ComponentOne

OLAP for WPF and
Silverlight

GrapeCity US

GrapeCity

201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206

Tel: 1.800.858.2739 | 412.681.4343

Fax: 412.681.4384

Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $25 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com

OLAP for WPF and Silverlight

Table of Contents

OLAP for WPF and Silverlight Overview
What is C10lap
Introduction to OLAP
Key Features
C10lap Architecture
C10lapPage
C10OlapPanel
C10lapGrid
C10lapChart
C10lapPrintDocument
C10lap Quick Start
A simple OLAP application
Creating OLAP Views
Summarizing Data
Drilling Down on the Data
Customizing the C10lapPage
Configuring Fields in Code
Persisting OLAP views in Local Storage
Creating Predefined Views
Updating the OLAP View
Conditional Formatting
Large Data Sources
Building a Custom User Interface
XAML Quick Reference
OLAP for WPF and Silverlight Design-Time Support
Using the C10lapPage ToolStrip
Using the Grid Menu
Using the Chart Menu
Using the Report Menu
OLAP Cubes
Connecting to an OLAP Cube
Loading a Local Cube File
Using Cube Data Sources

OLAP for WPF and Silverlight Task-Based Help

Copyright © 2017 GrapeCity, Inc. All rights reserved.

12-13
13-15
15-16
16-17
17
17-20
20-21
21-25
25-26
26-28
28-39
39-45
46
47
47
47
47-53
53-55
56
56-57
57
57-58
59

OLAP for WPF and Silverlight

Binding C10lapPage or C10lapPanel a Data Source
Binding C10lapChart to a C10lapPanel

Binding C10lapGrid to a C10lapPanel

Removing a Field from a Data View

Filtering Data in a Field

Specifying a Subtotal Function

Formatting Numeric Data

Calculating Weighted Averages and Sums
Exporting a Grid

Grouping Data

Creating a Report

Copyright © 2017 GrapeCity, Inc. All rights reserved.

59-60
60
60
60

60-62

62-63

63-64

64-65
65

65-69
69

OLAP for WPF and Silverlight

OLAP for WPF and Silverlight Overview

Deliver in-depth business intelligence (BI) functionality with OLAP for WPF and Silverlight. Create pivot grids and
charts that slice and dice your tabular and cube data to give you real-time information, insights, and results in
seconds. The easy to use controls are modeled after Microsoft Excel® Pivot Tables, so they're powerful and familiar

for all users.

Z] Note: ComponentOne OLAP for WPF and Silverlight controls (C10lapPage, C10lapPanel, C10lapGrid and
C10lapChart) require a separate OLAP for WPF and Silverlight license in order to run without unlicensed

messages.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 4

What is C10lap

OLAP for WPF and Silverlight is a suite of Silverlight controls that provide analytical processing features similar to
those found in Microsoft Excel’s Pivot Tables and Pivot Charts. Asynchronous processing improves the performance of
the controls as multiple processes can occur simultaneously on separate threads.

For example: In case of synchronous processing, when you make any heavy update, the entire application stops
responding to any action made by the user till the update is completed. In case of C10lap, that supports
asynchronous processing, when you make any heavy update (such as adding multiple fields to row or column box of a
C10lapPage), the application responds to all user actions even while the update is in progress.

2| Asynchronous processing is available in WPF only.
OLAP for WPF and Silverlight takes raw data in any format and provides an easy-to-use interface so users can
quickly and intuitively create summaries that display the data in different ways, uncovering trends and providing

valuable insights interactively. As the user modifies the way in which he wants to see the data, OLAP for WPF and
Silverlight instantly provides pivot grids and charts (and soon reporting) that can be saved, exported, or printed.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 5

Introduction to OLAP

OLAP means "online analytical processing". It refers to technologies that enable the dynamic visualization and analysis
of data.

Typical OLAP tools include "OLAP cubes" and pivot tables such as the ones provided by Microsoft Excel. These tools
take large sets of data and summarize it by grouping records based on a set of criteria. For example, an OLAP cube
might summarize sales data grouping it by product, region, and period. In this case, each grid cell would display the
total sales for a particular product, in a particular region, and for a specific period. This cell would normally represent
data from several records in the original data source.

OLAP tools allow users to redefine these grouping criteria dynamically (on-line), making it easy to perform ad-hoc
analysis on the data and discover hidden patterns.

For example, consider the following table:

Date Product Region Sales
Oct 2007 Product A North 12
Oct 2007 Product B North 15
Oct 2007 Product C South 4
Oct 2007 Product A South 3
Nov 2007 Product A South 6
Nov 2007 Product C North 8
Nov 2007 Product A North 10
Nov 2007 Product B North 3

Now suppose you were asked to analyze this data and answer questions such as:

® Are sales going up or down?
® Which products are most important to the company?
® Which products are most popular in each region?

In order to answer these simple questions, you would have to summarize the data to obtain tables such as these:

Sales by Date and by Product

Date Product A Product B Product C Total
Oct 2007 15 15 4 34
Nov 2007 16 3 8 27
Total 31 18 12 61

Sales by Product and by Region

Product North South Total

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 6

Product A 22 9 31
Product B 18 18
Product C 8 4 12
Total 48 13 61

Each cell in the summary tables represents several records in the original data source, where one or more values fields
are summarized (sum of sales in this case) and categorized based on the values of other fields (date, product, or
region in this case).

This can be done easily in a spreadsheet, but the work is tedious, repetitive, and error-prone. Even if you wrote a
custom application to summarize the data, you would probably have to spend a lot of time maintaining it to add new
views, and users would be constrained in their analyses to the views that you implemented.

OLAP tools allow users to define the views they want interactively, in ad-hoc fashion. They can use pre-defined views
or create and save new ones. Any changes to the underlying data are reflected automatically in the views, and users
can create and share reports showing these views. In short, OLAP is a tool that provides flexible and efficient data
analysis.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Key Features

The following are some of the main features of OLAP for WPF and Silverlight that you may find useful:

OLAP for WPF and Silverlight provides ultimate flexibility for building OLAP applications

Drop one control, C10lapPage, on your form and set the data source to start displaying your data in a grid or
chart-it's that easy! But suppose you need to show multiple charts or grids. No problem. OLAP for WPF and
Silverlight also provides the C10lapPanel, C10lapChart, and C10lapGrid controls to give you the flexibility you
need. See the C10lap Architecture topic for an overview of each of the controls.

Choose from five chart types and twenty-two palette options to enhance your charts

C10lapChart provides the most common chart types to display your information, including: Bar, Column, Area,
Line, and Scatter. You can select from twenty-two palette options that define the colors of the chart and legend
items. See Using the Chart Menu to view all of the chart types and palettes.

Print, preview, or export data to PDF

You can create and preview reports containing data, grids, or charts and then print or export them to PDF.

See Creating a Report and the OLAP for WPF and Silverlight Task-Based Help for more information.

Remove a field or data in a field from the grid or chart view

You can easily filter a field so it doesn't appear in your grid or chart view. Simply drag the field to the Filter
area of a C10lapPanel; see Removing a Field from a Data View for more information. If you want to filter on
data in a field, for example, if you want to find all employees whose last names start with "Sim", you can use
the Field Settings dialog box. See Filtering Data in a Field for detailed steps.

Display information in a grid or chart view

OLAP for WPF and Silverlight provides a C10lapGrid and C10lapChart control to display data. These controls
are built into the C10lapPage control, but they are also available as separate controls so you can customize
your OLAP application. See the C10lap Architecture topic for an overview of each of the controls.

Decide how information is displayed at run time

Use the C10lapPanel to determine which fields of your data source should be used to display your data and
how. Drag fields between the lower areas of the C10lapPanel to create a filter, column headers, row headers,
or get the sum of values from a column or row. See the C10lapPanel topic for more information.

OLAP for WPF provides cube support

Olap (C10lap) allows you to connect to OLAP data sources from Microsoft® SQL Server® Analysis Services
(SSAS). Build a complete front-end or dashboard for your database using OLAP while writing just a couple lines
of code. With C10lap, users can build a multi-dimensional pivot table that slices and dices the dimensions,
measures and Key Performance Indicators (KPIs) present in the OLAP cube. See OLAP Cubes for more
information on cube support.

Asynchronous Processing: Multiple processes can run simultaneously and independent of each other.

& Asynchronous processing is available in WPF only.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

C10lap Architecture

OLAP includes the following controls:

C10lapPage

The C10lapPage control is the easiest way to develop OLAP applications quickly and easily. It provides a complete
OLAP user interface built using the other controls in C10lapGrid. The C10lapPage object model exposes the inner
controls, so you can easily customize it by adding or removing interface elements. If you want more extensive
customization, the source code is included and you can use it as a basis for your own implementation.

The diagram below shows how the C10lapPage is organized:

In Visual Studio, the control looks like this:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 9

ToolStrip C10lapChart
]

{7 Grid |2« chart {5 Report
Choose fields to add to table: Olap Grid | Olap Chart || Raw Data Raw Data
|| Category = Table
Category Sales =
[| Country
Beverages 267,868
[| Customer .
I Dairy Products 234,507
Employee g
L Employ L Confections 167,357
— Meat/Foultry 163,022 — C10lapGrid
Drag fields between areas below:
_ _ Seafood 131,162
“ Filter 1] Column Fields -
Condiments 106,047
| | | | Produce 99,935
Row Fields E values Grains/Caran 95,745
| Category | | Sales | Total 1,265,693
|| Defer Updates

I
C10lapPanel

C10lapPanel

The C10OlapPanel control is the core of the C10lapGrid product. It has a DataSource property that takes raw data as
input, and an PivotTable property that provides custom views summarizing the data according to criteria provided by
the user. The PivotTable is a regular DataTable object that can be used as a data source for any regular control.

The C10OlapPanel also provides the familiar, Excel-like drag and drop interface that allows users to define custom
views of the data. The control displays a list containing all the fields in the data source, and users can drag the fields to
lists that represent the row and column dimensions of the output table, the values summarized in the output data
cells, and the fields used for filtering the data.

At the core of the C10lapPanel control, there is a C10lapEngine object that is responsible for summarizing the raw
data according to criteria selected by the user. These criteria are represented by C10lapField objects, which contain a
connection to a specific column in the source data, filter criteria, formatting and summary options. The user creates
custom views by dragging C10lapField objects from the source Fields list to one of four auxiliary lists: the RowFields,
ColumnFields, ValueFields, and FilterFields lists. Fields can be customized using a context menu.

Notice that the C10lapGrid architecture is open. The C10lapPanel takes any regular collection as a DataSource,
including data tables, generic lists, and LINQ enumerations; it then summarizes the data and produces a regular
DataTable as output. C10lapGrid includes two custom controls that are optimized for displaying the OLAP data,
the C10lapGrid and C10lapChart, but you could use any other control as well.

The C10lapPanel looks like this:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 10

Choose fields to add to table:

Drag fields between areas below:
W Filter T Column Fields

12 Row Fields Z Values

[] Defer Updates

C10lapPanel Area Description
Filter Specifies the field to filter.
Row Field The items in the field specified become the row headers of a grid. These items

populate the Y-axis in a chart.

Column Fields The items in the field specified become the column headers of a grid. These items
are used to populate the legend in a chart.

Values Shows the sum of the field specified.

Defer Updates Suspends the automatic updates that occur while the user modifies the view
definition when this checkbox is selected.

If you right-click fields in the Filter, Column Fields, Row Fields, or Values area at run time, a context menu appears,
allowing you to move the field to a different area. You can also remove the field or click Field Settings to format and
apply afilter to the field. See Filtering Data in a Field for more information.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 11

Drag fields between areas below: Germany
" Fitter i Column Fields Ireland

Italy
Move to Filter

Move to Row Fields

Maove to Values

1 Row Fields % \alug Remove Field
B | Fedsettings...
T sWIzerand
LK
11c
L4

C10lapGrid

The C10lapGrid control is used to display OLAP tables. It extends the C1FlexGrid control and provides automatic data
binding to C10lapPanel objects, grouped row and column headers, as well as custom behaviors for resizing columns,
copying data to the clipboard, and showing details for any given cell.

The C10lapGrid control extends the C1FlexGrid control, our general-purpose grid control. This means the whole
C1FlexGrid object model is also available to C10lapGrid users. For example, you can export the grid contents to Excel
or use styles and owner-draw cells to customize the grid's appearance.

To populate C10lapGrid, bind it to a C10lapPanel that is bound to a data source. See Binding C10lapGrid to
a C10lapPanel for steps on how to do this.

For information on C1FlexGrid control, see FlexGrid for WPF and Silverlight documentation.

C10lapChart

The C10lapChart control is used to display OLAP charts. It extends the C1Chart control and provides automatic data
binding to C10lapPanel objects, automatic tooltips, chart type and palette selection.

The C10lapChart control extends the C1Chart control, our general-purpose charting control. This means the whole
C1Chart object model is also available to C10lapGrid users. For example, you can export the chart to different file
formats including PNG and JPG or customize the chart styles and interactivity.

To populate C10lapChart, bind it to a C10lapPanel that is bound to a data source. See Binding C10lapChart to a
C10lapPanel for steps on how to do this.

For information on the C1Chart control, see Chart for WPF and Silverlight documentation.

C10lapPrintDocument

The C10lapPrintDocument component is used to create reports based on OLAP views. It extends the
PrintDocument class and provides properties that allow you to specify content and formatting for showing OLAP
grids, charts, and the raw data used to create the report.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1FlexGridWPFSilv/
http://helpcentral.componentone.com/nethelp/c1wpfchart/

OLAP for WPF and Silverlight 12

C10lap Quick Start

This section presents code walkthroughs that start with the simplest WPF or Silverlight application and progress to
introduce commonly used features.

A simple OLAP application

To create the simplest CIOLAP application, start by creating a new WPF or Silverlight application and dragging
a C10lapPage control onto the page. Allow the C10lapPage control to fill the entire page by removing all margin and
alignment settings.

=™ f7 Grid |t Chart {3 Report

Choose fields to add to table: Olap Grid | Olap Chart | Raw Data

Drag fields between areas below:
W Filter 1] Column Fields

|Row Fields X Values

Now, let us set a data source for the application.

For this sample, we load Northwind product data from an XML data schema file. We use ComponentOne Data,
which provides us the familiar DataSet and DataTable objects to read the data in. We also use ComponentOne Zip to
unpackage the zipped XML file on the client.

Visual Basic

' load data from embedded zip resource

Dim ds = New DataSet ()

Dim asm = Assembly.GetExecutingAssembly ()

Using s = asm.GetManifestResourceStream("OlapQuickStart.nwind.zip")

Dim zip = New ClZipFile (s)
Using zr = zip.Entries(0) .OpenReader ()

' load data

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 13

ds.ReadXml (zr)
End Using
End Using

C#

// load data from embedded zip resource

var ds = new DataSet () ;

var asm = Assembly.GetExecutingAssembly () ;

using (var s
{

var zip = new ClZipFile(s);

asm.GetManifestResourceStream("OlapQuickStart.nwind.zip"))

using (var zr = zip.Entries[0].OpenReader())
{
// load data
ds.ReadXml (zr) ;

Then we simply set the DataSource property on the C10lapPage control. We could use any data binding method with
this control.

Visual Basic

bind olap page to data
_clOlapPage.DataSource = ds.Tables (0) .DefaultView

C#

// bind olap page to data
_clOlapPage.DataSource = ds.Tables[0].DefaultView;

The application is now ready. The following sections describe the functionality provided by default, without writing
any code aside from configuring our data source.

Creating OLAP Views

Run the application and you will see an interface similar to the one in Microsoft Excel. Drag the “Country” field to the

“Row Fields” list and “Sales” to the “Values” list and you will see a summary of prices charged by country as shown
below:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 14

|L'.'§H [C crid |2 chart [I] Report
Choose fields to add to table: Olap Grid | Olap Chart | Raw Data
__| Category
(7) Country Eoul'ltrtr Sales
) Customner Argenting 8,110
(] Employes Bapstria 128 004
| GrderDate Belgium 33,815
[Product Brazl 106,926
) Sales Canada 50,096
Denmark 33,661
Finland 18,810
France 81,358
Germany 230,245
Treland 45,580
Drag fields between areas below: Taly 15,770
o Filter L column Fields Mexico 23,582
Horway 5,735
Poland 3,532
Portugal 11,472
Spain 17,583
Sweden 54,495
ZRow Fields I Values Switzeriand 31,693
Country Sales UK 58,571
usa 245 585
Venezwela 56,811
| Total 1,265,693

Click the "Olap Chart” tab and you will see the same data in chart format, showing that the main customers are the US,
Germany, and Austria.

Now drag the "Category” field into the "Column Fields” list to see a new summary, this time of sales per country and
per category. If you still have the chart tab selected, you should be looking at a chart similar to the previous one,
except this time the bars are split to show how much was sold by each salesperson:

|u'ﬁH [0 orid |2t chart |5 Report
Choose fields to add to table: Olap Grid | Olap Chart | Raw Data
| Cakegory
7| Country Sales by Country and Category
| Custornier
(] Em Argenting
| OrderDate — -
Belgium
Product
- . Brazil
o Soles Canada
Denmark
Finland
France B Beverages
Germany . Condiments
Iraland @ confections
Drag fields between areas below: ltaly B Cwiry Products
o Filter L] Column Fields Mexcn B Grains/Cereals
Category e B Mear/Poultry
Poland B Produce
Poctugal @ Seafood
Spasf
Sweden
S Row Fields I Values i
Country Salez ™
LisA
Wenezuela
o 50,000 100,000 150,000 200,000 250,000

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 15

Move the mouse over the chart and you will see tooltips that show the name of the category and the amount sold
when you hover over the chart elements.

Now create a new view by swapping the “Category” and “Country” fields by dragging them to the opposite lists. This
will create a new chart that emphasizes category instead of country:

&5 d @ I Grid | chart [5] Report |
Choose fields to add to table: Olap Grid | Olsp Chart | faw Data
| Cabegory
7) Country Sales by Category and Country
Customer
Employes 1 . Argentsna
OrderDate Baversges |I ”[| usa B sustria
Product S 60,521 | B Beigium
|
of| Sales Condiments . Braz
B canads
B cenmark
B Finland
B France
] German
Dairy Products E Iraland v
Drag fields batween areas below: -
W Filter 1] Column Fields I;I .
Grasns/Careals) Mesxicn
Country
O Narway
: O roland
Meat/Fou
"‘-" Partugal
) Spain
- - Produce Sveden
—Row Fields E Values Svritrecksnd
Cabegory Sales T
Senfood | usa
Venazuels
i} 50,000 100,000 150,000 200 000 250,000

The chart shows that Beverages was the top selling category in the period being analyzed, followed closely by Dairy
Products.

As we make changes to the view, the C10lapPanel control keeps record. We can simply click the undo button in
the C10lapPanel menu to go back to a previous view we created.

Summarizing Data

Let's create a new view to illustrate how you can easily summarize data in different ways.

This time, drag the "Employee” field to the “"Row Fields” list and the “OrderDate” field to the "Column Fields” list. The
resulting view contains one column for each day when an order was placed. This is not very useful information,
because there are too many columns to show any trends clearly. We would like to summarize the data by month or
year instead.

One way to do this would be to modify the source data, either by creating a new query in SQL or by using LINQ. Both
of these techniques will be described in later sections. Another way is simply to modify the parameters of the
"OrderDate” field. To do this, right-click the "OrderDate” field and select the “Field Settings” menu. Then select the
"Format” tab in the dialog, choose the “"Custom” format, enter "yyyy", and click OK.

The dates are now formatted and summarized by year, and the OLAP chart looks like this:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 16

|j " | E Eﬁﬁdﬁﬁuﬂmﬂcpuﬂ
Choose fields to add to table: Olap Grid Olap Chart | Raw Data
| Cabegory
[country Sales by Employee and OrderDate
L_| Custorner
of| Employes
| OrderDate Amdrew Fuller
[Product
W Sales anne Dodsworth
Janet Leverling
| Laura Callahan
Drag fields between areas below: Margarat P : i:z:
o Filter 1] Column Fialds [}
1996
OrderDate
Mechael Suyama
Hancy Davahe
ZEiRow Fields T Values Rebert King

Employes Sales
Steven Buchanan

‘ 4] 50,000 100,000 150,000 200,000

If you wanted to check how sales are placed by month or weekday, you could simply change the format to “MMMM”
or "dddd".

Drilling Down on the Data

As we mentioned before, each cell in the OLAP grid represents a summary of several records in the data source. You
can see the underlying records behind each cell in the OLAP grid by double clicking it with the mouse.

To see this, click the “Olap Grid” tab and double-click the first cell on the grid, the one that represents Andrew
Fullers's sales in 1994. You will see another grid showing the 31 records that were used to compute the total displayed
in the Olap grid:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

ErER

Choose fields to add to table:

Olzp Geid | Olap Chart, | Raw Data |

|| Category

) Cotiy Emmpioyee
PP T AN P

|} Customer Datail View: 31 tams

] Employes

' Gk Sales Order Date
[Prodice 30.00 1EB/1051994
7] Sales 36.00 30/1271994
43.20 14709719594
62.00 241071994
100.80 05/1271994
121.60 010519594
s 145.60 2471071994
rug hadda babyotan 2t 176.00 26/11/1994
W Filter i Colur, 182,40 25/10/1994
. M 184.00 140571994
I 200.00 1071071994
240.00 25/08f1994
254.40 11/11/1994
! .00 11111994
| IR4.00 14081954

= Row Fields E valu
Employes .5&51;_'

1584 1995 1936 Tetal
srovan Ay @s oTy oS TS
=y i
Product CuEtomar Coyn =
Seotth Longbreads Lonescema Pine Restaurant usa
S Rodney's Soones Errcst Handal Besty
Guarand Fantdstca Berglunds snabbicdm S
Rhenbrau Kiosterbier Dee Wandarmde Kuh Garr
Sinjaparean Hokken Fred Mae QUICK-Stes G
Gnoochs di nonna Alice ving et alcocls Chevalier Frard
Rossie Saverkraut Den Wandernde Kuh Garm
Chef Anton's Cajun Seasoning Mére Paillarde Cana
Inlagd Sall QUICK-Stop GerrT
Rhonbrau Elesterbier Serglunds snabbkiop SWe
Feottesh Longbreads Magazzini Alimentan Riunt Itaky
Oback Lsgar Blondel pare et fils Frarmi
Escargots de Bourgogne Folk och f& HE Swes
Chang Folk och fa HB Swel
PRra rhimms Rusrniinds snsbhirm S T

Customizing the C10lapPage

17

The previous example showed how you can create a complete OLAP application using only a C10lapPage control and
minimal code. This is convenient, but in most cases you will want to customize the application and the user interface

to some degree.

Configuring Fields in Code

One of the main strengths in OLAP applications is interactivity. Users must be able to create and modify views easily

and quickly see the results. OLAP for WPF and Silverlight enables this with its Excel-like user interface and user

friendly, simple dialogs.

But in some cases you may want to configure views using code. OLAP for WPF and Silverlight enables this with its
simple yet powerful object model, especially the Field and Filter classes.

The example that follows shows how you can configure a view on load with OLAP for WPF and Silverlight.

Visual Basic

show sales by customer and category

Dim olap = clOlapPage.OlapPanel.OlapEngine

olap.DataSource
olap.BeginUpdat

= ds.Tables (0) .DefaultView

e ()

olap.RowFields.Add ("Country")
olap.ColumnFields.Add ("Category")
olap.ValueFields.Add ("Sales")
olap.Fields ("Sales") .Format = "nQO"

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 18

olap.EndUpdate ()

C#

// show sales by customer and category
var olap = clOlapPage.OlapPanel.OlapEngine;

olap.DataSource = ds.Tables[0].DefaultView;
olap.BeginUpdate () ;

olap.RowFields.Add ("Country");
olap.ColumnFields.Add ("Category") ;
olap.ValueFields.Add ("Sales");
olap.Fields["Sales"].Format = "n0";
olap.EndUpdate () ;

The code first calls the BeginUpdate method which suspends automatic updates to the output table. It adds fields for
the Row, Column and Value field collections so that the user does not have to do this action. We could therefore, hide
the C10lapPanel portion of our application. This code also applies a numeric format to the “Sales” field, and finally
calls the EndUpdate method.

If you run the sample now, you will see an OLAP view similar to the first example.

Next, let's use the OLAP for WPF and Silverlight object model to change the format used to display the order dates
and extended prices:

Visual Basic

' format order date
Dim field = olap.Fields ("OrderDate")
field.Format = "yyyy"

' format extended price and change the Subtotal type
' to show the average extended price (instead of sum)
field = olap.Fields("Sales")

field.Format = "c"

field.Subtotal = Cl.0Olap.Subtotal.Average

C#

// format order date
var field = olap.Fields["OrderDate"];
field.Format = "yyyy";

// format extended price and change the Subtotal type
// to show the average extended price (instead of sum)
field = olap.Fields(["Sales"];

field.Format = "c"

field.Subtotal = Cl.0Olap.Subtotal.Average;

The code retrieves the individual fields from the Fields collection which contains all the fields specified in the data
source. Then it assigns the desired values to the Format and Subtotal properties. Format takes a regular .NET format
string, and Subtotal determines how values are aggregated for display in the OLAP view. By default, values are added,
but many other aggregate statistics are available including average, maximum, minimum, standard deviation, and
variance.

Now suppose you are interested only in a subset of the data, say a few products and one year. A user would right-

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 19

click the fields and apply filters to them. You can do the exact same thing in code as shown below:

Visual Basic

' format order date and extended price
' no changes..

' apply value filter to show only a few products

Dim filter As Cl.0Olap.ClOlapFilter = olap.Fields ("Product").Filter
filter.Clear ()

filter.ShowValues = "Chai,Chang, Geitost, Ikura".Split(","C)

' apply condition filter to show only some dates

filter = olap.Fields ("OrderDate") .Filter

filter.Clear ()

filter.Conditionl. [Operator] = Cl.Olap.ConditionOperator.GreaterThanOrEqualTo
filter.Conditionl.Parameter = New DateTime (1996, 1, 1)

filter.Condition2. [Operator] = Cl.0Olap.ConditionOperator.LessThanOrEqualTo
filter.Condition2.Parameter = New DateTime (1996, 12, 31)
filter.AndConditions = True

C#

// format order date and extended price

// no changes..

// apply value filter to show only a few products

Cl.0lap.ClOlapFilter filter = olap.Fields["Product"].Filter;

filter.Clear();

filter.ShowValues = "Chai,Chang,Geitost, Ikura".Split (', ")

// apply condition filter to show only some dates

filter = olap.Fields["OrderDate"].Filter;

filter.Clear();

filter.Conditionl.Operator =
Cl.0lap.ConditionOperator.GreaterThanOrEqualTo;

filter.Conditionl.Parameter = new DateTime (1996, 1, 1);

filter.Condition2.0Operator =
Cl.0lap.ConditionOperator.LessThanOrEqualTo;

filter.Condition2.Parameter = new DateTime (1996, 12, 31);

filter.AndConditions = true;

The code starts by retrieving the C10lapFilter object that is associated with the “Product” field. Then it clears the filter
and sets its ShowValues property. This property takes an array of values that should be shown by the filter. In OLAP
for WPF and Silverlight we call this a “value filter".

Next, the code retrieves the filter associated with the “OrderDate” field. This time, we want to show values for a
specific year. But we don't want to enumerate all days in the target year. Instead, we use a “"condition filter” which is
defined by two conditions.

The first condition specifies that the “OrderDate” should be greater than or equal to January 15, 1996. The second

condition specifies that the "OrderDate” should be less than or equal to December 31%t, 1996. The AndConditions
property specifies how the first and second conditions should be applied (AND or OR operators). In this case, we want
dates where both conditions are true, so AndConditions is set to true.

If you run the project again, you should see the following:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 20

= @ :": Grid L4 Chart {| Report
Choose fields to add to table: Olap Grid | Olap Chart | Raw Data
Category
Product Order Date Sales
|| Country
Chai $393.47
Customer
Chang £354.78
|| Employee 1995
Geitost 47.66
|+ OrderDate e ¥
Tkura £816.49
+| Product
Total Total 412.98
|+ Sales 3

Drag fields between areas below:
“ Filter fie Column Fields

s|Row Fields X values
Product Sales
OrderDate

Persisting OLAP views in Local Storage

While loading a default view is great, users might get tired of always having to change it each time they run the
application. In Silverlight we can store some simple data to the isolated storage to save views across sessions. We will
start by creating a default view that is persisted across sessions in isolated storage. The
IsolatedStorageSettings.ApplicationSettings class allows you to save and load application settings very easily. By
default, the isolated storage is limited to 1 MB, but the size of the OLAP view is not affected by this.

In this example we will save the current view in the current application’s Exit event. So any customizations made by the
user are automatically saved when he closes the application and can be restored next time he runs it.

Visual Basic

save the current view to storage when closing the app

Private Sub Current Exit (sender As Object, e As EventArgs)

Dim userSettings = IsolatedStorageSettings.ApplicationSettings
userSettings (VIEWDEF KEY) = clOlapPage.ViewDefinition
userSettings.Save ()

End Sub

C#

// save the current view to storage when closing the app

void Current Exit (object sender, EventArgs e)

{
var userSettings = IsolatedStorageSettings.ApplicationSettings;
userSettings[VIEWDEF KEY] = clOlapPage.ViewDefinition;
userSettings.Save() ;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 21

Notice here we access the application settings using a unique key index. We store data from the ViewDefinition
property, a string in XML format which defines our view for this data set. At any point in our application we can
restore the OLAP view by reversing the second line of code. Next we will load the view from isolated storage.

Visual Basic

Const VIEWDEF KEY As String = "ClOlapViewDefinition"
C#

const string VIEWDEF KEY = "ClOlapViewDefinition";

Add this line of code which declares our VIEWDEF_KEY constant so we can easily use the same unique key to access
our stored data view throughout the application.

Application.Current.Exit += Current_Exit;

The above line of code attaches our exit event which will fire before the application closes. Next, we will load the view
from isolated storage by reversing the code used to save it.

Visual Basic

' initialize olap view

Dim userSettings = IsolatedStorageSettings.ApplicationSettings
If userSettings.Contains (VIEWDEF KEY) Then

' load last used olap view from isolated storage

_clOlapPage.ViewDefinition = TryCast (userSettings (VIEWDEF KEY), String)
End If

C#

// initialize olap view

var userSettings = IsolatedStorageSettings.ApplicationSettings;

if (userSettings.Contains (VIEWDEF KEY))

{
// load last used olap view from isolated storage
_clOlapPage.ViewDefinition = userSettings[VIEWDEF KEY] as string;

If you run the project now, you will notice that it starts with the default view created by code. If you make any changes
to the view, close the application, and then re-start it, you will notice that your changes are restored.

Creating Predefined Views

In addition to the ViewDefinition property, which gets or sets the current view as an XML string, the C10lapPage
control also exposes ReadXml and WriteXml methods that allow you to persist views to files and streams. These
methods are automatically invoked by the C10lapPage when you click the “Load” and “Save” buttons in the built-in
menu.

These methods allow you to implement predefined views very easily. To do this, start by creating some views and
saving each one by pressing the “Save” button. For this sample, we will create five views showing sales by:

1. Product and Country

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 22

2. Employee and Country
3. Employee and Month

4. Employee and Weekday
5. Employee and Year

Once you have created and saved all the views, create a new XML file called “"DefaultViews.xml" with a single
"OlapViews" node, then copy and paste all your default views into this document. Next, add an “id” tag to each view
and assign each one a unique name. This name will be shown in the user interface (it is not required by C10lapGrid).
Your XML file should look like this:

XAML

<OlapViews>
<ClOlapPage id="Product vs Country">
<!-- view definition omitted... -->
<ClOlapPage id="Employee vs Country">
<!-- view definition omitted... -->
<ClOlapPage id="Employee wvs Month">
<!-- view definition omitted... -->
<ClOlapPage id="Employee vs Weekday">>
<!-- view definition omitted... -->
<ClOlapPage id="Employee vs Year">
<!-- view definition omitted... -->
</OlapViews>

Now add this file to the project as a resource. To do this, add a new folder to your project and call it “Resources.” Then
right-click the Resources folder in the solution explorer, then select the “Add Existing File...” option. Select the XML file
and click OK.

Now that the view definitions are ready, we need to expose them in our menu so the user can select them. To do this,
copy the following code into the project:

Visual Basic

Public Sub New ()

InitializeComponent ()
'no changes here

' get predefined views from XML resource
Dim views = New Dictionary(Of String, String) ()
Using s = asm.GetManifestResourceStream("OlapQuickStart.Resources.OlapViews.xml")

Using reader = XmlReader.Create(s)

' read predefined view definitions
While reader.Read()

If reader.NodeType = XmlNodeType.Element AndAlso reader.Name =
"ClOlapPage" Then

Dim id = reader.GetAttribute ("id")
Dim def = reader.ReadOuterXml ()

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

views (id) = def
End If
End While
End Using

End Using
' build new menu with predefined views
Dim menuViews = New ClMenultem ()
menuViews.Header = "View"
menuViews.Icon = GetImage ("Resources/views.png")

menuViews.VerticalAlignment = VerticalAlignment.Center
ToolTipService.SetToolTip (menuViews, "Select a predefined Olap view.")
For Each id As var In views.Keys

Dim mi = New ClMenulItem()
mi.Header = id

mi.Tag = views (id)
mi.Click += mi Click

menuViews.Items.Add (mi)
Next

add new menu to the page's main menu

_clOlapPage.MainMenu.Items.Insert (6, menuViews)
End Sub

C#

public MainPage ()
{
InitializeComponent () ;
//no changes here
/..
// get predefined views from XML resource
var views = new Dictionary<string, string>();
using (var s =
asm.GetManifestResourceStream("OlapQuickStart.Resources.OlapViews.xml"))
using (var reader = XmlReader.Create(s))
{
// read predefined view definitions
while (reader.Read())
{
if (reader.NodeType == XmlNodeType.Element && reader.Name ==
"ClOlapPage")
{
var id = reader.GetAttribute ("id");
var def = reader.ReadOuterXml () ;
views[id] = def;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

23

OLAP for WPF and Silverlight

// build new menu with predefined views
var menuViews = new ClMenultem();
menuViews.Header = "View";
menuViews.Icon = GetImage ("Resources/views.png");
menuViews.VerticalAlignment = VerticalAlignment.Center;
ToolTipService.SetToolTip (menuViews, "Select a predefined Olap view.");
foreach (var id in views.Keys)
{
var mi = new ClMenultem() ;
mi.Header = id;
mi.Tag = views[id];
mi.Click += mi Click;
menuViews.Items.Add (mi) ;
}
// add new menu to the page's main menu
_clOlapPage.MainMenu.Items.Insert (6, menuViews);

24

The code loads the XML document with the OLAP definitions, creates a new drop-down menu item using C1Menu,
and populates the drop-down with the views found. Each menu item contains the view name in its Header property,
and the actual XML node in its Tag property. The node will be used later to apply the view when the user selects it.

Once the drop-down is ready, the code adds it to the C10lapPage using the MainMenu property. The new button is

added after the first several buttons.

There is a simple method called above to load the new menu button’s image, Getimage. Loading a single image does
not require this amount of work; however if you load multiple images you will want a nice common method to use

time and again.

Visual Basic

utility to load an image from a URI
Private Shared Function GetImage (name As String) As Image

Dim uri = New Uri (name, UriKind.Relative)

Dim img = New Image ()

img.Source = New BitmapImage (uri)

img.Stretch = Stretch.None

img.VerticalAlignment = VerticalAlignment.Center
img.HorizontalAlignment = HorizontalAlignment.Center
Return img

End Function

C#

// utility to load an image from a URI
static Image GetImage (string name)

{

var uri = new Uri(name, UriKind.Relative);
var img = new Image();
img.Source = new BitmapImage (uri);

img.Stretch = Stretch.None;
img.VerticalAlignment = VerticalAlignment.Center;

img.HorizontalAlignment = HorizontalAlignment.Center;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 25

return img;

The only part still missing is the code that will apply the views to the C10lapPage when the user selects them by
clicking the menu item. This is accomplished with the following code:

Visual Basic

apply a predefined view
Private Sub mi Click(sender As Object, e As SourcedEventArgs)

Dim mi = TryCast (sender, ClMenultem)

Dim viewDef = TryCast (mi.Tag, String)

_clOlapPage.ViewDefinition = viewDef
End Sub

C#

// apply a predefined view
void mi Click(object sender, SourcedEventArgs e)
{

var mi = sender as ClMenultem;

var viewDef = mi.Tag as string;

_clOlapPage.ViewDefinition = viewDef;

The code retrieves the OLAP definition as an XML string by reading the menu’s Tag property, then assigns it to
the C10lapPage.ViewDefinition property.

If you need further customization, you can also choose not to use the C10lapPage at all, and build your interface
using the lower-level C10lapPanel, C10lapGrid, and C10lapChart controls. The source code for the C10lapPage
control is included with the package and can be used as a starting point. The example in the “Building a custom User
Interface” section shows how this is done.

Updating the OLAP View

At certain points you may want to force an update on the C10lapPage or C10 to regenerate the analysis. You can call
the Update method on the C10lapEngine. To add this functionality to your Ul, add a button and in its click event add
this code:

Visual Basic

' regenerate the olap view

Private Sub Button Click(sender As Object, e As RoutedEventArgs)

_clOlapPage.OlapPanel.OlapEngine.Update ()
End Sub

C#

// regenerate the olap view
void Button Click(object sender, RoutedEventArgs e)
{

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 26

_clOlapPage.OlapPanel.OlapEngine.Update () ;

Conditional Formatting

The C10lapGrid control derives from the C1FlexGrid control, so you can use the grid's custom cells features to apply
styles to cells based on their contents. This sample shows a grid where values greater than 100 appear with a light
green background.

The C10lapGrid control has a CellFactory class that is responsible for creating every cell shown on the grid. To create
custom cells, you have to create a class that implements the ICellFactory interface and assign this class to the grid's
CellFactory property. Like custom columns, custom ICellFactory classes can be highly specialized and application-
specific, or they can be general, reusable, configurable classes. In general, custom ICellFactory classes are a lot
simpler than custom columns since they deal directly with cells.

Here is the code which implements a ConditionalCellFactory class responsible applying a custom green background to
cells with values over 100.

Visual Basic

Public Class ConditionalCellFactory
Inherits Cl.Silverlight.FlexGrid.CellFactory

Public Overrides Function CreateCell (grid As ClFlexGrid, cellType 1 As CellType,
range As CellRange) As FrameworkElement
' let base class to most of the work
Dim cell = MyBase.CreateCell (grid, cellType 1, range)

apply green background if necessary
If cellType 1 = CellType.Cell Then

Dim cellValue = grid(range.Row, range.Column)
If TypeOf cellValue Is Double AndAlso CDbl (cellValue) > 100 Then

Dim border = TryCast(cell, Border)

border.Background = greenBrush
End If
End If
' done

Return cell
End Function
Shared greenBrush As Brush = New SolidColorBrush(Color.FromArgb (¢Hff, 88, 183,
112))
End Class

C#

public class ConditionalCellFactory : Cl.Silverlight.FlexGrid.CellFactory

{
public override FrameworkElement CreateCell (ClFlexGrid grid, CellType cellType,
CellRange range)

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

// let base class to most of the work

var cell = base.CreateCell (grid, cellType, range);
// apply green background if necessary

if (cellType == CellType.Cell)

{

var cellValue = grid[range.Row, range.Column];
if (cellValue is double && (double)cellValue > 100)

var border = cell as Border;
border.Background = greenBrush;

}
// done
return cell;

}
static Brush greenBrush = new SolidColorBrush (Color.FromArgb (0xff,

112));
}

And here is the code required to use this on our C10lapGrid:

Visual Basic

' apply conditional formatting to grid cells
_clOlapPage.OlapGrid.CellFactory = New ConditionalCellFactory ()

C#

// apply conditional formatting to grid cells
_clOlapPage.OlapGrid.CellFactory = new ConditionalCellFactory();

If you were to add this code to a previous example, you would see how this appears at run-time.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

88,

183,

27

OLAP for WPF and Silverlight 28

Z o [[] Grid L2 chart (5] Report
Choose fields to add to table: Olap Grid | Olag Chart | Raw Data
| Categary .
|»| Country
|| Customer
|| Emplayes
|| SrderDiate
|| Pridisee
|s] Sales

Bavarsges
Country Cha Chang Chartreuss vert Cite de Blaye Guarand Fantis Ipch Coffes Lakckaliktdn

Drag fialds batwesn aress below:
o Filter 1 Column Fuslds
Categery

Product
Tlrow Fields E values
Courntry Sales

‘ ‘ ‘ ‘ i) Li

Large Data Sources

In some cases there may be too much data to load into memory at once. Consider for example a table with a million
rows or more. Even if you could load all this data into memory, the process would take a long time.

There are many ways to deal with these scenarios. You could create queries that summarize and cache the data on the
server and use web services to deliver data to your Silverlight client. Still you would end up with tables that can be
used with C10lapPage.

In this sample we will use a WCF service to access Northwind data stored in a SQL database. The interesting part of
this sample is that not all data will be loaded into memory at one time. The C10lapPage only requests data for
customers that are currently included in the filter.

For this sample we will create a Silverlight project inside an ASP.Net web site. We will also use LINQ to SQL classes to

query data from the sample Northwind database. LINQ to SQL is an ORM (object relational mapping) implementation
that ships with Visual Studio (2008 and higher). It allows you to model a relational database using .NET classes which

you can query against using LINQ.

First, we create a LINQ to SQL representation of the Northwind database. Right-click the web site project associated
with your Silverlight project and click “Add New Item...” Select LINQ to SQL Classes and name it
NorthwindDataClasses.dbml.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Afd New Itern - SqlFilter.Wab

Installed Templates S [TT—— B |)
4 Wisual C= , .
T 'Y IC=
= ﬂ HTML Page Visual C2 T
LIMG to SQL classes mapped to relational
Dara v objects.
General @ Instalier Class Visual C=
Web =
Windeows Forms - Interface Visual C=
~cP
e o
Expression Blend Iﬁ Facript File Wisual C=
Reporting E
etz [LNG to SOL Classes Visual C&
Worlkdflow L

Master Page Visual C&

j MNested Master Page Visual C2

:_l* Preprocessed Text Template Visual C=
E_'EI Report Visual C=
Mame: NorthwindDataClasses.dbm!

o] cance

Next, we bring in all of the data fields from the “Invoices” view by dragging items from the Server Explorer.
i
T E) (P
EI RS B
J_J Data Connections

Mg Servers F —
§i SharePoint Connections Invoice

= Properties
B Shiplame
1 ShipAddress
57 shipCity
= ShipRegion
P ShipPostaiCode
S ShipCountry
o CustomedD
' CustomerMame
j" Address
=g City
7 Regicn
S PastalCads
= Country
' Salesperson
' OrdedD
j;' OrderDate
' RequiredDate
T ShippedDate
1 ShipperMame
= ProductiD
' ProductMame
j UnitPnce
- Quantity
*F Discount
M ExtendedPrice
g Freight

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

30

Then we create a WCF Service that queries this data using LINQ and our LINQ to SQL Classes (NorthwindDataClasses)
just created. Right-click the web site project node and click “Add New Item...” Select WCF Service and name it

NorthwindDataService.svc.

Replace the code in NorthwindDataService.svc with the following code:

Visual Basic

Imports System.Ling

Imports System.Runtime.Serialization

Imports System.ServiceModel

Imports System.ServiceModel.Activation

Imports System.Collections.Generic

Imports System.Text

Namespace SglFilter.Web
<ServiceContract ([Namespace] := "")>
<AspNetCompatibilityRequirements (RequirementsMode :=

AspNetCompatibilityRequirementsMode.Allowed)>
Public Class NorthwindDataService

"' <summary>/// Get all invoices. /// </summary> [OperationContract]

Public Function GetInvoices () As List (Of Invoice)
Dim ctx = New NorthwindDataClassesDataContext ()
Dim invoices = From inv In ctx.Invoicesinv
Return invoices.ToList ()

End Function

"' <summary>/// Get all customers. /// </summary> [OperationContract]

Public Function GetCustomers () As List (Of String)
Dim ctx = New NorthwindDataClassesDataContext ()

Dim customers = (From inv In ctx.Invoicesinv.CustomerName) .Distinct ()

Return customers.ToList ()
End Function

</summary> [OperationContract]

Public Function GetCustomerInvoices (ParamArray customers As String())

List (Of Invoice)

' build hashset var hash = new HashSet<string>();
For Each ¢ As String In customers
hash.Add (c)
Next
Dim customerList As String() = hash.ToArray ()
' get invoices for customers in the list var ctx =

NorthwindDataClassesDataContext () ;
Dim invoices = From inv In ctx.Invoices Where
customerList.Contains (inv.CustomerName) inv
Return invoices.ToList ()
End Function
End Class
End Namespace

C#

using System;

using System.Ling;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

<summary>/// Get all invoices for a specific set of customers.

As

OLAP for WPF and Silverlight

using System.Runtime.Serialization;

using System.ServiceModel;

using System.ServiceModel.Activation;

using System.Collections.Generic;

using System.Text;

namespace SglFilter.Web

{
[ServiceContract (Namespace = "")]
[AspNetCompatibilityRequirements (RequirementsMode =

AspNetCompatibilityRequirementsMode.Allowed)]
public class NorthwindDataService

{

31

/// <summary>/// Get all invoices. /// </summary> [OperationContract]

public List<Invoice> GetInvoices|()
{
var ctx = new NorthwindDataClassesDataContext () ;
var invoices =
from inv in ctx.Invoices
select inv;
return invoices.ToList () ;

}

/// <summary>/// Get all customers. /// </summary> [OperationContract]

public List<string> GetCustomers ()
{
var ctx = new NorthwindDataClassesDataContext () ;
var customers =
(from inv in ctx.Invoices
select inv.CustomerName) .Distinct () ;
return customers.ToList () ;
}
/// <summary>/// Get all invoices for a specific set of customers. ///
</summary> [OperationContract]
public List<Invoice> GetCustomerInvoices (params string[] customers)
{
// build hashset var hash = new HashSet<string>();
foreach (string c in customers)
{
hash.Add (c) ;
}
string[] customerList = hash.ToArray();
// get invoices for customers in the list var ctx = new
NorthwindDataClassesDataContext () ;
var invoices =
from inv in ctx.Invoices
where customerList.Contains (inv.CustomerName)
select inv;
return invoices.ToList () :;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 32

Notice here we have defined 3 methods for our web service. The first two are simple Get methods which return a list
of items using LINQ and our LINQ to SQL classes created earlier. The GetCustomerlnvoices method is special in that it
accepts an array of customers as parameter. This is our filter that will be defined on the client in our

Silverlight C10lapGrid project.

Before moving to the Silverlight project we must build the web site project, and add a reference to our web service. To
add the reference, right-click the Silverlight project node in the Solution Explorer and click “Add Service Reference.”
Then click "Discover” and select the NorthwindDataService.svc. Rename it “NorthwindDataServiceReference” and click
OK.

Now that the data source is ready, we need to connect it to C10lapPage to ensure that:

1. The user can see all the customers in the filter (not just the ones that are currently loaded) and
2. When the user modifies the filter, new data is loaded to show any new customers requested.

Before we accomplish these tasks we should set up our Ul. In MainPage.XAML, add a C10lapPage control and a
couple of TextBlocks which will be used as status strips:

XAML

<Grid x:Name="LayoutRoot">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto"/>
</Grid.RowDefinitions>
<olap:ClOlapPage x:Name=" clOlapPage"/>
<TextBlock x:Name=" lblLoading"FontSize="24"Opacity=".5"Text="Loading
data..."HorizontalAlignment="Center"VerticalAlignment="Center"/>
<TextBlock x:Name=" lblStatus"Text="Ready"HorizontalAlignment="Right"Grid.Row="1"/>
</Grid>

Then add the following code to the form:

Visula Basic

Dim allCustomers As ObservableCollection(Of String)
Dim invoices As ObservableCollection (Of NorthwindDataServiceReference.Invoice)
Dim customerFilter As ClOlapFilter

C#

ObservableCollection<string> allCustomers;
ObservableCollection<NorthwindDataServiceReference.Invoice> invoices;

ClOlapFilter customerFilter;

These fields will contain a complete list of all the customers in the database, a list of the customers currently selected
by the user, and the maximum number of customers that can be selected at any time.

We need to assign the complete list of customers to the C10lapField.Values property. This property contains a list of
the values that are displayed in the filter. By default, C10lapPage populates this list with values found in the raw data.
In this case, the raw data will only contain a partial list, so we need to provide the complete version instead. The
_allCustomers ObservableCollection will hold our entire collection of possible customers for the user to select among.
The C10lapPage will actually work with the _invoices collection, which will be the dataset filtered by the selected
customers.

Replace the following code in MainPage():

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 33

Visual Basic

Public Sub New ()
InitializeComponent ()
' initialize OlapPage data source _invoices = new
ObservableCollection<SglFilter.NorthwindDataServiceReference.Invoice>();
_clOlapPage.DataSource = _invoices
' initialize OlapPage view var olap = clOlapPage.OlapEngine;
olap.BeginUpdate ()
olap.ColumnFields.Add ("OrderDate")
olap.RowFields.Add ("CustomerName")
olap.ValueFields.Add ("ExtendedPrice")
olap.RowFields (0) .Width = 200
olap.Fields ("OrderDate") .Format = "yyyy"
olap.Fields ("CustomerName") .Filter.ShowValues = selectedCustomers.ToArray ()
olap.EndUpdate ()
' get list of all customers in the database var sc = new
SglFilter.NorthwindDataServiceReference.NorthwindDataServiceClient () ;
sc.GetCustomersCompleted += sc_GetCustomersCompleted
' show status _1blStatus.Text = "Retrieving customer list...";
sc.GetCustomersAsync ()
End Sub

C#

public MainPage ()
{
InitializeComponent () ;
// initialize OlapPage data source _invoices = new
ObservableCollection<SglFilter.NorthwindDataServiceReference.Invoice> () ;
_clOlapPage.DataSource = _invoices;
// initialize OlapPage view var olap = clOlapPage.OlapEngine;
olap.BeginUpdate () ;
olap.ColumnFields.Add ("OrderDate") ;
olap.RowFields.Add ("CustomerName") ;
olap.ValueFields.Add ("ExtendedPrice");
olap.RowFields[0] .Width = 200;
olap.Fields["OrderDate"] .Format = "yyyy";
olap.Fields["CustomerName"].Filter.ShowValues = selectedCustomers.ToArray();
olap.EndUpdate () ;

// get list of all customers in the database var sc = new
SglFilter.NorthwindDataServiceReference.NorthwindDataServiceClient () ;

sc.GetCustomersCompleted += sc_GetCustomersCompleted;

sc.GetCustomersAsync () ;

// show status _lblstatus.Text = "Retrieving customer list...";

Here we initialize our C10lapPage data source, we create a default view and we get a list of all customers in the
database. We need to get a complete list of all the customers in the database so the user can select the ones he wants
to look at. Note that this is a long list but compact list. It contains only the customer name, not any of the associated
details such as orders, order details, etc.

Since our data is coming from a web service, it is being retrieved asynchronously and the sc_GetCustomersCompleted

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 34

event is fired when the data has finished loading.

Visula Basic

Private Sub sc_GetCustomersCompleted(sender As Object, e As
SglFilter.NorthwindDataServiceReference.GetCustomersCompletedEventArgs)
' hide 'loading' message ~1blLoading.Visibility = Visibility.Collapsed;
' monitor CustomerName filter _customerFilter =
_clOlapPage.OlapEngine.Fields["CustomerName"] .Filter;
_customerFilter.PropertyChanged += filter PropertyChanged

monitor view definition to ensure CustomerName field is always active
_clOlapPage.ViewDefinitionChanged += clOlapPage ViewDefinitionChanged;

' show available customers in the "CustomerName" field filter _allCustomers =
e.Result;

_customerFilter.Values = allCustomers

' go get the data GetData() ;
End Sub

C#

void sc_GetCustomersCompleted(object sender,
SglFilter.NorthwindDataServiceReference.GetCustomersCompletedEventArgs e)
{
// hide 'loading' message _1blLoading.Visibility = Visibility.Collapsed;
// monitor CustomerName filter _customerFilter =
_clOlapPage.OlapEngine.Fields["CustomerName"] .Filter;
_customerFilter.PropertyChanged += filter PropertyChanged;
// monitor view definition to ensure CustomerName field is always active

_clOlapPage.ViewDefinitionChanged += clOlapPage ViewDefinitionChanged;

// show available customers in the "CustomerName" field filter ~allCustomers =
e.Result;

_customerFilter.Values = allCustomers;

// go get the data GetData () ;

This event gets the complete list of customers in the database. We store this to show in the filter. We need to listen to
the C10lapField.PropertyChanged event, which fires when the user modifies any field properties including the filter.
When this happens, we retrieve the list of customers selected by the user and pass that list to the data source.

And here is the event handler that updates the data source when the filter changes:

Visual Basic

' CustomerName field filter has changed: get new datavoid

filter PropertyChanged (object sender, System.ComponentModel.PropertyChangedEventArgs
e)
If True Then
GetData ()
End If

C#

// CustomerName field filter has changed: get new datavoid

filter PropertyChanged (object sender, System.ComponentModel.PropertyChangedEventArgs
e)

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 35

GetDatal() ;

The field's Filter property is only taken into account by the C10lapEngine if the field in “active” in the view. "Active”
means the field is a member of the RowFields, ColumnFields, ValueFields, or FilterFields collections. In this case, the
"CustomerName” field has a special filter and should always be active. To ensure this, we must handle the engine’s
ViewDefinitionChanged event and make sure the “Customers” field is always active.

Here is the code that ensures the "CustomerName” field is always active:

Visual Basic

' make sure Customer field is always in the viewvoid
_clOlapPage ViewDefinitionChanged (object sender, EventArgs e)
If True Then

Dim olap = clOlapPage.OlapEngine

Dim field = olap.Fields ("CustomerName")

If Not field.IsActive Then

olap.FilterFields.Add (field)

End If

End If

C#

// make sure Customer field is always in the viewvoid
_clOlapPage ViewDefinitionChanged (object sender, EventArgs e)
{

var olap = clOlapPage.OlapEngine;

var field = olap.Fields["CustomerName"];

if (!field.IsActive)

{

olap.FilterFields.Add (field);

The GetData method is called to get the invoice data for the selected customers in the filter.

Visual Basic

' go get invoice data for the selected customersvoid GetData ()
If True Then
' re-create active customer list based on the current filter settings var
selectedCustomers = new ObservableCollection<string>();
For Each customer As String In _allCustomers
If customerFilter.Apply(customer) Then
selectedCustomers.Add (customer)

End If
Next
_customerFilter.ShowValues = selectedCustomers.ToArray ()
' go get invoices for the selected customers var sc = new

SglFilter.NorthwindDataServiceReference.NorthwindDataServiceClient () ;
sc.GetCustomerInvoicesCompleted += sc GetCustomerInvoicesCompleted

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 36

sc.GetCustomerInvoicesAsync (selectedCustomers)

' show status _1blStatus.Text = string.Format ("Retrieving invoices for {0}
customers...", selectedCustomers.Count);
End If

C#

// go get invoice data for the selected customersvoid GetData ()
{
// re-create active customer list based on the current filter settings var
selectedCustomers = new ObservableCollection<string>();
foreach (string customer in _allCustomers)
{
if (_customerFilter.Apply(customer))
{

selectedCustomers.Add (customer) ;

}

_customerFilter.ShowValues = selectedCustomers.ToArray();

// go get invoices for the selected customers var sc = new
SglFilter.NorthwindDataServiceReference.NorthwindDataServiceClient () ;

sc.GetCustomerInvoicesCompleted += sc_GetCustomerInvoicesCompleted;

sc.GetCustomerInvoicesAsync (selectedCustomers) ;

// show status _1blStatus.Text = string.Format ("Retrieving invoices for {0}
customers...", selectedCustomers.Count);

}

Here we use the C10OlapFilter (_customFilter) and call its Apply method to build a list of customers selected by the

user. We make another asynchronous call to our web service which returns the filtered invoice data in the following
event:

Visual Basic

' got new data: show it on ClOlapPagevoid sc_ GetCustomerInvoicesCompleted (object

sender, SglFilter.NorthwindDataServiceReference.GetCustomerInvoicesCompletedEventArgs
e)
If True Then
If e.Cancelled OrElse e.[Error] IsNot Nothing Then
_1blStatus.Text = String.Format ("** Error: {0}", If(e.[Error] IsNot Nothing,
e.[Error] .Message, "Canceled"))

Else
_1blStatus.Text = String.Format ("Received {0} invoices ({1} customers).",
e.Result.Count, customerFilter.ShowValues.Length)
' begin update var olap = clOlapPage.OlapEngine;

olap.BeginUpdate ()
' update data source _invoices.Clear();
For Each invoice As var In e.Result
_invoices.Add(invoice)
' finish update olap.EndUpdate () ;
Next
End If

End If

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 37

C#

// got new data: show it on ClOlapPagevoid sc GetCustomerInvoicesCompleted (object
sender, SqglFilter.NorthwindDataServiceReference.GetCustomerInvoicesCompletedEventArgs

e)
{
if (e.Cancelled || e.Error != null)
{
_1blStatus.Text = string.Format("** Error: {0}", e.Error != null ?
e.Error.Message : "Canceled");
}
else
{
_1lblsStatus.Text = string.Format ("Received {0} invoices ({1} customers).",

e.Result.Count,
_customerFilter.ShowValues.Length);
// begin update var olap = clOlapPage.OlapEngine;
olap.BeginUpdate () ;
// update data source _invoices.Clear();
foreach (var invoice in e.Result)
{
_invoices.Add(invoice);

}
// finish update olap.EndUpdate () ;

If you run the application now, you will notice that only the customers included in the “CustomerName” setting are
included in the view:

= d E'j Gnd |4 Chart :| Report |

Choose fields to add to table:

Olap Grid | Qlap Chart | Raw Data

Addrass E
City Customer Name 1996 1997 1998 Total
1t
Hanari Carnes 2,997 6,023 23,821 32,841
Country
Hungry Coyote Import Store F80 2,283 1] 3,063
| CustomerID
) Customarame Island Trading 501 2,561 2,685 6,146
La come d'abondance 0 /] 1,992 1,992
Driscount
I ' 1 &4
A ExtandedPrics La maison d'Asie 1,144 6,924 1,260 9,328
3 Laughing Bacchus Wine Cellars 4] 336 187 523
Frainht
Rancho grande i} 1,149 1,695 2,844
Drag fields betwe 5 below:
189 TS BERwEen aress bW Total 5,823 19,275 31,639 56,738
W Filter t2) Column Fields
OrderDate

| 11
ElRew Fields E values
Customerilame | | ExtendedPnce

Recerved 126 invoices (7 customers).

To see other customers, double-click the “CustomerName” field and select “Field Settings” to open its Filter settings.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 38

Field Settings: CustomerMame = =) S
Filter | Subtotals
|| (Select all)
|| HILARION-Abastos 3

[+ Hungry Coyote Import Store

|| Hungry COwl all-Night Grocers

[+] 1sland Trading 0
|| Kéniglich Essen

|| La corne d'abondance

[+ La maison d'Asie

[+ Laughing Bacchus Wine Cellars

| Text Filter |

[oK]l Cancel]

Then edit the filter by selecting specific customers or by defining a condition. To define a custom filter condition, click
"Text Filter” on the bottom of the Field Settings Filter tab, select a condition type (i.e. Equals or Begins with...), then
enter your criteria as shown below:

Custom Filter — ﬁ

Show items where the valus:

lBEgins With -] |H |

(=) and () Or

l MNone -]

[oK] [Cancel]

When you click OK, the application will detect the change and will request the additional data from the GetData

method. Once the new data has been loaded, C10lapPage will detect the change and update the OLAP table
automatically:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

ERR: G

Grid |2 Chart [5| Report

39

Choose fields to add to table:

Address =

City
Country
Customer]D

o | CustomerMame
Discount

| ExtendedPrice

Frminht

Drag fields between areas below:
W Filter £ Column Fields

OrderDate

i Row Fields X values
CustomerMame | ExtendedPrice

QOlap Gnd | Olap Chart | Raw Data

Customer Name 1996

Hamar Carnes 2,997
HILARIOMN- Abashos 3,243
Hungry Coyete Import Store &0
Hungry Owl All-Might Grocers 9,123
Total 16,144

6,023
13,483
2,283
20,454
42,243

23,821
6,043

0
20,402
50,267

32,841
22,769
3,063
49,980
108,653

»

Recaived 141 invoices (4 customers).

See the included sample “SqlFilter” for the full implementation described in the previous sections. We can extend this
sample to also store the OLAP view with filters in local storage. See Persisting OLAP Views in Local Storage.

Building a Custom User Interface

The examples in previous sections all used the C10lapPage control, which contains a complete Ul and requires little
or no code. In this section, we will walk through the creation of an OLAP application that does not use
the C10lapPage. Instead, it creates a complete custom Ul using the C10lapGrid, C10lapChart, and some standard

Silverlight controls.

The complete source code for this application is included in the “CustomUI” sample installed with OLAP for

Silverlight and WPF.

The image below shows the application in design view:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 40

PMy Custom Olap Application

5 .

View Sales by:

&

_ Sales Person |

J

Product |
@ C10lapGrid C10lapChart

Country

Price Filter:
$5% Expensive |

| %% Moderate |
% Inexpensive |

* All Prices

A

‘ |- |

C

C

Our Grid layout consists of 2 rows and 4 columns. There is a TextBlock filling to the top row showing the application
title. There is a vertical StackPanel control in the left-most column with two groups of buttons. The top group allows
users to pick one of three pre-defined views: sales by salesperson, by product, or by country. The next group allows
users to apply a filter to the data based on product price (expensive, moderate, or inexpensive).

The remaining columns have an empty C10lapGrid, GridSplitter and an empty C10lapChart respectively. These are
the controls that will display the view currently selected.

Once all the controls are in place, let's add the code that connects them all and makes the application work.

In code we declare a C10lapPanel. In previous examples the C10lapPanel part is visible to the end-user. But in this
sample we use it behind-the scenes, so users won't ever see it. This invisible control is used as a data source for the
grid and the chart, and is responsible for filtering and summarizing the data. Both the grid and the chart have their
DataSource property set to the C10lapPanel.

ClOlapPanel olapPanel = new ClOlapPanel();

The code below first loads Northwind data from an XML data schema file. We use Data for Silverlight, which
provides us the familiar DataSet and DataTable objects to read the data in. We also use Zip for Silverlight to
unpackage the zipped XML file on the client. We assign the resulting DataTable to the C10lapPanel.DataSource
property. We also assign our C10lapPanel control to our C10lapGrid and C10lapChart controls DataSource
property. Finally, we simulate clicks on two buttons to initialize the current view and filter.

Visual Basic

Public MainPage ()
InitializeComponent ()

Dim ds = New DataSet ()

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Dim asm Assembly.GetExecutingAssembly ()
Using s = asm.GetManifestResourceStream("CustomUI.Resources.nwind.zip")
Dim zip = New ClZipFile(s)
' load data ds.ReadXml (zr) ;

Using zr = zip.Entries (0) .OpenReader ()

End Using

End Using

' bind olap grid/chart to panel _olapChart.DataSource = olapPanel;

_olapGrid.DataSource = olapPanel

' bind olap panel to data _olapPanel.DataSource = ds.Tables[0].DefaultView;

' start with the SalesPerson view, all products _btnSalesperson Click(this,
null);

_btnAllPrices Click(Me, Nothing)
End Sub

'The event handlers for the buttons that select the current view look like this:
Private Sub btnSalesperson Click(sender As Object, e As RoutedEventArgs)
BuildView ("SalesPerson")
End Sub
Private Sub btnProduct Click(sender As Object, e As RoutedEventArgs)
BuildView ("ProductName")
End Sub
Private Sub btnCountry Click(sender As Object, e As RoutedEventArgs)
BuildView ("Country")
End Sub
'All handlers use a BuildView helper method given below:
' rebuild the view after a button was clickedvoid BuildView(string fieldName)
If True Then

' get olap engine var olap = olapPanel.OlapEngine;
' stop updating until done olap.BeginUpdate () ;
' clear all fields olap.RowFields.Clear () ;

olap.ColumnFields.Clear ()
olap.ValueFields.Clear ()

' format order dates to group by year var £ = olap.Fields["OrderDate"];
f.Format = "yyyy"
' build up view olap.ColumnFields.Add ("OrderDate") ;

olap.RowFields.Add (fieldName)
olap.ValueFields.Add ("ExtendedPrice")

restore updates olap.EndUpdate () ;
End If

C#

public MainPage ()
{

InitializeComponent () ;

var ds = new DataSet();

var asm = Assembly.GetExecutingAssembly () ;

using (var s = asm.GetManifestResourceStream("CustomUI.Resources.nwind.zip"))
{

var zip = new ClZipFile(s);

using (var zr = zip.Entries[0].OpenReader())

Copyright © 2017 GrapeCity, Inc. All rights reserved.

41

OLAP for WPF and Silverlight 42

// load data ds.ReadXml (zr) ;
}
}
// bind olap grid/chart to panel _olapChart.DataSource = olapPanel;
_olapGrid.DataSource = olapPanel;
// bind olap panel to data _olapPanel.DataSource = ds.Tables[0].DefaultView;
// start with the SalesPerson view, all products _btnSalesperson Click(this,

null);
_btnAllPrices Click(this, null);
}
//The event handlers for the buttons that select the current view look like this:
void btnSalesperson Click(object sender, RoutedEventArgs e)
{
BuildView ("SalesPerson") ;
}
void btnProduct Click(object sender, RoutedEventArgs e)
{
BuildView ("ProductName") ;
}
void btnCountry Click(object sender, RoutedEventArgs e)
{
BuildView ("Country");
}
//A1ll handlers use a BuildView helper method given below:
// rebuild the view after a button was clickedvoid BuildView (string fieldName)

{

// get olap engine var olap = olapPanel.OlapEngine;
// stop updating until done olap.BeginUpdate () ;
// clear all fields olap.RowFields.Clear () ;

olap.ColumnFields.Clear () ;
olap.ValueFields.Clear () ;

// format order dates to group by year var £ = olap.Fields["OrderDate"];
f.Format = "yyyy";
// build up view olap.ColumnFields.Add ("OrderDate") ;

olap.RowFields.Add (fieldName) ;
olap.ValueFields.Add ("ExtendedPrice");
// restore updates olap.EndUpdate () ;

The BuildView method gets a reference to the C10lapEngine object provided by the C10lapPanel and immediately
calls the BeginUpdate method to stop updates until the new view has been completely defined. This is done to
improve performance.

The code then sets the format of the “OrderDate” field to “yyyy” so sales are grouped by year and rebuilds view by
clearing the engine’'s RowFields, ColumnFields, and ValueFields collections, then adding the fields that should be
displayed. The “fieldName” parameter passed by the caller contains the name of the only field that changes between
views in this example.

When all this is done, the code calls EndUpdate so the C10lapPanel will update the output table.

Before running the application, let's look at the code that implements filtering. The event handlers look like this:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Visual Basic

Private Sub btnExpensive Click(sender As Object, e As RoutedEventArgs)
SetPriceFilter ("Expensive Products (price > $50)", 50, Double.MaxValue)

End Sub

Private Sub btnModerate Click(sender As Object, e As RoutedEventArgs)
SetPriceFilter ("Moderately Priced Products ($20 < price < $50)", 20, 50)

End Sub

Private Sub btnInexpensive Click(sender As Object, e As RoutedEventArgs)
SetPriceFilter ("Inexpensive Products (price < $20)", 0, 20)

End Sub

Private Sub btnAllPrices Click(sender As Object, e As RoutedEventArgs)
SetPriceFilter ("All Products", 0, Double.MaxValue)

End Sub

C#

void btnExpensive Click(object sender, RoutedEventArgs e)
{
SetPriceFilter ("Expensive Products (price > $50)", 50, double.MaxValue);
}
void btnModerate Click(object sender, RoutedEventArgs e)
{

SetPriceFilter ("Moderately Priced Products ($20 < price < $50)", 20, 50);

}
void btnInexpensive Click(object sender, RoutedEventArgs e)
{
SetPriceFilter ("Inexpensive Products (price < $20)", 0, 20);
}
void btnAllPrices Click(object sender, RoutedEventArgs e)
{
SetPriceFilter ("All Products", 0, double.MaxValue);

All handlers use a SetPriceFilter helper method given below:

I

Visual Basic
' apply a filter to the product pricevoid SetPriceFilter(string footerText, double
min, double max)
If True Then
' get olap engine var olap = olapPanel.OlapEngine;
' stop updating until done olap.BeginUpdate () ;
' make sure unit price field is active in the view var field =
olap.Fields["UnitPrice"];
olap.FilterFields.Add (field)
' customize the filter var filter = field.Filter;
filter.Clear()
filter.Conditionl. [Operator] = Cl.0Olap.ConditionOperator.GreaterThanOrEqualTo
filter.Conditionl.Parameter = min
filter.Condition2. [Operator] = Cl.0Olap.ConditionOperator.LessThanOrEqualTo

filter.Condition2.Parameter = max

restore updates olap.EndUpdate () ;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

43

OLAP for WPF and Silverlight 44

End If

C#

// apply a filter to the product pricevoid SetPriceFilter (string footerText, double
min, double max)

{

// get olap engine var olap = olapPanel.OlapEngine;
// stop updating until done olap.BeginUpdate () ;
// make sure unit price field is active in the view var field =

olap.Fields["UnitPrice"];
olap.FilterFields.Add (field) ;
// customize the filter var filter = field.Filter;
filter.Clear();
filter.Conditionl.Operator = Cl.Olap.ConditionOperator.GreaterThanOrEqualTo;
filter.Conditionl.Parameter = min;
filter.Condition2.0perator = Cl.0Olap.ConditionOperator.LessThanOrEqualTo;
filter.Condition2.Parameter = max;
// restore updates olap.EndUpdate () ;

As before, the code gets a reference to the C10lapEngine and immediately calls BeginUpdate.

It then gets a reference to the “UnitPrice” field that will be used for filtering the data. The “UnitPrice” field is added to
the engine’s FilterFields collection so the filter will be applied to the current view.

This is an important detail. If a field is not included in any of the view collections (RowFields, ColumnFields,
ValueFields, FilterFields), then it is not included in the view at all, and its Filter property does not affect the view in
any way.

The code proceeds to configure the Filter property of the “UnitPrice” field by setting two conditions that specify the
range of values that should be included in the view. The range is defined by the “min” and “max" parameters. Instead

of using conditions, you could provide a list of values that should be included. Conditions are usually more convenient
when dealing with numeric values, and lists are better for string values and enumerations.

Finally, the code calls EndUpdate.

One last thing we'll do is update the C10lapChart anytime the user sorts a column on the C10lapGrid. This way the
data values appear in the same order.

Visual Basic

Private Sub olapGrid SortedColumn (sender As Object, e As

Cl.Silverlight.FlexGrid.CellRangeEventArgs)
_olapChart.UpdateChart ()

End Sub

C#

void olapGrid SortedColumn (object sender, Cl.Silverlight.FlexGrid.CellRangeEventArgs
e)
{

_olapChart.UpdateChart () ;

The application is now ready. You can run it and test the different views and filtering capabilities of the application, as

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

illustrated below:

My Custom Olap Application

Price Filter:
E£5 b@bﬂswe;

b —.

%% Modarats |
£ Inaxpensive |

* all Prices |

Country
Argenting
Alsstris

Belgiam

1584
[
15,170
6,307
5,509
5,141
1,187
3116
17,300
33417
&,443
80
4,588
Q
a
1,589
2,978
4,608
3,047

1955

1,804
50,375
8480
45,517
33,530
2233
12461
AT
106,012
23,1385
6440
14,345
1,758
1,267
T.181
3,952
24,187
19,450

1596
6,315
5B.454
19,028
50500
11,526
9,143
3,233
26,088
90,856
20,402
8,350
4,545
3,977
3,388
2692
11,055
25,700
9,147

Totsl .
8,119
128,004
33,825
106,926
50,196
32,661
18,810
1,358
230,285
49,580
15,770
23,582
5,735
2,532
11,472
17,983
54,495

3693

ExtendedPrice by Country and OrderDate

Argentina
ALEtna
Baiguem
Brani
Canada
Danmark
Fenland
France
Garmany
Iraland
Italy
Menco
Manvay
Paland
Portugal
Span
Sweden
Swatzerland
1.4

[
Wenezuela

(=]

100,000 200,000

45

This view shows sales for all products, grouped by year and country. Notice how the chart shows values approaching

$300,000.

If you click the “$$$ Expensive” button, the filter is applied and the view changes immediately. Notice how now the
chart shows values approaching $80,000 instead. Expensive values are responsible for about one third of the sales:

My Custom Olap Application

[GMW iva4 1995 1936 Totad & ExtendedPrice by Country and OrderDate
Argentina 1] 481 2,147 3628
View Sales by: Augina 12,437 6,406 13,842 32,685 Argening
. Austnia
Q Belgiom 2,462 8 assn 7,302 s
e, Brard 2,781 12212 22,797 37,789 Brazil
| Canada 1,600 9,308 1,272 12,180 Canada
j Denmark 0 12,384 2433 14,377 D‘:H’T:::
Praduct Finland [} 2,407 550 2,957 ot
o France 6523 B0%3 8376 1942 Germany
Germany 0 25708 42622 68331 Lreland @ 19
Caountry Ttaby . 1005
Ireland 0 0084 15924 26,088 T
e Teaky o s23 1,000 1,553 Narway @ 1996
bl bt LAY Foland
Mex 996 4,695 1060 751
$8% Expenaive | i B Partusgal
= Norway o 500 2108 2,608 i
Poland o o 106 106 Swelen
$inpense Portusgal o a 138 1,238 Fedrnarinpel
1
* Al Prices . U
Spain o 2,475 1977 6,453 Ues
Sweden ¢ 9,547 7585 17,531 venszusia
Ls’""‘“"""-‘ 0| &M% 0] &85 - o 20,000 40,000 69,000

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 46

XAML Quick Reference

This topic is dedicated to providing a quick overview of the XAML used to create a the OLAP for WPF and Silverlight controls.
To get started developing, add a ¢1 namespace declaration in the root element tag:

xmlns:cl="http://schemas.componentone.com/winfx/2006/xaml"
Below is the XAML:

XAML

<!-- olap page -->

<cl:ClOlapPageHorizontalAlignment="Left"Margin="28,12,0,0"Name="clOlapPagel"VerticalAlignment="Top"Height="426"Width="528"/>
<!-- olap panel -->

<cl:ClOlapPanelHorizontalAlignment="Left"Margin="26,11,0,0"Name="clOlapPanell"VerticalAlignment="Top"Height="307"Width="393"/>
<!-- olap grid -->

<BorderStyle="{S ticRe ce_border}"Grid.Row="1"Grid.Column="1">
<cl:ClOlapGridx:Name="_olapGrid"Margin="4"SortedColumn="_olapGrid_ SortedColumn"/>
</Border>

<!-- olap chart -->
<BorderStyle="{StaticR

e border}"Grid.Row="1"Grid.Column="3">
<cl:ClOlapChartx:Name="_olapChart"Margin="4"/>
</Border>

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 47

OLAP for WPF and Silverlight Design-Time Support

The following sections describe how to use the OLAP for Silverlight and WPF design-time environment to configure
the controls.

Using the C10lapPage ToolStrip

The C10lapPage control provides a ToolStrip you can use to: load or save a C10lapPage as an .xml file, display your
data in a grid or chart, or setup and print a report. The following table describes the buttons in the ToolStrip.

Button Description

Load =3 Allows you to load a previously saved C10lap view definition file (*.olapx) into
the C10lapPage.

Save = Allows you to save a C10lap view definition file (*.olapx).

Export Allows you to export C10lapGrid to different formats, such as xlsx, xls, .csv, and .txt.

Undo W) Clicking the Undo button cancels the last action performed in C10lapPage.

Redo (Clicking the Redo button performs the last action(s) cancelled using the Undo
button.

Grid i Grid Allows you to choose the columns and rows to display in the C10lapGrid.

Chart |t Chart Allows you customize the chart used to display your data. You can determine: the
chart type, the palette or theme, whether the title will appear, whether the chart is
stacked, and whether gridlines appear.

Report 5] Report Allows you to: specify a header or footer for each page of the report; determine what

to include in the report, the Olap grid, chart, or raw data grid; specify the page layout,
including orientation, paper size, and margins; preview the report before printing; and
print the report.

Using the Grid Menu

The Grid menu provides three options:

Total Rows Allows you to choose from Grand Totals, Subtotals, or None.
Total Columns Allows you to choose from Grand Totals, Subtotals, or None.
Show Zeros If checked, shows any cells containing zero in the grid.

Simply uncheck any of these items to hide the total rows, total columns, or any zeros in the grid.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

48

Using the Chart Menu

From the Chart menu, you can determine: the chart type, the palette, whether to show the chart title above the chart,
whether to show chart gridlines, whether to show a stacked chart, and whether to show totals only.

|t Chart {5 Report

Chart Type »

Falette 3

+ Show Title

Show Gridlines

<

+ Stacked

Totals Only

Chart Type
Palette

Show Title
Stacked
Show Gridlines

Totals Only

Chart Types

Click Chart Type to select from five common chart types shown below.

Click Palette to select from twenty-two palette options that define the colors of the chart and
legend items. See the options in the Palette topic below.

When selected, shows a title above the chart.
When selected, creates a chart view where the data is stacked.
When selected, shows gridlines in the chart.

When selected, shows only totals as opposed to one series for each column in the data source.

OLAP for WPF and Silverlight offers five of the most common chart types. The following table shows an example of each

type.

Bar

Sales by Employee

Andrew Fuller =]

anne Dodsworth |

Janet Leverling <

Laura Callahan+]

Margaret Peacock<

Michael Suyama-]

Hancy Davolio=

Robert King =]
Steven Buchanan-)
L] L] L] L]
0 50,000 100,000 150,000 200,000 250,000

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Column Sales by Employee

250,000

200,000
150,000
100,000+

20,000

LEEATETE
sy

Area Sales by Employee

230,000

200,000

150,000}

100,000

sn.ﬂ:;@ - ‘;"9 @gn {}@a
@@%ﬁ%ﬁ %

Sales by Employee

Line

250,000

200,000-

150,000

100,000+

Eu' t——r—T—T—TTT

M EaE &
e f@ﬁ%

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Scatter Sales by Employee
250,000 -
200,000 v
150,000
100,000
50, uuu : . ——
\bqu -r“@s E‘"@ﬁ‘ &
e Y
Palette

50

The C10lapChart palette is made up of twenty-two options that define the colors of the chart and legend items. The

following table shows the colors for each palette option.

Standard Office
Sales by Employee Sales by Employes

250,000 250,000
200,000 - - = 200,000+
150,000 [] 150,000
100,000 100,000 -
50,0004 | | 50,0004
0 0

f Wf o ﬁ S
a
&
f @ﬁi}s’a&‘d vsbth 3 ﬁ e’f\ 3
Apex Aspect

Copyright © 2017 GrapeCity, Inc. All rights reserved.

GrayScale

Sales by Employee

250,000

200,000
150,000
100,000

50,000

1]

Qg@
£

Civic

gsﬁ"’ ;%;;é&“’@@
G

OLAP for WPF and Silverlight 51

Sales by Employee Sales by Employee Sales by Employee
250,000 250,000 250,000
200,000 — = 200,000 200,000
150,000 150,000 150,000 4
100,000 100,000 100,000+
50,000 50,0004 50,0004
e b 0 0-
GRIFAEG” QAT STLe
EIYIISLT | SGGEIEET SRS
AL AT AT
Concourse Equity Flow
Sales by Employee Sales by Employee Sales by Employee
250,000 250,000 250,000
200,000 200,000 200,000
150,000 4 150,000 150,000
100,000 100,000 100,000
50,000+ 50,000+ 50,000+
0

;;f‘ é@ﬁf ﬁ?@tﬁ Q;@‘ éé;@ é@}a@@cﬁ@ ;\é \fi&- f@a@@’:@
GG B T

Foundry Median Metro
Sales by Employee Sales by Employes Sales by Employee
250,000 250,000 250,000
200,000 200,000 m = 200,000
150,000 150,000 [150,000
100,000 100,000 100,000
50,000+ 50,000+ 50,0004
0 0

LIS '}' }@f;ﬁﬂ@ ' & SEEFEEE
Y T

Module Opulent Oriel

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 52

Sales by Employee Sales by Employes Sales by Employes
250,000 250,000 250,000
200,000+ 200,000+ 200,000
150,000 150,000 150,000
100,000+ 100,000 100,000
50,000 H }]| | s0,000- 50,000+
| | 0

T T

Origin Paper Solstice
Sales by Employee Sales by Employee Sales by Employees

250,000 250,000 250,000
200,000+ 200,000 1 200,000+
150,000+ 150,000 150,000+
100,000+ 100,000 100,0004
50,000 50,0004 50,0004

o<

ST R

e
P IAIF G 5 AL G
Technic Trek Urban
Sales by Employee Sales by Employee Sales by Employee
250,000 250,000 250,000
200,000+ 200,000+ 200,000
150,000 150,000 150,000

}“ ST 1;‘*‘ EEE T :@ EFLEEE
*ﬁ@ﬁfgf @ﬁﬁ%&f?fﬁf 2 fiyﬁ gi@"f

Verve

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Sales by Employes

250,000

200,000+
150,000+
100,000+

50,000+

o4

L
GGG

Using the Report Menu

From the Report menu, you can preview or print the report, set up the pages of the report, add header and/or
footers, and specify which items to show in the report.

-3 Report
j =4 Print
|£| Options...
Print Click Print to print the C10lapGrid, C10lapChart, or both.
Options Click Options to open the Document Options dialog box for

Document Options

The Page Tab
On the Page tab you can specify the Margins and Padding.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Page | Header/Footer | Report Content
Margin: Top: Padding: Top:
ol 0.
Left: Left:
ol 0.
Bottom: Bottom:
ol 0.
Right: Raght:
ol 0.
| oK | | Cancel |

The Header/Footer Tab

On the Header/Footer tab, you can add a header and/or footer to each page of the report.

Page | Header/Footer | Report Content

A B B o =

Header:

a[ViewTitle]

&[Date]

Footer:

[+ Separator

Page &[Fage] of &[PageCount]

[+ Separator

[K | | Cancel

Click one of the buttons on the toolbar to insert fields into the header or footer.

Button Field

Page Number &[Page]

Total Page Count &[PageCount]
Current Date & [Date]
Current Time &[Time]

Copyright © 2017 GrapeCity, Inc. All rights reserved.

J

54

OLAP for WPF and Silverlight 55

Title & [ViewTitle]

Check the Separator box to show a separator line below the header or above the footer. Click the Font button to
change the font, style, size, or effects.

The Report Content Tab

On the Report Content tab, you can determine whether to include the OLAP Grid, Olap Chart, and/or the Raw Data
Grid in your report. You can also scale the items as desired.

Page | Header/Footer | Report Content

Olap Gnd

[+] Include in report

Scaling:

() Actual size
i) Fit to one pags

(=) Fit to page width

Olap Chart

[+ Include in report

Scaling:

(*) Fit to one page

i) Fit to page width

Raw Data

[| Include in report

Scaling:

() Actual size
i) Fit to one page

(*) Fit to page width

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Cancel

OLAP for WPF and Silverlight 56

OLAP Cubes

Olap for WPF allows you to connect to OLAP data sources like Microsoft® SQL Server® Analysis Services (SSAS).
You can connect to online cubes or attach a local cube at run time. C10lap works with Analysis Services and SQL
Server 2008, 2012 and 2014.

|] Note: Cube support is available for WPF only.

Connecting to an OLAP Cube

To connect with a cube, you should use the C10lapPanel.ConnectCube method. This method accepts two parameters:
the connection string to a SQL Server with Analysis Services installed, and the name of the cube. You can report errors
to the user by catching an Exception at run-time. Here is a complete coded example of connecting to a cube.

Visual Basic

' connect to cube

stringconnectionString = "Data Source=myServerAddress;Catalog=myDataBase"
stringcubeName = "Adventure Works"
Try

_clOlapPage.OlapPanel.ConnectCube (cubeName, connectionString)

Catch generatedExceptionName As Exceptionex

MessageBox.Show (ex.Message)
End Try

C#

// connect to cube
stringconnectionString = @"Data Source=myServerAddress;Catalog=myDataBase";
stringcubeName = "Adventure Works";

try
{
_clOlapPage.OlapPanel.ConnectCube (cubeName, connectionString);

}

catch (Exceptionex)

{

MessageBox.Show (ex.Message) ;

The connection string should set the Data Source and the Initial Catalog. If you have more than one Microsoft OLE
DB provider for OLAP installed, you may need to specify the version of the provider in the connection string. For
example, setting the Provider to MSOLAP will use the latest version of OLE DB for OLAP installed on your system.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 57

Example:

Visual Basic

Provider = MSOLAP
Dim Source As Data = myServerAddress
Dim Catalog As Initial = myDataBase

C#

Provider=MSOLAP;Data Source=myServerAddress;Initial Catalog=myDataBase;

2] Note: If you've created a custom Ul or are not using the C10lapPage control, you can use the C10lapPanel
control and its same C10lapPanel.ConnectCube method.

Loading a Local Cube File

You can use C10lap with local cube files (.cub). For instance, if you have placed a cube file in a directory within the
project named Data, the connection string would look like the following.

Visual Basic

stringconnectionString = "Data Source=" +

System.AppDomain.CurrentDomain.BaseDirectory + "\Data\LocalCube.cub;Provider=msolap"
stringcubeName = "LocalCube"

clOlapPagel.OlapPanel.ConnectCube (cubeName, connectionString)

C#

stringconnectionString = @"Data Source="+
System.AppDomain.CurrentDomain.BaseDirectory +
@"\Data\LocalCube.cub;Provider=msolap";
stringcubeName = "LocalCube";

clOlapPagel.OlapPanel.ConnectCube (cubeName, connectionString);

Using Cube Data Sources

At run-time users can build reports from cube data much like they would from regular data sets. The key difference is
that cube data sets are represented by a tree in the C10lapPanel control with each node representing a dimensional
entity or an object for measure. All fields that can be added to the report are displayed with a checkbox. Objects
represented by the summation symbol (}) are measures and can be added to the Values collection. Fields of entities
can be added to the Rows or Columns collections.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Choose fields to add to report:
4 [J] Customer

o

Location

[City

[f] Country

[[] Postal Code

] State-Province Dimensions

Demographic
[[] Custormer
[[] Customer Geogr,

¢ [[] Date

» [[] Delivery Date
¥ [[] Departrment
» [[] Destination Currency
¢ [Employee
¥ [] Geagraphy
b [] Internet Sales Order Details

4 ¥ Internet Sales — Measures
(] Internet Sales Amount

Drag fields between areas below:
Y Filters

I Rows
Country
State-Province

| Defer Updates

L Columns

Z Values
Internet Sales Amount (5

Grid | Chart I Raw Data

Country State-Province
Tasmania
South Australia
Queensland
Victoria

= Australia

Mew South Wales
Subtotal
Ontario

= Canada AR
Britich Columbia
Subtotal
Pas de Calais
Loir et Cher
Val de Marmne
Somme
Charente-Martime
Val d'Qize
Garonne (Haute)
Loiret

= France Maoselle
Seine et Mame
Hauts de Seine
Yeline
Essonne
Seine Saint Denis
MNord
Seine (Paris)
Subtotal
Brandenburg
Bayem
Hamburg

= Germany Mordrhein-Westfalen
Hessen

Copyright © 2017 GrapeCity, Inc. All rights reserved.

Internet Sales Amount =~
5230938
5618256

£1,988.415
52279906
£3934.486
$9.061.001
537

$22 468
£1,055340
$1.977.845
£11,343
§21474
$28476
$29,555
£38442
$46,756
i54842
$91,563
£04. 045
§109,735
§263,416
5268 665
§279,297
5370480
£391,400
§539,726
52,644,018
$57.919
§399,967
5479126
566,114
5662103

58

OLAP for WPF and Silverlight 59

OLAP for WPF and Silverlight Task-Based Help

The task-based help assumes that you are familiar with programming in Visual Studio and know how to use bound
and unbound controls in general. Each topic provides a solution for specific tasks using the OLAP for WPF and
Silverlight product. By following the steps outlined in the help, you will be able to create projects demonstrating a
variety of OLAP for WPF and Silverlight features.

Each task-based help topic also assumes that you have created a new WPF or Silverlight project.

Binding C10lapPage or C10lapPanel a Data Source

You can easily bind C10lapPage or C10lap to a data source using the C10lapPage.DataSource or
C10lapPanel.DataSource property. For this example, we load Northwind product data from an XML data schema file.
Note that the nwind.zip is installed with the OlapQuickStart sample. We use ComponentOne Data, which provides
us the familiar DataSet and DataTable objects to read the data in. We also use ComponentOne Zip to unpackage the
zipped XML file on the client.

To bind the C10lapPage control, follow these steps:

1. Add the following code:
Visual Baisc

' load data from embedded zip resourcevar ds = new DataSet();
Dim asm = Assembly.GetExecutingAssembly ()
Using s = asm.GetManifestResourceStream("OlapQuickStart.nwind.zip")
Dim zip = New ClZipFile (s)
Using zr = zip.Entries (0) .OpenReader ()
' load data
ds.ReadXml (zr)
End Using
End Using

C#

// load data from embedded zip resourcevar ds = new DataSet();
var asm = Assembly.GetExecutingAssembly () ;
using (var s = asm.GetManifestResourceStream("OlapQuickStart.nwind.zip"))
{
var zip = new ClZipFile(s);
using (var zr = zip.Entries[0].OpenReader())
{
// load data
ds.ReadXml (zr) ;

2. Set the C10lapPage.DataSource property on the C10lapPage control. We could use any data binding method
with this control.

Visual Basic

// bind olap page to data
_clOlapPage.DataSource = ds.Tables[0].DefaultView;

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 60

C#

// bind olap page to data
_clOlapPage.DataSource = ds.Tables[0].DefaultView;

Binding C10lapChart to a C10lapPanel

You can populate a C10lapChart control by binding it to a C10lapPanel that is bound to a data source. Note that this
topic assumes you have a bound C10lapPanel control on your form.

Set the C10lapChart.DataSource property on the C10lapChart to the C10lapPanel that provides the Olap data.

Binding C10lapGrid to a C1O0lapPanel

You can populate a C10lapGrid control by binding it to a C1OlapPanel that is bound to a data source. Note that this
topic assumes you have a bound C10lapPanel control on your form.

Set the C10lapGrid.DataSource property on the C10lapGrid to the C10lapPanel that provides the OLAP data.

Removing a Field from a Data View

In the C10lapPanel control or the C10lapPanel area of the C10lapPage control, you can filter out an entire field so
that it doesn't appear in your C10lapGrid or C10lapChart data view. This can be done at run time.

1. In the Drag fields between areas below section of the panel, select the field to filter out of the view.
2. Drag it to the Filter area of the panel. The data in this field will be removed from the C10lapGrid
or C10lapChart data view.

Filtering Data in a Field

In the C10lapPanel control or the C10lapPanel area of the C10lapPage control, you can filter the data in a field from
the Drag fields between areas below section of the panel at run time. Each field has two filters: the value filter, which
allows you to check specific values in a list, and the range filter, which allows you to specify one or two criteria. The
two filters are independent, and values must pass both filters in order to be included in the OLAP table.

Using the Value Filter
1. Right-click a field in the Filter, Column Fields, Row Fields, or Values area.
2. Click Field Settings in the context menu. The Field Settings dialog box opens.

3. Click the Filter tab. This is the value filter. You can clear the selection for any of the fields that you do not want
to appear in the OLAP table.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

Field Settings: Country

Filter | Subtotals

[+ (select &)

[+| Argentina
[+ Austria
[+ Belgium
[+ Brazil

[+ Canada
[+ Denmark
[+ Finland
|+ France

Display

61

High values | Low Values

Text Filter

| 0] | | Cancel |

Once you have selected the fields to appear in the table, you can specify a range filter by clicking the Text
Filter or Numeric Filter button at the bottom of the window.

Z Note: If the field you are filtering contains numeric data, Numeric Filter appears instead of Text Filter.

Using the Range Filter

—

. Right-click a field in the Filter, Column Fields, Row Fields, or Values area.
. Click Field Settings in the context menu. The Field Settings dialog box opens.
. Click the Filter tab and specify the value filter, if desired. You can clear the selection for any of the fields that

you do not want to appear in the OLAP table.

. Click the Text Filter or Numeric Filter button to set the range filter.

Clears all filter settings.

2

3

4

5. Select one of the following items.
Clear Filter
Equals

Does Not Equal

Begins With

Ends With

Contains

Does Not Contain

Custom Filter

Opens the Custom Filter dialog box so you can create a filter where items equal to
the specified value are shown.

Opens the Custom Filter dialog box so you can create a filter where items that are
not the same as the specified value are shown.

Opens the Custom Filter dialog box so you can create a filter where items that begin
with the specified value are shown.

Opens the Custom Filter dialog box so you can create a filter where items that end
with the specified value are shown.

Opens the Custom Filter dialog box so you can create a filter where items that
contain the specified value are shown.

Opens the Custom Filter dialog box so you can create a filter where items that do not
contain the specified value are shown.

Opens the Custom Filter dialog box so you can create a filter with your own
conditions.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 62

6. Add an item to filter on in the first blank text box.

Custom Filter

Show items where the value:

lNu:une x J

| QK | | Cancel |

7. Select And or Or.

8. Add a second filter condition, if necessary. If you select an option other than None, the second text box
becomes active and you can enter an item.

9. Click OK to close the Custom Filter dialog box and click OK again to close the Field Settings dialog box.

Specifying a Subtotal Function

When creating custom views of data, you may want to perform a different aggregate function other than "Sum" on
your column or row. For example, you may want to find the average or maximum values in your data. This can easily
be done through the Field Settings dialog box or in code.

To specify the function performed on data at run time:

1. Right-click a field in the Values area of the C10lapPanel.

2. Click Field Settings in the context menu. The Field Settings dialog box opens.
3. Click the Subtotals tab.

4. Select one of the following options:

Sum Gets the sum of a group.

Count Gets the number of values in a group.
Average Gets the average of a group.
Maximum Gets the maximum value in a group.
Minimum Gets the minimum value in a group.
First Gets the first value in a group.

Last Gets the last value in a group.
Variance Gets the sample variance of a group.

Standard Deviation
Variance Population

Standard Deviation
Population

Gets the sample standard deviation of a group.

Gets the population variance of a group.

Gets the population standard deviation of a group.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 63

5. Click OK to close the Field Settings dialog box. Notice how the values in the summary table change.

To specify the function performed on data in code:

Use the C10lapField.Subtotal property of the field to specify the function. In this example code, first the view is
created, and then the average unit price is calculated for each product.

Visual Basic

build viewvar olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("UnitPrice")
olap.RowFields.Add ("OrderDate", "ProductName")

' format unit price and calculate averagevar field = olap.Fields["UnitPrice"];
field.Subtotal = Subtotal.Average

field.Format = "c"

C#

// build viewvar olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("UnitPrice");
olap.RowFields.Add ("OrderDate", "ProductName");

// format unit price and calculate averagevar field = olap.Fields["UnitPrice"];
field.Subtotal = Subtotal.Average;
field.Format = "c";

Formatting Numeric Data

You can format numeric data as currency, as a percentage, and so on or create your own custom format.

To format numeric data at run time:

1. Right-click a field in the Values area of the C10lapPanel.

2. Click Field Settings in the context menu. The Field Settings dialog box opens.
3. Click the Format tab.

4. Select one of the following options:

Numeric Formats the data as a number like this: 1,235. You can specify the number of decimal places
and whether to use a 1000 separator (,).

Currency Formats the data as currency. You can specify the number of decimal places.
Percentage Formats the data as a percentage. You can specify the number of decimal places.
Scientific Formats the data in scientific notation. You can specify the number of decimal places.

Custom Enter your own custom format for the data.

5. Click OK to close the Field Settings dialog box. Notice how the values in the summary table change.

To format numeric data in code:
Use the C10lapField.Format property of the field and Microsoft standard numeric format strings to specify the format.

Accepted format strings include:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 64

"N" or "n Numeric Formats the data as a number like this: 1,235. You can specify the
number of decimal places and whether to use a 1000 separator (,).

"C"or"c" Currency Formats the data as currency. You can specify the number of decimal
places.
"P" or "p" Percentage Formats the data as a percentage. You can specify the number of

decimal places.

"E" or "e" Scientific Formats the data in scientific notation. You can specify the number of
decimal places.

Any non-standard Custom Enter your own custom format for the data.
numeric format string

In this example code, first the view is created, and then the average unit price is calculated in currency format.

Visual Basic

build view var olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("UnitPrice")
olap.RowFields.Add ("OrderDate", "ProductName")

' format unit price and calculate average var field = olap.Fields["UnitPrice"];
field.Subtotal = Subtotal.Average
field.Format = "c"

C#

// build view var olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("UnitPrice");
olap.RowFields.Add ("OrderDate", "ProductName");

// format unit price and calculate average var field = olap.Fields["UnitPrice"];
field.Subtotal = Subtotal.Average;
field.Format = "c";

Calculating Weighted Averages and Sums

There may be cases where it is necessary to find the weighted average or sum of your data. In a weighted average or
sum, some data points contribute more to the subtotal than others.

Suppose you have a bound list of products and you want to find the average price for the group of products, taking
into account the quantity of each product purchased. You can weight the price average by the number of units
purchased. This can be done at run time by the user or in code.

To add weight to a calculation at run time:

1. Right-click the field in the Values area of the C10lapPanel and select Field Settings.

2. Click the Subtotals tab and select the type of subtotal you want to calculate.

3. In the Weigh by drop-down list, select the field from your data table that will be used as a weight.
4. Click OK to close the Field Settings dialog box.

To add weight to a calculation in code:

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 65

Use the C10lapField.WeightField property to specify the field to be used as the weight. In this example, the Quantity
field is the weight.

Visual Basic

Dim olap = Me.ClOlapPagel.OlapEngine
Dim field = olap.Fields("Quantity")
field.WeightField = olap.Fields (“Quantity”)

C#

var olap = this.clOlapPagel.OlapEngine;
var field = olap.Fields["Quantity"];
field.WeightField = olap.Fields["Quantity"];

Exporting a Grid

OLAP for WPF and Silverlight allows you to export a C10lapGrid to any of the following formats: .xlsx, .xls, .csv, and
txt. Just click the Export button on the ToolStrip to begin exporting.

1. In the C10lapPage on your form, click the Export button in the ToolStrip.
2. In the Save As dialog box, enter a File name, select one of the file formats, and click OK.

Grouping Data

You can use field formatting to group data. Suppose you have a bound list of products and you want to group all the
items ordered within a year together. You can use the Field Settings dialog box at run time or code. In this example,
we'll use a C10lapPage control bound to the C1Nwind.mdb installed with the product.

To group data by the year at run time:

1. Add the following fields to the grid view by selecting them in the C1OlapPanel area of the C10lapPage:
OrderDate, Product, and Sales. Click the Olap Grid tab, if necessary, to view the grid.

2. Right-click the Order Date field under Row Fields and select Field Settings. The Field Settings dialog box
appears.

3. Make sure Select All is selected on the Filter tab.

4. Click the Format tab and select Custom.

5. Enter "yyyy" in the Custom Format text box and click OK.

The following images show the grid before grouping and after grouping.

The Before Grouping image displays data that is not grouped. The After Grouping image displays data where products
are grouped by the year they were purchased.

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight

A

Choose fields to add to table:
|| Category

|| Country

|_| Customer

|| Emplayes

|+ OrderDate

|| Product

|| Sales

“¥ Filter tE Column Fields

|
TFrRow Fields E values
OrderDate Sales

| Product

Before Grouping

Drag fields between areas below:

£ Grid |: chart [Report

Olap Grid | Qlap Chart | Raw Data

OrderDate

8/15/1954 12:

Bf22/19594 12:

8/23/1994 12:

8/24/1994 12:

8/25/19594 12:

B/26/1994 12:

Product Sales
Jack’s Mew England Clam Chowder
Outback Lager

Ravioli Angelo

Sir Rodney's Scones

Stesleye Stout

Tarte au sucre

Chef Anton's Gumbo Mix

Gnoechi di nonna Alice

Uncle Bob's Organic Dned Pears
Guarand Fantastica

Longlife Tofu

Nord-0st Matjeshering

Pavliova

Chang

Jack's New England Clam Chowder
Alice Mutton

Outback Lager

Queso Manchego La Pastora

& 4 =

Choose fields to add to table:
|| Category

|| Country

|| Customer

|| Employes

|+ OrderDate

|#| Product

|| Sales

“¥ Filter 1 Column Fields

T Row Fields E walues
OrderDate Sales
| Product

After Grouping

To group data in code:

You can also group data in code. Here is the code that would be used for the example above:

Drag fields between areas below:

£ Grid |: chart [Report

Olap Grid | Olap Chart | Raw Data

OrderDate

1994

Product Sales
Louisiana Fiery Hot Pepper Sauce 2
Louisiana Hot Spiced Okra
Manjimup Dried Apples

Mascarpone Fabioli 1,1
Maxilaku 1,5

Mozzarella di Giovanni 4
Mord-0Ost Matjeshering 2
MNorthwoods Cranberry Sauce 3
MNuNuCa Nuli-Nougat-Creme

Onginal Frankfurter griine Sofie

Outback Lager 1,0

Pité chinois
Pavlova
Perth Pasties 1
Queso Cabrales

Queso Manchego La Pastora
Raclette Courdavault

[2:]

Ravial Anagelo

Copyright © 2017 GrapeCity, Inc. All rights reserved.

66

OLAP for WPF and Silverlight

Visual Basic

Imports Cl.0Olap
Imports System.Data.OleDb
Namespace WindowsFormsApplicationl
Public Partial Class Forml
Inherits Form
Public Sub New ()
InitializeComponent ()

A\l

get data

Dim da = New OleDbDataAdapter ("select * from invoices",
GetConnectionString())

Dim dt = New DataTable ()

da.Fill (dt)

bind to olap page

Me.clOlapPagel.DataSource = dt

build view

Dim olap = Me.clOlapPagel.OlapEngine
olap.ValueFields.Add ("UnitPrice")
olap.RowFields.Add ("OrderDate", "ProductName")

format order date to group data

Dim field = olap.Fields ("OrderDate")
field.Format = "yyyy"
End Sub
Private Shared Function GetConnectionString() As String
Dim path As String =
Environment.GetFolderPath (Environment.SpecialFolder.Personal) + "\ComponentOne
Samples\Common"
Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source=
{0}\clnwind.mdb;"
Return String.Format (conn, path)
End Function
End Class

End Namespace

C#

using Cl.0lap;
using System.Data.OleDb;
namespace WindowsFormsApplicationl
{
public partial class Forml : Form

{
public Forml ()

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 68

InitializeComponent () ;

// get data

var da = new OleDbDataAdapter ("select * from invoices",
GetConnectionString());

var dt = new DataTable();

da.Fill (dt);

// bind to olap page
this.clOlapPagel.DataSource = dt;

// build view

var olap = this.clOlapPagel.OlapEngine;
olap.ValueFields.Add ("UnitPrice");
olap.RowFields.Add ("OrderDate", "ProductName");

// format order date to group data
var field = olap.Fields["OrderDate"];
field.Format = "yyyy";
}
static string GetConnectionString/()
{
string path =
Environment.GetFolderPath (Environment.SpecialFolder.Personal) + @"\ComponentOne
Samples\Common";
string conn = @"provider=microsoft.jet.oledb.4.0;data source=
{0}\clnwind.mdb;";

return string.Format (conn, path);

Collapse and Expand Groups

C10lapGrid also provides users the functionality to display only summary or detail data in a group through code, by
using following methods:

® CollapseAllRows: This method is used to collapse group of rows when there are many levels of data in a group
of rows. For example, using CollapseAllRows, you can view year-wise total sales as shown below:

OrderDate Product Sales
+ 1994 Subtotal 16:
+ 1995 Subtotal 59
+ 1905 Subtotal 512

® CollapseAllCols: This method is used to collapse group of columns when only summary data is required to be
viewed from many levels of data in a group of columns.

® ExpandAllRows: This method is used to expand group of rows to view the detailed data in the collapsed rows.
Alternatively, you can click '+' button at runtime.

e ExpandAllCols: This method is used to expand group of columns to view the detailed data in the collapsed

Copyright © 2017 GrapeCity, Inc. All rights reserved.

OLAP for WPF and Silverlight 69

columns. Alternatively, you can click '+' button at runtime.
The following codes illustrates how to set these properties:

® To collapse group of rows

VB

clOlapPagel.OlapGrid.CollapseAllRows ()

C#

clOlapPagel.OlapGrid.CollapseAllRows () ;

® To expand group of rows

VB

clOlapPagel.OlapGrid.ExpandAllRows ()

C#

clOlapPagel.OlapGrid.ExpandAllRows () ;

Similarly, properties for collapsing and expanding of group of columns can be set.

Creating a Report

In the C10OlapPage control, you can set up and print a report using the Report menu at run time.

To create the report, follow these steps:

Click the drop-down arrow next to Report on the C10lapPage ToolStrip.

Select Options. The Document Options dialog box appears.

On the Page tab, select a page Orientation, Paper size, and set the Margins as desired.

Click the Header/Footer tab.

Place the cursor in the header or footer text box where you want to add text or a predefined header/footer

item.

Click one of the buttons on the toolbar to insert the desired field.

Click the Report Content tab.

8. Check the check box next to the items you want included in the report. You can also select a radio button to
change the scaling of the grid or chart.

9. Click OK to close the Document Options dialog box.

uhkhwn =

N o

Copyright © 2017 GrapeCity, Inc. All rights reserved.

	Table of Contents
	OLAP for WPF and Silverlight Overview
	What is C1Olap
	Introduction to OLAP
	Key Features
	C1Olap Architecture
	C1OlapPage
	C1OlapPanel
	C1OlapGrid
	C1OlapChart
	C1OlapPrintDocument

	C1Olap Quick Start
	A simple OLAP application
	Creating OLAP Views
	Summarizing Data
	Drilling Down on the Data

	Customizing the C1OlapPage
	Configuring Fields in Code
	Persisting OLAP views in Local Storage
	Creating Predefined Views

	Updating the OLAP View
	Conditional Formatting

	Large Data Sources
	Building a Custom User Interface

	XAML Quick Reference
	OLAP for WPF and Silverlight Design-Time Support
	Using the C1OlapPage ToolStrip
	Using the Grid Menu
	Using the Chart Menu
	Using the Report Menu

	OLAP Cubes
	Connecting to an OLAP Cube
	Loading a Local Cube File

	Using Cube Data Sources

	OLAP for WPF and Silverlight Task-Based Help
	Binding C1OlapPage or C1OlapPanel a Data Source
	Binding C1OlapChart to a C1OlapPanel
	Binding C1OlapGrid to a C1OlapPanel
	Removing a Field from a Data View
	Filtering Data in a Field
	Specifying a Subtotal Function
	Formatting Numeric Data
	Calculating Weighted Averages and Sums
	Exporting a Grid
	Grouping Data
	Creating a Report

