

ComponentOne

ReportViewer for WPF and
Silverlight

Table of Contents
ReportViewer for WPF and Silverlight Overview 2

Help with WPF and Silverlight Edition 2

Key Features 3

C1ReportViewer Quick Start 4

Step 1 of 3: Creating the C1ReportViewer Application 4-5

Step 2 of 3: Adding Content to the C1ReportViewer Control 5-7

Step 3 of 3: Running the C1ReportViewer Application 7-8

ReportViewer for WPF Layout and Appearance 9

ReportViewer Elements 9

ReportViewer Templates 9-10

C1ReportViewer Styles and Templates 10

C1ReportViewer Visual States 10

Run-Time Interaction 11

ReportViewer Content Area 11-12

ReportViewer Toolbar 12-13

C1ReportViewer Task-Based Help 14

Adding C1ReportViewer to the Application 14-15

Loading Documents into C1ReportViewer 15-16

Loading Documents from Application Resources (Silverlight) 16-17

Loading Documents from Files on the Client Machine (Silverlight) 17-18

Loading Documents from Files on the Server (Silverlight) 18-22

Creating and Loading Reports Dynamically (Silverlight) 22-24

Hiding the Toolbar 24

Customizing the Toolbar 24-26

ReportViewer for WPF and Silverlight 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

ReportViewer for WPF and Silverlight Overview
Add report viewing capabilities to your WPF applications. ReportViewer for WPF and Silverlight can display HTML
and PDF-based reports from virtually any report service, including Microsoft SQL Server Reporting Services and
C1Report. This powerful viewer allows users to see, search, zoom, select, print and save the reports to local files.

Help with WPF and Silverlight Edition
Getting Started

For information on installing ComponentOne Studio WPF Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WPF Edition.
For information on installing ComponentOne Studio Silverlight Edition, licensing, technical support,
namespaces and creating a project with the control, please visit Getting Started with Silverlight Edition.

ReportViewer for WPF and Silverlight 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1studioWPF/
http://helpcentral.componentone.com/nethelp/C1studiosilverlight/

Key Features
Using ReportViewer, you can display HTML and PDF-based reports from virtually any report service, including
Microsoft SQL Server Reporting Services and C1Report. The control lets you view, browse, search, zoom, select, print
and save reports to local files. In addition, ReportViewer comes with various features as follows:

View reports from multiple sources
The ReportViewer control is engine-agnostic, because it supports the most common document formats: HTML
and PDF. Use ReportViewer to display reports from virtually any report generator such as C1Report, Microsoft
Reporting Services, Active Reports, Crystal or any other report provider capable of generating HTML or PDF
output.

Load and save documents
ReportViewer allows users to print the current document in its entirety or print a selection of pages. Or print
directly from code using the PrintDocument method.
Printing support
ReportViewer allows users to print the current document in its entirety or print a selection of pages. Or print
directly from code using the PrintDocument method.

Search text
Users can perform text searches within the document. As matches are found they are brought into view, and
users can navigate through search results in a quick and intuitive manner.

Multiple view modes
ReportViewer comes with multiple viewing modes to support viewing documents at any scale. Users can set
the zoom level to fit the page into view, and view a single page or multiple pages in side by side layout.

Page customization
Specify page properties such as page size and margin thickness. You can even design a page template to
provide custom headers and footers that are not generated as part of the report.

Customizable toolbar
ReportViewer includes a default toolbar for quick development. Creating a custom toolbar is very simple
because each button in the default toolbar has a corresponding command in the control.

Silverlight toolkit themes
Add style to your UI with built-in support for the most popular Microsoft Silverlight Toolkit themes, including
ExpressionDark, ExpressionLight, WhistlerBlue, RainerOrange, ShinyBlue, and BureauBlack.

Load and view PDF files containing attachments
ReportViewer lets you load and view PDF files containing attachments. The attached files appear in the shape
of a clip-shaped icon that can be clicked and readily viewed.

ReportViewer for WPF and Silverlight 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1wpfreport/

C1ReportViewer Quick Start
The following quick start guide is intended to get you up and running with ReportViewer for WPF and Silverlight. In
this quick start you'll create a simple project using a C1ReportViewer control. You'll create a new WPF or Silverlight
application, add the C1ReportViewer control to your application, add a PDF file that will be displayed in
the C1ReportViewer control, and observe some of the run-time interaction possible with ReportViewer for WPF and
Silverlight.

Step 1 of 3: Creating the C1ReportViewer Application
In this step you'll create a WPF application using ReportViewer for WPF and Silverlight. When you add a
C1ReportViewer control to your application, you'll have a complete, functional document viewer interface that you can
display PDF and HTML files in. To set up your project and add a C1ReportViewer control to your application, complete
the following steps:

1. From the Visual Studio File menu select New and choose Project.
2. In the New Project dialog box choose a language and WPF Application or Silverlight Application in the left-

side menu, choose .NET Framework 4 in the Framework drop-down list, and enter a name for the project. In
this example the application will be named "QuickStart". If you name the project something else, in later steps
you may need to change references to "QuickStart" with the name of your project.

3. In the Solution Explorer, right-click the project name and choose Add Reference. In the Add Reference dialog
box, locate and select the C1.WPF and C1.WPF.ReportViewer or C1.Silverlight and
C1.Silverlight.ReportViewer assemblies and click OK to add references to your project.

4. Open the XAML view of the MainWindow.xaml or MainPage.xaml file; in this quick start you'll add
the C1ReportViewer control using XAML markup.

5. Add the XAML namespace to the Window tag with the following markup:
xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml".

The namespaces will now appear similar to the following:

WPF XAML

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">

Silverlight XAML

<UserControl x:Class="QuickStart.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml" mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400">

This is a unified namespace that will enable you to work with most ComponentOne WPF or Silverlight controls
without adding multiple namespaces.

ReportViewer for WPF and Silverlight 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Add the <c1:C1ReportViewer x:Name="C1ReportViewer1" /> tag within the Grid tags on the page to
add the C1ReportViewer control to the application.

The XAML will appear similar to the following:

XAML

<Grid x:Name="LayoutRoot" Background="White">
 <c1:C1ReportViewer x:Name="C1ReportViewer1" />
</Grid>

This will add a C1ReportViewer control named "C1ReportViewer1" to the application. If you run the application
now, it will appear similar to the following image:

You've successfully set up your application's user interface, but if you run your application now you'll see that
the C1ReportViewer control currently contains no content. In the next steps you'll add content to the C1ReportViewer
control, and then you'll observe some of the run-time interactions possible with the control.

From 2015v2 onwards, please add C1.Win.4 and C1.Win.Barcode.4 dlls to the Silverlight applications referencing
C1.WPF.C1Report.CustomFields.4 dll.

Step 2 of 3: Adding Content to the C1ReportViewer Control
In the previous step you created a WPF application and added the C1ReportViewer control to your project. In this step
you'll add PDF content to the C1ReportViewer control. Note that in this step you will add a PDF file that is included
with the WPF Edition samples, which are by default installed in the Documents or MyDocuments folder in
the Documents\ComponentOne Samples\WPF or Documents\ComponentOne Samples\Silverlight directory. If
you choose, you can instead use another PDF file and adapt the steps. To customize your project and add a PDF file to
the C1ReportViewer control in your application, complete the following steps:

1. Navigate to the Solution Explorer, right-click the project name, and select Add │ Existing Item.
2. In the Add Existing Item dialog box, locate the C1XapOptimizer.pdf file included in the ControlExplorer

sample. In the file type drop-down box, you may need to choose All Files to view the PDF file. Note that if you
choose, you can instead pick another PDF file to use.

3. In the Solution Explorer, click the PDF file you just added to the application. In the Properties window, set its
BuildAction property to Resource and confirm that the Copy to Output Directory item is set to Do not
Copy.

ReportViewer for WPF and Silverlight 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Switch to Code view by right-clicking the page and selecting View Code. In the next steps you'll add XAML
markup to your application to add content to the drop-down box.

5. Add the following imports statement at the top of the page:

Visual Basic

Imports C1.WPF.ReportViewer

C#

using C1.WPF.ReportViewer;

6. Add the following code to the main class:
Visual Basic

Public Sub New()
 InitializeComponent()
 Dim resource = Application.GetResourceStream(New
Uri("QuickStart;component/C1XapOptimizer.pdf", UriKind.Relative))
Me.C1ReportViewer1.LoadDocument(resource.Stream)
End Sub

C#

public MainPage()
{
 InitializeComponent();
 var resource = Application.GetResourceStream(new
Uri("QuickStart;component/C1XapOptimizer.pdf", UriKind.Relative));
 this.C1ReportViewer1.LoadDocument(resource.Stream);
}

This code adds a stream and loads the stream into the C1ReportViewer control. Note that if you named the
application differently, you will need to replace "QuickStart" with the name of your project. If you added a different
PDF file, replace "C1XapOptimizer.pdf " with the name of your file.

If you run the application now, it will appear in the content window within the C1ReportViewer control:

ReportViewer for WPF and Silverlight 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

In this step you added content to the C1ReportViewer control. In the next step you'll view some of the run-time
interactions possible in the control.

Step 3 of 3: Running the C1ReportViewer Application
Now that you've created a WPF or Silverlight application and added content to the C1ReportViewer control, the only
thing left to do is run your application. To run your application and observe ReportViewer for WPF and Silverlight's
run-time behavior, complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.

The application will appear similar to the following:

The C1ReportViewer control appears as a toolbar and content area. Notice that the PDF file you added appears
in the content area of the control.

2. In the toolbar, click the Next Page arrow button to move to the next page of the PDF file. You can return to
the previous page by clicking the Previous Page arrow button. You can also navigate to the first or last page
of the document using the First Page and Last Page buttons.

3. Click the Zoom Out button to view more of the PDF in the window. Note that you can also choose a zoom
level by clicking the Zoom drop-down box.

ReportViewer for WPF and Silverlight 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Click the Fit Width button to automatically fit the width of the PDF file to the size of the viewer's content
window. Other options include OnePage to view the entire page in the available space and TwoPage to view
two pages of the document in the available space.

5. Click in the Search text box and enter text to search for – for example "Sales". Notice that the document scrolls
to the next instance of that word and that the word is highlighted in the PDF file. The toolbar also displays the
number of instances of that word or phrase. You can click the Find Previous and Find Next buttons to
navigate to the previous or next instance of the word.

6. Click the Save button. In the Save As dialog box enter a name for the file and click the Save button to save the
file to a location of your choice. If you choose, you can click the Print button in the toolbar to print the file.

Congratulations! You've completed the C1ReportViewer quick start and created a simple application, added and
customized a ReportViewer for WPF and Silverlight control, and viewed some of the run-time capabilities of the
control.

ReportViewer for WPF and Silverlight 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

ReportViewer for WPF Layout and Appearance
The following topics detail how to customize the C1ReportViewer control's layout and appearance. You can use built-
in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to customize the
appearance of the grid and take advantage of Silverlight's XAML-based styling. You can also use templates to format
and lay out the control and to customize the control's actions.

ReportViewer Elements
ReportViewer for WPF and Silverlight includes the C1ReportViewer control, a simple viewer that allows you to load
and view HTML and PDF files. When you add the C1ReportViewer control to a XAML window it exists as a fully
functional input control that can be customized and include loaded content.

The C1ReportViewer control consists of two parts: a toolbar and a content area. The image below identifies the
toolbar and content area:

Any HTML content or PDF that you load into the C1ReportViewer control will be viewed in the content area. The
toolbar allows users to manipulate the content at run time, for example to print or zoom in or out the content. For
more information about the content area and toolbar, see the ReportViewer Content Area and ReportViewer Toolbar
topics.

ReportViewer for WPF and Silverlight also includes the C1ReportViewerToolbar control which consists of just the
toolbar element.

ReportViewer Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide your
own UI for data managed by ReportViewer for WPF and Silverlight. Extensible Application Markup Language
(XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to designing your UI
without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1ReportViewer control and, in the menu,
selecting Edit Template. Select Edit a Copy to create an editable copy of the current template or Create Empty, to
create a new blank template.

ReportViewer for WPF and Silverlight 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

Once you've created a new template, the template will appear in the Objects and Timeline window. Note that you
can use the Template property to customize the template.

Note: If you create a new template through the menu, the template will automatically be linked to that
template's property. If you manually create a template in XAML you will have to link the appropriate template
property to the template you've created.

Additional Templates

In addition to the default template, the C1ReportViewer control includes a few additional templates. These additional
templates can also be accessed in Microsoft Expression Blend – in Blend select the C1ReportViewer control and, in the
menu, select Edit Additional Templates. Choose a template, and select Create Empty.

C1ReportViewer Styles and Templates
ReportViewer for WPF and Silverlight's C1ReportViewer control provides several style properties that you can use
to change the appearance of the control. Some of the included styles are described in the table below:

Style Description

FocusVisualStyle Gets or sets a property that enables customization of appearance, effects, or other
style characteristics that will apply to this element when it captures keyboard focus.
This is a dependency property.

FontStyle Gets or sets the font style. This is a dependency property.

PageTemplate Gets or sets the DataTemplate used to display pages.

Style Gets or sets the style used by this element when it is rendered. This is a dependency
property.

ToolbarStyle Gets or set the style applied to this C1ReportViewer control's toolbar.

C1ReportViewer Visual States
In Microsoft Expression Blend, you can add custom states and state groups to define a different appearance for each
state of your user control – for example, the visual state of the control could change on mouse over. You can view and
edit visual states by creating a new template. Once you've done so the available visual states for that part will be
visible in the States window:

ReportViewer for WPF and Silverlight 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/ms592524
http://msdn2.microsoft.com/en-us/library/ms600878
http://msdn2.microsoft.com/en-us/library/ms592516
http://msdn2.microsoft.com/en-us/library/ms589297
http://msdn2.microsoft.com/en-us/library/ms600899

Run-Time Interaction
Users can interact with items in the toolbar and content area of the C1ReportViewer control at run time. Users can
move and drag content in the content area or use the toolbar to manipulate the document displayed in the content
area.

ReportViewer Content Area
At run time, users can manipulate content in the content area, scrolling, selecting, and copying content from the
C1ReportViewer control.

Scrolling Content

When the content of the control is taller and viewer than the viewing area of the control's content area, scrollbars
appear to allow users to move to different areas of the document:

You can scroll through the content area using the arrow buttons, moving the scrollbar thumb buttons, with the
keyboard arrow buttons, or with the mouse scroll wheel.

Selecting Content

You can select content using by clicking and dragging the mouse cursor over the content you want to select. When
content is selected, it will appear highlight. For example, the words "How XapOptimizer Works" are selected in the
image below:

ReportViewer for WPF and Silverlight 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

Copying Content

The C1ReportViewer control includes a context menu that allows you to copy content. First select the content that you
want to copy and then right-click the document. A context menu will appear; by selecting Copy in the context menu
you can copy the content:

You can also copy selected content using the keyboard by using the CTRL + C key combination.

ReportViewer Toolbar
At run time, users can use the toolbar to manipulate the document displayed in the content area. The toolbar appears
similar to the following image by default:

Note that some items in the toolbar are not active or visible by default. For example, the Previous Page button is not
active when on the first page of the document. The following options are included in the toolbar:

ReportViewer for WPF and Silverlight 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Image Name Description

Save Save the current document to the local file system.

Print Prints the current document.

First Page Navigates to the first page in the document.

Previous Page Navigates to the previous page in the document.

Page Navigates to a specific page entered in the text box.

Next Page Navigates to the next page in the document.

Last Page Navigates to the last page in the document.

Zoom Out Zooms out of the document.

Zoom In Zooms into the document.

Zoom Zooms to the value selected.

Fit Width Fits the width of the document to the size of the viewport.

One Page Fits the size of the document to the size of the viewport so that an
entire page is displayed.

Two Pages Displays two pages side-by-side.

Find Searches the document for text entered in the box as it is typed.

Find Previous Navigates to the previous instance of the searched text.

Find Next Navigates to the next instance of the searched text.

Each of the toolbar interactions can be also be performed programmatically so that you can easily replace the built-in
toolbar with your own custom toolbar. If you choose to create a custom toolbar, you can hide the built-in toolbar
using the ToolbarVisibility property.

ReportViewer for WPF and Silverlight 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1ReportViewer Task-Based Help
The following task-based help topics assume that you are familiar with Visual Studio and Expression Blend and know
how to use the C1ReportViewer control in general. If you are unfamiliar with the ReportViewer for WPF and
Silverlight product, please see the C1ReportViewer Quick Start first.

Each topic in this section provides a solution for specific tasks using the ReportViewer for WPF and
Silverlight product. Most task-based help topics also assume that you have created a new WPF or Silverlight project
and added a C1ReportViewer control to the project – for information about creating the control, see Adding
C1ReportViewer to the Application.

Adding C1ReportViewer to the Application
Complete the following steps to add a C1ReportViewer control to your application:

1. From the Visual Studio File menu select New and choose Project.
2. In the New Project dialog box choose a language in the left-side menu, choose .NET Framework 4 in the

Framework drop-down list, and enter a name for the project.
3. In the Solution Explorer, right-click the project name and choose Add Reference. In the Add Reference dialog

box, locate and select the following assemblies and click OK to add references to your project:
C1.WPF
C1.WPF.ReportViewer
C1.WPF.RichTextBox
C1.WPF.Zip

4. Open the XAML view of the MainWindow.xaml file and add the XAML namespace to the UserControl tag with
the following markup: xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml".

The namespaces will now appear similar to the following:

XAML

<Window x:Class="MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"
 Title="MainWindow" Height="350" Width="525">

This is a unified namespace that will enable you to work with most ComponentOne WPF or Silverlight controls
without adding multiple namespaces.

5. Add the <c1:C1ReportViewer x:Name="C1ReportViewer1" /> tag within the Grid tags on the page to
add the C1ReportViewer control to the application.

The XAML will appear similar to the following:

XAML

<Grid x:Name="LayoutRoot" Background="White">
 <c1:C1ReportViewer x:Name="C1ReportViewer1" />
</Grid>

This will add a C1ReportViewer control named "C1ReportViewer1" to the application. If you run the application
now, it will appear similar to the following image:

ReportViewer for WPF and Silverlight 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

You've successfully set up your application's user interface, but if you run your application now you'll see that
the C1ReportViewer control currently contains no content. See the Loading Documents into C1ReportViewer topic for
options for loading content.

Note: If the C1ReportViewer control was installed to the Visual Studio Toolbox, simply dragging the control
onto a page will automatically perform all the steps above.

Loading Documents into C1ReportViewer
If you run the application after adding a C1ReportViewer control to your application, you'll see an empty
C1ReportViewer on the page. The next step is to invoke the LoadDocument method to add some content to the
control. The LoadDocument method allows you to load content from Stream objects (which may contain PDF, HTML,
or MHTML documents), or from strings (which may contain HTML or MHTML documents).

You can easily load a document from an application resource. For example, complete the following steps:

1. Navigate to the Solution Explorer, right-click the project name, and select Add │ Existing Item.
2. In the Add Existing Item dialog box, locate a PDF file. In the file type drop-down box, you may need to choose

All Files to view the PDF file. Note that if you choose, you can instead pick another PDF file to use.
3. In the Solution Explorer, click the PDF file you just added to the application (in this example, we'll assume the

file is named resource.pdf). In the Properties window, set its BuildAction property to Resource and confirm
that the Copy to Output Directory item is set to Do not Copy.

4. Switch to Code view by right-clicking the page and selecting View Code. In the next steps you'll add XAML
markup to your application to add content to the drop-down box.

5. Add the following imports statement at the top of the page:

Visual Basic

Imports C1.WPF.ReportViewer

C#

using C1.WPF.ReportViewer;

ReportViewer for WPF and Silverlight 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Add the following code to the main class:

Visual Basic

Public Sub New()
 InitializeComponent()
 Dim resource = Application.GetResourceStream(New
Uri("AppName;component/resource.pdf", UriKind.Relative))
Me.C1ReportViewer1.LoadDocument(resource.Stream)
End Sub

C#

public MainPage()
{
 InitializeComponent();
 var uri = new Uri("/AppName;component/resource.pdf", UriKind.Relative);
 var resource = Application.GetResourceStream(uri);
 this.C1ReportViewer1.LoadDocument(resource.Stream);
}

This code adds a stream and loads the stream into the C1ReportViewer control. Note that if you named the
application differently, you will need to replace "AppName" with the name of your project. If you added a different
PDF file, replace "resource.pdf" with the name of your file.

Loading Documents from Application Resources
(Silverlight)
You can easily load a document from an application resource. For example, complete the following steps:

1. Navigate to the Solution Explorer, right-click the project name, and select Add │ Existing Item.
2. In the Add Existing Item dialog box, locate a PDF file. In the file type drop-down box, you may need to choose

All Files to view the PDF file. Note that if you choose, you can instead pick another PDF file to use.
3. In the Solution Explorer, click the PDF file you just added to the application (in this example, we'll assume the

file is named resource.pdf). In the Properties window, set its BuildAction property to Resource and confirm
that the Copy to Output Directory item is set to Do not Copy.

4. Switch to Code view by right-clicking the page and selecting View Code. In the next steps you'll add XAML
markup to your application to add content to the drop-down box.

5. Add the following imports statement at the top of the page:

Visual Basic

Imports C1.Silverlight|variable=Silverlight.ReportViewer

C#

using C1.Silverlight|variable=Silverlight.ReportViewer;

ReportViewer for WPF and Silverlight 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Add the following code to the main class:

Visual Basic

Public Sub New()
 InitializeComponent()
 Dim resource = Application.GetResourceStream(New
Uri("AppName;component/resource.pdf", UriKind.Relative))
Me.C1ReportViewer1.LoadDocument(resource.Stream)
End Sub

C#

public MainPage()
{
 InitializeComponent();
 var uri = new Uri("/AppName;component/resource.pdf", UriKind.Relative);
 var resource = Application.GetResourceStream(uri);
 this.C1ReportViewer1.LoadDocument(resource.Stream);
}

This code adds a stream and loads the stream into the C1ReportViewer control. Note that if you named the
application differently, you will need to replace "AppName" with the name of your project. If you added a different
PDF file, replace "resource.pdf" with the name of your file.

Loading Documents from Files on the Client Machine (Silverlight)
In this example, you'll set up the application so that users can load a file from the local file system. You will add a button to the
application and then add code to choose and open a file at run time. Because this example uses the OpenFileDialog control this
code must be executed in a Button Click event. Note that this topic assumes you have added a C1ReportViewer control named
"C1ReportViewer1" to your application.

Complete the following steps.

1. Open the MainPage.xaml file in your application, and open XAML view.
2. Add the following markup to add a button control to the application.

<Button Content="Load File" Height="23" Name="Button1" Width="70" Click="Button1_Click" />
3. Right-click the page and select View Code. In Code View you'll add code to initialize the button you added in the previous

step.
4. Add the following imports statement at the top of the page:

Visual Basic

Imports C1.Silverlight.ReportViewer

C#

ReportViewer for WPF and Silverlight 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

using C1.Silverlight.ReportViewer;

5. Add the following Button_Click event handler code:

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.Windows.RoutedEventArgs) Handles Button1.Click
 Dim dialog = New OpenFileDialog()
 dialog.Filter = "PDF files|*.pdf|HTML files|*.html;*.mhtml"
 If dialog.ShowDialog() = True Then
 Using fileStream = dialog.File.OpenRead()
 Try
 C1ReportViewer1.LoadDocument(fileStream)
 Catch ex As Exception
 MessageBox.Show("Failed to load document.")
 End Try
 End Using
 End If
End Sub

C#

private void Button1_Click(System.Object sender, System.Windows.RoutedEventArgs e)
{
 dynamic dialog = new OpenFileDialog();
 dialog.Filter = "PDF files|*.pdf|HTML files|*.html;*.mhtml";
 if (dialog.ShowDialog() == true) {
 using (fileStream == dialog.File.OpenRead()) {
 try {
 C1ReportViewer1.LoadDocument(fileStream);
 } catch (Exception ex) {
 MessageBox.Show("Failed to load document.");
 }
 }
 }
}

This code initializes a dialog box to be opened when the button is clicked. In the dialog box users can select a file to open
in the C1ReportViewer control. Notice how, in the code above, the LoadDocument method allows you to load PDF and
HTML content.

6. Run the application.
7. In the running application, click the Load File button. Notice that a dialog box appears, allowing you to choose a PDF or

HTML file of your choice.
8. Locate and select a PDF file on your local machine to open and then click the Open button. The dialog box will close and

the file you selected will be loaded into the C1ReportViewer control.

ReportViewer for WPF and Silverlight 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

Loading Documents from Files on the Server (Silverlight)
A common usage scenario for the C1ReportViewer control is to have a report server (such as C1Report or Microsoft
SQL Server Reporting Services) generate reports on a schedule, and deploy them to the file system on the server. Your
Silverlight or WPF applications can then get these files from the server and display them to the user with very little
overhead.

This scenario is illustrated in the C1ReportViewerQuickstart sample.

After adding the C1ReportViewer to your application, you should add a Silverlight-enabled WCF service to the server
project. This service will provide the Silverlight client with the list of reports available and with the actual document
streams for each report.

For example, the following is a typical implementation of a report provider Web service:

Visual Basic

<ServiceContract([Namespace] := "")> _
<AspNetCompatibilityRequirements(RequirementsMode :=
AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class ReportingService
 <OperationContract> _
 Public Function GetReportList() As String()
 Dim path__1 = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory,
"Resources")
 Return Directory.GetFiles(path__1, "*.pdf")
 End Function
 <OperationContract>
Public Function GetReportStream(reportName As String) As Byte()
 ' get file name
 Dim path__1 = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory,
"Resources")
 reportName = Path.Combine(path__1, reportName)

 ' load file into stream
 Dim ms = New MemoryStream()
 Dim buff = New Byte(63999) {}
 Using sr = New FileStream(reportName, FileMode.Open)
 While True
 Dim read As Integer = sr.Read(buff, 0, buff.Length)
 ms.Write(buff, 0, read)
 If read = 0 Then
 Exit While
 End If
 End While
 End Using
End Function
' return byte stream
Return ms.ToArray()
End Class

C#

ReportViewer for WPF and Silverlight 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class ReportingService
{
 [OperationContract]
 public string[] GetReportList()
 {
 var path = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory,
"Resources");
 return Directory.GetFiles(path, "*.pdf");
 }

 [OperationContract]
 public byte[] GetReportStream(string reportName)
 {
 // get file name
 var path = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory,
"Resources");
 reportName = Path.Combine(path, reportName);

 // load file into stream
 var ms = new MemoryStream();
 var buff =new byte[64000];
 using (var sr = new FileStream(reportName, FileMode.Open))
 {
 for (; ;)
 {
 int read = sr.Read(buff, 0, buff.Length);
 ms.Write(buff, 0, read);
 if (read == 0) break;
 }
 }
 }

 // return byte stream
 return ms.ToArray();
 }
}

As you can see, the code is very standard. The first method lists the reports available on the server so the Silverlight
application can show a list of reports to the user, and the second method returns the byte stream that represents the
selected report.

The client part of the application uses the service as follows:

Visual Basic

Public Sub New()
 InitializeComponent()

ReportViewer for WPF and Silverlight 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ' go get the list of reports available
 Dim svc = New ReportingServiceReference.ReportingServiceClient()
 AddHandler svc.GetReportListCompleted, AddressOf svc_GetReportListCompleted
 svc.GetReportListAsync()
End Sub

' populate ComboBox with list of reports available on the server
Private Sub svc_GetReportListCompleted(sender As Object, e As
ReportingServiceReference.GetReportListCompletedEventArgs)
 _cmbReport.Items.Clear()
 For Each file As String In e.Result
 _cmbReport.Items.Add(Path.GetFileNameWithoutExtension(file))
 Next
 _cmbReport.IsEnabled = True
 _cmbReport.SelectedIndex = 0
End Sub

' show the report that was selected
Private Sub ReportType_Click(sender As Object, e As EventArgs)
 ' build report name
 Dim reportName As String = DirectCast(_cmbReport.SelectedItem, String)
 reportName += If(_btnPDF.IsChecked.Value, ".pdf", ".mhtml")

 ' go get the stream
 Dim svc = New ReportingServiceReference.ReportingServiceClient()
 AddHandler svc.GetReportStreamCompleted, AddressOf svc_GetReportStreamCompleted
 svc.GetReportStreamAsync(reportName)
End Sub

' display the report
Private Sub svc_GetReportStreamCompleted(sender As Object, e As
ReportingServiceReference.GetReportStreamCompletedEventArgs)
 Dim ms = New MemoryStream(e.Result)
 _reportViewer.LoadDocument(ms)
End Sub

C#

public MainPage()
{
 InitializeComponent();

 // go get the list of reports available
 var svc = new ReportingServiceReference.ReportingServiceClient();
 svc.GetReportListCompleted += svc_GetReportListCompleted;
 svc.GetReportListAsync();
}

// populate ComboBox with list of reports available on the server
void svc_GetReportListCompleted(object sender,

ReportViewer for WPF and Silverlight 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ReportingServiceReference.GetReportListCompletedEventArgs e)
{
 _cmbReport.Items.Clear();
 foreach (string file in e.Result)
 {
 _cmbReport.Items.Add(Path.GetFileNameWithoutExtension(file));
 }
 _cmbReport.IsEnabled = true;
 _cmbReport.SelectedIndex = 0;
}

// show the report that was selected
void ReportType_Click(object sender, EventArgs e)
{
 // build report name
 string reportName = (string)_cmbReport.SelectedItem;
 reportName += _btnPDF.IsChecked.Value ? ".pdf" : ".mhtml";

 // go get the stream
 var svc = new ReportingServiceReference.ReportingServiceClient();
 svc.GetReportStreamCompleted += svc_GetReportStreamCompleted;
 svc.GetReportStreamAsync(reportName);
 }

 // display the report
 void svc_GetReportStreamCompleted(object sender,
 ReportingServiceReference.GetReportStreamCompletedEventArgs e)
 {
 var ms = new MemoryStream(e.Result);
 _reportViewer.LoadDocument(ms);
 }

Creating and Loading Reports Dynamically (Silverlight)
Another fairly common scenario is dynamic report creation. In this case, you would configure the report server to
allow access from your application server, and would use a Web service similar to the one described in the Loading
Documents from Files on the Server topic to obtain the report stream directly from the report server (instead of
loading it from a file).

The specific steps involved depend on the specific report server you are using. To dynamically obtain a PDF report
from a Microsoft SQL Server Reporting Services server, for example, you would modify the Web service listed in the
Loading Documents from Files on the Server topic as follows:

Visual Basic

<ServiceContract([Namespace] := "")> _
<AspNetCompatibilityRequirements(RequirementsMode :=
AspNetCompatibilityRequirementsMode.Allowed)> _
Public Class ReportsService
 <OperationContract> _

ReportViewer for WPF and Silverlight 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Public Function GetReportStream(reportName As String) As Byte()
 Dim reportServer As String = "YOUR REPORT SERVER NAME"

 Dim url = String.Format("http://{0}/ReportServer?/{1}&rs:Format=PDF",
reportServer, reportName.Replace(" "C, "+"C))

 Dim wc = New System.Net.WebClient()
 wc.UseDefaultCredentials = True

 Dim stream = wc.OpenRead(url)
 Dim ms = New MemoryStream()

 Dim buf = New Byte(64 * 1024 - 1) {}
 While True
 Dim read As Integer = stream.Read(buf, 0, buf.Length)
 If read = 0 Then
 Exit While
 End If
 ms.Write(buf, 0, read)
 End While
 ms.Flush()

 Return ms.ToArray()
 End Function
End Class

C#

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class ReportsService
{
 [OperationContract]
 public byte[] GetReportStream(string reportName)
 {
 string reportServer = "YOUR REPORT SERVER NAME";

 var url = string.Format("http://{0}/ReportServer?/{1}&rs:Format=PDF",
 reportServer,
 reportName.Replace(' ', '+'));

 var wc = new System.Net.WebClient();
 wc.UseDefaultCredentials = true;

 var stream = wc.OpenRead(url);
 var ms = new MemoryStream();

 var buf = new byte[64 * 1024];
 for (; ;)

ReportViewer for WPF and Silverlight 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 int read = stream.Read(buf, 0, buf.Length);
 if (read == 0) break;
 ms.Write(buf, 0, read);
 }
 ms.Flush();

 return ms.ToArray();
 }
}

As you can see, the difference is minimal. This approach still allows you to specify the report caching policy on the
report server, so there is no loss of performance or scalability.

Hiding the Toolbar
If you choose to create a customized toolbar (for an example, see the Customizing the Toolbar topic), you may need
to hide the default toolbar available in the C1ReportViewer control. You can hide the built-in toolbar using the
ToolbarVisibility property. For example:

XAML

<c1:C1ReportViewer x:Name="C1ReportViewer1" ToolbarVisibility="Collapsed"/>

Visual Basic

Me.C1ReportViewer.ToolbarVisibility = Visibility.Collapsed

C#

this.C1ReportViewer.ToolbarVisibility = Visibility.Collapsed;

Customizing the Toolbar
Creating a custom toolbar for C1ReportViewer is very simple. All buttons in the default toolbar have a corresponding
Command in the control, so you can create a custom toolbar using only XAML. Here is some sample code using
C1Toolbar to create a C1ReportViewer toolbar:

XAML

<Grid x:Name="LayoutRoot">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>
 <c1:C1ToolbarStrip>
 <c1:C1ToolbarButton

ReportViewer for WPF and Silverlight 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Content="First"
 Command="{Binding FirstPageCommand,ElementName=reportViewer}" />
 <c1:C1ToolbarButton
 Content="Previous"
 Command="{Binding PreviousPageCommand,ElementName=reportViewer}" />
 <ContentPresenter
 Content="{Binding PageNumber,ElementName=reportViewer}" />
 <TextBlock Text="/"/>
 <ContentPresenter
 Content="{Binding PageCount,ElementName=reportViewer}" />
 <c1:C1ToolbarButton
 Content="Next"
 Command="{Binding NextPageCommand,ElementName=reportViewer}" />
 <c1:C1ToolbarButton
 Content="Last"
 Command="{Binding LastPageCommand,ElementName=reportViewer}" />
 <ComboBox
 SelectedItem="{Binding Zoom,ElementName=reportViewer,Mode=TwoWay}">
 <sys:Double>0.5</sys:Double>
 <sys:Double>1</sys:Double>
 <sys:Double>1.5</sys:Double>
 </ComboBox>
 </c1:C1ToolbarStrip>
 <c1:C1ReportViewer
 x:Name="reportViewer"
 Grid.Row="1"
 ToolbarVisibility="Collapsed"/>
</Grid>

Note how all buttons bind the Command property to a command in C1ReportViewer. Also, you can easily bind to
the PageNumber and PageCount properties to display the current page and total number of pages. Finally, a
ComboBox is bound to the Zoom property allowing the user to control the zoom factor.

Several additional buttons can be customized using various commands. This is the list of commands:

Command Description

SaveCommand Saves the document.

PrintCommand Prints the document.

FirstPageCommand Navigates to the first page in the document.

PreviousPageCommand Navigates to the previous page in the document.

NextPageCommand Navigates to the next page in the document.

LastPageCommand Navigates to the last page in the document.

DecreaseZoomCommand Zooms out of the document.

IncreaseZoomCommand Zooms into the document.

FindPreviousCommand Finds the previous instance of the searched text.

FindNextCommand Finds the next instance of the searched text.

ReportViewer for WPF and Silverlight 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1PdfViewerToolbar's template also expects ToggleButtons with the following names:

Option Description

FitWidth Fits the width of the document to the size of the control.

OnePage Displays one page.

TwoPages Displays two pages side-by-side.

To use one of these ToggleButtons, for example TwoPages, inside a custom toolbar scenario, you would need to put
the TwoPages ToggleButton inside the C1ReportViewer template. If you are making your own toolbar outside of the
control, add a Button and set C1ReportViewer.ViewMode = ViewMode.TwoPages in the click handler.

ReportViewer for WPF and Silverlight 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	ReportViewer for WPF and Silverlight Overview
	Help with WPF and Silverlight Edition

	Key Features
	C1ReportViewer Quick Start
	Step 1 of 3: Creating the C1ReportViewer Application
	Step 2 of 3: Adding Content to the C1ReportViewer Control
	Step 3 of 3: Running the C1ReportViewer Application

	ReportViewer for WPF Layout and Appearance
	ReportViewer Elements
	ReportViewer Templates
	C1ReportViewer Styles and Templates
	C1ReportViewer Visual States

	Run-Time Interaction
	ReportViewer Content Area
	ReportViewer Toolbar

	C1ReportViewer Task-Based Help
	Adding C1ReportViewer to the Application
	Loading Documents into C1ReportViewer
	Loading Documents from Application Resources (Silverlight)
	Loading Documents from Files on the Client Machine (Silverlight)
	Loading Documents from Files on the Server (Silverlight)
	Creating and Loading Reports Dynamically (Silverlight)

	Hiding the Toolbar
	Customizing the Toolbar

