

ComponentOne

InputPanel for WPF

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $25 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
InputPanel for WPF 2

Help with WPF Edition 2

Key Features 3

Object Model Summary 4

InputPanel Elements 5-6

InputPanel Editors 7

Quick Start 8-11

Data Binding 12

Binding InputPanel with ObservableCollection 12-18

Binding InputPanel with CollectionView 18-23

Binding InputPanel with DataTable 23-25

Features 26

Add, Edit, and Delete Records 26

Record Navigation 26-27

Auto-generate Fields 27-28

Auto-commit Data 28

Data Validation 28-29

Property Level Validation 29-32

Data Validation through Event 32-33

Custom Template 33-35

Keyboard Navigation 35-36

Working with InputPanel 37

Integration with Grids 37-40

Input Panel Samples 41

InputPanel for WPF 1

InputPanel for WPF
ComponentOne Studio introduces InputPanel for WPF, a container control designed to create powerful data input
applications with minimal effort. The control is a new paradigm to create and maintain data forms that lets you easily
view, add, edit, delete, and navigate through data records.

InputPanel can be easily bound to a model object, data table or a collection which automatically populates the UI with
built-in editors and hence, there is no need to add any input components explicitly. These editors handle basic level
validation for you, so you can handle the inconsistencies in user input with minimal development effort. Besides, the
InputPanel control provides you the ability to customize its layout, design and appearance for easy and consistent
styling.

Help with WPF Edition
For information on installing ComponentOne Studio WPF Edition, licensing, technical support, namespaces, and
creating a project with the controls, please visit Getting Started with ComponentOne Studio WPF Edition.

InputPanel for WPF 2

http://helpcentral.componentone.com/nethelp/c1studioWPF/

Key Features
Auto-generate fields
InputPanel automatically generates fields on the basis of the input provided to the control. As the fields get
generated, UI of the InputPanel control gets automatically populated with various components depending on
the data type of the fields.

Add, edit and delete operations
InputPanel allows you to add new records, and also lets you edit and delete the current record in data source.
It also allows you to delete the currently displayed record.

Auto-commit data
InputPanel allows you to automatically commit/save the changes every time the user edits the input, or
customize this functionality to commit the edits after confirmation.

Data binding
InputPanel can be bound to model object data, CollectionView, ObservableCollection or any kind of collection
data source with minimal code, allowing you to create a fully-navigational database browser in seconds.

Validation and error handling
InputPanel provides data validation on the user input. Validation errors appear as per the rules defined either
through markup or through events.

Record navigation
InputPanel provides you the buttons to navigate through the records in the UI itself. No extra code is required
to implement a pager in the control.

Data template support
InputPanel allows you to change the layout of the control by creating a user-defined data template. By default,
the fields are stacked vertically; however, you can define a layout by creating your own data template as per
the requirement.

Custom field support
InputPanel provides six default editors for rendering the fields on the control. However, you can also replace
the standard fields with different input fields according to your requirements.

Accelerator keys
InputPanel allows you to use the keyboard to edit and navigate through the items without using mouse.
The keyboard accelerator keys are automatically generated and assigned when the InputPanel control is
populated with the fields from a data source.

InputPanel for WPF 3

Object Model Summary
InputPanel comes with a rich object model, providing various classes, objects, collections, associated methods and properties for
processing images. The following table lists some of these objects and their properties.

C1DataPager

Properties: CanMoveItem, CanMoveToFirstItem, CanMoveToLastItem, CanMoveToNextItem, CanMoveToPreviousItem, DisplayMode,

NumericButtonStyle, Source

C1InputBase

Properties: DataBinding, Header, IsReadOnly, LabelForeground

C1InputCheckBox

Property: IsThreeState

C1InputComboBox

Properties: EnumType, ItemsSource

C1InputDateTimePicker

Properties: AllowNull, EditMode

C1InputMaskedTextBox

Property: Mask

C1InputNumericBox

Properties: AllowNull, Format

C1InputPanel

Properties: AddButtonVisibility, AutoCommit, AutoGenerate, CurrentItem, DataPagerVisibility, DeleteButtonVisibility, Header,

HeaderBackground, HeaderForeground, ItemsPanelTemplate, ItemsSource, ItemsTemplate, NavigationBackground, ValidationBackground,

ValidationErrors

C1InputPanelMaskAttribute

Property: Mask

C1InputPanelPresenter

Properties: AutoGenerate, CurrentItem, InputControls, ItemsPanelTemplate, ItemsTemplate

C1InputPanelValidationSummary

Properties: Errors, HasErrors

InputPanel for WPF 4

InputPanel Elements
InputPanel control provides four types of elements: navigation buttons, action buttons, content panel, and
commit/cancel button.

The following image shows the elements of the InputPanel control.

The following table describes the elements of InputPanel control:

Element Name Description

Navigation
buttons

Allows navigation to a specific record through
next/previous/first/last buttons. These buttons are provided
at the top left of the InputPanel control.

Action buttons Includes the Add button to add records and Delete button to
delete records. These buttons are available at the top right of
the InputPanel control.

InputPanel for WPF 5

Content Panel Indicates the area that contains the fields in form layout
where user can view/edit the records at runtime.

Commit/Cancel
button

Consists of OK/Cancel button where edits are
saved/committed with the OK button and cancelled using the
Cancel button. These buttons are available at the bottom
right of the InputPanel control.

InputPanel for WPF 6

InputPanel Editors
InputPanel provides the following six types of editors to support different types of data. The following editors get
automatically rendered for their supported data types in the content panel of the InputPanel control when
AutoGenerate property is set to true.

InputTextBox
The InputTextBox editor is used for fields with their data type set to string or char.

InputDateTimePicker
The InputDateTimePicker editor is used for fields with their data type set to date, time or datetime. User can
edit/enter the date by selecting it from the calendar that appears on clicking the editor, and the time by using
the available "+" or "-" buttons. You can modify the behavior of the field using EditMode property
of C1InputDateTimePicker class.

InputCheckBox
The InputCheckBox editor is used for fields with their data type set to Boolean. This editor allows you to set
the IsThreeState property of C1InputCheckBox class, to support the three states, checked, unchecked, and
indeterminate state of the check box .

InputComboBox
The InputComboBox editor is used for fields with their data type set to enumeration. The editor displays a list
of items in a drop-down menu. This editor allows you to bind to a data source using the ItemsSource property.

InputNumbericBox
The InputNumbericBox editor is used for fields with their data type set to numeric. You can increase or
decrease the value by clicking the "+" and "-" buttons provided by the control. This editor allows you to set the
display format using Format property of C1InputNumbericBox class.

InputMaskedTextBox
The InputMaskedTextBox editor is used for fields in which each character position maps to either a special
placeholder or a literal character. Literal characters, or literals, can give visual cues about the type of data being
used. This editor allows you to set the format of masked text using the Mask property
of C1InputMaskedTextBox class.

InputPanel for WPF 7

Quick Start
This quick start familiarizes you with adding and displaying data to the InputPanel control using list. You begin with
creating a WPF application in Visual Studio, adding the InputPanel control to it, creating a list of items, and binding it
to InputPanel.

To create a simple WPF application for adding and displaying data in the InputPanel control, complete the following
steps:

1. Setting up the application
2. Adding and displaying data in InputPanel

The following image shows a record displayed in the C1InputPanel control.

Setting up the application

1. Create a WPF project in Visual Studio.
2. Add the InputPanel control to the XAML designer and set the name of the control to 'InPanel'.

Notice that along with C1.WPF.InputPanel, the following references automatically get added to the application.
C1.WPF
C1.WPF.DateTimeEditors

Back to Top

Adding and displaying data in InputPanel

1. Switch to the code view and add a class, Customer, to define data.
2. Add the following code to create an enumeration and add properties to the class.

Visual Basic
Public Class Customer

 Public Property ID() As String
 Get
 Return m_ID
 End Get
 Set(value As String)
 m_ID = value

InputPanel for WPF 8

 End Set
 End Property
 Private m_ID As String
 Public Property Country() As String
 Get
 Return m_Country
 End Get
 Set(value As String)
 m_Country = value
 End Set
 End Property
 Private m_Country As String

 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(value As String)
 m_Name = value
 End Set
 End Property
 Public Property Phone() As String
 Get
 Return m_Phone
 End Get
 Set(value As String)
 m_Phone = value
 End Set
 End Property
 Private m_Phone As String
 Private m_Name As String
 Public Property Age() As Integer
 Get
 Return m_Age
 End Get
 Set(value As Integer)
 m_Age = value
 End Set
 End Property
 Private m_Age As Integer
 Public Property Weight() As Double
 Get
 Return m_Weight
 End Get
 Set(value As Double)
 m_Weight = value
 End Set
 End Property
 Private m_Weight As Double
 Public Property Occupation() As Occupation
 Get
 Return m_Occupation
 End Get
 Set(value As Occupation)
 m_Occupation = value
 End Set
 End Property
 Private m_Occupation As Occupation

 Public Sub New(id As String, country _
 As String, name As String, _

InputPanel for WPF 9

 age As Integer, _
 weight As Double, _
 occupation As Occupation, _
 phone As String)
 Me.ID = id
 Me.Country = country
 Me.Name = name
 Me.Age = age
 Me.Weight = weight
 Me.Occupation = occupation
 Me.Phone = phone
 End Sub
End Class

Public Enum Occupation
 Doctor
 Artist
 Educator
 Engineer
 Executive
 Other
End Enum

C#
public class Customer
{
 public string ID { get; set; }
 public string Country { get; set; }
 public string Name { get; set; }
 public string Phone { get; set; }
 public int Salary { get; set; }
 public int Age { get; set; }
 public double Weight { get; set; }
 public Occupation Occupation { get; set; }

 public Customer(string id, string country,
 string name, int age,
 double weight, Occupation
 occupation, string phone, int salary)
 {
 this.ID = id;
 this.Country = country;
 this.Name = name;
 this.Age = age;
 this.Weight = weight;
 this.Occupation = occupation;
 this.Phone = phone;
 this.Salary = salary;
 }
}

public enum Occupation
{
 Doctor,
 Artist,
 Educator,
 Engineer,
 Executive,
 Other
}

3. Creates a list of Customers and add data to the list using the following code.

InputPanel for WPF 10

Visual Basic
Dim data As New List(Of Customer)()
data.Add(New Customer("100001", "United States",
 "Jack Danson", 40, 102.03,
 Occupation.Executive, _
 "1371234567"))
data.Add(New Customer("100002", "China",
 "Tony Tian", 32, 82.2,
 Occupation.Engineer, _
 "1768423846"))
data.Add(New Customer("100003", "Iran",
 "Larry Frommer", 15, 40.432,
 Occupation.Artist, _
 "8473637486"))
data.Add(New Customer("100004", "Germany",
 "Charlie Krause", 26, 69.32,
 Occupation.Doctor, _
 "675245438"))
data.Add(New Customer("100005", "India",
 "Mark Ambers", 51, 75.45,
 Occupation.Other, _
 "1673643842"))

C#
List<Customer> data = new List<Customer>();
data.Add(new Customer("100001", "United States", "Jack Danson",
 40, 102.03, Occupation.Executive, "1371234567", 400000000));
data.Add(new Customer("100002", "China", "Tony Tian",
 32, 82.2, Occupation.Engineer, "1768423846", 500));
data.Add(new Customer("100003", "Iran", "Larry Frommer",
 15, 40.432, Occupation.Artist, "8473637486", 600));
data.Add(new Customer("100004", "Germany", "Charlie Krause",
 26, 69.32, Occupation.Doctor, "675245438", 700));
data.Add(new Customer("100005", "India", "Mark Ambers",
 51, 75.45, Occupation.Other, "1673643842", 800));

4. Bind the list to InputPanel through the ItemsSource property as given in the following code.
Visual Basic

InPanel.ItemsSource = data
C#

InPanel.ItemsSource = data;

Back to Top

InputPanel for WPF 11

Data Binding
InputPanel provides data binding support that lets you populate data in the control using a single line of code. The
InputPanel control can be bound to data from various data sources, such as model object data, data
tables, CollectionView, ObservableCollection, or any other kind of collection data. On binding InputPanel to a data
source object, fields are generated for underlying data.

Learn about these implementations in detail in the topic enlisted below.

Binding InputPanel with ObservableCollection
Learn how to bind data using ObservableCollection in code.

Binding InputPanel with CollectionView
Learn how to bind data using CollectionView in code.

Binding InputPanel with DataTable
Learn how to bind data using data table in code.

Binding InputPanel with ObservableCollection
Collection binding can be implemented in InputPanel using ObservableCollection which works similar to a regular collection.
To bind InputPanel to an ObservableCollection, the ObservableCollection<T> class is used to obtain a collection, which acts
as a binding source and then the ItemsSource property gets this collection to bind it to the InputPanel control.

Perform the following steps for data binding using ObservableCollection<T> class:

1. Set up the application
2. Create a data source for InputPanel
3. Bind InputPanel to ObservableCollection

Set up the application

1. Create a WPF application.
2. Add the InputPanel control to the application and name it 'InPanel'.

Back to Top

Create a data source for InputPanel

1. Add a new class, Employee, to the application.
2. Add the data generators and fields to the class.

Visual Basic
' ** fields
Private m_id As Integer, cid As Integer
Private m_first As String, m_last As String
Private m_father As String
Private m_occupation As EOccupation
Private m_active As Boolean
Private m_hired As DateTime
Private m_weight As Double

' ** data generators
Shared rnd As New Random()
Shared firstNames As String() = "Andy|Ben|Charlie|Dan|Ed|Fred|Gil".Split("|"c)
Shared lastNames As String() = "Ambers|Bishop|Cole|Danson|Evers|Trask|Ulam".Split("|"c)
Shared countries As String() = "China|India|United States|Japan|Myanmar".Split("|"c)

C#
// ** fields
int id, cid;
string first, last;
string father;

InputPanel for WPF 12

EOccupation occupation;
bool active;
DateTime hired;
double weight;

// ** data generators
static Random rnd = new Random();
static string[] firstNames = "Andy|Ben|Charlie|Dan|Ed|Fred|Gil".Split('|');
static string[] lastNames = "Ambers|Bishop|Cole|Danson|EversTrask|Ulam".Split('|');
static string[] countries = "China|India|United States|Japan|Myanmar".Split('|');

3. Add properties to the class using the following code.
Visual Basic

Public Property ID() As Integer
 Get
 Return m_id
 End Get
 Set(value As Integer)
 If value <> m_id Then
 m_id = value
 End If
 End Set
End Property
Public ReadOnly Property Name() As String
 Get
 Return String.Format("{0} {1}", First, Last)
 End Get
End Property

Public ReadOnly Property Country() As String
 Get
 Return countries(cid)
 End Get
End Property

Public Property CountryID() As Integer
 Get
 Return cid
 End Get
 Set(value As Integer)
 If value <> cid AndAlso value > -1 AndAlso
 value < countries.Length Then
 cid = value
 End If
 End Set
End Property

Public Property Occupation() As EOccupation
 Get
 Return m_occupation
 End Get
 Set(value As EOccupation)
 If value <> m_occupation Then
 m_occupation = value
 End If
 End Set
End Property

Public Property Active() As Boolean
 Get
 Return m_active
 End Get

InputPanel for WPF 13

 Set(value As Boolean)
 If value <> m_active Then
 m_active = value
 End If
 End Set
End Property

Public Property First() As String
 Get
 Return m_first
 End Get
 Set(value As String)
 If value <> m_first Then
 m_first = value
 End If
 End Set
End Property

Public Property Last() As String
 Get
 Return m_last
 End Get
 Set(value As String)
 If value <> m_last Then
 m_last = value
 End If
 End Set
End Property

Public Property Hired() As DateTime
 Get
 Return m_hired
 End Get
 Set(value As DateTime)
 If value <> m_hired Then
 m_hired = value
 End If
 End Set
End Property

Public Property Weight() As Double
 Get
 Return m_weight
 End Get
 Set(value As Double)
 If value <> m_weight Then
 m_weight = value
 End If
 End Set
End Property

' some read-only stuff
Public ReadOnly Property Father() As String
 Get
 Return m_father
 End Get
End Property

' ** utilities
Private Shared Function GetString(arr As String()) _
 As String
 Return arr(rnd.[Next](arr.Length))

InputPanel for WPF 14

End Function

' ** static value providers
Public Shared Function GetCountries() As String()
 Return countries
End Function
Public Shared Function GetFirstNames() As String()
 Return firstNames
End Function
Public Shared Function GetLastNames() As String()
 Return lastNames
End Function

C#
public int ID
{
 get { return id; }
 set
 {
 if (value != id)
 {
 id = value;
 }
 }
}
public string Name
{
 get { return string.Format("{0} {1}",
 First, Last); }
}

public string Country
{
 get { return countries[cid]; }
}

public int CountryID
{
 get { return cid; }
 set
 {
 if (value != cid && value > -1 &&
 value < countries.Length)
 {
 cid = value;
 }
 }
}

public EOccupation Occupation
{
 get
 {
 return occupation;
 }
 set
 {
 if (value != occupation)
 {
 occupation = value;
 }
 }
}

public bool Active
{

InputPanel for WPF 15

 get { return active; }
 set
 {
 if (value != active)
 {
 active = value;
 }
 }
}

public string First
{
 get { return first; }
 set
 {
 if (value != first)
 {
 first = value;
 }
 }
}

public string Last
{
 get { return last; }
 set
 {
 if (value != last)
 {
 last = value;
 }
 }
}

public DateTime Hired
{
 get { return hired; }
 set
 {
 if (value != hired)
 {
 hired = value;
 }
 }
}

public double Weight
{
 get { return weight; }
 set
 {
 if (value != weight)
 {
 weight = value;
 }
 }
}

// some read-only stuff
public string Father
{
 get { return father; }
}

// ** utilities
static string GetString(string[] arr)

InputPanel for WPF 16

{
 return arr[rnd.Next(arr.Length)];
}

// ** static value providers
public static string[] GetCountries() { return countries; }
public static string[] GetFirstNames() { return firstNames; }
public static string[] GetLastNames() { return lastNames; }

4. Create a constructor of Employee class and add the following code to it.
Visual Basic

Private values As Array = [Enum].GetValues(GetType(EOccupation))
Public Sub New(id__1 As Integer)
 ID = id__1
 First = GetString(firstNames)
 Last = GetString(lastNames)
 CountryID = rnd.[Next]() Mod countries.Length
 Occupation = CType(values.GetValue(rnd.[Next](values.Length - 1)), EOccupation)
 Active = rnd.NextDouble() >= 0.5
 Hired = DateTime.Today.AddDays(-rnd.[Next](1, 365))
 Weight = 50 + rnd.NextDouble() * 50
 m_father = String.Format("{0} {1}", GetString(firstNames), Last)
End Sub

C#
Array values = Enum.GetValues(typeof(EOccupation));
public Employee(int id)
{
 ID = id;
 First = GetString(firstNames);
 Last = GetString(lastNames);
 CountryID = rnd.Next() % countries.Length;
 Occupation = (EOccupation)
 (values.GetValue(rnd.Next(values.Length - 1)));
 Active = rnd.NextDouble() >= .5;
 Hired = DateTime.Today.AddDays(-rnd.Next(1, 365));
 Weight = 50 + rnd.NextDouble() * 50;
 father = string.Format("{0} {1}",
 GetString(firstNames), Last);
}

5. Create a method, GetEmployeeList, of ObservableCollection<T> class using the following code.
Visual Basic

' ** static list provider
Public Shared Function GetEmployeeList(count As Integer) _
 As ObservableCollection(Of Employee)
 Dim list = New ObservableCollection(Of Employee)()
 For i As Integer = 0 To count - 1
 Dim emp As New Employee(i)
 list.Add(emp)
 Next
 Return list
End Function

C#
// ** static list provider
public static ObservableCollection<Employee>
 GetEmployeeList(int count)
{
 var list = new ObservableCollection<Employee>();
 for (int i = 0; i < count; i++)
 {
 Employee emp = new Employee(i);
 list.Add(emp);
 }
 return list;
}

Back to Top

InputPanel for WPF 17

Bind InputPanel to ObservableCollection

1. Add the following code to bind the InputPanel control with data using the ItemsSource property.
Visual Basic

InPanel.ItemsSource = Employee.GetEmployeeList(50)
C#

InPanel.ItemsSource = Employee.GetEmployeeList(50);
2. Press F5 to run the application.

Back to Top

Binding InputPanel with CollectionView
Collection binding can be implemented in InputPanel using ICollectionView, an interface with record management,
filtering, grouping, and sorting functionalities. To bind InputPanel to an ObservableCollection, InputPanel can be
bound to an object that implements the ICollectionView interface. In the following example, we have used the
ObservableCollection<T> class as a binding source to obtain the collection and the CollectionView class that
implements the ICollectionView interface to display the source collection. Later, bind the InputPanel control to the
ICollectionView using the ItemsSource property of the C1InputPanel class.

Perform the following steps for data binding using ICollectionView:

1. Set up the application
2. Create a data source for InputPanel
3. Bind InputPanel to ICollectionView

Set up the application

1. Create a WPF application.
2. Add InputPanel control to the application and name it 'InPanel'.

Back to Top

Create a data source for InputPanel

1. Add a new class, Product, to the application.
2. Add the following fields to the class.

Visual Basic
Shared lines As String() = "Computers|Washers|Stoves".Split("|"c)
Shared colors As String() = "Red|Green|Blue|White".Split("|"c)

C#
static string[] lines = "Computers|Washers|Stoves".Split('|');
static string[] colors = "Red|Green|Blue|White".Split('|');

3. Add the following properties and methods to the class.
Visual Basic

Public Property Line() As String
 Get
 Return DirectCast(GetValue("Line"), String)
 End Get
 Set(value As String)
 SetValue("Line", value)
 End Set
End Property

Public Property Color() As String
 Get

InputPanel for WPF 18

 Return DirectCast(GetValue("Color"), String)
 End Get
 Set(value As String)
 SetValue("Color", value)
 End Set
End Property

Public Property Name() As String
 Get
 Return DirectCast(GetValue("Name"), String)
 End Get
 Set(value As String)
 SetValue("Name", value)
 End Set
End Property

Public Property Price() As Double
 Get
 Return CDbl(GetValue("Price"))
 End Get
 Set(value As Double)
 SetValue("Price", value)
 End Set
End Property

Public Property Weight() As Double
 Get
 Return CDbl(GetValue("Weight"))
 End Get
 Set(value As Double)
 SetValue("Weight", value)
 End Set
End Property

Public Property Cost() As Double
 Get
 Return CDbl(GetValue("Cost"))
 End Get
 Set(value As Double)
 SetValue("Cost", value)
 End Set
End Property

Public Property Volume() As Double
 Get
 Return CDbl(GetValue("Volume"))
 End Get
 Set(value As Double)
 SetValue("Volume", value)
 End Set
End Property

Public Property Discontinued() As Boolean
 Get
 Return CBool(GetValue("Discontinued"))
 End Get

InputPanel for WPF 19

 Set(value As Boolean)
 SetValue("Discontinued", value)
 End Set
End Property

Public Property Rating() As Integer
 Get
 Return CInt(GetValue("Rating"))
 End Get
 Set(value As Integer)
 SetValue("Rating", value)
 End Set
End Property

' get/set values
Private values As New Dictionary(Of String, Object)()
Private Function GetValue(p As String) As Object
 Dim value As Object
 values.TryGetValue(p, value)
 Return value
End Function
Private Sub SetValue(p As String, value As Object)
 If Not Object.Equals(value, GetValue(p)) Then
 values(p) = value
 OnPropertyChanged(p)
 End If
End Sub
Public Shared Function GetLines() As String()
 Return lines
End Function

C#
[Display(Name = "Line")]
public string Line
{
 get { return (string)GetValue("Line"); }
 set { SetValue("Line", value); }
}

[Display(Name = "Color")]
public string Color
{
 get { return (string)GetValue("Color"); }
 set { SetValue("Color", value); }
}

[Display(Name = "Name")]
public string Name
{
 get { return (string)GetValue("Name"); }
 set { SetValue("Name", value); }
}

[Display(Name = "Price")]
public double Price
{
 get { return (double)GetValue("Price"); }
 set { SetValue("Price", value); }
}

[Display(Name = "Weight")]
public double Weight

InputPanel for WPF 20

{
 get { return (double)GetValue("Weight"); }
 set { SetValue("Weight", value); }
}

[Display(Name = "Cost")]
public double Cost
{
 get { return (double)GetValue("Cost"); }
 set { SetValue("Cost", value); }
}

[Display(Name = "Volume")]
public double Volume
{
 get { return (double)GetValue("Volume"); }
 set { SetValue("Volume", value); }
}

[Display(Name = "Discontinued")]
public bool Discontinued
{
 get { return (bool)GetValue("Discontinued"); }
 set { SetValue("Discontinued", value); }
}

[Display(Name = "Rating")]
public int Rating
{
 get { return (int)GetValue("Rating"); }
 set { SetValue("Rating", value); }
}

// get/set values
Dictionary<string, object> values = new Dictionary<string, object>();
object GetValue(string p)
{
 object value;
 values.TryGetValue(p, out value);
 return value;
}
void SetValue(string p, object value)
{
 if (!object.Equals(value, GetValue(p)))
 {
 values[p] = value;
 OnPropertyChanged(p);
 }
}
protected virtual void OnPropertyChanged(string p)
{
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(p));
}

public static string[] GetLines()
{
 return lines;
}

4. Create a method, GetProducts, of IEnumerable interface using the following code.
Visual Basic

Public Shared Function GetProducts(count As Integer) As IEnumerable

InputPanel for WPF 21

 Dim list = New ObservableCollection(Of Products)()

 Dim rnd = New Random(0)
 For i As Integer = 0 To count - 1
 Dim p = New Products()
 p.Line = lines(rnd.[Next]() Mod lines.Length)
 p.Color = colors(rnd.[Next]() Mod colors.Length)
 p.Name = _
 String.Format("{0} {1}{2}", _
 p.Line.Substring(0, p.Line.Length - 1), _
 p.Line(0), i)
 p.Price = (rnd.[Next](1, 1000) + _
 rnd.[Next](1, 1000) + _
 rnd.[Next](1, 1000)) / 3
 p.Weight = (rnd.[Next](1, 100) + _
 rnd.[Next](1, 100) + _
 rnd.[Next](1, 300)) / 5
 p.Cost = rnd.[Next](1, 600)
 p.Volume = rnd.[Next](500, 5000)
 p.Discontinued = rnd.NextDouble() < 0.1
 p.Rating = rnd.[Next](0, 5)
 list.Add(p)
 Next
 Return list
End Function

C#
public static IEnumerable GetProducts(int count)
{
 var list = new ObservableCollection<Products>();

 var rnd = new Random(0);
 for (int i = 0; i < count; i++)
 {
 var p = new Products();
 p.Line = lines[rnd.Next() % lines.Length];
 p.Color = colors[rnd.Next() % colors.Length];
 p.Name = string.Format("{0} {1}{2}",
 p.Line.Substring(0, p.Line.Length - 1), p.Line[0], i);
 p.Price = (rnd.Next(1, 1000) + rnd.Next(1, 1000) + rnd.Next(1, 1000)) / 3;
 p.Weight = (rnd.Next(1, 100) + rnd.Next(1, 100) + rnd.Next(1, 300)) / 5;
 p.Cost = rnd.Next(1, 600);
 p.Volume = rnd.Next(500, 5000);
 p.Discontinued = rnd.NextDouble() < .1;
 p.Rating = rnd.Next(0, 5);
 list.Add(p);
 }
 return list;
}

5. Add the following code to create a property, CustomerCollectionView, of ICollectionView interface which uses
the C1CollectionView class to display the source collection.

Visual Basic
Private Shared view As ICollectionView
Public Shared ReadOnly Property _
 CustomerCollectionView() As ICollectionView
 Get
 If view Is Nothing Then
 Dim products__1 = Products.GetProducts(50)
 view = New CollectionView(products__1)
 End If
 Return view
 End Get

InputPanel for WPF 22

End Property
C#

private static ICollectionView view;
public static ICollectionView
 CustomerCollectionView
{
 get
 {
 if (view == null)
 {
 var products = Products.GetProducts(50);
 view = new CollectionView(products);
 }
 return view;
 }
}

Back to Top

Bind InputPanel to ICollectionView

1. Add the following code to bind the InputPanel control with data using the ItemsSource property.
Visual Basic

InPanel.ItemsSource = CustomerCollectionView
C#

InPanel.ItemsSource = CustomerCollectionView;
2. Press F5 to run the application.

Back to Top

Binding InputPanel with DataTable
InputPanel supports data binding through data tables. You can create a data table using the standard DataTable class and
bind it to the InputPanel control by setting the ItemsSource property.

Complete the following steps to bind InputPanel to data through data table.

1. Set up the application
2. Create a data table to bind with InputPanel
3. Bind the data table to InputPanel

Set up the application

1. Create a WPF application.
2. Add the InputPanel control and name it InPanel.

Back to Top

Create a data table to bind with InputPanel

1. Add a new class, Employee, to the application.
2. Add the following import statement.

Visual Basic
Imports System.Data

C#
using System.Data;

3. Create an object, employee, of DataTable class.
Visual Basic

'Create a data table
Private _employees As DataTable = Nothing

InputPanel for WPF 23

C#
//Create a data table
private DataTable employees = null;

4. Add data fields to be added in the table.
Visual Basic

'Add data fields
Shared _rnd As New Random()
Shared _firstNames As String() = "Andy|Ben|Charlie|Dan|Ed|Fred|Gil".Split("|"c)
Shared _lastNames As String() = "Ambers|Bishop|Cole|Danson|Evers|Trask|Ulam".Split("|"c)
Shared _countries As String() = "China|India|United States|Japan|Myanmar".Split("|"c)

C#
//Add data fields
static Random _rnd = new Random();
static string[] _firstNames = "Andy|Ben|Charlie|Dan|Ed|Fred|Gil".Split('|');
static string[] _lastNames = "Ambers|Bishop|Cole|Danson|Evers|Trask|Ulam".Split('|');
static string[] _countries = "China|India|United States|Japan|Myanmar".Split('|');

5. Add class definition to assign fields to the data table.
Visual Basic

'Initialize data table
Public ReadOnly Property Employees() As DataTable
 Get
 If _employees Is Nothing Then
 _employees = New DataTable("Employees")
 _employees.Columns.Add("ID", System.Type.[GetType]("System.String"))
 _employees.Columns.Add("FirstName", System.Type.[GetType]("System.String"))
 _employees.Columns.Add("LastName", System.Type.[GetType]("System.String"))
 _employees.Columns.Add("Countries", System.Type.[GetType]("System.String"))
 _employees.Columns.Add("BirthDate", System.Type.[GetType]("System.DateTime"))

 For row As Integer = 0 To 9
 Dim dRow As DataRow = _employees.NewRow()
 dRow("ID") = _rnd.[Next](100000, 999999).ToString()
 dRow("FirstName") = _firstNames(_rnd.[Next](_firstNames.Length))
 dRow("LastName") = _lastNames(_rnd.[Next](_lastNames.Length))
 dRow("Countries") = _countries(_rnd.[Next](_countries.Length))

 dRow("BirthDate") =
 DateTime.Today.AddDays(-_rnd.[Next](1, 365))
 _employees.Rows.Add(dRow)
 Next
 End If
 Return _employees
 End Get
End Property

C#
//Initialize data table
public DataTable Employees
{
 get
 {
 if (employees == null)
 {
 employees = new DataTable("Employees");
 employees.Columns.Add("ID",
 System.Type.GetType("System.String"));
 employees.Columns.Add("FirstName",
 System.Type.GetType("System.String"));
 employees.Columns.Add("LastName",
 System.Type.GetType("System.String"));
 employees.Columns.Add("Countries",
 System.Type.GetType("System.String"));
 employees.Columns.Add("BirthDate",
 System.Type.GetType("System.DateTime"));

 for (int row = 0; row < 10; row++)

InputPanel for WPF 24

 {
 DataRow dRow = employees.NewRow();
 dRow["ID"] = _rnd.Next(100000, 999999).ToString();
 dRow["FirstName"] = _firstNames[_rnd.Next(_firstNames.Length)];
 dRow["LastName"] = _lastNames[_rnd.Next(_lastNames.Length)];
 dRow["Countries"] = _countries[_rnd.Next(_countries.Length)]; ;
 dRow["BirthDate"] = DateTime.Today.AddDays(-_rnd.Next(1, 365));
 employees.Rows.Add(dRow);
 }
 }
 return employees;
 }
}

Back to Top

Bind the data table to InputPanel

1. Set the ItemsSource property in XAML view to bind InputPanel with the data table.
XAML

<c1:C1InputPanel Name="InPanel" ItemsSource="{Binding Employees}"/>

2. Switch to the MainWindow.xaml.cs file and set the DataContext property.
Visual Basic

'Set data context
Me.DataContext = New EmployeeDataContext()

C#
//Set data context
this.DataContext = new Employee();

Back to Top

copyCode

InputPanel for WPF 25

Features
Features section comprises all the features available in the InputPanel control.

Add, edit, and delete records
Learn how to add, edit, and delete records.

Record navigation
Learn about the display modes provided by record navigation.

Auto-generate fields
Learn how to generate fields automatically in code.

Auto-commit data
Learn how to automatically save data using code.

Custom template
Learn how to create a custom template.

Keyboard navigation
Learn about the Keyboard keys used for navigation and editing.

Add, Edit, and Delete Records
InputPanel control comes with the Add and Delete buttons at the top right of the control. The Add button allows you
to insert a new record into the collection of records and the Delete button allows you to delete the currently displayed
record in a single click. The following image shows the Add and Delete buttons available in the InputPanel control.

InputPanel also allows you to edit the records, however, the control does not provide any dedicated button for
editing. You can simply select a field in the displayed record and edit the content in it.

InputPanel allows you to set the visibility of the Add button through the AddButtonVisibility property and Delete
button through the DeleteButtonVisibility property of the C1InputPanel class. By default, the visibility of
these buttons is set to true, however, you can hide these buttons using the following code:

InPanel.AddButtonVisibility = Visibility.Collapsed
InPanel.DeleteButtonVisibility = Visibility.Collapsed

InPanel.AddButtonVisibility = Visibility.Collapsed;
InPanel.DeleteButtonVisibility = Visibility.Collapsed;

Visual Basic

C#

Record Navigation
InputPanel provides record navigation for making it easy to scroll through the records without any code
implementation. InputPanel navigation enables movement to the first, previous, next, and last record of a collection. It

InputPanel for WPF 26

also allows you to jump to a particular record by entering the specific record number. The following image shows the
navigation buttons available in the InputPanel control.

The following table provides information about the navigation buttons and options provided by the InputPanel
control:

Name Description

First Moves to the first record.

Previous Moves to the previous record.

Current Record Shows the current record number.

Total Records Shows the total number of records that can be displayed.

Next Moves to the next record.

Last Moves to the last record.

InputPanel allows you to set the visibility of the navigation panel through the DataPagerVisibility property
of the C1InputPanel class. By default, the visibility of the panel is set to Visible, however, you can hide the panel using
the following code:

InPanel.DataPagerVisibility = Visibility.Collapsed

InPanel.DataPagerVisibility = Visibility.Collapsed;

Visual Basic

C#

Auto-generate Fields
InputPanel fields are automatically generated on the basis of data type of a particular field. Auto-generation of fields
in InputPanel is supported through the AutoGenerate property of the C1InputPanel class, which is set to true by
default. However, you can set the value of the AutoGenerate property to false if you want to create the fields on your
own.

You can set the value of AutoGenerate property in XAML as well as code view.

In XAML

To set the value of the AutoGenerate property in XAML view, use the following code.

XAML

InputPanel for WPF 27

<InputPanel:C1InputPanel x:Name="InPanel" AutoGenerate="False"/>

In Code

To set the value of the AutoGenerate property in code view, use the following code.

InPanel.AutoGenerate = False

InPanel.AutoGenerate = false;

Visual Basic

C#

Auto-commit Data
InputPanel allows you to automatically save the data without having to click the OK button. The auto-commit feature
is supported in InputPanel through the AutoCommit property of the C1InputPanel class, which automatically saves the
data after every input and is set to true by default. However, you can set the AutoCommit property to false for saving
the edits after some confirmation or on clicking the OK button.

You can set the value of AutoCommit property in XAML as well as code view.

In XAML

To set the value of the AutoCommit property in XAML view, use the following code.

XAML

<InputPanel:C1InputPanel x:Name="InPanel" AutoCommit="False"/>

In Code

To set the value of the AutoCommit property in code view, use the following code.

InPanel.AutoCommit = False

InPanel.AutoCommit = false;

Visual Basic

C#

InputPanel for WPF 28

Data Validation
InputPanel comes with data validation support to provide users the ability to check invalid user input. The
control supports built-in validation, which is performed when invalid or contradictory data is entered in an input field
and is committed. For every invalid/inaccurate input, the InputPanel control displays a red frame around the input
field as a visual alert.

The image given below illustrates an example where entering an invalid input in one of the input fields shows a visual
alert.

The built-in validation provides very basic input checking functionality to users. However, to apply validation
in complex scenarios, the control supports property level validation through standard and custom attribute markup.
You can apply the markup in code to validate data in diverse scenarios, such as checking for unnecessary spaces, null
values, or special characters in text, or putting limits on the age being entered in a numeric. In addition, InputPanel
provides an event to apply validation rules.

Here is how you can use validate user input in InputPanel.

Property level validation
Learn how to implement property level validation in code.

Data validation through event
Learn how to apply different transformations in code.

Property Level Validation
InputPanel provides property level validation for validating user input in scenarios where built-in validation fails or remains
insufficient. In this type of validation, data validation rules are specified inside the property setter code. InputPanel supports two
types of markup to implement property level validation.

Standard attribute markup
Custom markup

The following image shows property level validation on entering invalid inputs.

InputPanel for WPF 29

Standard attribute markup

You can apply property level validation on user input by adding standard attribute markup inside the property setter code in the
application. The control directly uses classes available in System.ComponentModel.DataAnnotations assembly to access this
markup.

The following code illustrates adding standard attribute markup inside property setter code to apply validation. This example
uses the sample created in the Quick start.

Visual Basic

 <DisplayName("FirstName")>
 <Required(ErrorMessage:="This field cannot be empty.")>
 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set(value As String)
 m_Name = value
 End Set
 End Property

 <DisplayName("PhoneNumber")>
<Required(ErrorMessage:="This field cannot be empty.")>
 Public Property Phone() As String
 Get
 Return m_Phone
 End Get
 Set(value As String)
 m_Phone = value
 End Set
 End Property

C#

[DisplayName("First Name")]
[Required(ErrorMessage = "This field cannot be empty.")]
public string Name { get; set; }

[DisplayName("Phone Number")]
[Required(ErrorMessage = "This field cannot be empty.")]
public string Phone { get; set; }

InputPanel for WPF 30

Custom markup

InputPanel also supports custom markup for achieving property level validation. Custom markup is useful in scenarios
where users want to customize the validation rules as per their business needs. In addition, custom markup lets you combine
multiple validation rules on an input field. For instance, custom markup allows validating Phone Number for null or white
spaces as well as for minimum and maximum length in a single validation rule.

The steps given below illustrate creating and applying custom markup in code for property level validation. This example uses
the sample created in the Quick start.

1. Create a class, CustomValidator, and define validation rules to check for null values or white spaces as well as minimum
and maximum length of the Phone Number field.

Visual Basic
Public Class CustomValidator
 Public Shared Function ValidatePhoneNumber(PhoneNumber As String) As ValidationResult
 If String.IsNullOrWhiteSpace(PhoneNumber) Then
 Return New ValidationResult("Phone number cannot be none.",
 New List(Of String)() From { _
 "Phone" _
 })
 ElseIf PhoneNumber.Length > 12 OrElse PhoneNumber.Length < 9 Then
 Return New ValidationResult("Phone number should be more than" +
 " 8 digits and less than 12 digits.",
 New List(Of String)() From { _
 "Phone" _
 })
 Else

 Return ValidationResult.Success
 End If
 End Function
End Class

C#
public class CustomValidator
{
 public static ValidationResult
 ValidatePhoneNumber(string PhoneNumber)
 {
 if (string.IsNullOrWhiteSpace(PhoneNumber))
 {
 return new ValidationResult("Phone number cannot be none.",
 new List<string>() { "Phone" });
 }
 else if (PhoneNumber.Length > 12 || PhoneNumber.Length < 9)
 {
 return new ValidationResult
 ("Phone number should be more than 8 and less than 12 digits.",
 new List<string>() { "Phone" });
 }

 else
 {
 return ValidationResult.Success;
 }
 }
}

2. Add the custom markup in the property setter code to validate the input entered in Phone Number field.
Visual Basic

 <DisplayName("PhoneNumber")>
<CustomValidation(GetType(CustomValidator), "ValidatePhoneNumber")>
 Public Property Phone() As String
 Get
 Return m_Phone
 End Get
 Set(value As String)
 m_Phone = value

InputPanel for WPF 31

 End Set
 End Property

C#
[DisplayName("Phone Number")]
[CustomValidation(typeof(CustomValidator), "ValidatePhoneNumber")]
public string Phone { get; set; }
public int Salary { get; set; }

Data Validation through Event
InputPanel provides another way of handling input validation through event. The control comes with
the ValidateCurrentItem event that can be used for validating user input.

The following image shows validation applied through event.

To implement data validation through event, subscribe the ValidateCurrentItem event in code and add validation
rules in the event handler. The following code shows how to apply validation using event. This example uses the
sample created in the Quick start.

Visual Basic

Private Sub InPanel_ValidateCurrentItem(sender As Object, e As CancelEventArgs) _
 Handles InPanel.ValidateCurrentItem
 Dim inputPanel As C1InputPanel = TryCast(sender, C1InputPanel)
 Dim customer As Customer = TryCast(inputPanel.CurrentItem, Customer)

 If customer IsNot Nothing Then
 Dim errorList = New ObservableCollection(Of ErrorInfo)()

 If customer.Name IsNot Nothing AndAlso _
 String.IsNullOrWhiteSpace(customer.Name.ToString()) Then
 errorList.Add(New ErrorInfo() With { _
 .ErrorInputName = "Name", _
 .ErrorContent = "This field cannot be empty" _
 })
 End If

InputPanel for WPF 32

 If customer.Weight > 110 Then
 errorList.Add(New ErrorInfo() With { _
 .ErrorInputName = "Weight", _
 .ErrorContent = "Value out of range." _
 })
 End If
 inputPanel.ValidationErrors = errorList
 If errorList.Count > 0 Then
 e.Cancel = True
 End If
 End If
End Sub

C#

private void InPanel_ValidateCurrentItem
 (object sender, System.ComponentModel.CancelEventArgs e)
{
 C1InputPanel inputPanel = sender as C1InputPanel;
 Customer customer = inputPanel.CurrentItem as Customer;

 if (customer != null)
 {
 var errorList = new ObservableCollection<ErrorInfo>();

 if (customer.Name != null &&
 string.IsNullOrWhiteSpace(customer.Name.ToString()))
 {
 errorList.Add(new ErrorInfo { ErrorInputName = "Name",
 ErrorContent = "This field cannot be empty." });
 }
 if (customer.Weight > 110)
 {
 errorList.Add(new ErrorInfo { ErrorInputName = "Weight",
 ErrorContent = "Value out of range." });
 }
 inputPanel.ValidationErrors = errorList;
 if (errorList.Count > 0)
 {
 e.Cancel = true;
 }
 }
}

Custom Template
InputPanel provides the flexibility to create custom template to change the layout of the control according to user
requirements. By creating a custom template, you can develop compact and visually-appealing forms that
match your application. InputPanel provides DataTemplate to define a custom layout and change the way the control
appears.

The following image shows a custom template applied to the InputPanel control.

InputPanel for WPF 33

You can create a custom template using DataTemplate to change the layout of the control using the following steps.
This example uses the sample created in Quick start. In this example, a data template is created that contains a
StackPanel comprising two StackPanels with horizontal orientation. These two inner StackPanels consists horizontally-
aligned editors while the outer StackPanel consists vertically-aligned editors. InputPanel accesses this data template
through the ItemsSource property.

The example also showcases the customization of InputPanel header template using the HeaderTemplate property
of the C1InputPanel class.

By default, all the editors in InputPanel are stacked vertically. To change the alignment of editors, set
the AutoGenerate property to false.

1. Add the following code inside the <UserControl.Resources></UserControl.Resources> tags to create a
custom data template with various editors stacked vertically and horizontally.
XAML

<UserControl.Resources>
 <DataTemplate x:Key="Template">
 <StackPanel Background="AliceBlue">
 <StackPanel Orientation="Horizontal">
 <c1:C1InputTextBox Header="ID" DataBinding="{Binding ID,
Mode=OneWay}"
 IsReadOnly="True" LabelForeground="{Binding LabelForeground,
 ElementName=InPanel}">
 </c1:C1InputTextBox>
 <c1:C1InputTextBox Header="Country" DataBinding="{Binding
Country,
 Mode=TwoWay, UpdateSourceTrigger=PropertyChanged}"
 IsReadOnly="{Binding IsReadOnly, ElementName=InPanel}"
 LabelForeground="{Binding LabelForeground,
ElementName=InPanel}">
 </c1:C1InputTextBox>
 </StackPanel>
 <c1:C1InputTextBox Header="Name" DataBinding="{Binding Name,
Mode=OneWay}"
 IsReadOnly="True" LabelForeground="{Binding LabelForeground,
 ElementName=InPanel}"></c1:C1InputTextBox>
 <c1:C1InputMaskedTextBox Header="Phone" DataBinding="{Binding Phone,
Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}"

copyCode

InputPanel for WPF 34

 IsReadOnly="{Binding IsReadOnly, ElementName=InPanel}"
 LabelForeground="{Binding LabelForeground, ElementName=InPanel}">
 </c1:C1InputMaskedTextBox>
 <c1:C1InputTextBox Header="Occupation" DataBinding="{Binding
Occupation,
 Mode=TwoWay, UpdateSourceTrigger=PropertyChanged}"
 IsReadOnly="{Binding IsReadOnly, ElementName=InPanel}"
 LabelForeground="{Binding LabelForeground, ElementName=InPanel}">
 </c1:C1InputTextBox>
 <StackPanel Orientation="Horizontal">
 <c1:C1InputNumericBox Header="Weight" DataBinding="{Binding
Weight,
 Mode=TwoWay, UpdateSourceTrigger=PropertyChanged}"
 IsReadOnly="{Binding IsReadOnly, ElementName=InPanel}"
 LabelForeground="{Binding LabelForeground,
ElementName=InPanel}">
 </c1:C1InputNumericBox>
 <c1:C1InputNumericBox Header="Age" DataBinding="{Binding Age,
Mode=TwoWay,
 UpdateSourceTrigger=PropertyChanged}"
 IsReadOnly="{Binding IsReadOnly, ElementName=InPanel}"
 LabelForeground="{Binding LabelForeground,
ElementName=InPanel}">
 </c1:C1InputNumericBox>
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 <ItemsPanelTemplate x:Key="ItemsPanel">
 <StackPanel Orientation="Vertical" Margin="20"/>
 </ItemsPanelTemplate>
</UserControl.Resources>

2. Add the following code inside the <Grid></Grid> tags to customize the InputPanel and header template.
XAML

<Grid>
 <c1:C1InputPanel x:Name="InPanel" AutoGenerate="False"
 ItemsTemplate="{StaticResource Template}"
 ItemsPanelTemplate="{StaticResource ItemsPanel}"
 HeaderBackground="LightCyan" HeaderFontWeight="Bold"
 Margin="20,40,150,286">
 <c1:C1InputPanel.HeaderTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Text="Custom Template" Margin="6"
 Foreground="DarkViolet" />
 </StackPanel>
 </DataTemplate>
 </c1:C1InputPanel.HeaderTemplate>
 </c1:C1InputPanel>
</Grid>

copyCode

InputPanel for WPF 35

Keyboard Navigation
InputPanel provides keyboard support that can be used to navigate through the records. The keyboard navigation
keys can replace the use of mouse by allowing you to edit and navigate through the records. The keys and their
corresponding actions are listed below:

Keys Actions

Left key Navigates to the previous item.

Right key Navigates to the next items.

Ctrl + Home, Ctrl+Left arrow Moves the current item to the first position.

Ctrl + End, Ctrl+Right arrow Moves the current item to the last position.

Insert Adds a new record.

Enter Commits the edit operation.

Escape Cancels the edit operation.

Delete Deletes the current record.

InputPanel for WPF 36

Working with InputPanel
Working with InputPanel section assumes that you are familiar with the basics and features of the InputPanel control
and know how to use it in general. The following section provides information on auxiliary functionality offered by
InputPanel.

Integrating InputPanel with Grids
Learn how to integrate InputPanel with different types of data grids in code.

Integration with Grids
InputPanel supports seamless integration with grid controls including MS DataGrid and ComponentOne's FlexGrid and DataGrid. These
grid controls come with a baked-in data template, RowDetailsTemplate, which can be used to embed UI elements within a collapsible
section for each row. Using this template, the InputPanel can be embedded to display the details of each row in a compact layout. You can
interact with the template in XAML view, and set its binding in code to implement integration. In this section, we discuss how InputPanel
can be integrated in FlexGrid control.

The following image shows an InputPanel integrated with a FlexGrid (C1FlexGrid).

To integrate InputPanel with ComponentOne FlexGrid

Step 1: Set up the application
Step 2:Create a data source
Step 3:Integrate InputPanel with FlexGrid

Back to Top

Step 1: Set up the application

1. Create a WPF application and add the InputPanel control onto the designer.
2. Add C1.WPF.DataGrid dll in the References folder of your application.
3. Initialize the RowDetailsTemplate of the grid in XAML view and set binding property as illustrated.

XAML

<c1:C1FlexGrid Name="flexgrid">

copyCode

InputPanel for WPF 37

http://helpcentral.componentone.com/nethelp/C1datagridWPF/RowDetailsTemplate.html
http://helpcentral.componentone.com/nethelp/C1FlexGridWPFSilv/C1.WPF.FlexGrid.4~C1.WPF.FlexGrid.C1FlexGrid.html
http://helpcentral.componentone.com/nethelp/C1datagridWPF/C1.WPF.DataGrid.4~C1.WPF.DataGrid.C1DataGrid~RowDetailsTemplate.html

 <c1:C1FlexGrid.RowDetailsTemplate>
 <DataTemplate>
 <c1:C1InputPanel CurrentItem="{Binding .}"/>
 </DataTemplate>
 </c1:C1FlexGrid.RowDetailsTemplate>
</c1:C1FlexGrid>

Step 2: Create a data source

1. Create a Customer class to add records into the InputPanel, and an enumeration to accept values for Occupation field.
Visual Basic

Public Class Customer
 Public Property ID() As String
 Get
 Return m_ID
 End Get
 Set
 m_ID = Value
 End Set
 End Property
 Private m_ID As String
 Public Property Country() As String
 Get
 Return m_Country
 End Get
 Set
 m_Country = Value
 End Set
 End Property
 Private m_Country As String

 Public Property Name() As String
 Get
 Return m_Name
 End Get
 Set
 m_Name = Value
 End Set
 End Property
 Private m_Name As String

 Public Property Age() As Integer
 Get
 Return m_Age
 End Get
 Set
 m_Age = Value
 End Set
 End Property
 Private m_Age As Integer
 Public Property Weight() As Double
 Get
 Return m_Weight
 End Get
 Set
 m_Weight = Value
 End Set
 End Property
 Private m_Weight As Double
 Public Property Occupation() As Occupation
 Get
 Return m_Occupation
 End Get
 Set
 m_Occupation = Value
 End Set
 End Property
 Private m_Occupation As Occupation
 Public Property Phone() As String
 Get

InputPanel for WPF 38

 Return m_Phone
 End Get
 Set
 m_Phone = Value
 End Set
 End Property
 Private m_Phone As String
 Public Property Salary() As Integer
 Get
 Return m_Salary
 End Get
 Set
 m_Salary = Value
 End Set
 End Property
 Private m_Salary As Integer

 Public Sub New(id As String, country As String, name As String,
 age As Integer, weight As Double, occupation As Occupation,
 phone As String, salary As Integer)
 Me.ID = id
 Me.Country = country
 Me.Name = name
 Me.Age = age
 Me.Weight = weight
 Me.Occupation = occupation
 Me.Phone = phone
 Me.Salary = salary
 End Sub
End Class

Public Enum Occupation
 Doctor
 Artist
 Educator
 Engineer
 Executive
 Other
End Enum

C#
public class Customer
{
 public string ID { get; set; }
 public string Country { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }
 public double Weight { get; set; }
 public Occupation Occupation { get; set; }
 public string Phone { get; set; }
 public int Salary { get; set; }

 public Customer(string id, string country, string name,
 int age, double weight, Occupation occupation, string phone, int salary)
 {
 this.ID = id;
 this.Country = country;
 this.Name = name;
 this.Age = age;
 this.Weight = weight;
 this.Occupation = occupation;
 this.Phone = phone;
 this.Salary = salary;
 }
}
public enum Occupation
{
 Doctor,
 Artist,
 Educator,
 Engineer,

InputPanel for WPF 39

 Executive,
 Other
}

2. Switch to the MainWindow.xaml.cs file and add the following code to create a collection of records in the class constructor.
Visual Basic

Dim data As New List(Of Customer)()
data.Add(New Customer("100001", "United States", "Jack Danson", 40, 102.03, Occupation.Executive,
"1371234567", 400000000))
data.Add(New Customer("100002", "China", "Tony Tian", 32, 82.2, Occupation.Engineer,
"1768423846", 500))
data.Add(New Customer("100003", "Iran", "Larry Frommer", 15, 40.432, Occupation.Artist,
"8473637486", 600))
data.Add(New Customer("100004", "Germany", "Charlie Krause", 26, 69.32, Occupation.Doctor,
"675245438", 700))
data.Add(New Customer("100005", "India", "Mark Ambers", 51, 75.45, Occupation.Other,
"1673643842", 800))

C#
List<Customer> data = new List<Customer>();
data.Add(new Customer("100001", "United States", "Jack Danson",
 40, 102.03, Occupation.Executive, "1371234567", 400000000));
data.Add(new Customer("100002", "China", "Tony Tian",
 32, 82.2, Occupation.Engineer, "1768423846", 500));
data.Add(new Customer("100003", "Iran", "Larry Frommer",
 15, 40.432, Occupation.Artist, "8473637486", 600));
data.Add(new Customer("100004", "Germany", "Charlie Krause",
 26, 69.32, Occupation.Doctor, "675245438", 700));
data.Add(new Customer("100005", "India", "Mark Ambers",
 51, 75.45, Occupation.Other, "1673643842", 800));

Back to Top

Step 3: Integrate InputPanel with FlexGrid

1. To integrate the InputPanel with FlexGrid, set the ItemsSource property of the grid to the collection in the class constructor.
Visual Basic

flexgrid.ItemsSource = data
C#

flexgrid.ItemsSource = data.ToList<Customer>();

Back to Top

Similarly, you can integrate InputPanel with MS DataGrid and ComponentOne DataGrid using RowDetailTemplate property.

InputPanel for WPF 40

http://helpcentral.componentone.com/nethelp/C1FlexGridWPFSilv/C1.WPF.FlexGrid.4~C1.WPF.FlexGrid.C1FlexGrid~ItemsSource.html
https://msdn.microsoft.com/en-us/library/ee340710(v=vs.110).aspx
http://helpcentral.componentone.com/nethelp/C1datagridWPF/DataGrid-for-WPF-Silverlight-Overview.html
https://msdn.microsoft.com/en-us/library/system.windows.controls.datagrid.rowdetailstemplate(v=vs.110).aspx

Input Panel Samples
With the C1Studio installer, you get InputPanel samples that help you understand the implementation of the
product. A C# sample is available at the default installation folder:
Documents\ComponentOne Samples\WPF\C1.WPF.InputPanel\CS

Sample Description

InputPanelSamples This sample demonstrates an example of binding data to InputPanel in code.

InputPanel for WPF 41

	Table of Contents
	InputPanel for WPF
	Help with WPF Edition

	Key Features
	Object Model Summary
	InputPanel Elements
	InputPanel Editors
	Quick Start
	Data Binding
	Binding InputPanel with ObservableCollection
	Binding InputPanel with CollectionView
	Binding InputPanel with DataTable

	Features
	Add, Edit, and Delete Records
	Record Navigation
	Auto-generate Fields
	Auto-commit Data
	Data Validation
	Property Level Validation
	Data Validation through Event

	Custom Template
	Keyboard Navigation

	Working with InputPanel
	Integration with Grids

	Input Panel Samples

