

ComponentOne

MaskedTextBox for WPF

Copyright  1987-2012 GrapeCity, Inc. All rights reserved.

ComponentOne, a division of GrapeCity

201 South Highland Avenue, Third Floor

Pittsburgh, PA 15206 • USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other
trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne MaskedTextBox for WPF Overview ...1

Help with ComponentOne Studio for WPF .. 1

Key Features ..1

MaskedTextBox for WPF Quick Start..3

Step 1 of 4: Setting up the Application ... 3

Step 2 of 4: Customizing the Application .. 4

Step 3 of 4: Adding Code to the Application ... 4

Step 4 of 4: Running the Application ... 6

About C1MaskedTextBox ...9

Basic Properties .. 9

Mask Formatting .. 9

Mask Elements ... 10

Literals .. 11

Prompts .. 11

Watermark ... 11

Layout and Appearance .. 12

Appearance Properties ... 12

Content Properties .. 12

Text Properties ... 12

Color Properties .. 13

Border Properties .. 13

Size Properties .. 13

ComponentOne ClearStyle Technology .. 14

How ClearStyle Works ... 14

ClearStyle Properties .. 14

Templates ... 14

XAML Elements .. 15

MaskedTextBox for WPF Samples .. 17

MaskedTextBox for WPF Task-Based Help ... 17

iv

Setting the Value .. 17

Adding a Mask for Currency ... 18

Changing the Prompt Character .. 19

Changing Font Type and Size .. 19

Locking the Control from Editing .. 20

 1

ComponentOne MaskedTextBox for

WPF Overview
Validate input in your WPF applications! ComponentOne

MaskedTextBox™ for WPF provides a text box with a mask that
automatically validates entered input, similar to the standard Microsoft

WinForms MaskedTextBox control.

For a list of the latest features added to ComponentOne Studio for

WPF, visit What's New in Studio for WPF.

 Getting Started

Get started with the
following topics:

- Key Features (page 1)

- Quick Start (page 3)

- Task-Based Help (page
17)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and

creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

Key Features
ComponentOne MaskedTextBox for WPF allows you to create customized, rich applications. Make the most of

MaskedTextBox for WPF by taking advantage of the following key features:

 Validate Data and Enhance Your UI

The ComponentOne masked text box control (C1MaskedTextBox) provides a text box with a mask that
automatically validates the input. The edit mask enhances the UI by preventing end-users from entering
invalid characters into the control. See Mask Formatting (page 9) for details and Adding a Mask for
Currency (page 18) for an example.

 Provide Clues to Prompt Users for Information

The masked text box control includes a Watermark property, which lets end-users know what type of
information is expected. See Watermark (page 11) for details.

 Easily Change Colors with ClearStyle

 C1MaskedTextBox supports ComponentOne ClearStyle™ technology which allows you to easily

change control brushes without having to override templates. By just setting a few brush properties in
Visual Studio you can quickly style the entire control. See ComponentOne ClearStyle Technology (page
14) for details.

http://www.componentone.com/SuperProducts/StudioWPF/What%27s+New/
http://helpcentral.componentone.com/nethelp/c1studiowpf/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

 3

MaskedTextBox for WPF Quick Start
The following quick start guide is intended to get you up and running with MaskedTextBox for WPF. In this

quick start you'll start in Visual Studio and create a new project, add MaskedTextBox for WPF controls to your
application, and customize the appearance and behavior of the controls.

You will create a simple form using several C1MaskedTextBox controls that will demonstrate the difference

between the Text and Value properties. The controls will include various masks and different appearance and

behavior settings so that you can explore the possibilities of using MaskedTextBox for WPF.

Step 1 of 4: Setting up the Application
In this step you'll begin in Visual Studio to create a WPF application using MaskedTextBox for WPF. When you
add a C1MaskedTextBox control to your application, you'll have a complete, functional input editor. You can

further customize the control to your application.

To set up your project and add C1MaskedTextBox controls to your application, complete the following steps:

1. Create a new WPF project in Visual Studio.

2. Resize the initial window by setting Window1's Width to "400".

3. Navigate to the Toolbox and double-click the C1MaskedTextBox icon to add the control to Window1.

Repeat this step 3 more times to add a total of 4 C1MaskedTextBox controls.

4. In the Toolbox, double-click the Label icon to add the control to Window1. Repeat this step 4 more times

to add a total of 5 standard Label controls.

5. Resize the controls and rearrange the controls on the window with the controls numbered smallest to

largest from top to bottom alternating Label and C1MaskedTextBox controls. Your application should

now appear similar to the following:

4

You've successfully created a WPF application and added C1MakedTextBox controls to the application. In the
next step you'll customize those controls and complete setting up the application.

Step 2 of 4: Customizing the Application
In the previous step you created a new WPF project and added four C1MaskedTextBox and five Label controls to

the application. In this step you'll continue by setting properties to customize those controls.

Complete the following steps:

1. In Design view, click once on the Label1 control to select it, navigate to the Properties window, and set its

Content property to "Employee Information".

2. Select each remaining Label control in turn, navigate to the Properties window, and set the following for

each:

 Delete the default "Label" text next to Content property.

 Set the FontSize property to "9".

3. Switch to XAML view and customize C1MaskedTextBox1 by adding Watermark="Name" to the

<c1:C1MaskedTextBox> tag so it appears similar to the following:
<c1:C1MaskedTextBox Height="23" Margin="21,46,167,0"

Name="C1MaskedTextBox1" VerticalAlignment="Top" Watermark="Name" />

This will add a watermark to the control.

4. Switch to XAML view and customize C1MaskedTextBox2 by adding Watermark="Employee ID"

Mask="000-00-0000" to the <c1:C1MaskedTextBox> tag so it appears similar to the following:
<c1:C1MaskedTextBox Margin="14,98,12,0" Name="C1MaskedTextBox2"

Height="23" VerticalAlignment="Top" Watermark="Employee ID" Mask="000-

00-0000" />

This will add a watermark and mask to the control.

5. Switch to XAML view and customize C1MaskedTextBox3 by adding Watermark="Hire Date"

Mask="00/00/0000" to the <c1:C1MaskedTextBox> tag so it appears similar to the following:
<c1:C1MaskedTextBox Height="23" Margin="14,0,12,87"

Name="C1MaskedTextBox3" VerticalAlignment="Bottom" Watermark="Hire

Date" Mask="00/00/0000"/>

This will add a watermark and mask to the control.

6. Switch to XAML view and customize C1MaskedTextBox4 by adding Watermark="Phone Number"

Mask="(999) 000-0000" to the <c1:C1MaskedTextBox> tag so it appears similar to the following:
<my:C1MaskedTextBox Height="23" Margin="14,0,12,33"

Name="C1MaskedTextBox4" VerticalAlignment="Bottom" Watermark="Phone

Number" Mask="(999) 000-0000"/>

This will add a watermark and mask to the control.

You've successfully set up your application's user interface. In the next step you'll add code to your application.

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added controls to your application. In this step
you'll add code to your application to finalize it.

Complete the following steps:

1. In Design view, double-click C1MaskedTextBox1 to switch to Code view and create the

C1MaskedTextBox1_TextChanged event handler. Return to Design view and repeat this step with each

 5

of the C1MaskedTextBox controls so that they each have a C1MaskedTextBox1_TextChanged event
handler.

2. In Code view, add the following import statement to the top of the page:

 Visual Basic
Imports C1.WPF

 C#
using C1.WPF;

3. Add code to the C1MaskedTextBox1_TextChanged event handler so that it appears like the following:

 Visual Basic
Private Sub C1MaskedTextBox1_TextChanged(ByVal sender As System.Object,

ByVal e As System.Windows.Controls.TextChangedEventArgs) Handles

C1MaskedTextBox1.TextChanged

 Me.Label2.Content = "Mask: " & Me.C1MaskedTextBox1.Mask & " Value:

" & Me.C1MaskedTextBox1.Value & " Text: " & Me.C1MaskedTextBox1.Text

End Sub

 C#
private void c1MaskedTextBox1_TextChanged(object sender,

TextChangedEventArgs e)

{

 this.label2.Content = "Mask: " + this.c1MaskedTextBox1.Mask + "

Value: " + this.c1MaskedTextBox1.Value + " Text: " +

this.c1MaskedTextBox1.Text;

}

4. Add code to the C1MaskedTextBox2_TextChanged event handler so that it appears like the following:

 Visual Basic
Private Sub C1MaskedTextBox2_TextChanged(ByVal sender As System.Object,

ByVal e As System.Windows.Controls.TextChangedEventArgs) Handles

C1MaskedTextBox2.TextChanged

 Me.Label3.Content = "Mask: " & Me.C1MaskedTextBox2.Mask & " Value:

" & Me.C1MaskedTextBox2.Value & " Text: " & Me.C1MaskedTextBox2.Text

End Sub

 C#
private void c1MaskedTextBox2_TextChanged(object sender,

TextChangedEventArgs e)

{

 this.label3.Content = "Mask: " + this.c1MaskedTextBox2.Mask + "

Value: " + this.c1MaskedTextBox2.Value + " Text: " +

this.c1MaskedTextBox2.Text;

}

5. Add code to the C1MaskedTextBox3_TextChanged event handler so that it appears like the following:

 Visual Basic
Private Sub C1MaskedTextBox3_TextChanged(ByVal sender As System.Object,

ByVal e As System.Windows.Controls.TextChangedEventArgs) Handles

C1MaskedTextBox3.TextChanged

 Me.Label4.Content = "Mask: " & Me.C1MaskedTextBox3.Mask & " Value:

" & Me.C1MaskedTextBox3.Value & " Text: " & Me.C1MaskedTextBox3.Text

End Sub

 C#
private void c1MaskedTextBox3_TextChanged(object sender,

TextChangedEventArgs e)

6

{

 this.label4.Content = "Mask: " + this.c1MaskedTextBox3.Mask + "

Value: " + this.c1MaskedTextBox3.Value + " Text: " +

this.c1MaskedTextBox3.Text;

}

6. Add code to the C1MaskedTextBox4_TextChanged event handler so that it appears like the following:

 Visual Basic
Private Sub C1MaskedTextBox4_TextChanged(ByVal sender As System.Object,

ByVal e As System.Windows.Controls.TextChangedEventArgs) Handles

C1MaskedTextBox4.TextChanged

 Me.Label5.Content = "Mask: " & Me.C1MaskedTextBox4.Mask & " Value:

" & Me.C1MaskedTextBox4.Value & " Text: " & Me.C1MaskedTextBox4.Text

End Sub

 C#
private void c1MaskedTextBox4_TextChanged(object sender,

TextChangedEventArgs e)

{

 this.label5.Content = "Mask: " + this.c1MaskedTextBox4.Mask + "

Value: " + this.c1MaskedTextBox4.Value + " Text: " +

this.c1MaskedTextBox4.Text;

}

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 4 of 4: Running the Application
Now that you've created a WPF application and customized the application's appearance and behavior, the only

thing left to do is run your application. To run your application and observe MaskedTextBox for WPF's run-time
behavior, complete the following steps:

1. From the Project menu, select Test Solution to view how your application will appear at run time.

The application will appear similar to the following:

 7

Notice the watermark that appears in each C1MaskedTextBox control.

2. Enter text in the first C1MaskedTextBox control:

The label below the control will display the mask, current value, and current text. Notice that there was no
mask added to this control.

3. Try entering a string in the second C1MaskedTextBox control. Notice that you cannot – that is because

the Mask property was set to only accept numbers. Enter a numeric value instead – notice that this does
work.

4. Enter numbers in each of the remaining controls. The application will appear similar to the following
image:

8

Notice that the Value property displayed under each C1MaskedTextBox control does not include literal

characters, while the Text property does.

Congratulations! You've completed the MaskedTextBox for WPF quick start and created a MaskedTextBox for

WPF application, customized the appearance and behavior of the controls, and viewed some of the run-time
capabilities of your application.

 9

About C1MaskedTextBox
ComponentOne MaskedTextBox for WPF includes the C1MaskedTextBox control, a simple control which
provides a text box with a mask that automatically validates entered input. When you add the C1MaskedTextBox
control to a XAML window, it exists as a completely functional text box which you can further customize with a
mask. By default, the control's interface looks similar to the following image:

The C1MaskedTextBox control appears like a text box and includes a basic text input area which can be
customized.

Basic Properties
ComponentOne MaskedTextBox for WPF includes several properties that allow you to set the functionality of

the control. Some of the more important properties are listed below. Note that you can see Appearance Properties
(page 12) for more information about properties that control appearance.

The following properties let you customize the C1MaskedTextBox control:

Property Description

Mask Gets or sets the input mask to use at run time. See Mask
Formatting (page 9) for more information.

PromptChar Gets or sets the character used to show spaces where user is
supposed to type.

Text Gets or sets the text content of this element.

TextMaskFormat Gets or sets a value that determines whether literals and

prompt characters are included in the Value property.

Value Gets the formatted content of the control as specified by the

TextMaskFormat property.

Watermark Gets or sets the content of the watermark.

The Text property of the C1MaskedTextBox exposes the control's full content. The Value property exposes only
the values typed by the user, excluding template characters specified in the Mask. For example, if the Mask

property is set to "99-99" and the control contains the string "55-55", the Text property would return "55-55" and
the Value property would return "5555".

Mask Formatting
You can provide input validation and format how the content displayed in the C1MaskedTextBox control will

appear by setting the Mask property. ComponentOne MaskedTextBox for WPF supports the standard number
formatting strings defined by Microsoft and the Mask property uses the same syntax as the standard

MaskedTextBox control in WinForms. This makes it easier to re-use masks across applications and platforms.

By default, the Mask property is not set and no input mask is applied. When a mask is applied, the Mask string
should consist of one or more of the masking elements. Other elements that may be displayed in the control are
literals and prompts which may also be used if allowed by the TextMaskFormat property.

10

The following table lists some example masks:

Mask Behavior

00/00/0000 A date (day, numeric month, year) in international date format. The "/" character is a logical date
separator, and will appear to the user as the date separator appropriate to the application's current

culture.

00->L<LL-

0000

A date (day, month abbreviation, and year) in United States format in which the three-letter month

abbreviation is displayed with an initial uppercase letter followed by two lowercase letters.

(999)-000-
0000

United States phone number, area code optional. If users do not want to enter the optional
characters, they can either enter spaces or place the mouse pointer directly at the position in the

mask represented by the first 0.

$999,999.00 A currency value in the range of 0 to 999999. The currency, thousandth, and decimal characters

will be replaced at run time with their culture-specific equivalents.

You can set the TextMaskFormat property to one of the following elements to define what is included in the mask:

Option Description

IncludePrompt Return text input by the user as well as any
instances of the prompt character.

IncludeLiterals Return text input by the user as well as any
literal characters defined in the mask.

IncludePromptAndLiterals Return text input by the user as well as any
literal characters defined in the mask and any

instances of the prompt character.

ExcludePromptAndLiterals Return only text input by the user.

The following topics detail mask, literal, and prompt elements that can be used or displayed.

Mask Elements

ComponentOne MaskedTextBox for WPF supports the standard number formatting strings defined by Microsoft.

The Mask string should consist of one or more of the masking elements as detailed in the following table:

Element Description

0 Digit, required. This element will accept any single digit between 0 and 9.

9 Digit or space, optional.

Digit or space, optional. If this position is blank in the mask, it will be rendered as a space in the
Text property. Plus (+) and minus (-) signs are allowed.

L Letter, required. Restricts input to the ASCII letters a-z and A-Z. This mask element is equivalent
to [a-zA-Z] in regular expressions.

? Letter, optional. Restricts input to the ASCII letters a-z and A-Z. This mask element is equivalent
to [a-zA-Z]? in regular expressions.

& Character, required.

C Character, optional. Any non-control character.

A Alphanumeric, optional.

 11

a Alphanumeric, optional.

. Decimal placeholder. The actual display character used will be the decimal symbol appropriate to
the format provider.

, Thousands placeholder. The actual display character used will be the thousands placeholder
appropriate to the format provider.

: Time separator. The actual display character used will be the time symbol appropriate to the
format provider.

/ Date separator. The actual display character used will be the date symbol appropriate to the
format provider.

$ Currency symbol. The actual character displayed will be the currency symbol appropriate to the
format provider.

< Shift down. Converts all characters that follow to lowercase.

> Shift up. Converts all characters that follow to uppercase.

| Disable a previous shift up or shift down.

\ Escape. Escapes a mask character, turning it into a literal. "\\" is the escape sequence for a
backslash.

All other
characters

Literals. All non-mask elements will appear as themselves within C1MaskedTextBox. Literals
always occupy a static position in the mask at run time, and cannot be moved or deleted by the

user.

The decimal (.), thousandths (,), time (:), date (/), and currency ($) symbols default to displaying those symbols as
defined by the application's culture.

Literals

In addition to the mask elements defined in the Mask Formatting (page 9) topic, other characters can be included
in the mask. These characters are literals. Literals are non-mask elements that will appear as themselves within

C1MaskedTextBox. Literals always occupy a static position in the mask at run time, and cannot be moved or
deleted by the user.

For example, if the Mask property has been set to "(999)-000-0000" to define a phone number, the mask characters
include the "9" and "0" elements. The remaining characters, the dashes and parentheses, are literals. These
characters will appear as they in the C1MaskedTextBox control.

Note that the TextMaskFormat property must be set to IncludeLiterals or IncludePromptAndLiterals for literals

to be used. If you do not want literals to be used, set TextMaskFormat to IncludePrompt or

ExcludePromptAndLiterals.

Prompts

You can choose to include prompt characters in the C1MaskedTextBox control. The prompt character defined
that text that will appear in the control to prompt the user to enter text. The prompt character indicates to the user
that text can be entered, and can be used to detail the type of text allowed. By default the underline "_" character is
used.

Note that the TextMaskFormat property must be set to IncludePrompt or IncludePromptAndLiterals for prompt

characters to be used. If you do not want prompt characters to be used, set TextMaskFormat to IncludeLiterals or

ExcludePromptAndLiterals.

Watermark
Using the Watermark property you can provide contextual clues of what value users should enter in a
C1MaskedTextBox control. The watermark is displayed in the control while not text has been entered. To add a

12

watermark, add the text Watermark="Watermark Text" to the <c1:C1MaskedTextBox> tag in the XAML

markup for any C1MaskedTextBox control.

So, for example, enter Watermark="Enter Text" to the <c1:C1MaskedTextBox> tag so that appears

similar to the following:
<c1:C1MaskedTextBox Height="23" Margin="21,46,167,0"

Name="C1MaskedTextBox1" VerticalAlignment="Top" Watermark="Enter Text"

/>

The control will appear similar to the following at run time:

If you click within the control and enter text, you will notice that the watermark disappears.

Layout and Appearance
The following topics detail how to customize the C1MaskedTextBox control's layout and appearance. You can use
built-in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to
customize the appearance of the grid and take advantage of WPF's XAML-based styling. You can also use
templates to format and layout the control and to customize the control's actions.

Appearance Properties
ComponentOne MaskedTextBox for WPF includes several properties that allow you to customize the appearance

of the control. You can change the appearance of the text displayed in the control and customize graphic elements
of the control. The following topics describe some of these appearance properties.

Content Properties

The following properties let you customize the appearance of content in the C1MaskedTextBox control:

Property Description

Mask Gets or sets the input mask to use at run time.

See Mask Formatting (page 9) for more

information.

PromptChar Gets or sets the character used to show spaces

where user is supposed to type.

Watermark Gets or sets the content of the watermark.

Text Properties

The following properties let you customize the appearance of text in the C1MaskedTextBox control:

Property Description

FontFamily Gets or sets the font family of the control. This

is a dependency property.

FontSize Gets or sets the font size. This is a dependency

property.

http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592514

 13

FontStretch Gets or sets the degree to which a font is

condensed or expanded on the screen. This is
a dependency property.

FontStyle Gets or sets the font style. This is a

dependency property.

FontWeight Gets or sets the weight or thickness of the
specified font. This is a dependency property.

TextAlignment Gets or sets how the text should be aligned in
the C1MaskedTextBox.

Color Properties

The following properties let you customize the colors used in the control itself:

Property Description

Background Gets or sets a brush that describes the
background of a control. This is a dependency

property.

Foreground Gets or sets a brush that describes the
foreground color. This is a dependency

property.

Border Properties

The following properties let you customize the control's border:

Property Description

BorderBrush Gets or sets a brush that describes the border

background of a control. This is a dependency
property.

BorderThickness Gets or sets the border thickness of a control.
This is a dependency property.

Size Properties

The following properties let you customize the size of the C1MaskedTextBox control:

Property Description

Height Gets or sets the suggested height of the

element. This is a dependency property.

MaxHeight Gets or sets the maximum height constraint of

the element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of

the element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of
the element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of
the element. This is a dependency property.

Width Gets or sets the width of the element. This is a
dependency property.

http://msdn2.microsoft.com/en-us/library/ms592515
http://msdn2.microsoft.com/en-us/library/ms592516
http://msdn2.microsoft.com/en-us/library/ms592517
http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518
http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

14

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft
Visual Studio this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a bit
easier. Having to jump between two environments can be a bit challenging to developers who are not familiar with

Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your
designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls
in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is
also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with
those less common situations where a full custom design is required.

ClearStyle Properties

The following table lists all of the ClearStyle-supported properties in the C1MaskedTextBox control as well as a
description of the property:

Property Description

Background Gets or sets a brush that describes the background of a control.

The default Background color is White.

FocusBrush A brush used to define the appearance of the control, when the

control is in focus.

MouseOverBrush A brush used to define the appearance of the control, when the

control is in moused over.

SelectionBackground A brush used to define the background appearance of the

control, when the control is selected.

SelectionForeground A brush used to define the background appearance of the

control, when the control is selected.

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user

interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne MaskedTextBox for WPF. Extensible Application Markup

 15

Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to
designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1MaskedTextBox control and, in the

menu, selecting Edit Control Parts (Templates). Select Edit a Copy to create an editable copy of the current

template or Create Empty, to create a new blank template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's

property. If you manually create a template in XAML you will have to link the appropriate template property to the

template you've created.

Note that you can use the Template property to customize the template.

XAML Elements
Several auxiliary XAML elements are installed with ComponentOne MaskedTextBox for WPF. These elements

include templates and themes and are located in the MaskedTextBox for WPF installation directory.

Included Auxiliary XAML Elements

The following auxiliary XAML element is included with MaskedTextBox for WPF:

Element Folder Description

generic.xaml XAML Specifies the templates for different styles and the initial style

of the control.

You can incorporate elements from this file into your project, for example, to create your own theme based on the
default theme.

http://msdn2.microsoft.com/en-us/library/ms592524

 17

MaskedTextBox for WPF Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or
demos, which may make use of other ComponentOne development tools included with the ComponentOne

Studios. Samples can be accessed from the ComponentOne Studio for WPF ControlExplorer. To view samples,

on your desktop, click the Start button and then click All Programs | ComponentOne | Studio for WPF |

Samples | WPF ControlExplorer.

C# Samples

The following C# sample is included:

Sample Description

ControlExplorer The MaskedTextBox page in the ControlExplorer sample demonstrates how to
add content to and customize the C1MaskedTextBox control.

MaskedTextBox for WPF Task-Based

Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use

the C1MaskedTextBox control in general. If you are unfamiliar with the ComponentOne MaskedTextBox for

WPF product, please see the MaskedTextBox for WPF Quick Start (page 3) first.

Each topic in this section provides a solution for specific tasks using the ComponentOne MaskedTextBox for

WPF product.

Each task-based help topic also assumes that you have created a new WPF project.

Setting the Value
The Value property determines the currently visible text. By default the C1MaskedTextBox control starts with its

Value not set but you can customize this at design time, in XAML, and in code.

At Design Time

To set the Value property at run time, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.

2. Navigate to the Properties window, and enter a number, for example "123", in the text box next to the
Value property.

This will have set the Value property to the number you chose.

In XAML

For example, to set the Value property add Value="123" to the <c1:C1MaskedTextBox> tag so that it

appears similar to the following:
<c1:C1MaskedTextBox Height="23" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1MaskedTextBox1" VerticalAlignment="Top"

Width="120" Value="123"></c1:C1MaskedTextBox>

In Code

18

For example, to set the Value property add the following code to your project:

 Visual Basic
C1MaskedTextBox1.Value = "123"

 C#
c1MaskedTextBox1.Value = "123";

Run your project and observe:

Initially 123 (or the number you chose) will appear in the control:

Adding a Mask for Currency
You can easily add a mask for currency values using the Mask property. By default the C1MaskedTextBox control
starts with its Mask not set but you can customize this at design time, in XAML, and in code. For more details
about mask characters, see Mask Elements (page 10).

At Design Time

To set the Mask property at run time, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.

2. Navigate to the Properties window and enter "$999,999.00" in the text box next to the Mask property.

This will have set the Mask property to the number you chose.

In XAML

For example, to set the Mask property add Mask="$999,999.00" to the <c1:C1MaskedTextBox> tag so that

it appears similar to the following:
<c1:C1MaskedTextBox Height="23" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1MaskedTextBox1" VerticalAlignment="Top"

Width="120" Mask="$999,999.00"></c1:C1MaskedTextBox>

In Code

For example, to set the Value property add the following code to your project:

 Visual Basic
C1MaskedTextBox1.Mask = "$999,999.00"

 C#
c1MaskedTextBox1.Mask = "$999,999.00";

Run your project and observe:

The mask will appear in the control:

Enter a number; notice that the mask is filled:

 19

Changing the Prompt Character
The PromptChar property sets the characters that are used to prompt users in the C1MaskedTextBox control. By
default the PromptChar property is set to an underline character ("_") but you can customize this at design time, in
XAML, and in code. For more details about the PromptChar property, see Prompts (page 11).

At Design Time

To set the PromptChar property at run time, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.

2. Navigate to the Properties window and enter "0000" in the text box next to the Mask property to set a
mask.

3. In the Properties window, enter "#" (the pound character) in the text box next to the PromptChar property

In XAML

For example, to set the PromptChar property add Mask="0000" PromptChar="#" to the

<c1:C1MaskedTextBox> tag so that it appears similar to the following:
<c1:C1MaskedTextBox Height="23" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1MaskedTextBox1" VerticalAlignment="Top"

Width="120" Mask="0000" PromptChar="#"></c1:C1MaskedTextBox>

In Code

For example, to set the PromptChar property add the following code to your project:

 Visual Basic
Dim x As Char = "#"c

C1MaskedTextBox1.Mask = "0000"

C1MaskedTextBox1.PromptChar = x

 C#
char x = '#';

this.c1MaskedTextBox1.Mask = "0000";

this.c1MaskedTextBox1.PromptChar = x;

Run your project and observe:

The pound character will appear as the prompt in the control. In the following image, the number 32 was entered
in the control:

Changing Font Type and Size
You can change the appearance of the text in the grid by using the text properties in the C1MaskedTextBox
Properties window, in XAML, or in code.

At Design Time

To change the font of the grid to Arial 10pt in the Properties window at design time, complete the following:

1. Click the C1MaskedTextBox control once to select it.

2. Navigate to the Properties window, and set FontFamily property to "Arial".

3. In the Properties window, set the FontSize property to 10.

This will have set the control's font size and style.

20

In XAML

For example, to change the font of the control to Arial 10pt in XAML add FontFamily="Arial"

FontSize="10" to the <c1:C1MaskedTextBox> tag so that it appears similar to the following:
<c1:C1MaskedTextBox Height="23" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1MaskedTextBox1" VerticalAlignment="Top"

Width="120" FontSize="10" FontFamily="Arial"></c1:C1MaskedTextBox>

In Code

For example, to change the font of the grid to Arial 10pt add the following code to your project:

 Visual Basic
C1MaskedTextBox1.FontSize = 10

C1MaskedTextBox1.FontFamily = New

System.Windows.Media.FontFamily("Arial")

 C#
c1MaskedTextBox1.FontSize = 10;

c1MaskedTextBox1.FontFamily = new

System.Windows.Media.FontFamily("Arial");

Run your project and observe:

The control's content will appear in Arial 10pt font:

Locking the Control from Editing
By default the C1MaskedTextBox control's Value property is editable by users at run time. If you want to lock the

control from being edited, you can set the IsReadOnly property to True.

At Design Time

To lock the C1MaskedTextBox control from run-time editing, complete the following steps:

1. Click the C1MaskedTextBox control once to select it.

2. Navigate to the Properties window, and check the IsReadOnly check box.

This will have set the IsReadOnly property to False.

In XAML

To lock the C1MaskedTextBox control from run-time editing in XAML, add IsReadOnly="True" to the

<c1:C1MaskedTextBox> tag so that it appears similar to the following:
<c1:C1MaskedTextBox Height="23" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1MaskedTextBox1" VerticalAlignment="Top"

Width="120" IsReadOnly="True"></c1:C1MaskedTextBox>

In Code

To lock the C1MaskedTextBox control from run-time editing, add the following code to your project:

 Visual Basic
C1MaskedTextBox1.IsReadOnly = True

 C#
c1MaskedTextBox1.IsReadOnly = true;

Run your project and observe:

 21

The control is has been locked from editing. Try to click the cursor within the control – notice that the text
insertion point (the blinking vertical line) will not appear in the control.

	ComponentOne MaskedTextBox for WPF Overview
	Help with ComponentOne Studio for WPF

	Key Features
	MaskedTextBox for WPF Quick Start
	Step 1 of 4: Setting up the Application
	Step 2 of 4: Customizing the Application
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	About C1MaskedTextBox
	Basic Properties
	Mask Formatting
	Mask Elements
	Literals
	Prompts

	Watermark

	Layout and Appearance
	Appearance Properties
	Content Properties
	Text Properties
	Color Properties
	Border Properties
	Size Properties

	ComponentOne ClearStyle Technology
	How ClearStyle Works
	ClearStyle Properties

	Templates
	XAML Elements

	MaskedTextBox for WPF Samples
	MaskedTextBox for WPF Task-Based Help
	Setting the Value
	Adding a Mask for Currency
	Changing the Prompt Character
	Changing Font Type and Size
	Locking the Control from Editing

