columns including Task Mode and Task
Name:

GanttView for WPF 23

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Task Information Dialog
The Task Information dialog is used to specify details for a new task such as task name, task mode, start and finish
date, etc. This dialog appears on clicking the Task Information button on the toolbar.

The following image shows the Task Information dialog:

The Task Information dialog provides various options as follows:

Option Purpose

Task Name Specify the task name in the text box.

% Complete Specify the task completion in percent in the numeric box.

Schedule Mode Select the radio buttons to choose the task mode.

Duration Select the check box to enable entering task duration.

Start Select the start date from the drop-down list.

Finish Select the finish date from the drop-down list.

In addition, the Task Information dialog provides four tabs namely Predecessors, Resources, Advanced and Notes,
each comprising various options for achieving

Predecessors

GanttView for WPF 24

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The following image shows the Predecessors tab:

The Predecessors tab provides the following options:
Option Purpose

Predecessor Task Name Specify the predecessor task from the drop-down list.

Predecessor Type Specify the type of dependence from the drop-down list.

Add Click the button to add the dependency.

Remove Click the button to remove the selected dependency.

Lag (in a day) Specify time delay in days between the dependent tasks in the numeric box.

Resources

The following image shows the Resources tab:

The Resources tab provides the following options:

Option Purpose

Resource Name Specify the resource name from the drop-down list.

Amount Specify the amount for the selected resource.

Add Click the button to add the resource.

Remove Click the button to remove the selected resource.

GanttView for WPF 25

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Advanced

The following image shows the Advanced tab:

The Advanced tab provides the following options:

Option Purpose

Task Calendar Select the calendar from the drop-down list.

Constraint Type Specify constraint type to be applied from the drop-down list.

Constraint Date Specify constraint date in the calendar from the drop down.

Deadline Select the check box to enable the option for specifying deadline date from the
calendar in the drop down.

Hide Task Bar Select the check box to hide the task bar.

Notes

The Notes tab provides a text box to enter task related details for reference as follows:

Field Styles Dialog
The Field Styles dialog is used for customizing text fields that appear in the grid view of the control. The dialog
provides options to apply custom fonts, background color and other styling on other text fields. This dialog appears
on clicking the Field Styles button on the toolbar.

GanttView for WPF 26

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The following image shows the Field Styles dialog:

The Field Styles dialog provides various options as follows:
Option Purpose

Field Select a particular field on which the customization is to be applied from
the drop-down list.

Background Color Select a background color to be applied on the selected field from the
drop-down list.

FontFamily Select the font to be applied on the selected field from the drop-down
list.

Foreground Select the foreground color to be applied on the selected field from the
drop-down list.

FontStyle Select the font style to be applied on the selected field from the drop-
down list.

FontWeight Select the font weight from the drop-down list.

FontSize Specify the font size in the numeric box.

Underline Select the checkbox to underline the selected field.

Strikethrough Select the checkbox to strikethrough the selected field.

Group Dialog

GanttView for WPF 27

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Group dialog is designed to achieve grouping in tasks. The dialog appears on selecting the New Group By
option under the Group By button on the toolbar.

The following image shows the Group dialog:

The Group dialog provides various options as follows:

Option Purpose

Group By Select a field for grouping from the drop-down list.

Order Select the order of grouping that is Ascending or Descending from the
drop-down list.

DateRange Dialog
The DateRange dialog is used to apply custom filters within a specified date range. The dialog appears on selecting
the Date Range option available within the Filter menu on the toolbar.

The following image shows the DateRange dialog:

Using Resource Dialog
The Using Resource dialog is used to apply custom filters on the basis of resources assigned in the project. The

GanttView for WPF 28

Copyright © 2017 GrapeCity, Inc. All rights reserved.



dialog appears on selecting the Using Resource option available within the Filter menu on the toolbar.

The following image shows the Using Resource dialog:

The Using Resource dialog provides options as follows:

Option Purpose

Show tasks using Shows resources in the drop-down list for filtering.

OK Applies the filter.

Cancel Closes the dialog.

 

Advanced Filter Dialog
The Advanced Filter dialog is designed to create and apply custom filters in GanttView. The dialog appears on
selecting the Advanced Filter option available under the Filter button on the toolbar.

The following image shows the Advanced Filter dialog:

The Advanced Filter dialog provides various options as follows:

Option Purpose

And/Or Select 'And' or 'Or' conditional operator from the drop-down list.

FieldName Select the field for filtering from the drop-down list.

Test Select the test condition from the drop-down list.

Value(s) Displays the values corresponding to the field selected in the FieldName option. For

GanttView for WPF 29

Copyright © 2017 GrapeCity, Inc. All rights reserved.



example, if the FieldName is set to Mode, the Value(s) drop-down menu shows Auto
and Manual options for selection.

Clear Click the button to clear the filter.

Apply Click the button to apply the filter.

Save Click the button to save the filter.

Cancel Click the button to close the dialog.

More Filter Dialog
The More Filter dialog is designed to create and apply custom filters in GanttView. This dialog appears on selecting
the More Filters option available in the Filter menu on the toolbar.

The following image shows the More Filter dialog:

The More Filter dialog provides various options as follows:

Option Purpose

New Opens the Advanced Filter dialog that lets you create a custom filter(s).

Edit Opens the Advanced Filter dialog to edit the selected filter.

Delete Deletes the selected filter.

Clear Clears all the filters.

Apply Applies the available filter(s).  

Cancel Closes the dialog.

Sort Dialog
The Sort dialog is designed to achieve multicolumn sorting. This dialog appears on selecting the Sort By option
available in the Sort menu on the toolbar.

The following image shows the Sort dialog:

GanttView for WPF 30

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Sort dialog provides various options as follows:

Option Purpose

Sort By Select a column to sort from the drop-down list.

Then By Select the next column to sort from the drop-down list.

Ascending/Descending Select the sort order from the drop-down list.

Reset Reset the selected sort order from the drop-down list.

OK Apply the selected sort order.

Cancel Close the dialog.

Project Information Dialog
The Project Information is used for scheduling a new project. This dialog appears on clicking the Project
Information button on the toolbar. The Project Information dialog consists three tabs, Schedule, Calendar Options,
and Duration Formats. The Project Information dialog also includes Default Days Off groupbox that lets you select
the days off in the project schedule.

Schedule

The following image shows the schedule tab of the Project Information dialog:

GanttView for WPF 31

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Schedule tab includes various options as follows:

Option Purpose

Schedule From Schedule the project either from Project Start Date or Project Finish Date. By
default, any project schedule begins from the project start date.

Start Date Select the Project Start Date from the drop-down calendar if you wish to
schedule your project from project start date.

Finish Date Select the Project Finish Date from the drop-down calendar if you wish to
schedule your project from project finish date.

Calendar Options

The following image shows the Calendar Options tab of the Project Information dialog:

GanttView for WPF 32

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Calendar Options tab includes the following items:

Option Purpose

Weeks Start On Specify the day of the week on which the scheduled task starts from the drop-
down list. By default, this field is set to Sunday.

Hours Per Day Specify the hours per day for the scheduled task in the numeric box. GanttView
calculates duration units as One day equals 8 hours.

Grid Date Format Specify the date format appearing in the grid in the text box.

Days Per Month Specify the total working days in a normal calendar month for automatically-
scheduled tasks in the numeric box. By default, one month has 20 working days.

Hours Per Week Specify the working hours per week for the automatically-scheduled task in the
numeric box. By default, one working week equals 40 hours.

Chart Date Format Specify the format for date appearing on chart in the text box. The format is
based on standard or custom date format specifier.

Duration Formats

The following image shows the Duration Formats tab of the Project Information dialog:

GanttView for WPF 33

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Duration Formats tab includes the following options:

Option Purpose

Minutes Specify the format string for minutes.

Hours Specify the format string for hours.

Days Specify the format string for days.

Weeks Specify the format string for weeks.

Months Specify the format string for months.

Change Working Time Dialog
The Change Working Time dialog is used to change the working time in project calendar. This dialog appears on
clicking the Change Working Time button on the toolbar.

The Change Working Time dialog provides options as follows:

Option Purpose

For calendar Specify the calendar you wish to select.

Add New Calendar Create a new calendar or a copy of a calendar based on default or
custom calendar.

Manage Custom Calendars Add or remove custom calendar.

GanttView for WPF 34

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The following image shows the Change Working Time dialog:

The Change Working Time dialog displays three tabs, namely Calendars, Work Weeks, Exceptions. The Calendars
tab displays a calendar where you can click a day to view the working time based on the work week, and check
whether or not to honor default calendar exceptions.

Work Weeks

The Work Weeks tab provides option to change the default work week for project calendar, resource calendar, or for
any custom calendar that you create. You can also choose or create additional schedule for a range of days that differ
from the default work day.

The following image shows the Work Weeks tab:

GanttView for WPF 35

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Work Week tab provides various options as follows:

Option Purpose

Select day(s) Select one or more days that constitute a work week.

Name Specify a name for a working week.

Start Date Specify the Start date for a working week.

Finish Date Specify the Finish date for a working week.

Once you select the day(s) you want to change from a working day to non-working day or vice versa, you can choose
one of the following:

Use default working times for these days - to specify the default working times, that is 8:00 am - 12:00 am and
1:00 pm - 5:00 pm, on selected days in the work week.
Set days to nonworking time - to select nonworking day(s).
Set days to these specific working times - to set the working times for the selected days throughout the
schedule. Type the time when you wish the work to start in the From box and the time you want the work to
end in the To box.

Exceptions

The Exceptions tab provides you the option to add exceptions in the calendar such as marking public holidays or
vacation. The following image shows how this tab appears at runtime:

GanttView for WPF 36

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The Exception tab provides options as follows:

Option Purpose

Start date Shows a drop-down menu with a calendar to select the start date of
exception.

End by Shows a drop-down menu with a calendar to select the end date of
exception.

Recurrence Pattern Shows a button to set a repeat on an exception throughout the schedule.
Clicking this button opens Recurrence Pattern dialog that lets you specify
the days on which recurrence appear. Any task scheduled around an
exception automatically gets rescheduled.

The following image shows how the Recurrence Pattern dialog appears at runtime:

GanttView for WPF 37

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Progress Line Dialog
The Progress Line dialog is used for displaying progressive lines on the chart view to highlight the tasks that are
ahead of or behind the schedule. This dialog appears on clicking the Progress Line button on the toolbar.

The following image shows the Progress Line dialog:

The Progress Line dialog provides various options as follows:
Option Purpose

Status Date Select the check box to set a date for checking the status from.

Display Select check box to enable the progress line.

Line Type Select the type of line to be drawn for the progress line from the drop-down
list.

Line Color Select a color for the progress line from the drop-down menu.

GanttView for WPF 38

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Progress Point Shape Select the shape of the indicator for the starting point of the progress line from
the drop-down list.

Progress Point Color Select a color for the progress point on the progress line from the drop-down
menu.

Resources Dialog
The Resources dialog is used for adding and removing resources, and specifying various attributes such as resource
name, resource type, cost, and unit of measure. This dialog appears on clicking the Project Resources button on the
toolbar.  

The following image shows the Resources dialog:

The Resources dialog provides various options as follows:
Option Purpose

Add Click the button to add a new resource in the text box.

Remove Click the button to remove the selected resource from the text box.

Resource Name Specify the resource name for the added resources in the text box.

Resource Type Select the resource type such as Cost, Material or Work from the drop-down list.

Cost Specify the per unit cost of the selected resource type in the numeric box.

Unit of Measure Specify the unit of measure for the selected resource type in the text box. For
example, Cost type resources are usually measured in currency, Material type
resources are measured in tons, meters, etc., and Work type resources are usually
measured in hours.

Notes Specify details or notes to understand how the resource is calculated on the basis
of the unit of measure in the text box.

GanttView for WPF 39

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Timescale Dialog
The Timescale dialog is used to set the visibility of various timescale tiers, setting date and time, and customize
appearance of current day, nonworking time and project start/finish line. This dialog appears on clicking the
Timescale button on the toolbar at runtime.

The Timescale dialog comprises three tabs, namely Middle Tier, Bottom Tier and Appearance tab as shown in the
following image:

Top Tier and Bottom Tier Tabs

The following image shows the Top Tier and Bottom Tier tabs in the Timescale dialog:

The Top, Middle, and Bottoms Tier tabs include various options as follows:

Option Purpose

GanttView for WPF 40

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Units Select the unit of time from the drop-down list.

Count Specify the frequency of unit labels appearing on timescale tiers in the numeric
box.

Minimal Cell Width Specify the minimal cell width in pixels for each tier in the numeric box.

Format Specify the format to display time from the drop-down list. By default, the format is
set to nnnn d.

Label Instant Specify where the instant label is placed: Start, End, Middle, Range, or Overlapped
Range from the drop-down list.

Example Displays results for the date format that you select in the Format drop-down.

Label Align Specify the alignment for a timescale tier from the drop-down list that provides
Left, Center, Right and Justify options.

Bar Styles Dialog
The Bar Styles dialog is used for customizing the task bars displayed in the chart view of the control. This dialog
appears on clicking the Bar Styles button on the toolbar.

The following image shows the Bar Styles dialog:

The Bar Styles dialog provides various options as follows:
Option Purpose

Task Select a particular task for customizing the bar style from the drop-down list.

Bar Type Select a bar type for the selected task from the drop-down list.

The Bar Styles dialog also includes two tabs namely Bar Shape and Bar Text to further customize shape, pattern and

GanttView for WPF 41

Copyright © 2017 GrapeCity, Inc. All rights reserved.



color of the task bar. The tab provides various customization options as follows:

Option Purpose

Bar Shape Set the Shape, Pattern and Color for the Start, Middle and End portions of the
task bar from the drop-down lists.

Bar Text Specify the text that appears against the task bar from the drop-down list.

Zoom Dialog
The Zoom dialog is used to zoom-in or zoom-out the scale view of timescale tiers in the chart view. The
dialog appears on selecting the Zoom option available in the Zoom menu on the toolbar.

The following image shows the Zoom dialog:

The Zoom dialog provides various options as follows:
Option Purpose

Zoom to Select the radio buttons from the time range to zoom the GanttView.

Custom Set the custom time range in the form of count in the numeric box and choose the
unit from the drop-down list alongside.  

Reset Click the button to reset the selection.

OK Click the button to apply the selected zoom.

Cancel Click the button to close the dialog.

Print- Dialog
The Print dialog is used for managing print options such as selecting the print style, specifying content and font
settings for header, footer and legend, and determining print range. The dialog appears on clicking the Print button
on the toolbar. The Print dialog shows five tabs namely General, Margin/Padding, Header/Footer, Legend and

GanttView for WPF 42

Copyright © 2017 GrapeCity, Inc. All rights reserved.



View.

General

Margin/Padding

Header/Footer

GanttView for WPF 43

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Legend

View

GanttView for WPF 44

Copyright © 2017 GrapeCity, Inc. All rights reserved.



GanttView for WPF 45

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Features
GanttView supports a number of features to help users effectively manage and schedule projects. To know more
about these features, click the following links:

Task Management
Style and Appearance

Task Management
GanttView provides you a number of task management features such as creating custom columns, allocating
resources, applying filters, customizing timescales, etc. Learn about these features in detail and how they can be
implemented.

Tasks
Learn how to create and add tasks in code.

Columns
Learn how to display default columns available in GanttView.

Custom Columns
Learn how to create custom columns as per your requirements and add them to GanttView.

Scheduling mode
Learn how to set scheduling mode for a task in code.

Percent complete
Learn how to set percent completion status for a task in code.

Task deadline
Learn how to set deadline for a particular task in code.

Timescale
Learn how to customize timescale and timescale formats in code.

Milestone task
Learn how to create a milestone tasks in code.

Progress line
Learn how to create, customize and progress lines in code.

Resources
Learn how to create, add and assign resources to a tasks in code.

Constraints
Learn how to apply constraints in code.

Filtering
Learn how to filter tasks at runtimes as well as in code.

Sorting
Learn how to sort tasks by name, start/finish date, duration, etc. and apply custom sort order.

Saving content in XML
Learn how to save the contents of a gantt view along with layout in an XML file.

Loading content from XML
Learn how to load the contents from a gantt view along with the layout from an XML file..

Task dependency
Learn how to create a predecessor task and setting its dependency on another task in code.

Task splitting
Learn how to split tasks in code.

Project summary task
Learn how to create summary tasks in code.

GanttView for WPF 46

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Tasks
Any project plan revolves around tasks, which represent the amount of work to be done for accomplishing a set of
goals. Tasks define work in terms of duration, dependencies (if any), and resource requirements.

GanttView supports adding tasks to a project plan both at runtime as well as in code.

At runtime, the control lets you add a task through the Add Task button available in the toolbar. Clicking the Add
Task button opens the Task Information dialog to set basic properties of the task such as name, percent complete,
start and finish dates, etc. You can also create new tasks by dragging the mouse in the chart view. Creating tasks
through mouse drag with start date on a nonworking day such as Sunday or Saturday opens a dialog to resolve the
conflict. The image below shows a Conflict Resolver dialog.

The Conflict Resolver dialog resolves the conflict by providing users three options:    

Start the task from a nonworking day
Move the task to next working day
Make Sunday or Saturday a working day

The image below shows tasks added to GanttView.

In addition, GanttView supports several kinds of tasks such as milestones and summary tasks discussed in Milestone

GanttView for WPF 47

Copyright © 2017 GrapeCity, Inc. All rights reserved.



task and Project summary task sections.

Creating and adding tasks in code

In code, tasks can be created by defining an instance of the Task class and setting its basic properties such as name
and duration through the Name and Duration properties. A task can be added to a GanttView through the Add
method of the TaskCollection class. The following code illustrates creating a task, setting basic properties, and adding
it to GanttView.

Visual Basic
'Creating a task and setting basic properties
Dim t As New Task()
t.Mode = TaskMode.Manual
t.Name = "Requirement Gathering"
t.Start = New DateTime(2016, 4, 5)
t.Duration = 5

'Adding task to GanttView
gv.Tasks.Add(t)

C#
//Creating a task and setting basic properties
Task t = new Task();
t.Mode = TaskMode.Manual;
t.Name = "Requirement Gathering";
t.Start = new DateTime(2016, 4, 5);
t.Duration = 5;

//Adding task to GanttView
gv.Tasks.Add(t);

Columns
GanttView displays task related attributes such as task name, mode, start and finish date, etc. in task
property columns, or simply columns. The control provides 14 default columns to display these attributes in the grid
view as follows:

Column Name Description

Task Mode Displays task mode, that is Manual or Automatic

Task Name Displays task name

Duration Displays duration for tasks

Duration Units Displays duration unit

Start Displays the start date

Finish Displays the finish date

% Complete Displays the completion status of a task in percentage

Constraint Type Displays the constraint type

Constraint Date Displays the constraint date

GanttView for WPF 48

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Predecessors Displays the predecessor task

Deadline Displays the task deadline

Calendar Displays the calendar

Resource Name Displays the name of the resource assigned to a particular task

Notes Displays the notes corresponding to a particular task

Adding Columns

On placing the GanttView control on the designer, the Task Mode and Task Name columns are visible by default.
To display more columns in the GanttView, you can use the Grid Columns Dialog at runtime.  

Custom Columns
GanttView control is not restricted to default task property columns as users can create custom columns as per their
requirements. The control provides the CustomFieldColumn class, which can be used to create custom columns. The
class also provides a set of properties to specify various attributes of a custom column. For instance, the DataType
property can be used to set the data type, while the Format property can be used to specify the format in which the
data is to be displayed.

The image below shows a GanttView with a custom column titled 'Budget' that accepts numeric data and displays the
same in '$' format.

Creating custom columns in code

To create custom columns, create an object of the CustomFieldColumn class and set the basic properties such as
Name, Caption, Format, and DataType. The following code illustrates creating a custom column titled 'Budget' that
accepts numeric data and specifies the currency format in '$'. This example uses the sample created in the Quick Start.

' Creating a Custom Column
Dim customColumn As New CustomFieldColumn()
customColumn.Caption = "Budget"
customColumn.Name = "Budget"
customColumn.DataType = GetType(Decimal)

Visual Basic

GanttView for WPF 49

Copyright © 2017 GrapeCity, Inc. All rights reserved.



customColumn.Format = "$#0"
customColumn.Width = 100
gv.Columns.Add(customColumn)

// Creating a Custom Column 
CustomFieldColumn customColumn = new CustomFieldColumn();
customColumn.Caption = "Budget";
customColumn.Name = "Budget";
customColumn.DataType = typeof(decimal);
customColumn.Format = "$#0";
customColumn.Width = 100;
gv.Columns.Add(customColumn);

C#

Scheduling Mode
GanttView supports two types of modes to schedule tasks in GanttView, namely Manual and Automatic.

Manual Mode

This is the default task mode for tasks in GanttView. The manual mode provides greater flexibility to users in planning
and managing project schedules. Manual tasks do not change the scheduling for project resources, etc. This mode is
most suited for users not having adequate information related to tasks in a project.

Automatic Mode

The automatic mode provides more structured way to manage project schedules. In automatic mode, the GanttView
control calculates the best earliest and latest dates for a task once the user enters information such as task duration,
number of resources, etc. In case of any change in the schedule, GanttView automatically adjusts the project schedule
for optimum results.

Scheduling modes can be set at runtime through the Task information dialog, which can be accessed by clicking the
Task Information button from the toolbar.

The following image shows how to set task mode at runtime.

Setting task mode in code

GanttView for WPF 50

Copyright © 2017 GrapeCity, Inc. All rights reserved.



To set the scheduling mode for a task in GanttView, the Task class provides the Mode property that accepts the
following values from the TaskMode enumeration.

Manual - Allows you to set the start date for a particular task.
Automatic - Automatically calculates the start date for a task.

The following code illustrates how to set the Mode property for a task.

Visual Basic
Dim t As New Task()
t.Mode = TaskMode.Manual

C#
Task t = new Task();
t.Mode = TaskMode.Manual;

Percent Complete
GanttView provides percent complete feature to specify the completion status of a task in percentage. This feature
helps users in keeping a track of all the tasks within a project schedule. The percent complete for a task can be set in
GanttView through the Task information dialog, which can be accessed by clicking the Task Information button from
the toolbar.

The task percent complete visually appears as a dark colored bar drawn inside the task bar.

Setting percent complete in code

To set percent completion status for a task, the Task class provides the PercentComplete property. This property
accepts any positive double type integer value between 0 and 1, where 0 denotes that the task is not started while 1
denotes the task is complete.

The following code illustrates how to set the PercentComplete property for a task.

GanttView for WPF 51

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Visual Basic
' PercentComplete value 0.6 means tha task is 60% complete
Dim t As New Task()
t.PercentComplete = 0.6

C#
// PercentComplete value 0.6 means the Task is 60% complete
Task t = new Task();
t.PercentComplete = 0.6;

Task Deadline
Task deadline enables users to monitor each and every activity involved within a project. GanttView also supports
deadlines that allow users to keep a track of tasks exceeding their set deadline dates. Tasks exceeding their deadline
dates get highlighted by a red indicator in the GanttView and shows a message box on hovering as shown in the
following image.

Task deadlines can be set at runtime through the Task information dialog, which can be accessed by clicking the Task
Information button from the toolbar.

Setting task deadline in code

To set the deadline for a particular task, you can use the Deadline property provided by the Task class. The Deadline
property accepts an object of the DateTime class to set the deadline date. The deadline for a task can be set in code
by creating an instance of the Task class and setting its Deadline property to an object of DateTime class.

The following example illustrates how to set the deadline date for a task. This example uses the sample created in the
Quick Start.

Visual Basic
'Setting deadline
Dim t As New Task()

GanttView for WPF 52

Copyright © 2017 GrapeCity, Inc. All rights reserved.



t.Name = "Requirement Gathering"
t.Start = New DateTime(2016, 4, 5)
t.Deadline = New DateTime(2016, 4, 11)

C#
//Setting deadline
Task t = new Task();
t.Name = "Requirement Gathering";
t.Start = new DateTime(2016, 4, 5);
t.Deadline = new DateTime (2016, 4, 11);

Timescale
GanttView supports a timescale along the horizontal timeline, which is displayed in bands or tiers. The timescale can
be customized to display a maximum of three possible tiers namely the bottom tier, the middle tier, and the top tier.
The bottom tier displays abbreviated names of days in a week, while the middle tier displays work week. The top tier,
which by default is hidden, displays month or year.

The following image shows a GanttView with all the three tiers visible in the timescale.

Setting timescale in code

The GanttView control provides the Timescale class to adjust the display settings of the timescale, and the ScaleTier
class to customize the format and units for the three tiers. The Timescale class provides BottomTier, MiddleTier and
TopTier properties to specify the settings of the three tiers. The ScaleTier class provides properties such as Visible to
set the visibility of timescale tiers, and Format to set the format string of the labels appearing in the three tiers.

The following code illustrates setting the visibility of top tier, and the format string of its label.

Visual Basic
'Setting the visibility and format for TopTier
gv.Timescale.TopTier.Visible = True
gv.Timescale.TopTier.Format = "nnnn"

GanttView for WPF 53

Copyright © 2017 GrapeCity, Inc. All rights reserved.



C#
//Setting the visibility and format for TopTier
gv.Timescale.TopTier.Visible = true;
gv.Timescale.TopTier.Format = "nnnn";

Timescale Formats
GanttView supports various formats specifiers for the timescale labels. You can specify these format specifiers through
the Format property of the ScaleTier class. 

Standard Date and Time Formats

Format Description

s s is the standard date/time format specifier. For example, s(x) where 'x' is a placeholder for
one of the following letters: d, D, f, g, m, t, y.

sd Short date pattern (11/11/2016)

sD Long date pattern (Thursday, November 11, 2016)

sf Full date and time pattern (Friday, November 11, 2016 10:00 AM)

sg General date and time pattern (11/11/2016 10:00 AM)

sm Month day pattern (April 10)

st Short time pattern (10:00 AM)

sy Year month pattern (April, 2008)

Year Formats

Format Description

yy Represents the year as a two-digit number

yyy Represents the year with a minimum of three digits

yyyy Represents the year as a four-digit number

Half Year Formats

Format Description

h Represents a half year as a number 1 or 2

h {N1, N2} Customized half year representation

Quarterly Formats

Format Description

q Represents a quarter as a number from 1 through 4

q {N1, N2, N3,
N4}

Customized quarter representation

GanttView for WPF 54

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Calendar Month Formats

Format Description

m Represents the month as a number from 1 through 12

mm Represents the month as a number from 01 through 12

n Single-letter month name

nnn Use DateTimeFormatInfo.GetAbbreviatedMonthName

nnnn Use DateTimeFormatInfo.GetMonthName

 n {N1, N2, N3, N4,
N5, N6, N7, N8, N9,
N10, N11, N12}

Custom month name

 e {N1, N2, N3} Custom thirds-of-month name

Week of the Year Number Formats

Format Description

k Represents the week of the year number 1 to 53

kk Represents the week of the year number 01 to 53

Day of the Month Number Formats

Format Description

d Represents the day of the year as a number from 1 through 31

dd Represents the day of the year as a number from 01 through 31

Day of the Year Number Formats

Format Description

b Represents the day of the year as a number from 1 through 366

bbb Represents the day of the year as a number from 001 through 366

Single Letter Week Day Formats

Format Description

w Single-letter week day (For example, S, M, T, W) 

ww Use DateTimeFormatInfo.GetShortestDayName

www Use DateTimeFormatInfo.GetAbbreviatedDayName

wwww Use DateTimeFormatInfo.GetDayName

w {N1, N2, N3, N4,
N5, N6, N7}

Custom week day name

Time Formats

GanttView for WPF 55

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Format Description

a Represents the hour as a number from 1 through 12

aa Represents the hour as a number from 01 through 12

u Represents the hour as a number from 0 through 23

uu Represents the hour as a number from 00 through 23

i Represents the minute as a number from 0 through 59

ii Represents the minute as a number from 00 through 59

t Represents the first character of AM/PM designator

tt Represents the AM/PM designator

Other Specifiers

Format Description

: Use DateTimeFormatInfo.TimeSeparator

/ Use DateTimeFormatInfo.DateSeparator

" Represents a quoted string (quotation mark)

' Represents a quoted string (apostrophe)

\c Displays the character 'c' as a literal

Other character Copies to the result string

Milestone Task
A milestone task, or simply a milestone, is used for accounting an important event(s) within a project schedule. This
feature helps users in keeping a track of their planned goals. For example, you can create a milestone to mark events
such as the completion of a major phase in project schedule or indicate the beginning of the next project phase, etc.
Since milestones do not include or account for any work, these are created as tasks with zero duration.

GanttView supports milestones, which can be created as a task with the Duration property set to zero, and the Start
and the Finish properties set to the same date. Milestone tasks can also be created at the design-time through the
Task Collection Editor available in the properties window. In GanttView, a milestone task is represented by a diamond-
shaped item in the chart view.

The following image shows a GanttView displaying a milestone task by the name "Project Review - Phase 1".

GanttView for WPF 56

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Creating a milestone in code

To create a milestone task, you need to define an instance of the Task class, and set the Duration, Start and Finish
properties in code. The following example uses the sample created in the Quick Start.

'Creating a milestone task
Dim t As New Task()
t.Name = "Project Review - Phase 1"
t.Start = New DateTime(2016, 4, 29)
t.Finish = New DateTime(2016, 4, 29)
t.Duration = 0

'Adding milestone task to gantt view
gv.Tasks.Add(t)

Visual Basic

//Creating a milestone task
Task t = new Task();
t.Name = "Project Review - Phase 1";
t.Start = new DateTime(2016, 4, 29);
t.Finish = new DateTime(2016, 4, 29);
t.Duration = 0;

//Adding milestone task to gantt view
gv.Tasks.Add(t);

C#

Progress Line
Progress lines are vertical lines drawn to indicate whether a task is behind or ahead of the project schedule with
respect to a particular status date. A progress line connects the status date to the point on the task bar that represents
its percentage complete. For example, if a task is 50% complete, the progress line connects the status date to the
middle of the task bar. A progress line creates a spike either towards the left or right. A progress line that spikes out
towards the left indicates that the task is behind the schedule, while a spike towards the right indicates that the task is

GanttView for WPF 57

Copyright © 2017 GrapeCity, Inc. All rights reserved.



ahead of the schedule.

Being a project planning and scheduling control, GanttView also supports progress line to indicate a task's status at
any given point of time. You can create a progress line at runtime through the Progress Line button available on the
toolbar. Clicking the button opens the Progress Line dialog, which can be used to select the status date, enable or
disable progress line, and customize various elements of the progress line such as its color, shape, and style.

GanttView supports a single progress line at a given instance of time.

The image below shows progress line drawn in GanttView.

Creating a progress line in code

The GanttView control provides the ProgressLine class, which includes various properties for managing progress lines.
For example, the class provides the Visible property that accepts Boolean values to enable or disable the visibility of
progress line, the StatusDate property to set the status date, the LineColor property to set the color of the progress
line, and the LineStyle property to specify the line type. For further customization, the PointColor and PointShape
properties can be used to set the color and shape of the point connecting the task bar and the status date.

The following code example illustrates creating and customizing a progress line. This example uses the sample created
in the Quick Start.

'Creating a progress line
gv.ProgressLine.Visible = True
gv.ProgressLine.StatusDate = New DateTime(2016, 4, 29)
gv.ProgressLine.LineColor = Colors.Blue

Visual Basic

//Creating a progress line
gv.ProgressLine.Visible = true;
gv.ProgressLine.StatusDate = new DateTime(2016, 4, 29);
gv.ProgressLine.LineColor = Colors.Blue;

C#

Resources

GanttView for WPF 58

Copyright © 2017 GrapeCity, Inc. All rights reserved.



GanttView supports three kinds of resources namely work resource, material resource, and cost resource described
further as follows:

Resource Type Description

Work Resource Refers to the people and equipment required to accomplish a set of tasks
defined in a project.

Material Resource Refers to the exhaustible raw material and goods required to accomplish a
set of task in a project

Cost Resource Refers to the financial cost associated to a task that needs to be accounted
for in a project such as expenditures on travel, entertainment, and other
overheads.

The following image shows a resource assigned to a task in GanttView.

Creating, adding and assigning resources to tasks

GanttView provides the Resource class for handling resources. To create and manage resources, you need to create an
instance of the Resource class and set its name and cost using the Name and Cost properties, respectively. The
ResourceType property can be set to specify the type of resource. The ResourceType property accepts the following
values from the ResourceType enumeration:

Work - Specifies a work resource.
Material - Specifies a material resource.
Cost - Specifies a cost resource.

The TaskResources class also provides the Add method to add the resources to a locally-defined resource dictionary.
However, simply creating a resource is of no use until it is assigned to a task for which the control provides the
ResourceRef class. You need to create an object of the ResourceRef class, set its Resource property, and add the same
to the task using the Add method.

The following code example illustrates creating, adding, and assigning resource to a task. This example uses the
sample created in the Quick Start.

GanttView for WPF 59

Copyright © 2017 GrapeCity, Inc. All rights reserved.



'Creating a resource
Dim r As New Resource()
r.ResourceType = ResourceType.Work
r.Name = "Gary"
r.Cost = 300D

'Adding the resource to gantt view
gv.TaskResources.Add(r, "Gary")

'Assigning the resource to task 't1'
Dim t1 As Task = gv.Tasks.Search("Requirement Gathering")
If t1 IsNot Nothing AndAlso t1.ResourceRefs.Count = 0 Then
    Dim rRef As New ResourceRef()
    rRef.Resource = r
    rRef.Amount = 0.5
    t1.ResourceRefs.Add(rRef)
End If

Visual Basic

//Creating a resource
Resource r = new Resource();
r.ResourceType = ResourceType.Work;
r.Name = "Gary";
r.Cost = 300m;

//Adding the resource to gantt view
gv.TaskResources.Add(r, "Gary");

//Assigning the resource to task 't1'
Task t1 = gv.Tasks.Search("Requirement Gathering");
if (t1 != null && t1.ResourceRefs.Count == 0)
{
    ResourceRef rRef = new ResourceRef();
    rRef.Resource = r;
    rRef.Amount = 0.5;
    t1.ResourceRefs.Add(rRef);
}

C#

Constraints
Constraints define the degree or extent to which a task can be rescheduled in a project schedule. This feature helps
users in scheduling automatic tasks on the basis of various factors such as start and finish date, type of constraint, task
priority and duration. Constraints cannot be applied to manual tasks. This is because GanttView does not schedule
manual tasks, so applying constraints on them has no effect.

You can add constraints in GanttView to schedule automatic tasks by setting the ConstraintDate and ConstraintType
properties (available in the Task class) for a particular task. The ConstraintDate property specifies the start or finish
date for the applied constraint, while ConstraintType property specifies the type of constraint. The ConstraintType
property accepts the following values from the ConstraintType enumeration:

Enumeration Value Description

Default Allows you to schedule the task as soon as possible if the project is scheduled
from the start date; Or schedules the task as late as possible if the project is
scheduled from the finish date.

GanttView for WPF 60

Copyright © 2017 GrapeCity, Inc. All rights reserved.



FinishNoEarlierThan Allows you to schedule tasks in a way that they must finish on or after the
defined constraint date.

FinishNoLaterThan Allows you to schedule tasks in a way that they must finish on or before the
defined constraint date.

MustFinishOn Allows you to schedule tasks such that they must finish on the defined
constraint date.

MustStartOn Allows you to schedule tasks such that they must start on the defined
constraint date.

StartNoEarlierThan Allows you to schedule tasks such that they must start on or after the
constraint date.

StartNoLaterThan Allows you to schedule tasks such that they must start on or before the
constraint date.

Applying constraints in code

To apply constraints, you need to set the ConstraintDate and ConstraintType properties in code. The following
example uses the sample created in the Quick Start.

'Applying constraints
t.ConstraintDate = New DateTime(2016, 5, 5)
t.ConstraintType = ConstraintType.MustFinishOn

Visual Basic

//Applying constraints
t.ConstraintDate = new DateTime(2016, 5, 5);
t.ConstraintType = ConstraintType.MustFinishOn;

C#

Filtering
GanttView supports filtering to help users view specific tasks or resources at runtime. The control lets you apply filters
to view complete, incomplete and late tasks, milestones, tasks within a specified time period, tasks using a particular
resource. etc. The control provides various filtering options under the Filter menu in GanttView Toolbar.

GanttView for WPF 61

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The following table explains the sorting options available in the GanttView.

Filtering Options Description

No Filter Lets you remove any existing filter.

Completed Tasks Lets you filter and display completed tasks.

Date Range Lets you filter and display tasks within a specified time period.

Incomplete Tasks Lets you filter and display incomplete tasks.

Late Tasks Lets you filter and display late tasks.

Milestones Lets you filter and display milestones in your project schedule.

Tasks with Duration Only Lets you filter and display tasks with duration only.

Using Resources Lets your filter tasks assigned to a particular resource.

Advanced Filter Lets you create and apply custom filters through Advanced dialog.

More Filters Lets you create new custom filters.

GanttView also allows users to create custom filters according to their requirements. Click the following link to know
more about setting custom filters.

Custom Filtering

Custom Filtering
Besides the default filtering options that you get on the toolbar, the GanttView control also enables users create
custom filters to suit their business needs. To achieve this, the control provides Advanced filter dialog, which is
available under the Filter button on the toolbar. You can create your own filters by specifying fields in the FieldName
and test condition in the Test field.

The following image shows how the Advanced filter dialog appears.

GanttView for WPF 62

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Creating Custom Filters in Code

The C1GanttView class library includes various classes that can be used to create custom filters in code. For example,
you can use the LateTasksFilter class to filter late tasks, or use ConditionTasksFilter and AdvancedFilter classes to filter
tasks scheduled within a specific date range. Complete the following steps to create such filters in code. The following
code example uses the sample created in the Quick Start section.

1. In the XAML view, resize the GanttView control placed onto the MainWindow, and place two standard button
controls to the form.

2. Set the basic properties of the buttons in the XAML.
XAML

<Button Content="Filter Tasks by Date" Width="110" />
<Button Content="Filter Late Tasks" Width="114"/>

3. Subscribe the Click events for the two buttons in the XAML view.
XAML

<Button Content="Filter Tasks by Date" Width="110" Click="Button1_Click" />
<Button Content="Filter Late Tasks" Width="114" Click=Button2_Click"/>

4. Add the following code to the handler for Button1_Click event in the MainPage.xaml.cs file.

Private Sub Button1_Click(sender As Object, e As RoutedEventArgs)
    Dim filter As New AdvancedFilter()
    ' Filter the tasks starting on April 8th, 2016...
    Dim startCondition As New ConditionTaskFilter()
    startCondition.FilterField = FilterField.Start
    startCondition.TestOperator = TestOperators.IsGreaterThanOrEqualTo
    startCondition.FilterValue = New DateTime(2016, 4, 8)
    filter.Conditions.Add(startCondition)

    ' Filter tasks finishing before or on May 10th, 2016...
    Dim finishCondition As New ConditionTaskFilter()
    finishCondition.FilterField = FilterField.Finish
    finishCondition.TestOperator = TestOperators.IsLessThanOrEqualTo
    finishCondition.FilterValue = New DateTime(2016, 5, 10)
    filter.Conditions.Add(finishCondition)
    gv.ApplyFilter(filter)

Visual Basic

GanttView for WPF 63

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The above code filters tasks starting on 8-April-2016 and finishing before or on 10-May-2016.

5. Add the following code to the handler for Button2_Click event in the MainPage.xaml.cs file.

The above code filters tasks whose start date is 10-May-2016 or beyond.

6. Press F5 to run the application to see how the custom filter buttons get displayed in the output.

End Sub

private void Button1_Click(object sender, RoutedEventArgs e)
{
    AdvancedFilter filter = new AdvancedFilter();
    // Filter the tasks starting on April 8th, 2016...
    ConditionTaskFilter startCondition = new ConditionTaskFilter();
    startCondition.FilterField = FilterField.Start;
    startCondition.TestOperator = TestOperators.IsGreaterThanOrEqualTo;
    startCondition.FilterValue = new DateTime(2016, 4, 8);
    filter.Conditions.Add(startCondition);

    // Filter tasks finishing before or on May 10th, 2016...
    ConditionTaskFilter finishCondition = new ConditionTaskFilter();
    finishCondition.FilterField = FilterField.Finish;
    finishCondition.TestOperator = TestOperators.IsLessThanOrEqualTo;
    finishCondition.FilterValue = new DateTime(2016, 5, 10);
    filter.Conditions.Add(finishCondition);
    gv.ApplyFilter(filter);
}

C#

Private Sub Button2_Click(sender As Object, e As RoutedEventArgs)
    Dim filter As New LateTasksFilter(New DateTime(2016, 5, 10))
    gv.ApplyFilter(filter)
End Sub

Visual Basic

private void Button2_Click(object sender, RoutedEventArgs e)
{
    LateTasksFilter filter = new LateTasksFilter(new DateTime(2016, 5, 10));
    gv.ApplyFilter(filter);
}

C#

GanttView for WPF 64

Copyright © 2017 GrapeCity, Inc. All rights reserved.



On clicking the Filter Tasks by Date button, the GanttView displays tasks starting on 8-April-2016 and finishing
before or on 10-May-2016, while on clicking the Filter Late Tasks, tasks with start date 10-May-2016 or beyond get
displayed.

Sorting
Sorting is an important requirement when it comes to data management, helping users view data in a specified order.
The GanttView control lets you sort tasks by task name, start/finish date, and duration through various sorting options
available under the Sort button in the GanttView Toolbar. The Sort menu provides Sort By option that helps users
achieve multicolumn sorting in tasks.

The following table explains the sorting options available in the GanttView.

GanttView for WPF 65

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Sort Option Description

By Name Lets you sort tasks by their name in alphabetical order.

By Start Date Lets you sort the tasks by their start date.

By Finish Date Lets you sort the tasks by their finish date.

By Duration Lets you sort the tasks by the time duration assigned to each task.

Remove Sort Lets you remove any existing sort condition.

Sort By Lets you achieve multicolumn sorting.

By default, all the sorting options available under the Sort button display data in 'ascending' order. However, you
can change the default sort order to 'descending' by using Sort dialog.

You can also achieve multicolumn sorting in GanttView. To know more, see Multicolumn sorting.

Multicolumn Sorting
GanttView allows you to achieve multicolumn sorting through the Sort By option available under the Sort button on
the toolbar. To achieve multicolumn sorting, GanttView provides Sort dialog that lets you set the sort order in multiple
columns at runtime.

The following image shows a Sort dialog that creates a sort order on three different columns, namely Task Name, Task
Mode and Duration.

Saving Content in XML
GanttView allows users to save the contents along with the layout into an XML file. This feature is available to users at
runtime through the Save button available on the toolbar. Clicking the Save button opens the Save As XML dialog
that lets you save the contents into an XML file.

GanttView for WPF 66

Copyright © 2017 GrapeCity, Inc. All rights reserved.



Saving Content into XML in Code

The functionality to save content into an XML file can also be achieved programmatically through the SaveXml
method of the C1GanttView class. The SaveXml method provides three overloads for saving the contents as listed
below.

Overloads Description

SaveXml (String) To save the contents into an XML file.

SaveXml (Stream) To save the contents into an IO stream
object.

SaveXml (StreamWriter) To save the contents into an XmlWriter
object.

The following code illustrates how the SaveXml method can be used to save the contents into an XML file.

Visual Basic
Dim dlg As New OpenFileDialog()
dlg.DefaultExt = ".xml"
dlg.FileName = "gantt"
dlg.Filter = "XML files|*.xml|All files|*.*"
dlg.Title = "Save Gantt View As Xml File"
If dlg.ShowDialog().Value Then
        gv.SaveXml(dlg.FileName)
End If

C#
OpenFileDialog dlg = new OpenFileDialog();
dlg.DefaultExt = ".xml";
dlg.FileName = "gantt";
dlg.Filter = "XML files|*.xml|All files|*.*";
dlg.Title = "Save Gantt View As Xml File";
if (dlg.ShowDialog().Value)
 {
       gv.SaveXml(dlg.FileName);
 }

Loading Content from XML
GanttView allows users to load the contents along with the layout from an XML file. This feature is available to users at
runtime through the Load button available on the toolbar. Clicking the Load button opens the Load from XML
file dialog that lets you load the XML file. In addition, GanttView provides ImportFromMsProjectXml method to load
project schedules from Microsoft Project.

Loading Content from XML in Code

The functionality to load content from an XML file can also be achieved programmatically through the LoadXml
method of the C1GanttView class. The LoadXml method provides three overloads for loading the contents as listed
below.

Overloads Description

GanttView for WPF 67

Copyright © 2017 GrapeCity, Inc. All rights reserved.



LoadXml (String) To load the contents from an XML file.

LoadXml (Stream) To save the contents from an IO stream
object.

LoadXml (StreamWriter) To save the contents from an XmlWriter
object.

The following code illustrates how the LoadXml method can be used to load the contents from an XML file.

Visual Basic
Dim dlg As New OpenFileDialog()
dlg.DefaultExt = ".xml"
dlg.Filter = "XML files|*.xml|All files|*.*"
dlg.Title = "Load Gantt View From Xml File"
If dlg.ShowDialog().Value Then
        gv.LoadXml(dlg.FileName)
Else
        MessageBox.Show("Bad C1GanttView XML.", dlg.Title)
End If

C#
OpenFileDialog dlg = new OpenFileDialog();
dlg.DefaultExt = ".xml";
dlg.Filter = "XML files|*.xml|All files|*.*";
dlg.Title = "Load Gantt View From Xml File";
if (dlg.ShowDialog().Value)
{
  gv.LoadXml(dlg.FileName);
}
else
{
  MessageBox.Show("Bad C1GanttView XML.", dlg.Title);
}      

Task Dependency
Tasks created in a project plan are often linked together to create a feasible scheduling relationship. This is called task
dependency or dependency. For example, a software development project encompasses various tasks including
requirement gathering, product analysis, design, development, quality assurance, release, etc. aligned in phases. In this
scenario, every task is fairly dependent on the completion of the other. For instance, quality assurance is dependent
on product development, while product development is dependent on requirement and product analysis. Tasks
related to quality assurance can only be started once the product development is over. This creates a "finish-to-start"
dependency, where product development becomes a predecessor task since it precedes the tasks that depend on it,
while quality assurance becomes the successor task as it follows or succeeds the task(s) on which it depends.

Based on all possible relationships, any two tasks can have the following dependencies:

Dependency Description

Finish-to-start The finish date of the predecessor task determines the start date of the
successor task.

Finish-to-finish The finish date of the predecessor task determines the finish date of the

GanttView for WPF 68

Copyright © 2017 GrapeCity, Inc. All rights reserved.



successor task.

Start-to-finish The start date of the predecessor task determines the finish date of the
successor task.

Start-to-start The start date of the predecessor task determines the start date of the
successor task.

GanttView supports task dependencies both at runtime as well as in code. The Predecessors tab available in the Task
information dialog can be used to create task dependencies at runtime. In addition, dependent tasks can be linked
through mouse at runtime. Creating and handling task dependencies in code is explained later in the topic.

In GanttView, task dependencies can be visualized through lines connecting the dependent tasks. The grid area of the
GanttView also displays predecessor tasks and dependencies in the Predecessors Column, provided its visibility is
enabled. The Predecessors column displays the serial number of the predecessor task along with dependency type in
abbreviated form (like SS, SF, or FF), except in case for default dependency, that is Finish-to-start.

The following image shows tasks dependencies created in a GanttView.

Creating task dependencies in code

To create and handle task dependencies, the GanttView control provides the Predecessor class, which can be used to
specify the dependence of one or more tasks on the other. The class provides PredecessorTask and PredecessorType
properties to set task precedence and dependency between tasks. A delay in days can also be set between the
dependent tasks by using the Lag property. The PredecessorType property accepts the following values from the
PredecessorType enumeration to indicate the type of dependence:

FinishToStart - This is the default value that indicates that the dependent task cannot start until the
predecessor task finishes.
FinishToFinish - Indicates that the dependent task can finish only after the predecessor task has finished.
StartToFinish - Indicates that the dependent task can finish only after the predecessor task has started.
StartToStart – Indicates that the dependent task can start only after the parent task has started.

The following code example illustrates creating a predecessor task, and setting its dependence on another task and its
type. This example uses the sample created in the Quick start.

Dim task1 As Task = gv.Tasks.Search("Development")
Dim task2 As Task = gv.Tasks.Search("Quality Assurance")

Visual Basic

GanttView for WPF 69

Copyright © 2017 GrapeCity, Inc. All rights reserved.



If task1 IsNot Nothing AndAlso task2 IsNot Nothing AndAlso task2.Predecessors.Count 
= 0 Then
    'switch to auto-scheduling mode
    task2.Mode = TaskMode.Automatic

    Dim p As New Predecessor()
    p.PredecessorTask = task1
    p.PredecessorType = PredecessorType.FinishToStart
    task2.Predecessors.Add(p)

    'restore the manual mode
    task2.Mode = TaskMode.Manual
End If

Task task1 = gv.Tasks.Search("Development");
Task task2 = gv.Tasks.Search("Quality Assurance");

if (task1 != null && task2 != null && task2.Predecessors.Count == 0)
{
    //switch to auto-scheduling mode
    task2.Mode = TaskMode.Automatic;

    Predecessor p = new Predecessor();
    p.PredecessorTask = task1;
    p.PredecessorType = PredecessorType.FinishToStart;
    task2.Predecessors.Add(p);

    //restore the manual mode
    task2.Mode = TaskMode.Manual;
}

C#

Task Splitting
GanttView provides task splitting feature to account for unanticipated work interruptions because of various factors,
such as, addition of new tasks in existing plan, unavailability of resources, change in task priority or unplanned leaves.
Using this feature, user can easily put a task on hold in the middle so that a part of it can be started later or another
high priority task can be taken up. In addition, user can also split a task as many times according to the requirement.

GanttView enables users to split task at runtime as well as through code. The Split Task button available in the
toolbar splits a task into two or more segments.

The following image shows task split into two segments in a GanttView.

GanttView for WPF 70

Copyright © 2017 GrapeCity, Inc. All rights reserved.



To split a task at runtime

1. In the toolbar, click the Split Task button once.
A screen tip appears, and the mouse pointer changes.

2. Move the mouse pointer over the task bar of the task to be split.
3. Move the mouse pointer to the date where you want the split segment to start.
4. Click the mouse pointer at the desired start date.
5. Drag the split segment to another date as per the schedule.

Note: The screen tip contains the date at which the split segment is scheduled to start. As you move the mouse
pointer along the task bar, the scheduled start date in the screen tip changes.

A task can also be split at runtime by right clicking a specific point (date) on the task bar and selecting the Split Task
option from the context menu. The Split Task option splits the task into two segments and adds a gap of one day in
between. The split task segments can then be dragged to another date as per the user requirement.

To split a task through code

A task can be split through code by invoking the SplitTask method of the Task class. You can specify the start date of
the task segment and the interruption duration in terms of number of days in the method to split a task. The following
example illustrates splitting a task through code. This example uses the sample created in the Quick start.

Limitations:

By design, the task splitting feature of GanttView does not apply in the following conditions:

'Splitting a task into two segments
gv.Tasks(2).SplitTask(gv.Tasks(2).Start.Value.AddDays(2), 2)

Visual Basic

//Splitting a task into two segments
gv.Tasks[2].SplitTask(gv.Tasks[2].Start.Value.AddDays(2), 2);

C#

GanttView for WPF 71

Copyright © 2017 GrapeCity, Inc. All rights reserved.



1. If the split segment is scheduled to begin before the start date, or after the finish date of the task.
2. If the duration of the task to be split is less than or equal to 1 day.

If the DurationUnit is 'Days' and the duration is less than 1 day, then the task cannot be split.
If the DurationUnit is 'Hours' and the duration is less than 24 hours, then the task cannot be split.

3. If the main task begins on a nonworking day, then the split segment should begin on a working day.

Project Summary Task
Project summary task represents the summary of tasks indented below it, which are called subtasks or child tasks. You
can create summary tasks in GanttView to better organize tasks into phases and depict a clear outline of the project
plan. A summary task must contain at least one child task. By default, a project summary task is always automatically
scheduled since its duration depends on the duration of its subtasks. This means the duration of a project summary
task gets automatically adjusted on the basis of the earliest start date and the latest finish date of the underlying
subtasks.  

The following image shows a project summary task in GanttView.

Creating summary tasks

To create a summary task above a subtask, the toolbar provides Add Summary Task button. In order to view the
overall project summary, click the Show Project Summary button available in the toolbar.

In code, summary tasks are created just like any other task and assigning an ID to them by setting the ID property.
To create a subtask of a particular summary task, assign the ID of the project summary task to the OutlineParentID
property of the subtask.

The following example illustrates creating summary task in code. This example uses the sample created in the Quick
start.

'Creating project summary task 
Dim summary As New Task()
summary.Name = "Test Summary"
summary.ID = 1
summary.Mode = TaskMode.Automatic

Dim subtask1 As New Task()

Visual Basic

GanttView for WPF 72

Copyright © 2017 GrapeCity, Inc. All rights reserved.



subtask1.Name = "Normal Task"
subtask1.ID = 2
subtask1.Mode = TaskMode.Manual
subtask1.OutlineParentID = 1
subtask1.Start = DateTime.Today
subtask1.Duration = 5

gv.Tasks.Add(summary)
gv.Tasks.Add(subtask1)

//Creating project summary task 
Task summary = new Task();
summary.Name = "Test Summary";
summary.ID = 1;
summary.Mode = TaskMode.Automatic;

Task subtask1 = new Task();
subtask1.Name = "Normal Task";
subtask1.ID = 2;
subtask1.Mode = TaskMode.Manual;
subtask1.OutlineParentID = 1;
subtask1.Start = DateTime.Today;
subtask1.Duration = 5;

gv.Tasks.Add(summary);
gv.Tasks.Add(subtask1);

C#

Style and Appearance
GanttView provides various options to customize the default appearance of its elements such as task bars, fields, as
well as the control itself. Learn about these features and how to implement them in code.

Custom bar styles
Learn how to customize task bars in code.

Custom field styles
Learn how to apply custom styles to fields in code.

Applying themes
Learn how to apply ComponentOne themes to GanttView in code.

Set back color of day of week
Learn how to apply back color to a specific day(s) in code.

Custom Bar Styles
In GanttView, all the tasks in a project plan are represented through task bars, which depict attributes like start and
finish date, duration, percent complete, current status, etc. The visual appeal of these bars can be enhanced by
customizing their color, shape, and hatch style.

This is possible in GanttView through the BarStyle class, which includes various properties to set the background color,
shape and hatch style of task bars. Task bars can also be customized at runtime through the Bar Styles dialog, which
can be accessed by clicking the Bar Styles button available on the toolbar. In addition, the control lets you adjust the
height of the task bar according to the font applied to GanttView.  The C1GanttView class provides the
AdaptiveBarHeight property, which if set to true automatically adjusts the height of the task bar according
to GanttView's font size. You can also set the bar height explicitly by setting the AdaptiveBarHeight property to false
and then setting the height using the BarHeight property.

GanttView for WPF 73

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The following image shows a GanttView with customized task bars.

Properties available in the BarStyle class for customizing the task bars are as follows:

Property Purpose

BarType To specify the bar(s) on which the customization is to be applied.

BarColor To set the background color of the task bar.

BarShape To set the shape of the task bar.

BarPattern To set the hatch style for filling the task bar.

EndPattern To set the hatch style for filling the shape at the end of the task bar.

The following code illustrates how to customize task bars. This example uses the sample created in the Quick Start.

'Creating an instance of bar style
Dim bs As New BarStyle()

'Applying customization to manual tasks only
bs.BarType = BarType.ManualTask
bs.BarColor = Colors.LightGreen
bs.BarShape = BarShape.Frame
bs.BarPattern = HatchPattern.Gradient
bs.EndPattern = HatchPattern.Empty

'Adding the bar style object to gantt view 
gv.BarStyles.Add(bs)

Visual Basic

//Creating an instance of bar style
BarStyle bs = new BarStyle();

//Applying customization to manual tasks only
bs.BarType = BarType.ManualTask;
bs.BarColor = Colors.LightGreen;

C#

GanttView for WPF 74

Copyright © 2017 GrapeCity, Inc. All rights reserved.



bs.BarShape = BarShape.Frame;
bs.BarPattern = HatchPattern.Gradient;
bs.EndPattern = HatchPattern.Empty;

//Adding the bar style object to gantt view 
gv.BarStyles.Add(bs);

Custom Field Styles
GanttView provides users the ability to customize the style and appearance of tasks fields in order to match with the
user interface requirements of an application. Users can format the fields in the grid view by using various properties
of the FieldStyle class such as Field, FieldName, FontStyle, ForegroundColor, BackgroundColor, and Underline.

The following image shows a GanttView with custom styles applied to the fields.

The following code illustrates how to apply custom styles to fields. This example uses the sample created in the Quick
start.

Dim fs As New FieldStyle()
fs.Field = StyleField.All
fs.ForegroundColor = System.Windows.Media.Colors.Brown
fs.BackgroundColor = System.Windows.Media.Colors.BlanchedAlmond
fs.FieldName = "Task Name"
fs.FontStyle = FontStyles.Italic
For Each task As Task In gv.Tasks
    Dim fsc As FieldStyleCollection = task.FieldStyles
    fsc.Add(fs)
Next

Visual Basic

FieldStyle fs = new FieldStyle();
fs.Field = StyleField.All;
fs.ForegroundColor = System.Windows.Media.Colors.Brown;
fs.BackgroundColor = System.Windows.Media.Colors.BlanchedAlmond;
fs.FieldName = "Task Name";
fs.FontStyle = FontStyles.Italic;

C#

GanttView for WPF 75

Copyright © 2017 GrapeCity, Inc. All rights reserved.



foreach (Task task in gv.Tasks)
{
    FieldStyleCollection fsc = task.FieldStyles;
    fsc.Add(fs);
}

Apply Themes
GanttView supports built-in ComponentOne themes available in C1.WPF.Theming library. You can apply any of the
available C1 themes to the GanttView control and provide a customized and consistent appearance to the application.
To understand how themes can be used effectively, see Theming.

The following image shows a GanttView with C1WhistlerBlue theme applied to it.

The following steps illustrate how to apply C1 themes to GanttView. This example uses the sample created in the
Quick start.

1. Create a Quick start application and add the following .dll files to your application.
C1.WPF.Theming
C1.WPF.Theming.WhistlerBlue

2. Switch to the MainWindow.xaml.cs file and add the following import statements.

3. Create a class, MyTheme, to create an object of the C1Themes class.

Imports C1.WPF.Theming
Imports C1.WPF.Theming.WhistlerBlue

Visual Basic

using C1.WPF.Theming;
using C1.WPF.Theming.WhistlerBlue;

C#

Public Class MyThemes
    Private Shared _myTheme As C1Theme = Nothing
    Public Shared ReadOnly Property MyTheme() As C1Theme
        Get

Visual Basic

GanttView for WPF 76

Copyright © 2017 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowpf/AvailableThemes.html
http://helpcentral.componentone.com/nethelp/c1studiowpf/Theming.html


4. Add the following code in the loaded event to apply ComponentOne theme to the GanttView control.

            If _myTheme Is Nothing Then
                _myTheme = New C1ThemeWhistlerBlue()
            End If

            Return _myTheme
        End Get
    End Property
End Class

public class MyThemes
{
    private static C1Theme _myTheme = null;
    public static C1Theme MyTheme
    {
        get
        {
            if (_myTheme == null)
            {
                _myTheme = new C1ThemeWhistlerBlue();
            }

            return _myTheme;
        }
    }
}

C#

'Apply C1 theme to GanttView
C1Theme.ApplyTheme(gv, MyThemes.MyTheme)

Visual Basic

//Apply C1 theme to GanttView 
C1Theme.ApplyTheme(gv, MyThemes.MyTheme);

C#

Set Back Color of Day
GanttView enables users to highlight a specific day of week by setting its back color. For instance, the weekends in a
gantt view can be highlighted in a different color to distinguish them from workweek. This can be achieved in code by
subscribing the PaintDay event and setting the BackColor property to color specific days.

The following image shows a GanttView with weekends highlighted by a different color.

GanttView for WPF 77

Copyright © 2017 GrapeCity, Inc. All rights reserved.



The following code illustrates how to set back color of weekend. This example uses the sample created in the Quick
start.

Private Sub gv_PaintDay(sender As Object, e As PaintDayEventArgs)
    If e.[Date].DayOfWeek = DayofWeek.Saturday OrElse e.[Date].DayOfWeek = 
DayofWeek.Sunday Then
        e.BackColor = Colors.MistyRose
    End If
End Sub

Visual Basic

//Set back color for a specific day of week
private void gv_PaintDay(object sender, PaintDayEventArgs e)
{
    if (e.Date.DayOfWeek == DayOfWeek.Saturday || e.Date.DayOfWeek == 
DayOfWeek.Sunday)
    {
        e.BackColor = Colors.MistyRose;
    }
}

C#

GanttView for WPF 78

Copyright © 2017 GrapeCity, Inc. All rights reserved.


	Table of Contents
	GanttView for WPF
	Help with WPF Edition

	Key Features
	GanttView Elements
	GanttView Toolbar

	Quick Start: GanttView for WPF
	Data Binding
	Design-Time Support
	BaseColumn Collection Editor
	CustomCalendar Collection Editor
	CalendarException Collection Editor
	Task Collection Editor
	WorkWeek Collection Editor
	BarStyle Collection Editor
	FieldStyle Collection Editor
	Predecessor Collection Editor
	ResourceRef Collection Editor

	Runtime Interaction
	Grid Columns Dialog
	Task Information Dialog
	Field Styles Dialog
	Group Dialog
	DateRange Dialog
	Using Resource Dialog
	Advanced Filter Dialog
	More Filter Dialog
	Sort Dialog
	Project Information Dialog
	Change Working Time Dialog
	Progress Line Dialog
	Resources Dialog
	Timescale Dialog
	Bar Styles Dialog
	Zoom Dialog
	Print- Dialog

	Features
	Task Management
	Tasks
	Columns
	Custom Columns

	Scheduling Mode
	Percent Complete
	Task Deadline
	Timescale
	Timescale Formats

	Milestone Task
	Progress Line
	Resources
	Constraints
	Filtering
	Custom Filtering

	Sorting
	Multicolumn Sorting

	Saving Content in XML
	Loading Content from XML
	Task Dependency
	Task Splitting
	Project Summary Task

	Style and Appearance
	Custom Bar Styles
	Custom Field Styles
	Apply Themes
	Set Back Color of Day 



