

ComponentOne

NumericBox for WPF

Copyright  1987-2012 GrapeCity, Inc. All rights reserved.

ComponentOne, a division of GrapeCity

201 South Highland Avenue, Third Floor

Pittsburgh, PA 15206 • USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other
trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne NumericBox for WPF Overview ...1

Help with ComponentOne Studio for WPF .. 1

Key Features ..1

NumericBox for WPF Quick Start ...3

Step 1 of 4: Adding NumericBox for WPF to your Project ... 3

Step 2 of 4: Customizing the Application .. 4

Step 3 of 4: Adding Code to the Application ... 5

Step 4 of 4: Running the Application ... 7

Working with C1NumericBox ... 11

Basic Properties .. 11

Number Formatting ... 12

Input Validation ... 14

Layout and Appearance .. 15

Layout in a Panel ... 15

Appearance Properties ... 15

Content Properties .. 15

Text Properties ... 16

Color Properties .. 16

Border Properties .. 16

Style Properties ... 16

Size Properties .. 17

ComponentOne ClearStyle Technology .. 17

How ClearStyle Works ... 17

ClearStyle Properties .. 18

Templates ... 18

XAML Elements .. 19

NumericBox for WPF Samples ... 21

NumericBox for WPF Task-Based Help ... 21

Setting the Start Value .. 21

iv

Setting the Increment Value ... 22

Setting the Minimum and Maximum Values .. 22

Changing Font Type and Size .. 23

Hiding the Up and Down Buttons ... 24

Locking the Control from Editing .. 24

 1

ComponentOne NumericBox for WPF

Overview
Display and edit numeric values in your WPF Applications!

ComponentOne NumericBox™ for WPF provides a numeric text box

control, C1NumericBox, which is similar to the standard Windows

Forms NumericUpDown control and provides functionality for
numeric input and editing right out of the box.

The C1NumericBox control contains a single numeric value that can be
incremented or decremented by clicking the up or down buttons of the
control. The user can also enter in a value, unless the IsReadOnly

property is set to True.

For a list of the latest features added to ComponentOne Studio for

WPF, visit What's New in Studio for WPF.

 Getting Started

Get started with the
following topics:

- Key Features (page 1)

- Quick Start (page 3)

- Task-Based Help (page
21)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

Key Features
ComponentOne NumericBox for WPF allows you to create customized, rich applications. Make the most of

NumericBox for WPF by taking advantage of the following key features:

 Flexible Formatting

The Format property enables you to use the familiar .NET format strings to display data in any way you
wish. See the Number Formatting (page 12) topic for more information.

 Numeric Range Support

Easily change the maximum and minimum values allowed for the editor. See the Input Validation (page
14) topic for more information.

 Up/Down Buttons

The C1NumericBox control includes up/down buttons to increment or decrement the value. See Working
with C1NumericBox (page 11) for more information.

http://www.componentone.com/SuperProducts/StudioWPF/What%27s+New/
http://helpcentral.componentone.com/nethelp/c1studiowpf/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

 3

NumericBox for WPF Quick Start
The following quick start guide is intended to get you up and running with NumericBox for WPF. In this quick

start you'll start in Visual Studio and create a new project, add NumericBox for WPF controls to your application,
and customize the appearance and behavior of the controls.

You will create an application that includes five C1NumericBox controls. The controls will function as a lock and

when the correct code number has been entered in each, the controls will become locked and inactive and a button
will appear directing users to a Web site.

Step 1 of 4: Adding NumericBox for WPF to your Project
In this step you'll begin in Visual Studio to create a WPF application using NumericBox for WPF. When you add
a C1NumericBox control to your application, you'll have a complete, functional numeric editor. You can further
customize the control to your application.

To set up your project and add a C1NumericBox control to your application, complete the following steps:

1. Create a new WPF project in Visual Studio.

2. Navigate to the Toolbox and double-click the C1NumericBox icon to add the control to Window1.

3. Click once on the C1NumericBox1 control to select it, and navigate to the Properties window.

4. In the Properties window, set the following properties:

Property Value

Width 40

Minimum 0

Maximum 9

The Width property will resize the control. The Minimum and Maximum properties will set the minimum

and maximum values that are allowed in the control. Users will not be able to enter values outside of that
range providing built-in data validation.

5. In the Design view, right-click the C1NumericBox1 control and select Copy.

6. Right-click the window and select Paste to create the C1NumericBox2 control with the same settings.

7. Repeat steps 5 and 6 three more times to create a total of five C1NumericBox controls.

8. In Design view, re-position each of the controls so that they appear next to each other and are numbered

C1NumericBox1 to C1NumericBox5 from left to right.

Your application should now look similar to the following:

4

You've successfully created a WPF application, added C1NumericBox controls to the application, and customized

those controls. In the next step you'll complete setting up the application.

Step 2 of 4: Customizing the Application
In the previous step you created a new WPF project and added five C1NumericBox controls to the application. In
this step you'll continue by adding additional controls to customize the application.

Complete the following steps:

1. Navigate to the Visual Studio Toolbox and double-click the standard Label control twice to add Label1

and Label2 to your project.

2. In the Visual Studio Toolbox, and double-click the standard Button control to add Button1 to your
project.

3. Click Label1 once to select it, and in the Properties window set its Content property to "Enter
Combination:".

4. Click Label2 once to select it, and in the Properties window set its Content property to "Invalid

Combination" and its Foreground property to Red.

5. Click Button1 once to select it, and in the Properties window set its Content property to "Enter" and its

Visibility property to Hidden.

Your application will now look similar to the following:

 5

You've successfully set up your application's user interface. In the next step you'll add code to your application.

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added C1NumberBox, Label, and Button
controls to your application. In this step you'll add code to your application to finalize it.

Complete the following steps:

1. Double-click Button1 to switch to Code view and create the Button1_Click event handler.

2. Add the following imports statements to the top of the page:

 Visual Basic
Imports C1.WPF

Imports System.Windows.Media

Imports System.Diagnostics

 C#
using C1.WPF;

using System.Windows.Media;

using System.Diagnostics;

3. Initialize the following global variables just inside class Window1:

 Visual Basic
Dim nb1 As Integer = 5

Dim nb2 As Integer = 2

Dim nb3 As Integer = 3

Dim nb4 As Integer = 7

Dim nb5 As Integer = 9

 C#

6

int nb1 = 5;

int nb2 = 2;

int nb3 = 3;

int nb4 = 7;

int nb5 = 9;

These numbers will be used as the correct 'code' in the application. When the user enters the correct
combination of numbers at run time the button will appear.

4. Add code to the Button1_Click event handler so that it appears like the following:

 Visual Basic
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.Windows.RoutedEventArgs) Handles Button1.Click

 Process.Start("http://www.componentone.com")

End Sub

 C#
private void button1_Click(object sender, RoutedEventArgs e)

{

 Process.Start("http://www.componentone.com");

}

When the button is pressed at run time it will open the ComponentOne Web site.

5. Next add the following custom NBValidation event to your code:

 Visual Basic
Private Sub NBValidation()

 If Me.C1NumericBox1.Value = nb1 And Me.C1NumericBox2.Value = nb2

And Me.C1NumericBox3.Value = nb3 And Me.C1NumericBox4.Value = nb4 And

Me.C1NumericBox5.Value = nb5 Then

 Me.Label1.Foreground = Brushes.Green

 Me.Label1.Content = "Combination Valid"

 Me.C1NumericBox1.IsReadOnly = True

 Me.C1NumericBox2.IsReadOnly = True

 Me.C1NumericBox3.IsReadOnly = True

 Me.C1NumericBox4.IsReadOnly = True

 Me.C1NumericBox5.IsReadOnly = True

 Me.Button1.Visibility = Windows.Visibility.Visible

 End If

End Sub

 C#
private void NBValidation()

{

 if (this.c1NumericBox1.Value == nb1 & this.c1NumericBox2.Value ==

nb2 & this.c1NumericBox3.Value == nb3 & this.c1NumericBox4.Value == nb4

& this.c1NumericBox5.Value == nb5)

 {

 this.label2.Foreground = Brushes.Green;

 this.label2.Content = "Combination Valid";

 this.c1NumericBox1.IsReadOnly = true;

 this.c1NumericBox2.IsReadOnly = true;

 this.c1NumericBox3.IsReadOnly = true;

 this.c1NumericBox4.IsReadOnly = true;

 this.c1NumericBox5.IsReadOnly = true;

 this.button1.Visibility = Visibility.Visible;

 }

}

 7

When the user enters the correct numbers (as indicated in step 3 above) the C1NumericBox controls will
be set to read only and will no longer be editable, the text of the label below the controls will change to
indicate the correct code has been entered, and a button will appear allowing users to enter the
ComponentOne Web site.

6. Choose View | Designer to return to Design view.

7. Click C1NumericBox1 to select it, and navigate to the Properties window.

8. Click the Events (lightning bolt) button on the Properties window to view events.

9. Double-click the box next to the ValueChanged event. This will switch to Code view and create the

C1NumericBox1_ValueChanged event handler.

10. Enter the code in the C1NumericBox1_ValueChanged event handler to initialize NBValidation. It will
look like the following:

 Visual Basic
Private Sub C1NumericBox1_ValueChanged(ByVal sender As System.Object,

ByVal e As C1.WPF.PropertyChangedEventArgs(Of System.Double)) Handles

C1NumericBox1.ValueChanged

 NBValidation()

End Sub

 C#
private void c1NumericBox1_ValueChanged(object sender,

PropertyChangedEventArgs<double> e)

{

 NBValidation();

}

11. Repeat steps 6 to 9 for each additional C1NumericBox control so that NBValidation is initialized in all
five.

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 4 of 4: Running the Application
Now that you've created a WPF application and customized the application's appearance and behavior, the only

thing left to do is run your application. To run your application and observe NumericBox for WPF's run-time
behavior, complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

The application will appear similar to the following:

8

2. Click the Up arrow in the first (left-most) C1NumericBox control until 5 is displayed. Note that the

number increased by 1 each time you click – this is because the Increment property is set to 1 by default.

3. Click inside the second C1NumericBox, highlight the "0" value, and type "2" to replace it.

4. Try clicking the Down button in the third C1NumericBox control and notice that the number does not

change. This is because the Minimum property was set to 0 and so the control will not accept values less

than zero. Click the Up button until 3 is displayed.

5. In the fourth C1NumericBox control, place the cursor in front of the 0 and click. Enter "5" so that "50" is
displayed.

6. Click inside the last C1NumericBox control. Notice that the 50 inside the fourth C1NumericBox was

reset to 9. That's because the Maximum property was set to 9 so the control will not accept values greater
than nine.

7. Enter 9 in the last C1NumericBox control.

8. Click the Down button of the fourth C1NumericBox control twice so 7 is displayed. Note that the text of

the second Label changed and the button is now visible:

 9

9. Try typing inside a C1NumericBox control or clicking its Up or Down buttons, notice that you cannot.

That is because the IsReadOnly property was set to True when the correct number sequence was entered
and the controls are now locked from editing.

10. Click the now-visible Enter button to navigate to the ComponentOne Web site.

Congratulations! You've completed the NumericBox for WPF quick start and created a NumericBox for WPF

application customized the appearance and behavior of the controls, and viewed some of the run-time capabilities
of your application.

 11

Working with C1NumericBox
ComponentOne NumericBox for WPF includes the C1NumericBox control, a simple control which provides
numeric input and editing. When you add the C1NumericBox control to a XAML window, it exists as a
completely functional numeric editor. By default, the control's interface looks similar to the following image:

It consists of the following elements:

 Up and Down Buttons

The Up and Down buttons allow users to change the value displayed in the control. Each time a button is
clicked the Value changes by the amount indicated by the Increment property (by default 1). By default the

Up and Down buttons are visible; to hide the buttons set the ShowButtons property to False.

 Number Display/Edit Area

The current Value is displayed in the number display/editing area. Users can type in the box to change the
Value property. By default users can edit this number; to lock the control from editing set IsReadOnly to

True.

Basic Properties
ComponentOne NumericBox for WPF includes several properties that allow you to set the functionality of the
control. Some of the more important properties are listed below. Note that you can see Appearance Properties

(page 15) for more information about properties that control appearance.

The following properties let you customize the C1NumericBox control:

Property Description

Value Gets or sets the numeric value in the

C1NumericBox.

Minimum Gets or sets the minimum value allowed for

the C1NumericBox control.

Maximum Gets or sets the maximum value allowed for

the C1NumericBox.

Increment Gets or sets the increment applied when the

user presses the up/down arrow keys or the
Up or Down buttons.

Format Gets or sets the format of the C1NumericBox

control.

12

Number Formatting
You can change how the number displayed in the C1NumericBox control will appear by setting the Format

property. ComponentOne NumericBox for WPF supports the standard number formatting strings defined by
Microsoft. For more information, see MSDN.

The Format string consists of a letter or a letter and number combination defining the format. By default, the
Format property is set to "F0". The letter indicates the format type, here "F" for fixed-point, and the number
indicates the number of decimal places, here none.

The following formats are available:

Format Specifier Name Description

C or c Currency The number is converted to a string that represents a

currency amount. The conversion is controlled by the

currency format information of the current

NumberFormatInfo object.

The precision specifier indicates the desired number of

decimal places. If the precision specifier is omitted, the

default currency precision given by the current

NumberFormatInfo object is used.

D or d Decimal This format is supported only for integral types. The number

is converted to a string of decimal digits (0-9), prefixed by a

minus sign if the number is negative.

The precision specifier indicates the minimum number of

digits desired in the resulting string. If required, the number

is padded with zeros to its left to produce the number of

digits given by the precision specifier.

The following example formats an Int32 value with the

Decimal format specifier.

E or e Scientific

(exponential)

The number is converted to a string of the form "-

d.ddd…E+ddd" or "-d.ddd…e+ddd", where each 'd' indicates

a digit (0-9). The string starts with a minus sign if the

number is negative. One digit always precedes the decimal

point.

The precision specifier indicates the desired number of digits

after the decimal point. If the precision specifier is omitted,

a default of six digits after the decimal point is used.

The case of the format specifier indicates whether to prefix

the exponent with an 'E' or an 'e'. The exponent always

consists of a plus or minus sign and a minimum of three

digits. The exponent is padded with zeros to meet this

minimum, if required.

F or f Fixed-point The number is converted to a string of the form "-ddd.ddd…"

where each 'd' indicates a digit (0-9). The string starts with

a minus sign if the number is negative.

The precision specifier indicates the desired number of

decimal places. If the precision specifier is omitted, the

default numeric precision is given by the

NumberDecimalDigits property of the current

NumberFormatInfo object.

G or g General The number is converted to the most compact of either

fixed-point or scientific notation, depending on the type of

the number and whether a precision specifier is present. If

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimaldigits.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx

 13

the precision specifier is omitted or zero, the type of the

number determines the default precision, as indicated by the

following list.

 Byte or SByte: 3

 Int16 or UInt16: 5

 Int32 or UInt32: 10

 Int64: 19

 UInt64: 20

 Single: 7

 Double: 15

 Decimal: 29

Fixed-point notation is used if the exponent that would result

from expressing the number in scientific notation is greater

than -5 and less than the precision specifier; otherwise,

scientific notation is used. The result contains a decimal

point if required and trailing zeroes are omitted. If the

precision specifier is present and the number of significant

digits in the result exceeds the specified precision, then the

excess trailing digits are removed by rounding.

The exception to the preceding rule is if the number is a

Decimal and the precision specifier is omitted. In that case,

fixed-point notation is always used and trailing zeroes are

preserved.

If scientific notation is used, the exponent in the result is

prefixed with 'E' if the format specifier is 'G', or 'e' if the

format specifier is 'g'. The exponent contains a minimum of

two digits. This differs from the format for scientific notation

produced by the 'E' or 'e' format specifier, which includes a

minimum of three digits in the exponent.

N or n Number The number is converted to a string of the form "-

d,ddd,ddd.ddd…", where '-' indicates a negative number

symbol if required, 'd' indicates a digit (0-9), ',' indicates a

thousand separator between number groups, and '.'

indicates a decimal point symbol. The actual negative

number pattern, number group size, thousand separator,

and decimal separator are specified by the

NumberNegativePattern, NumberGroupSizes,

NumberGroupSeparator, and NumberDecimalSeparator

properties, respectively, of the current NumberFormatInfo

object.

The precision specifier indicates the desired number of

decimal places. If the precision specifier is omitted, the

default numeric precision is given by the

NumberDecimalDigits property of the current

NumberFormatInfo object.

P or p Percent The number is converted to a string that represents a

percent as defined by the

NumberFormatInfo.PercentNegativePattern property if the

number is negative, or the

NumberFormatInfo.PercentPositivePattern property if the

number is positive. The converted number is multiplied by

100 in order to be presented as a percentage.

The precision specifier indicates the desired number of

decimal places. If the precision specifier is omitted, the

http://msdn.microsoft.com/en-us/library/system.byte.aspx
http://msdn.microsoft.com/en-us/library/system.sbyte.aspx
http://msdn.microsoft.com/en-us/library/system.int16.aspx
http://msdn.microsoft.com/en-us/library/system.uint16.aspx
http://msdn.microsoft.com/en-us/library/system.int32.aspx
http://msdn.microsoft.com/en-us/library/system.uint32.aspx
http://msdn.microsoft.com/en-us/library/system.int64.aspx
http://msdn.microsoft.com/en-us/library/system.uint64.aspx
http://msdn.microsoft.com/en-us/library/system.single.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx
http://msdn.microsoft.com/en-us/library/system.decimal.aspx
http://msdn.microsoft.com/en-us/library/system.decimal.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbernegativepattern.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbergroupsizes.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbergroupseparator.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimalseparator.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimaldigits.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.percentnegativepattern.aspx
http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.percentpositivepattern.aspx

14

default numeric precision given by the current

NumberFormatInfo object is used.

R or r Round-trip This format is supported only for the Single and Double

types. The round-trip specifier guarantees that a numeric

value converted to a string will be parsed back into the same

numeric value. When a numeric value is formatted using this

specifier, it is first tested using the general format, with 15

spaces of precision for a Double and 7 spaces of precision for

a Single. If the value is successfully parsed back to the same

numeric value, it is formatted using the general format

specifier. However, if the value is not successfully parsed

back to the same numeric value, then the value is formatted

using 17 digits of precision for a Double and 9 digits of

precision for a Single.

Although a precision specifier can be present, it is ignored.

Round trips are given precedence over precision when using

this specifier.

X or x Hexadecimal This format is supported only for integral types. The number

is converted to a string of hexadecimal digits. The case of

the format specifier indicates whether to use uppercase or

lowercase characters for the hexadecimal digits greater than

9. For example, use 'X' to produce "ABCDEF", and 'x' to

produce "abcdef".

The precision specifier indicates the minimum number of

digits desired in the resulting string. If required, the number

is padded with zeros to its left to produce the number of

digits given by the precision specifier.

Any other single

character

(Unknown

specifier)

(An unknown specifier throws a FormatException at

runtime.)

Input Validation
You can use the Minimum and Maximum properties to set a numeric range that users are limited to at run time. If
the Minimum and Maximum properties are set, users will not be able to pick a number larger than the Minimum
or smaller than the Maximum.

When setting the Minimum and Maximum properties, the Minimum should be smaller than the Maximum. Also
be sure to set the Value property to a number within the Minimum and Maximum range.

You can also choose a mode for range validation using the RangeValidationMode property. This property controls
when the entered number is validated. You can set RangeValidationMode to one of the following options:

Option Description

Always This mode does not allow users to enter out of
range values.

AlwaysTruncate This mode does not allow users to enter out of
range values. The value will be truncated if the

limits are exceeded.

OnLostFocus This mode truncates the value when the

control loses focus.

http://msdn.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn.microsoft.com/en-us/library/system.single.aspx
http://msdn.microsoft.com/en-us/library/system.double.aspx
http://msdn.microsoft.com/en-us/library/system.formatexception.aspx

 15

Layout and Appearance
The following topics detail how to customize the C1NumericBox control's layout and appearance. You can use
built-in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to
customize the appearance of the grid and take advantage of WPF's XAML-based styling. You can also use
templates to format and layout the grid and to customize grid actions.

Layout in a Panel
You can easily lay out the C1NumericBox and other controls in your WPF application, using the attached layout

properties. For example, you can lay out your control in a Grid panel with its Row, ColumnSpan, and RowSpan

properties and in a Canvas panel with its Left and Top properties. For example, the C1NumericBox control

includes the following Layout properties when located within a Grid panel:

You can change the sizing, alignment, and location of the C1NumericBox control within the Grid panel.

Appearance Properties
ComponentOne NumericBox for WPF includes several properties that allow you to customize the appearance of

the control. You can change the appearance of the text displayed in the control and customize graphic elements of
the control. The following topics describe some of these appearance properties.

Content Properties

The following properties let you customize the appearance of content in the C1NumericBox control:

Property Description

Format Gets or sets the value for the Format of the

C1NumericBox.

Watermark Gets or sets the watermark content displayed

when the control is empty.

16

Text Properties

The following properties let you customize the appearance of text in the C1NumericBox control:

Property Description

FontFamily Gets or sets the font family of the control. This

is a dependency property.

FontSize Gets or sets the font size. This is a dependency

property.

FontStretch Gets or sets the degree to which a font is
condensed or expanded on the screen. This is
a dependency property.

FontStyle Gets or sets the font style. This is a

dependency property.

FontWeight Gets or sets the weight or thickness of the

specified font. This is a dependency property.

TextAlignment Gets or sets how the text should be aligned in

the C1NumericBox.

Color Properties

The following properties let you customize the colors used in the control itself:

Property Description

Background Gets or sets a brush that describes the

background of a control. This is a dependency
property.

Foreground Gets or sets a brush that describes the
foreground color. This is a dependency

property.

SelectionBackground Gets or sets the brush that fills the background
of the selected text.

SelectionForeground Gets or sets the brush used for the selected
text in the C1NumericBox.

Border Properties

The following properties let you customize the control's border:

Property Description

BorderBrush Gets or sets a brush that describes the border
background of a control. This is a dependency

property.

BorderThickness Gets or sets the border thickness of a control.

This is a dependency property.

Style Properties

The following properties let you set styles:

Property Description

http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592514
http://msdn2.microsoft.com/en-us/library/ms592515
http://msdn2.microsoft.com/en-us/library/ms592516
http://msdn2.microsoft.com/en-us/library/ms592517
http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518
http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512

 17

FocusVisualStyle Gets or sets a property that enables

customization of appearance, effects, or other
style characteristics that will apply to this

element when it captures keyboard focus. This
is a dependency property.

Style Gets or sets the style used by this element
when it is rendered. This is a dependency

property.

Size Properties

The following properties let you customize the size of the C1NumericBox control:

Property Description

ActualHeight Gets the rendered height of this element. This
is a dependency property.

ActualWidth Gets the rendered width of this element. This
is a dependency property.

Height Gets or sets the suggested height of the
element. This is a dependency property.

MaxHeight Gets or sets the maximum height constraint of
the element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of
the element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of
the element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of
the element. This is a dependency property.

Width Gets or sets the width of the element. This is a

dependency property.

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft

Visual Studio this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a bit
easier. Having to jump between two environments can be a bit challenging to developers who are not familiar with
Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your
designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls
in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

http://msdn2.microsoft.com/en-us/library/ms600878
http://msdn2.microsoft.com/en-us/library/ms600899
http://msdn2.microsoft.com/en-us/library/ms600871
http://msdn2.microsoft.com/en-us/library/ms600872
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

18

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is
also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with

those less common situations where a full custom design is required.

ClearStyle Properties

The following table lists all of the ClearStyle-supported properties in the C1NumericBox control as well as a
description of the property:

Property Description

Background Gets or sets a brush that describes the background of a control.
The default Background color is White.

FocusBrush A brush used to define the appearance of the control, when the

control is in focus.

MouseOverBrush A brush used to define the appearance of the control, when the
control is in moused over.

SelectionBackground A brush used to define the background appearance of the

control, when the control is selected.

SelectionForeground A brush used to define the background appearance of the

control, when the control is selected.

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne NumericBox for WPF. Extensible Application Markup

Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to
designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1NumericBox control and, in the menu,

selecting Edit Control Parts (Templates). Select Edit a Copy to create an editable copy of the current template or

Create Empty, to create a new blank template.

 19

Note: If you create a new template through the menu, the template will automatically be linked to that template's
property. If you manually create a template in XAML you will have to link the appropriate template property to the

template you've created.

Note that you can use the Template property to customize the template.

XAML Elements
Several auxiliary XAML elements are installed with ComponentOne NumericBox for WPF. These elements

include templates and themes and are located in the NumericBox for WPF installation directory.

Included Auxiliary XAML Elements

The following auxiliary XAML element is included with NumericBox for WPF:

Element Folder Description

generic.xaml XAML Specifies the templates for different styles and the initial style
of the control.

You can incorporate elements from this file into your project, for example, to create your own theme based on the
default theme.

http://msdn2.microsoft.com/en-us/library/ms592524

 21

NumericBox for WPF Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or
demos, which may make use of other ComponentOne development tools included with the ComponentOne

Studios. Samples can be accessed from the ComponentOne Studio for WPF ControlExplorer. To view samples,

on your desktop, click the Start button and then click All Programs | ComponentOne | Studio for WPF |

Samples | WPF ControlExplorer.

C# Samples

The following C# sample is included:

Sample Description

ControlExplorer The NumericBox page in the ControlExplorer sample demonstrates how to add
content to and customize the C1NumericBox control.

NumericBox for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use

the C1NumericBox control in general. If you are unfamiliar with the ComponentOne NumericBox for WPF

product, please see the NumericBox for WPF Quick Start (page 3) first.

Each topic in this section provides a solution for specific tasks using the ComponentOne NumericBox for WPF
product.

Each task-based help topic also assumes that you have created a new WPF project. For additional information on
this topic, see Creating a .NET Project in Visual Studio or Creating a Microsoft Blend Project.

Setting the Start Value
The Value property determines the currently selected number. By default the C1NumericBox control starts with its

Value set to 0 but you can customize this number at design time, in XAML, and in code.

At Design Time

To set the Value property at run time, complete the following steps:

1. Click the C1NumericBox control once to select it.

2. Navigate to the Properties window, and enter a number, for example "123", in the text box next to the
Value property.

This will set the Value property to the number you chose.

In XAML

For example, to set the Value property add Value="123" to the <c1:C1NumericBox> tag so that it appears

similar to the following:
<c1:C1NumericBox Height="21.96" HorizontalAlignment="Right"

Margin="0,16,105,0" Name="C1NumericBox1" VerticalAlignment="Top"

Width="111.01" Value="123" />

In Code

For example, to set the Value property add the following code to your project:

22

 Visual Basic
C1NumericBox1.Value = 123

 C#
c1NumericBox1.Value = 123;

Run your project and observe:

Initially 123 (or the number you chose) will appear in the control:

Setting the Increment Value
The Increment property determines by how much the Value property changes when the Up or Down button is

clicked at run time. By default the C1NumericBox control starts with its Increment set to 1 but you can customize
this number at design time, in XAML, and in code.

At Design Time

To set the Increment property at run time, complete the following steps:

1. Click the C1NumericBox control once to select it.

2. Navigate to the Properties window, and enter a number, for example "20", in the text box next to the
Increment property.

This will set the Increment property to the number you chose.

In XAML

For example, to set the Increment property to 20 add Increment="20" to the <c1:C1NumericBox> tag so

that it appears similar to the following:
<c1:C1NumericBox Height="21.96" HorizontalAlignment="Right"

Margin="0,16,105,0" Name="C1NumericBox1" VerticalAlignment="Top"

Width="111.01" Increment="20" />

In Code

For example, to set the Increment property to 20 add the following code to your project:

 Visual Basic
C1NumericBox1.Increment = 20

 C#
c1NumericBox1.Increment = 20;

Run your project and observe:

Click the Up and then the Down button a few times or press the Up and Down arrow keys on the keyboard.
Notice that the Value changes in steps of 20. You can still edit the value directly by clicking in the text box and
entering a number that falls between that step.

Setting the Minimum and Maximum Values
You can use the Minimum and Maximum properties to set a numeric range that users are limited to at run time. If
the Minimum and Maximum properties are set, users will not be able to pick a number larger than the Minimum
or smaller than the Maximum.

 23

Note: When setting the Minimum and Maximum properties, the Minimum should be smaller than the Maximum.
Also be sure to set the Value property to a number within the Minimum and Maximum range. In the following

example, the default value 0 falls within the range chosen.

At Design Time

To set the Minimum and Maximum at run time, complete the following steps:

1. Click the C1NumericBox control once to select it.

2. Navigate to the Properties window, and enter a number, for example 500, next to the Maximum property.

3. In the Properties window, enter a number, for example -500, next to the Minimum property.

This will set Minimum and Maximum values.

In XAML

To set the Minimum and Maximum in XAML add Maximum="500" Minimum="-500" to the

<c1:C1NumericBox> tag so that it appears similar to the following:
<c1:C1NumericBox Height="21.96" HorizontalAlignment="Right"

Margin="0,16,105,0" Name="C1NumericBox1" VerticalAlignment="Top"

Width="111.01" Maximum="500" Minimum="-500" />

In Code

To set the Minimum and Maximum add the following code to your project:

 Visual Basic
C1NumericBox1.Minimum = -500

C1NumericBox1.Maximum = 500

 C#
c1NumericBox1.Minimum = -500;

c1NumericBox1.Maximum = 500;

Run your project and observe:

Users will be limited to the selected range at run time.

Changing Font Type and Size
You can change the appearance of the text in the grid by using the text properties in the C1NumericBox Properties
window, through XAML, or through code.

At Design Time

To change the font of the grid to Arial 10pt in the Properties window at design time, complete the following:

1. Click the C1NumericBox control once to select it.

2. Navigate to the Properties window, and set FontFamily property to "Arial".

3. In the Properties window, set the FontSize property to 10.

This will set the control's font size and style.

In XAML

For example, to change the font of the control to Arial 10pt in XAML add FontFamily="Arial"

FontSize="10" to the <c1:C1NumericBox> tag so that it appears similar to the following:
<c1:C1NumericBox Height="21.96" HorizontalAlignment="Right"

Margin="0,16,105,0" Name="C1NumericBox1" VerticalAlignment="Top"

Width="111.01" FontFamily="Arial" FontSize="10" />

In Code

24

For example, to change the font of the grid to Arial 10pt add the following code to your project:

 Visual Basic
C1NumericBox1.FontSize = 10

C1NumericBox1.FontFamily = New System.Windows.Media.FontFamily("Arial")

 C#
c1NumericBox1.FontSize = 10;

c1NumericBox1.FontFamily = new System.Windows.Media.FontFamily("Arial");

Run your project and observe:

The control's content will appear in Arial 10pt font:

Hiding the Up and Down Buttons
By default buttons are visible in the C1NumericBox control to allow users to increment and decrement the value in

the box by one step. You can choose to hide the Up and Down buttons in the C1NumericBox control at run time.

To hide the Up and Down buttons you can set the ShowButtons property to False.

At Design Time

To hide the Up and Down buttons at run time, complete the following steps:

1. Click the C1NumericBox control once to select it.

2. Navigate to the Properties window, and uncheck the ShowButtons check box.

This will set the ShowButtons property to False.

In XAML

For example, to hide the Up and Down buttons in XAML add ShowButtons="False" to the

<c1:C1NumericBox> tag so that it appears similar to the following:
<c1:C1NumericBox Height="21.96" HorizontalAlignment="Right"

Margin="0,16,105,0" Name="C1NumericBox1" VerticalAlignment="Top"

Width="111.01" ShowButtons="False" />

In Code

For example, to hide the Up and Down buttons add the following code to your project:

 Visual Basic
C1NumericBox1.ShowButtons = False

 C#
c1NumericBox1.ShowButtons = false;

Run your project and observe:

The Up and Down buttons will not be visible:

Locking the Control from Editing
By default the C1NumericBox control's Value property is editable by users at run time. If you want to lock the

control from being edited, you can set the IsReadOnly property to True.

 25

At Design Time

To lock the C1NumericBox control from run-time editing, complete the following steps:

1. Click the C1NumericBox control once to select it.

2. Navigate to the Properties window, and check the IsReadOnly check box.

This will set the IsReadOnly property to False.

In XAML

For example, to hide the Up and Down buttons in XAML add IsReadOnly="True" to the

<c1:C1NumericBox> tag so that it appears similar to the following:
<c1:C1NumericBox Height="21.96" HorizontalAlignment="Right"

Margin="0,16,105,0" Name="C1NumericBox1" VerticalAlignment="Top"

Width="111.01" IsReadOnly="True" />

In Code

For example, to hide the Up and Down buttons add the following code to your project:

 Visual Basic
C1NumericBox1.IsReadOnly = True

 C#
c1NumericBox1.IsReadOnly = true;

Run your project and observe:

The control is locked from editing; notice that the Up and Down buttons are grayed out and inactive:

	ComponentOne NumericBox for WPF Overview
	Help with ComponentOne Studio for WPF

	Key Features
	NumericBox for WPF Quick Start
	Step 1 of 4: Adding NumericBox for WPF to your Project
	Step 2 of 4: Customizing the Application
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	Working with C1NumericBox
	Basic Properties
	Number Formatting
	Input Validation

	Layout and Appearance
	Layout in a Panel
	Appearance Properties
	Content Properties
	Text Properties
	Color Properties
	Border Properties
	Style Properties
	Size Properties

	ComponentOne ClearStyle Technology
	How ClearStyle Works
	ClearStyle Properties

	Templates
	XAML Elements

	NumericBox for WPF Samples
	NumericBox for WPF Task-Based Help
	Setting the Start Value
	Setting the Increment Value
	Setting the Minimum and Maximum Values
	Changing Font Type and Size
	Hiding the Up and Down Buttons
	Locking the Control from Editing

