

ComponentOne

RangeSlider for WPF

Copyright  1987-2012 GrapeCity, Inc. All rights reserved.

ComponentOne, a division of GrapeCity

201 South Highland Avenue, Third Floor

Pittsburgh, PA 15206 • USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other
trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne RangeSlider for WPF Overview ..1

Help with ComponentOne Studio for WPF .. 1

Key Features ..1

RangeSlider for WPF Quick Start ..3

Step 1 of 4: Setting up the Application ... 3

Step 2 of 4: Adding a C1RangeSlider Control ... 4

Step 3 of 4: Adding Code to the Application ... 5

Step 4 of 4: Running the Application ... 7

Working with RangeSlider for WPF ..9

Basic Properties .. 9

Minimum and Maximum .. 9

Thumb Values and Range .. 10

Orientation ... 10

Layout and Appearance .. 10

Layout in a Panel ... 11

Appearance Properties ... 11

Color Properties .. 11

Alignment Properties .. 11

Border Properties .. 12

Size Properties .. 12

ComponentOne ClearStyle Technology .. 12

How ClearStyle Works ... 13

ClearStyle Properties .. 13

Templates ... 13

XAML Elements .. 14

RangeSlider for WPF Samples .. 15

RangeSlider for WPF Task-Based Help .. 15

Setting the Thumb Values .. 15

Setting the Value Change ... 16

iv

Changing the Background Color.. 16

Changing the Orientation... 17

 1

ComponentOne RangeSlider for WPF

Overview
Add smooth numeric data selection to your WPF applications.

ComponentOne RangeSlider™ for WPF extends the basic slider control

and provides two thumb elements instead of one, allowing users to select

ranges instead of single values.

For a list of the latest features added to ComponentOne Studio for WPF,

visit What's New in Studio for WPF.

 Getting Started

Get started with the
following topics:

- Key Features (page 1)

- Quick Start (page 3)

- Task-Based Help (page
15)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and

creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

Key Features
ComponentOne RangeSlider for WPF allows you to create customized, rich applications. Make the most of

RangeSlider for WPF by taking advantage of the following key features:

 Horizontal or Vertical Orientation

Change the orientation with one simple property. Create vertical or horizontal range sliders. See
Orientation (page 10) and Changing the Orientation (page 17) for details.

 Set Min and Max Values

Control the minimum and maximum values of the range slider. See Minimum and Maximum (page 9) for

details.

 Customizable Thumbs

Customize the thumbs of C1RangeSlider to create custom zooming controls. See Thumb Values and
Range (page 10) and Setting the Thumb Values for details.

 Easily Change Colors with ClearStyle

RangeSlider supports ComponentOne ClearStyle™ technology which allows you to easily change control
brushes without having to override templates. By just setting a few brush properties in Visual Studio you
can quickly style each part of the control. See ComponentOne ClearStyle Technology (page 12) and
Changing the Background Color (page 16) for details.

http://www.componentone.com/SuperProducts/StudioWPF/What%27s+New/
http://helpcentral.componentone.com/nethelp/c1studiowpf/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

 3

RangeSlider for WPF Quick Start
The following quick start guide is intended to get you up and running with RangeSlider for WPF. In this quick

start you'll start in Visual Studio and create a new project, add the RangeSlider for WPF control to your
application, and customize the appearance and behavior of the control.

You will create a simple form using a C1RangeSlider and a standard Rectangle control. The C1RangeSlider

control will control a gradient that is applied to the Rectangle, so that at run time moving the slider thumbs will

change the gradient and you can explore the possibilities of using RangeSlider for WPF.

Step 1 of 4: Setting up the Application
In this step you'll begin in Visual Studio to create a WPF application using RangeSlider for WPF. When you add

a C1RangeSlider control to your application, you'll have a complete, functional input editor in the form of a slider.
You can then further customize the control to your application.

To set up your project and add a C1RangeSlider control to your application, complete the following steps:

1. Create a new WPF project in Visual Studio.

2. Click once within the Grid that has been added to the Window in your application.

3. Navigate to the Toolbox and double-click the Rectangle icon to add the standard control to the Grid.

4. In the Design pane, resize Rectangle1 to fill the entire Grid.

5. Switch to XAML view and add a Fill to the <Rectangle> tag so it appears similar to the following:
<Rectangle Name="rectangle1" Stroke="Black">

 <Rectangle.Fill>

 <RadialGradientBrush x:Name="colors">

 <GradientStop x:Name="goldcol" Color="Gold" Offset="0" />

 <GradientStop x:Name="blackcol" Color="Black" Offset="1" />

 </RadialGradientBrush>

 </Rectangle.Fill>

</Rectangle>

This will add a black and gold radial gradient fill to the rectangle.

6. Run your application now and observe that it looks similar to the following:

4

You've successfully created a WPF application and customized the Rectangle control. In the next step you'll add

and customize the C1RangeSlider control.

Step 2 of 4: Adding a C1RangeSlider Control
In the previous step you created a new WPF project and added a Rectangle control with a gradient to the
application. In this step you'll continue by adding a C1RangeSlider control that will control the gradient fill in the

Rectangle.

Complete the following steps:

1. In Design view, click once on the Rectangle control.

2. Navigate to the Toolbox and double-click the C1RangeSlider icon to add the control to the application on

top of the Rectangle.

3. Click once on the C1RangeSlider control and drag it to the center of the Window.

4. Navigate to the Properties window and set the Margin property to "50". This will set each edge the same
distance away from the window border.

5. In the Properties window set the Orientation property to Vertical. By default Orientation is Horizontal
and the control appears across the window.

6. In the Properties window set the UpperValue property to "1". The upper thumb will now begin at 1.

7. In the Properties window set the Maximum property to "1". By default this property is set to 100 and the

control's range is from 0 to 100.

8. In the Properties window set the ValueChange property to "0.1". When you click on the slider track at run
time, now the slider thumb will move by 0.1.

9. In the Properties window set the Opacity property to "0.8". By default this property is set to 1 and the
control appears completely opaque. Changing this to a lower number will make the control appear slightly
transparent.

10. Run your application now and observe that it looks similar to the following:

 5

You've successfully set up your application's user interface, but right now the slider will do nothing if you move it.
In the next step you'll add code to your application.

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added controls to your application. In this step
you'll add code to your application to finalize it.

Complete the following steps:

1. Double-click the Window1 to switch to Code view and create the Window1_Loaded event handler.

2. In Code view, add the following import statement to the top of the page:

 Visual Basic
Imports C1.WPF

 C#
using C1.WPF;

3. Add code to the Window_Loaded event handler so that it appears like the following:

 Visual Basic
Private Sub Window1_Loaded(ByVal sender As System.Object, ByVal e As

System.Windows.RoutedEventArgs) Handles MyBase.Loaded

 UpdateGradient()

End Sub

 C#
private void Window_Loaded(object sender, RoutedEventArgs e)

{

 UpdateGradient();

}

4. Add the following code just after the Window1_Loaded event handler to update the gradient values:

 Visual Basic
Private Sub UpdateGradient()

 If IsLoaded Then

6

 Me.goldcol.Offset = Me.C1RangeSlider1.LowerValue

 Me.blackcol.Offset = Me.C1RangeSlider1.UpperValue

 End If

End Sub

 C#
UpdateGradient()

{

 if (IsLoaded)

 {

 this.goldcol.Offset = this.c1RangeSlider1.LowerValue;

 this.blackcol.Offset = this.c1RangeSlider1.UpperValue;

 }

}

5. Return to Design view.

6. Click once on the C1RangeSlider control to select it and then navigate to the Properties window.

7. Click the lightning bolt Events icon at the top of the Properties window to view events.

8. Double-click the LowerValueChanged event to switch to Code view and create the

C1RangeSlider1_LowerValueChanged event handler. Return to Design view and repeat this step with

the UpperValueChanged event to create the C1RangeSlider1_UpperValueChanged event handler.

9. Add code to the C1RangeSlider1_LowerValueChanged event handler so that it appears like the
following:

 Visual Basic
Private Sub C1RangeSlider1_LowerValueChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

C1RangeSlider1.LowerValueChanged

 UpdateGradient()

End Sub

 C#
private void c1RangeSlider1_LowerValueChanged(object sender, EventArgs

e)

{

 UpdateGradient();

}

10. Add code to the C1RangeSlider1_UpperValueChanged event handler so that it appears like the

following:

 Visual Basic
Private Sub C1RangeSlider1_UpperValueChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles

C1RangeSlider1.UpperValueChanged

 UpdateGradient()

End Sub

 C#
c1RangeSlider1_UpperValueChanged(object sender, EventArgs e)

{

 UpdateGradient();

}

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

 7

Step 4 of 4: Running the Application
Now that you've created a WPF application and customized the application's appearance and behavior, the only

thing left to do is run your application. To run your application and observe RangeSlider for WPF's run-time
behavior, complete the following steps:

1. From the Project menu, select Test Solution to view how your application will appear at run time.

The application will appear similar to the following:

2. Move the top slider thumb down. Notice that the gradient's appearance changes:

8

3. Move the bottom thumb up, notice that the gradient effect appears less diffused:

4. Click once between the slider thumbs and drag the cursor down the slider track – notice that both thumbs
move together:

Congratulations! You've completed the RangeSlider for WPF quick start and created a RangeSlider for WPF
application, customized the appearance and behavior of the controls, and viewed some of the run-time capabilities
of your application.

 9

Working with RangeSlider for WPF
ComponentOne RangeSlider for WPF includes the C1RangeSlider control, a simple input control that moves
beyond the typical slider and includes two thumbs for selecting a range of values. When you add the
C1RangeSlider control to a XAML window, it exists as a completely functional slider control which you can
further customize. The control's interface looks similar to the following image:

Basic Properties
ComponentOne RangeSlider for WPF includes several properties that allow you to set the functionality of the

control. Some of the more important properties are listed below. Note that you can see Appearance Properties
(page 11) for more information about properties that control appearance.

The following properties let you customize the C1RangeSlider control:

Property Description

Delay Gets or sets the time, in milliseconds, the RepeatButtons (at
the left of the LowerValue thumb and at the right of the

UpperValue thumb) wait when they are pressed before they
start repeating the click action.

Interval Gets or sets the time, in milliseconds, between repetitions of
the click action, as soon as repeating starts (for the

RepeatButtons at the left of the LowerValue thumb and at the
right of the UpperValue thumb).

LowerValue Gets or sets the current lower magnitude of the range control.

Maximum Gets or sets the maximum possible value of the range element.

Minimum Gets or sets the minimum possible value of the range element.

Orientation The orientation of the C1RangeSlider (horizontal or vertical).

UpperValue Gets or sets the current upper magnitude of the range control.

ValueChange Gets or sets a value to be added to or subtracted from the

UpperValue/LowerValue of a RangeBase control.

Minimum and Maximum
The Minimum and Maximum properties set the possible range of values allowable in the C1RangeSlider control.
The thumb with the smaller number, the LowerValue thumb will not be able to bet set to a value lower than the
Minimum and the UpperValue thumb will not be able to bet set to a value lower than the Maximum.

By default, the Minimum property is set to 0 and the Maximum property is set to 100.

10

Thumb Values and Range
The C1RangeSlider control includes two thumbs for selecting a range of values. The UpperValue and the

LowerValue thumbs move along the slider track. By default, the UpperValue property is set to 100 and the

LowerValue property is set to 0.

The value range is determined by the difference between the UpperValue and the LowerValue:

The ValueChange property determines by what value the UpperValue and the LowerValue thumbs move along the
slider track when the track is clicked, note that if the tack is clicked between the UpperValue and LowerValue
thumbs (in the range) the thumbs will not move.

The UpperValue property cannot be less than the Minimum property and the LowerValue cannot be less than the

Maximum property.

Orientation
C1RangeSlider includes the ability to orient the control either horizontally or vertically using the Orientation
property. By default the control initially appears with a horizontal orientation when added to the application. You
can easily change the orientation from the Properties window, in XAML, and in code using the Orientation
property. For more information, see Changing the Orientation (page 17).

C1RangeSlider includes the following orientations:

Orientation Preview

Horizontal (default)

Vertical

Layout and Appearance
The following topics detail how to customize the C1RangeSlider control's layout and appearance. You can use
built-in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to
customize the appearance of the grid and take advantage of WPF's XAML-based styling. You can also use
templates to format and layout the control and to customize the control's actions.

 11

Layout in a Panel
You can easily lay out the C1RangeSlider and other controls in your WPF application, using the attached layout

properties. For example, you can lay out your control in a Grid panel with its Row, ColumnSpan, and RowSpan

properties and in a Canvas panel with its Left and Top properties. For example, the C1RangeSlider control

includes the following Layout properties when located within a Grid panel:

You can change the sizing, alignment, and location of the C1RangeSlider control within the Grid panel.

Appearance Properties
ComponentOne RangeSlider for WPF includes several properties that allow you to customize the appearance of
the control. You can change the color, border, and height of the control. The following topics describe some of
these appearance properties.

Color Properties

The following properties let you customize the colors used in the control itself:

Property Description

Background Gets or sets a brush that describes the

background of a control. This is a dependency
property.

Foreground Gets or sets a brush that describes the
foreground color. This is a dependency

property.

Alignment Properties

The following properties let you customize the control's alignment:

Property Description

http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518

12

HorizontalAlignment Gets or sets the horizontal alignment

characteristics applied to this element when it
is composed within a parent element, such as

a panel or items control. This is a dependency
property.

VerticalAlignment Gets or sets the vertical alignment
characteristics applied to this element when it

is composed within a parent element such as a
panel or items control. This is a dependency

property.

Border Properties

The following properties let you customize the control's border:

Property Description

BorderBrush Gets or sets a brush that describes the border

background of a control. This is a dependency
property.

BorderThickness Gets or sets the border thickness of a control.
This is a dependency property.

Size Properties

The following properties let you customize the size of the C1RangeSlider control:

Property Description

Height Gets or sets the suggested height of the

element. This is a dependency property.

MaxHeight Gets or sets the maximum height constraint of
the element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of
the element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of
the element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of
the element. This is a dependency property.

Width Gets or sets the width of the element. This is a

dependency property.

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft
Visual Studio this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a bit
easier. Having to jump between two environments can be a bit challenging to developers who are not familiar with
Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your
designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls

http://msdn2.microsoft.com/en-us/library/ms600881
http://msdn2.microsoft.com/en-us/library/ms600904
http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

 13

in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is

also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with
those less common situations where a full custom design is required.

ClearStyle Properties

The following table lists all of the ClearStyle-supported properties in the C1RangeSlider control as well as a
description of the property:

Property Description

Background Gets or sets a brush that describes the background of a control.

The default Background color is LightBlue.

FocusBrush A brush used to define the appearance of the control, when the

control is in focus.

MouseOverBrush A brush used to define the appearance of the control, when the

control is in moused over.

PressedBrush A brush used to define the appearance of the control, when the

control is selected.

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne RangeSlider for WPF. Extensible Application Markup
Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to
designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1RangeSlider control and, in the menu,

selecting Edit Control Parts (Templates). Select Edit a Copy to create an editable copy of the current template or

Create Empty, to create a new blank template.

14

Note: If you create a new template through the menu, the template will automatically be linked to that template's

property. If you manually create a template in XAML you will have to link the appropriate template property to the
template you've created.

Note that you can use the Template property to customize the template.

XAML Elements
Several auxiliary XAML elements are installed with ComponentOne RangeSlider for WPF. These elements

include templates and themes and are located in the RangeSlider for WPF installation directory. You can
incorporate these elements into your project, for example, to create your own theme based on the default theme.

Included Auxiliary XAML Elements

The following auxiliary XAML element is included with RangeSlider for WPF:

Element Folder Description

generic.xaml XAML Specifies the templates for different styles and the initial style

of the control.

http://msdn2.microsoft.com/en-us/library/ms592524

 15

RangeSlider for WPF Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or
demos, which may make use of other ComponentOne development tools included with the ComponentOne

Studios. Samples can be accessed from the ComponentOne Studio for WPF ControlExplorer. To view samples,

on your desktop, click the Start button and then click All Programs | ComponentOne | Studio for WPF |

Samples | WPF ControlExplorer.

C# Samples

The following C# sample is included:

Sample Description

ControlExplorer The RangeSlider page in the ControlExplorer sample demonstrates how to
customize the C1RangeSlider control.

RangeSlider for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use

the C1RangeSlider control in general. If you are unfamiliar with the ComponentOne RangeSlider for WPF

product, please see the RangeSlider for WPF Quick Start (page 3) first.

Each topic in this section provides a solution for specific tasks using the ComponentOne RangeSlider for WPF
product.

Each task-based help topic also assumes that you have created a new WPF project.

Setting the Thumb Values
The UpperValue and LowerValue properties get or set the value of the two C1RangeSlider thumbs. By default the
C1RangeSlider control starts with the UpperValue property set to "100" and LowerValue property set to "0" set but
you can customize this at design time, in XAML, and in code.

At Design Time

To set the UpperValue and LowerValue properties at run time, complete the following steps:

1. Click the C1RangeSlider control once to select it.

2. Navigate to the Properties window, and enter a number, for example "10", in the text box next to the
LowerValue property.

3. In the Properties window, enter a number, for example "90", in the text box next to the UpperValue
property.

This will set the UpperValue and LowerValue properties to the values you chose.

In XAML

For example, to set the UpperValue and LowerValue properties add UpperValue="90" LowerValue="10"

to the <c1:C1RangeSlider> tag so that it appears similar to the following:
<c1:C1RangeSlider Height="18" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1RangeSlider1" VerticalAlignment="Top"

Width="26" UpperValue="90" LowerValue="10" />

In Code

16

For example, to set the UpperValue and LowerValue properties add the following code to your project:

 Visual Basic
Me.C1RangeSlider1.LowerValue = 10

Me.C1RangeSlider1.UpperValue = 90

 C#
this.c1RangeSlider1.LowerValue = 10;

this.c1RangeSlider1.UpperValue = 90;

Setting the Value Change
The UpperValue and LowerValue thumbs move along the track when the C1RangeSlider track is clicked. The
ValueChange property determines by how much the thumbs move. By default, the ValueChange property is set to
"10" and a slider thumb will move by 10 units when the track next to it is clicked. You can customize this value at
design time, in XAML, and in code.

At Design Time

To set the ValueChange property at run time, complete the following steps:

1. Click the C1RangeSlider control once to select it.

2. Navigate to the Properties window, and enter a number, for example "5", in the text box next to the
ValueChange property.

This will set the ValueChange property to the value you chose.

In XAML

For example, to set the ValueChange property add ValueChange="5" to the <c1:C1RangeSlider> tag so

that it appears similar to the following:
<c1:C1RangeSlider Height="18" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1RangeSlider1" VerticalAlignment="Top"

Width="26" ValueChange="5" />

In Code

For example, to set the ValueChange property add the following code to your project:

 Visual Basic
Me.C1RangeSlider1.ValueChange = 5

 C#
this.c1RangeSlider1.ValueChange = 5;

Run the application and observe:

When you click the track of the C1RangeSlider control, the closest thumb will now move by 5 units.

Changing the Background Color
The Background property gets or sets the value of the C1RangeSlider control's background color. By default the

C1RangeSlider control starts with the Background property unset but you can customize this at design time, in

XAML, and in code.

At Design Time

To set the Background property at run time, complete the following steps:

1. Click the C1RangeSlider control once to select it.

2. Navigate to the Properties window, and locate the Background property.

3. Click the drop-down arrow next to the Background property and choose a color, for example Red.

 17

This will set the Background property to the color you chose

In XAML

For example, to set the Background property to Red add Background="Red" to the <c1:C1RangeSlider>

tag so that it appears similar to the following:
<c1:C1RangeSlider Height="18" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="C1RangeSlider1" VerticalAlignment="Top"

Width="26" Background="Red" />

In Code

For example, to set the Background property to Red, add the following code to your project:

 Visual Basic
Me.C1RangeSlider1.Background = System.Windows.Media.Brushes.Red

 C#
this.c1RangeSlider1.Background = System.Windows.Media.Brushes.Red;

Run the application and observe:

The background of the C1RangeSlider control will appear red:

Changing the Orientation
By default the Orientation property is set to Horizontal and the slider appears horizontally across the page. If you
choose, you can change the Orientation so that content control appears vertically placed instead.

At Design Time

To set the Orientation property to Vertical at run time, complete the following steps:

1. Click the C1RangeSlider control once to select it.

2. Navigate to the Properties window, and locate the Orientation property.

3. Click the drop-down arrow next to the Orientation property and choose Vertical.

This will change the Orientation property so that the control appears vertically.

In XAML

To set the Orientation property to Vertical add Orientation="Vertical" to the <c1:C1RangeSlider> tag

so that it appears similar to the following:
<c1:C1RangeSlider HorizontalAlignment="Left" Margin="10,10,0,0"

Name="C1RangeSlider1" VerticalAlignment="Top" Width="26"

Orientation="Vertical" />

In Code

For example, to set the Orientation property to Vertical, add the following code to your project:

 Visual Basic
Me.C1RangeSlider1.Orientation = Orientation.Vertical

 C#
this.c1RangeSlider1.Orientation = Orientation.Vertical;

Run the application and observe:

The background of the C1RangeSlider control will appear vertical:

18

	ComponentOne RangeSlider for WPF Overview
	Help with ComponentOne Studio for WPF

	Key Features
	RangeSlider for WPF Quick Start
	Step 1 of 4: Setting up the Application
	Step 2 of 4: Adding a C1RangeSlider Control
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	Working with RangeSlider for WPF
	Basic Properties
	Minimum and Maximum
	Thumb Values and Range
	Orientation

	Layout and Appearance
	Layout in a Panel
	Appearance Properties
	Color Properties
	Alignment Properties
	Border Properties
	Size Properties

	ComponentOne ClearStyle Technology
	How ClearStyle Works
	ClearStyle Properties

	Templates
	XAML Elements

	RangeSlider for WPF Samples
	RangeSlider for WPF Task-Based Help
	Setting the Thumb Values
	Setting the Value Change
	Changing the Background Color
	Changing the Orientation

