
ComponentOne

TimeEditor for WPF

Copyright  1987-2010 ComponentOne LLC. All rights reserved.

Corporate Headquarters
ComponentOne LLC
201 South Highland Avenue
3rd Floor
Pittsburgh, PA 15206 ∙ USA

Internet: info@ComponentOne.com
Web site: http://www.componentone.com

Sales
E-mail: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of ComponentOne LLC. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and
handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was
written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make
copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/

iii

Table of Contents
TimeEditor for WPF ... 1

Installing TimeEditor for WPF...1
TimeEditor for WPF Setup Files ..1
System Requirements ...2
Installing Demonstration Versions..2
Uninstalling TimeEditor for WPF ..2
End-User License Agreement ...3
Licensing FAQs ...3
What is Licensing? ...3
How does Licensing Work? ..3
Common Scenarios ..4
Troubleshooting ...6
Technical Support ..7
Redistributable Files ...8
About this Documentation ...8
XAML and XAML Namespaces ..9
Creating a Microsoft Blend Project ...9
Creating a .NET Project in Visual Studio..10
Creating an XAML Browser Application (XBAP) in Visual Studio...11
Adding the TimeEditor for WPF Components to a Blend Project ...12
Adding the TimeEditor for WPF Components to a Visual Studio Project..13

Key Features...14

TimeEditor for WPF Quick Start...14
Step 1 of 3: Creating an Application with a C1TimeEditor Control ...14
Step 2 of 3: Customizing the Control ..15
Step 3 of 3: Running the Application ..15

Working with C1TimeEditor..16
C1TimeEditor Elements ...16
Spin Interval...16
Value Increment ...17
Time Formats...17

TimeEditor for WPF Layout and Appearance...17
TimeEditor for WPF Appearance Properties ..17
Text Properties ...17
Color Properties ...18
Border Properties..18
Size Properties..18
Templates...19

TimeEditor for WPF Task-Based Help..19
Allowing Null Values ...19
Removing the Spin Buttons ..20
Selecting the Time Format..21
Setting the Spin Interval ...21
Setting the Value Increment..22
Specifying the Current Time ...23
Working with Time Spans ..24

1

TimeEditor for WPF
Exchange date and time information using ComponentOne TimeEditor™
for WPF. It provides a simple and intuitive UI for selecting date and time or
just time values. The date and time can be selected by using the spin
buttons, keyboard arrows, or by typing in fields.

Getting Started

- Working with C1TimeEditor

(page 16)

- Quick Start (page 14)

- Task-Based Help (page 19)

Installing TimeEditor for WPF
The following sections provide helpful information on installing ComponentOne TimeEditor for WPF.

TimeEditor for WPF Setup Files

The installation program will create the directory C:\Program Files\ComponentOne\Studio for WPF,
which contains the following subdirectories:

Bin Contains copies of all ComponentOne binaries (DLLs, EXEs). For
Component TimeEditor for WPF, the following DLLs are installed:

 C1.WPF.dll

 C1.WPF.DateTimeEditors.dll

 C1.WPF. DateTimeEditors.Design.dll

 C1.WPF. DateTimeEditors.Expression.Design.dll

 C1.WPF.DateTimeEditors.VisualStudio.Design.4.0.dll

In addition, the following files from the Microsoft WPF Toolkit are
also installed:

 WPFToolkit.dll

 WPFToolkit.Design.dll

 WPFToolkit.VisualStudio.Design.dll

For more information about the Microsoft WPF Toolkit, see
CodePlex. The C1.WPF.dll and WPFToolkit.dll assemblies are
required for deployment.

H2Help Contains online documentation for all Studio components.

C1WPF\XAML Contains the full XAML definitions of C1TimeEditor styles and
templates which can be used for creating your own custom styles and

http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047
http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047

2

templates.

Samples

Samples for the product are installed in the ComponentOne Samples folder by default. The path of the
ComponentOne Samples directory is slightly different on Windows XP and Windows 7/Vista machines:

Windows XP path: C:\Documents and Settings\<username>\My Documents\ComponentOne Samples

Windows 7/Vista path: C:\Users\<username>\Documents\ComponentOne Samples

The ComponentOne Samples folder contains the following subdirectories:

Common Contains support and data files that are used by many of the demo
programs.

C1WPF Contains samples for TimeEditor for WPF.

System Requirements

System requirements include the following:

Operating Systems: Microsoft Windows® XP with Service Pack 2 (SP2)

Windows Vista™

Windows 2007

Windows 2008 Server

Environments: .NET Framework 3.5 or later

Visual Studio® 2005 extensions for .NET Framework 2.0
November 2006 CTP

Visual Studio® 2008

Microsoft® Expression®
Blend Compatibility:

TimeEditor for WPF includes design-time support for
Expression Blend.

Note: The C1.WPF.VisualStudio.Design.dll assembly is required by Visual Studio 2008 and the
C1.WPF.Expression.Design.dll assembly is required by Expression Blend. The C1.WPF.Expression.Design.dll
and C1.WPF.VisualStudio.Design.dll assemblies installed with TimeEditor for WPF should always be placed in
the same folder as C1.WPF.dll; the DLLs should NOT be placed in the Global Assembly Cache (GAC).

Installing Demonstration Versions

If you wish to try ComponentOne TimeEditor for WPF and do not have a serial number, follow the steps through
the installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products is
that registered versions will stamp every application you compile so that a ComponentOne banner will not appear
when your users run the applications.

Uninstalling TimeEditor for WPF

To uninstall ComponentOne TimeEditor for WPF:

3

1. Open the Control Panel and select Add or Remove Programs (Programs and Features in Vista).

2. Select ComponentOne Studio for WPF and click the Remove button.

3. Click Yes to remove the program.

End-User License Agreement
All of the ComponentOne licensing information, including the ComponentOne end-user license agreements,
frequently asked licensing questions, and the ComponentOne licensing model, is available online at
http://www.componentone.com/SuperPages/Licensing/.

Licensing FAQs
This section describes the main technical aspects of licensing. It may help the user to understand and resolve
licensing problems he may experience when using ComponentOne .NET and ASP.NET products.

What is Licensing?

Licensing is a mechanism used to protect intellectual property by ensuring that users are authorized to use software
products.

Licensing is not only used to prevent illegal distribution of software products. Many software vendors, including
ComponentOne, use licensing to allow potential users to test products before they decide to purchase them.

Without licensing, this type of distribution would not be practical for the vendor or convenient for the user.
Vendors would either have to distribute evaluation software with limited functionality, or shift the burden of
managing software licenses to customers, who could easily forget that the software being used is an evaluation
version and has not been purchased.

How does Licensing Work?

ComponentOne uses a licensing model based on the standard set by Microsoft, which works with all types of
components.

Note: The Compact Framework components use a slightly different mechanism for run-time licensing than the
other ComponentOne components due to platform differences.

When a user decides to purchase a product, he receives an installation program and a Serial Number. During the
installation process, the user is prompted for the serial number that is saved on the system. (Users can also enter
the serial number by clicking the License button on the About Box of any ComponentOne product, if available, or
by rerunning the installation and entering the serial number in the licensing dialog box.)

When a licensed component is added to a form or Web page, Visual Studio obtains version and licensing
information from the newly created component. When queried by Visual Studio, the component looks for
licensing information stored in the system and generates a run-time license and version information, which Visual
Studio saves in the following two files:

 An assembly resource file which contains the actual run-time license.

 A "licenses.licx" file that contains the licensed component strong name and version information.

These files are automatically added to the project.

In WinForms and ASP.NET 1.x applications, the run-time license is stored as an embedded resource in the
assembly hosting the component or control by Visual Studio. In ASP.NET 2.x applications, the run-time license
may also be stored as an embedded resource in the App_Licenses.dll assembly, which is used to store all run-time
licenses for all components directly hosted by WebForms in the application. Thus, the App_licenses.dll must
always be deployed with the application.

http://www.componentone.com/SuperPages/Licensing/
http://www.componentone.com/SuperPages/Licensing/

4

The licenses.licx file is a simple text file that contains strong names and version information for each of the
licensed components used in the application. Whenever Visual Studio is called upon to rebuild the application
resources, this file is read and used as a list of components to query for run-time licenses to be embedded in the
appropriate assembly resource. Note that editing or adding an appropriate line to this file can force Visual Studio
to add run-time licenses of other controls as well.

Note that the licenses.licx file is usually not shown in the Solution Explorer; it appears if you press the Show All
Files button in the Solution Explorer's Toolbox or, from Visual Studio's main menu, select Show All Files on the
Project menu.

Later, when the component is created at run time, it obtains the run-time license from the appropriate assembly
resource that was created at design time and can decide whether to simply accept the run-time license, to throw an
exception and fail altogether, or to display some information reminding the user that the software has not been
licensed.

All ComponentOne products are designed to display licensing information if the product is not licensed. None will
throw licensing exceptions and prevent applications from running.

Common Scenarios

The following topics describe some of the licensing scenarios you may encounter.

Creating components at design time

This is the most common scenario and also the simplest: the user adds one or more controls to the form, the
licensing information is stored in the licenses.licx file, and the component works.

Note that the mechanism is exactly the same for Windows Forms and Web Forms (ASP.NET) projects.

Creating components at run time

This is also a fairly common scenario. You do not need an instance of the component on the form, but would like
to create one or more instances at run time.

In this case, the project will not contain a licenses.licx file (or the file will not contain an appropriate run-time
license for the component) and therefore licensing will fail.

To fix this problem, add an instance of the component to a form in the project. This will create the licenses.licx file
and things will then work as expected. (The component can be removed from the form after the licenses.licx file
has been created).

Adding an instance of the component to a form, then removing that component, is just a simple way of adding a
line with the component strong name to the licenses.licx file. If desired, you can do this manually using notepad
or Visual Studio itself by opening the file and adding the text. When Visual Studio recreates the application
resources, the component will be queried and its run-time license added to the appropriate assembly resource.

Inheriting from licensed components

If a component that inherits from a licensed component is created, the licensing information to be stored in the
form is still needed. This can be done in two ways:

 Add a LicenseProvider attribute to the component.

This will mark the derived component class as licensed. When the component is added to a form, Visual
Studio will create and manage the licenses.licx file and the base class will handle the licensing process as
usual. No additional work is needed. For example:
 [LicenseProvider(typeof(LicenseProvider))]
 class MyGrid: C1.Win.C1FlexGrid.C1FlexGrid
 {

// ...
 }

5

 Add an instance of the base component to the form.

This will embed the licensing information into the licenses.licx file as in the previous scenario and the
base component will find it and use it. As before, the extra instance can be deleted after the licenses.licx
file has been created.

Please note that ComponentOne licensing will not accept a run-time license for a derived control if the run-time
license is embedded in the same assembly as the derived class definition and the assembly is a DLL. This
restriction is necessary to prevent a derived control class assembly from being used in other applications without a
design-time license. If you create such an assembly, you will need to take one of the actions previously described
create a component at run time.

Using licensed components in console applications

When building console applications, there are no forms to add components to and therefore Visual Studio won't
create a licenses.licx file.

In these cases, create a temporary Windows Forms application and add all the desired licensed components to a
form. Then close the Windows Forms application and copy the licenses.licx file into the console application
project.

Make sure the licenses.licx file is configured as an embedded resource. To do this, right-click the licenses.licx file
in the Solution Explorer window and select Properties. In the Properties window, set the Build Action property to
Embedded Resource.

Using licensed components in Visual C++ applications

There is an issue in VC++ 2003 where the licenses.licx is ignored during the build process; therefore, the licensing
information is not included in VC++ applications.

To fix this problem, extra steps must be taken to compile the licensing resources and link them to the project. Note
the following:

1. Build the C++ project as usual. This should create an EXE file and also a licenses.licx file with licensing
information in it.

2. Copy the licenses.licx file from the application directory to the target folder (Debug or Release).

3. Copy the C1Lc.exe utility and the licensed DLLs to the target folder. (Don't use the standard lc.exe, it has
bugs.)

4. Use C1Lc.exe to compile the licenses.licx file. The command line should look like this:
c1lc /target:MyApp.exe /complist:licenses.licx /i:C1.Win.C1FlexGrid.dll

5. Link the licenses into the project. To do this, go back to Visual Studio, right-click the project, select
Properties, and go to the Linker/Command Line option. Enter the following:
/ASSEMBLYRESOURCE:Debug\MyApp.exe.licenses

6. Rebuild the executable to include the licensing information in the application.

Using licensed components with automated testing products

Automated testing products that load assemblies dynamically may cause them to display license dialog boxes. This
is the expected behavior since the test application typically does not contain the necessary licensing information
and there is no easy way to add it.

This can be avoided by adding the string "C1CheckForDesignLicenseAtRuntime" to the AssemblyConfiguration
attribute of the assembly that contains or derives from ComponentOne controls. This attribute value directs the
ComponentOne controls to use design-time licenses at run time.

For example:
#if AUTOMATED_TESTING

[AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime")]

6

#endif
public class MyDerivedControl : C1LicensedControl
{

// ...
}

Note that the AssemblyConfiguration string may contain additional text before or after the given string, so the
AssemblyConfiguration attribute can be used for other purposes as well. For example:

[AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime,BetaVersion")]

THIS METHOD SHOULD ONLY BE USED UNDER THE SCENARIO DESCRIBED. It requires a design-
time license to be installed on the testing machine. Distributing or installing the license on other computers is a
violation of the EULA.

Troubleshooting

We try very hard to make the licensing mechanism as unobtrusive as possible, but problems may occur for a
number of reasons.

Below is a description of the most common problems and their solutions.

I have a licensed version of a ComponentOne product but I still get the splash screen when I run my
project.

If this happens, there may be a problem with the licenses.licx file in the project. It either doesn't exist, contains
wrong information, or is not configured correctly.

First, try a full rebuild (Rebuild All from the Visual Studio Build menu). This will usually rebuild the correct
licensing resources.

If that fails follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and open it. If prompted, continue to open the file.

4. Change the version number of each component to the appropriate value. If the component does not
appear in the file, obtain the appropriate data from another licenses.licx file or follow the alternate
procedure following.

5. Save the file, then close the licenses.licx tab.

6. Rebuild the project using the Rebuild All option (not just Rebuild).

Alternatively, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and delete it.

4. Close the project and reopen it.

5. Open the main form and add an instance of each licensed control.

6. Check the Solution Explorer window, there should be a licenses.licx file there.

7. Rebuild the project using the Rebuild All option (not just Rebuild).

For ASP.NET 2.x applications, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Find the licenses.licx file and right-click it.

7

3. Select the Rebuild Licenses option (this will rebuild the App_Licenses.licx file).

4. Rebuild the project using the Rebuild All option (not just Rebuild).

I have a licensed version of a ComponentOne product on my Web server but the components still
behave as unlicensed.

There is no need to install any licenses on machines used as servers and not used for development.

The components must be licensed on the development machine, therefore the licensing information will be saved
into the executable (.exe or .dll) when the project is built. After that, the application can be deployed on any
machine, including Web servers.

For ASP.NET 2.x applications, be sure that the App_Licenses.dll assembly created during development of the
application is deployed to the bin application bin directory on the Web server.

If your ASP.NET application uses WinForms user controls with constituent licensed controls, the runtime license
is embedded in the WinForms user control assembly. In this case, you must be sure to rebuild and update the user
control whenever the licensed embedded controls are updated.

I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen
when I build my projects.

Make sure that the serial number is still valid. If you licensed the component over a year ago, your subscription
may have expired. In this case, you have two options:

Option 1 – Renew your subscription to get a new serial number.

If you choose this option, you will receive a new serial number that you can use to license the new components
(from the installation utility or directly from the About Box).

The new subscription will entitle you to a full year of upgrades and to download the latest maintenance builds
directly from http://prerelease.componentone.com/.

Option 2 – Continue to use the components you have.

Subscriptions expire, products do not. You can continue to use the components you received or downloaded while
your subscription was valid.

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the
ComponentOne Web site at http://www.componentone.com/Support.

Some methods for obtaining technical support include:

 Online Support via HelpCentral
ComponentOne HelpCentral provides customers with a comprehensive set of technical resources in the
form of FAQs, samples, Version Release History, Articles, searchable Knowledge Base, searchable Online
Help and more. We recommend this as the first place to look for answers to your technical questions.

 Online Support via our Incident Submission Form
This online support service provides you with direct access to our Technical Support staff via an online
incident submission form. When you submit an incident, you'll immediately receive a response via e-mail
confirming that you've successfully created an incident. This email will provide you with an Issue
Reference ID and will provide you with a set of possible answers to your question from our
Knowledgebase. You will receive a response from one of the ComponentOne staff members via e-mail in
2 business days or less.

 Peer-to-Peer Product Forums and Newsgroups
ComponentOne peer-to-peer product forums and newsgroups are available to exchange information, tips,
and techniques regarding ComponentOne products. ComponentOne sponsors these areas as a forum for

http://prerelease.componentone.com/
http://www.componentone.com/Support
http://helpcentral.componentone.com/
http://helpcentral.componentone.com/ProductResources.aspx?View=FAQs
http://helpcentral.componentone.com/ProductResources.aspx?View=SAMPLES
http://helpcentral.componentone.com/ProductResources.aspx?View=VersionHistory
http://helpcentral.componentone.com/Articles.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Forums.aspx

8

users to share information. While ComponentOne does not provide direct support in the forums and
newsgroups, we periodically monitor them to ensure accuracy of information and provide comments
when appropriate. Please note that a ComponentOne User Account is required to participate in the
ComponentOne Product Forums.

 Installation Issues
Registered users can obtain help with problems installing ComponentOne products. Contact technical
support by using the online incident submission form or by phone (412.681.4738). Please note that this
does not include issues related to distributing a product to end users in an application.

 Documentation
ComponentOne documentation is installed with each of our products and is also available online at
HelpCentral. If you have suggestions on how we can improve our documentation, please email the
Documentation team. Please note that e-mail sent to the Documentation team is for documentation
feedback only. Technical Support and Sales issues should be sent directly to their respective departments.

Note: You must create a ComponentOne Account and register your product with a valid serial number to obtain
support using some of the above methods.

Redistributable Files
ComponentOne TimeEditor for WPF is developed and published by ComponentOne LLC. You may use it to
develop applications in conjunction with Microsoft Visual Studio or any other programming environment that
enables the user to use and integrate the control(s). You may also distribute, free of royalties, the following
Redistributable Files with any such application you develop to the extent that they are used separately on a single
CPU on the client/workstation side of the network:

 C1.WPF.dll

 C1.WPF.DateTimeEditors.dll

 C1.WPF.DateTimeEditors.Expression.Design.dll

 C1.WPF.DateTimeEditors.VisualStudio.Design.dll

In addition, the following file from the Microsoft WPF Toolkit is also installed and is redistributable:

 WPFToolkit.dll

Site licenses are available for groups of multiple developers. Please contact Sales@ComponentOne.com for details.

About this Documentation
You can create your applications using Microsoft Expression Blend or Visual Studio, but Blend is currently the
only design-time environment that allows users to design XAML documents visually. In this documentation, we
will use the Design workspace of Blend for most examples.

Acknowledgements

Microsoft, Windows, Windows Vista/2007, Visual Studio, and Microsoft Expression are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

ComponentOne

If you have any suggestions or ideas for new features or controls, please call us or write:

Corporate Headquarters

ComponentOne LLC

201 South Highland Avenue

http://helpcentral.componentone.com/Documentation.aspx
http://helpcentral.componentone.com/Documentation.aspx
mailto:documentation@componentone.com
mailto:documentation@componentone.com
mailto:documentation@componentone.com
http://www.componentone.com/support
mailto:sales@componentone.com
mailto:sales@componentone.com

9

3rd Floor

Pittsburgh, PA 15206 • USA

412.681.4343

412.681.4384 (Fax)

http://www.componentone.com/

ComponentOne Doc-To-Help

This documentation was produced using ComponentOne Doc-To-Help® Enterprise.

XAML and XAML Namespaces
XAML is a declarative XML-based language that is used as a user interface markup language in Windows
Presentation Foundation (WPF) and the .NET Framework 3.0. With XAML you can create a graphically rich
customized user interface, perform data binding, and much more. For more information on XAML and the .NET
Framework 3.0, please see http://www.microsoft.com.

XAML Namespaces

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which can
in turn contain other namespaces. Namespaces prevent ambiguity and simplify references when using large groups
of objects such as class libraries.

When you create a Microsoft Expression Blend project, a XAML file is created for you and some initial
namespaces are specified:

Namespace Description

xmlns="http://schemas.microsoft.com/win
fx/2006/xaml/presentation"

This is the default Windows Presentation Foundation
namespace.

xmlns:x="http://schemas.microsoft.com/
winfx/2006/xaml"

This is a XAML namespace that is mapped to the x: prefix.
The x: prefix provides a quick, easy way to reference the
namespace, which defines many commonly-used features
necessary for WPF applications.

When you add a C1TimeEditor control to the window in Microsoft Expression Blend or Visual Studio, Blend or
Visual Studio automatically creates an XML namespace for the control. The namespace looks like the following:

xmlns:my="clr-
namespace:C1.WPF.DateTimeEditors;assembly=C1.WPF.DateTimeEditors"

The namespace value is my and the namespace is C1.WPF.DateTimeEditors.

You can also choose to create your own custom name for the namespace. For example:
xmlns:MyMTB=http://schemas.componentone.com/wpf/C1TimeEditor

You can now use your custom namespace when assigning properties, methods, and events. For example, use the
following XAML to add a border around the panel:

<MyMTB:C1TimeEditor Name="c1TimeEditor1" BorderThickness="10,10,10,10">

Creating a Microsoft Blend Project
To create a new Blend project, complete the following steps:

1. From the File menu, select New Project or click New Project in the Blend startup window.

The Create New Project dialog box opens.

http://www.componentone.com/
http://www.componentone.com/
http://www.componentone.com/
http://www.doctohelp.com/
http://www.microsoft.com/

10

2. Make sure WPF Application (.exe) is selected and enter a name for the project in the Name text box. The
WPF Application (.exe) creates a project for a Windows-based application that can be built and run while
being designed.

3. Select the Browse button to specify a location for the project.

4. Select a language from the Language drop-down box and click OK.

A new Blend project with a XAML window is created.

Creating a .NET Project in Visual Studio
To create a new .NET project in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project.

The New Project dialog box opens.

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the
dialog box.

3. Under Project types, select either Visual Basic or Visual C#.

11

Note: In Visual Studio 2005 select NET Framework 3.0 under Visual Basic or Visual C# in the Project
types menu.

4. Choose WPF Application from the list of Templates in the right pane.

5. Enter a name for your application in the Name field and click OK.

A new Microsoft Visual Studio .NET WPF project is created with a XAML file that will be used to define
your user interface and commands in the application.

Note: You can create your WPF applications using Microsoft Expression Blend or Visual Studio, but Blend is
currently the only design-time environment that allows users to design XAML documents visually. In this
documentation, Blend will be used for most examples.

Creating an XAML Browser Application (XBAP) in Visual Studio
To create a new XAML Browser Application (XBAP) in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project. The New Project dialog box
opens.

12

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the
dialog box.

3. Under Project types, select either Visual Basic or Visual C#.

4. Choose WPF Browser Application from the list of Templates in the right pane.

Note: If using Visual Studio 2005, you may need to select XAML Browser Application (WPF) after
selecting NET Framework 3.0 under Visual Basic or Visual C# in the left-side menu.

5. Enter a name for your application in the Name field and click OK.

A new Microsoft Visual Studio .NET WPF Browser Application project is created with a XAML file that
will be used to define your user interface and commands in the application.

Adding the TimeEditor for WPF Components to a Blend Project
In order to use C1TimeEditor or another ComponentOne TimeEditor for WPF component in the Design
workspace of Blend, you must first add a reference to the C1.WPF.Extended assembly and then add the
component from Blend's Asset Library.

To add a reference to the assembly:

1. Select Project | Add Reference.

2. Browse to find the C1.WPF.DateTimeEditors.dllassembly installed with TimeEditor for WPF.

Note: The C1.WPF.DateTimeEditors.dll file is installed to C:\Program Files\ComponentOne\Studio
for WPF\bin by default.

3. Select C1.WPF.DateTimeEditors.dll and click Open. A reference is added to your project.

To add a component from the Asset Library:

1. Once you have added a reference to the C1.WPF.DateTimeEditors assembly, click the Asset Library

button in the Blend Toolbox. The Asset Library appears:

13

2. Click the Custom Controls tab. All of the TimeEditor for WPF main and auxiliary components are listed
here.

3. Select C1TimeEditor. The component will appear in the Toolbox above the Asset Library button.

4. Double-click the C1TimeEditor component in the Toolbox to add it to Window1.xaml.

Adding the TimeEditor for WPF Components to a Visual Studio Project
When you install ComponentOne TimeEditor for WPF the C1TimeEditor control should be added to your
Visual Studio Toolbox. You can also manually add ComponentOne controls to the Toolbox.

ComponentOne TimeEditor for WPF provides the following control:

 C1TimeEditor

To use a TimeEditor for WPF panel or control, add it to the window or add a reference to the C1.WPF assembly
to your project.

Manually Adding TimeEditor for WPF to the Toolbox

When you install TimeEditor for WPF, the following TimeEditor for WPF control and panel will appear in the
Visual Studio Toolbox customization dialog box:

 C1TimeEditor

To manually add the C1TimeEditor control to the Visual Studio Toolbox, complete the following steps:

1. Open the Visual Studio IDE (Microsoft Development Environment). Make sure the Toolbox is visible
(select Toolbox in the View menu, if necessary) and right-click the Toolbox to open its context menu.

2. To make TimeEditor for WPF components appear on its own tab in the Toolbox, select Add Tab from
the context menu and type in the tab name, C1WPFTimeEditor, for example.

3. Right-click the tab where the component is to appear and select Choose Items from the context menu.

The Choose Toolbox Items dialog box opens.

4. In the dialog box, select the WPF Components tab.

14

5. Sort the list by Namespace (click the Namespace column header) and select the check boxes for components
belonging to the C1.WPF.DateTimeEditors namespace. Note that there may be more than one
component for each namespace.

Adding TimeEditor for WPF to the Window

To add ComponentOne TimeEditor for WPF to a window or page, complete the following steps:

1. Add the C1TimeEditor control to the Visual Studio Toolbox.

2. Double-click C1TimeEditor or drag the control onto the window.

Adding a Reference to the Assembly

To add a reference to the TimeEditor for WPF assembly, complete the following steps:

1. Select the Add Reference option from the Project menu of your project.

2. Select the ComponentOne TimeEditor for WPF assembly from the list on the .NET tab or on the
Browse tab, browse to find the C1.WPF.dll assembly and click OK.

3. Double-click the window caption area to open the code window. At the top of the file, add the following
Imports statements (using in C#):

Imports C1.WPF.DateTimeEditors

This makes the objects defined in the TimeEditor for WPF assembly visible to the project.

Key Features
ComponentOne TimeEditor for WPF allows you to create customized, rich applications. Make the most of
TimeEditor for WPF by taking advantage of the following key features:

 Several Displayable Versions

Choose from preset time formats, including ShortTime, LongTime, and TimeSpan. See Time Formats
(page 17) for more information.

 Spin Buttons

The C1TimeEditor control supports spin (increase/decrease) buttons for selecting time.

 Null Values

C1TimeEditor allows entering null values, by default. You can disable this by setting the AllowNull
property to False.

TimeEditor for WPF Quick Start
The following quick start guide is intended to get you up and running with TimeEditor for WPF. In this quick
start, you'll start in Visual Studio to create a new project, add a C1TimeEditor control to your application, and
customize the C1TimeEditor control.

Step 1 of 3: Creating an Application with a C1TimeEditor Control
In this step, you'll begin in Visual Studio to create a WPF application using TimeEditor for WPF.

Complete the following steps:

1. In Visual Studio, select File | New | Project.

15

2. In the New Project dialog box, select WPF Application.

3. Enter a Name and Location for your project and click OK to create the new application.

4. In the Toolbox, double-click the C1TimeEditor icon to add the C1TimeEditor control to the WPF
application.

You have completed the first step of the TimeEditor for WPF quick start. In this step, you created a project and
added a C1TimeEditor control to it. In the next step, you'll customize the control.

Step 2 of 3: Customizing the Control
In this step, you will customize the C1TimeEditor control using both Blend and code.

Select the C1TimeEditor control and then, in Properties window, set the following properties:

 Set the Format property to ShortTime. This will change the time format of the control so that it shows
only hours and minutes.

 Set the Increment property to "01:00:00". This will cause the value of the control to change by one hour
each time a user clicks the spin button.

 Set the Interval property to "1000". This will cause the control to hesitate for one second before changing
the value of the control.

 Set the Value property to "17:00:00".

Now that you've customized the application, you can run the project and observe the run time behaviors of the
control.

Step 3 of 3: Running the Application
In the previous two steps, you created a WPF application with a C1TimeEditor control and customized the
control. In the last step of this quick start, you will run the project and interact with the control.

Complete the following steps:

1. Press F5 to run the project. Observe that it loads with a time value of 5:00 p.m. and that the control only
shows hours and minutes.

2. Click the decrease time button and observe that time value decreases by one hour to 4:00 p.m.

3. Click and hold the increase time button so that the control will spin through values. Observe that the
control waits one second between value changes.

Congratulations – you have completed the TimeEditor for WPF quick start. Now that you have finished this quick
start, we recommend that you visit the Working with C1TimeEditor (page 16) or TimeEditor for WPF Task-Based
Help (page 19) topics.

16

Working with C1TimeEditor

The following topics introduce you to all of the elements and several features of the C1TimeEditor control.

C1TimeEditor Elements
ComponentOne TimeEditor for WPF includes the C1TimeEditor control, a simple control which provides a time
picker that can show short time, long time, and time spans. When you add the C1TimeEditor control to a XAML
window, it exists as a completely functional time picker. By default, the control's interface looks similar to the
following image:

The C1TimeEditor control consists of the following elements:

 Display Box

The display box presents the selected time. This can be set using the Value property. Users can also input
numeric date into the display box. When you enter a numeric value, it will automatically be converted
into time. The control can display time in three edit modes: LongTime (default), ShortTime, and
TimeSpan.

 Increase Time Button

The increase time button allows you to increase the time displayed in the time picker. Clicking the
increase button will increase the time by one minute unless you have specified another interval.

 Decrease Time Button

The decrease time button allows you to decrease the time displayed in the time picker. Clicking the
decrease button will decrease the time by one minute unless you have specified another interval.

Spin Interval
There are two ways that users can increase or decrease values using the spin button: they can either repeatedly
click one of the buttons to increase or decrease the time at their own pace, or they can hold down the decrease time
button or increase time button while time increases or decreases at the speed of program-specified intervals. You
can specify the interval by setting the Interval property.

By default, the Interval property is set to 33 milliseconds, which allows users to scroll through time values at faster
rates. You can slow that scrolling time down by specifying a higher number, such as 500 milliseconds (one-half of
a second), or speed it up by specifying a lower number, such as 10 milliseconds (one-hundredth of a second). You
cannot set the Interval to "0".

mk:@MSITStore:C:%5CProgram%20Files%5CComponentOne%5CStudio%20for%20Silverlight%5CHelp%5CC1.Silverlight.chm::/XMLDocuments/SilverlightReference/html/T_C1_Silverlight_C1NumericBox.htm
mk:@MSITStore:C:%5CProgram%20Files%5CComponentOne%5CStudio%20for%20Silverlight%5CHelp%5CC1.Silverlight.chm::/XMLDocuments/SilverlightReference/html/T_C1_Silverlight_C1NumericBox.htm

17

Value Increment
Each time a user clicks the increase time or decrease time spin buttons, the value of the control increases or
decreases by a program-specified increment. By default, this increment is 00:01:00, or one minute. You can
increase or decrease this increment by setting the Increment property. The Increment property will take any value
between 00:00:00 (which will disable the spin buttons) and 23:59:59.

Time Formats
You can use the Format property to set the format that the date picker displays. You can set Format property to
ShortTime, LongTime, or TimeSpan. The table below illustrates each date formats.

Time Format Result Description

ShortTime The control displays a short time format that excludes
seconds.

LongTime (default) The control displays a long time format that includes
seconds.

TimeSpan The control displays a time span and removes the
a.m./p.m. designators.

TimeEditor for WPF Layout and
Appearance
The following topics detail how to customize the C1TimeEditor control's layout and appearance. You can use
built-in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to
customize the appearance of the grid and take advantage of WPF's XAML-based styling. You can also use
templates to format and layout the control and to customize the control's actions.

TimeEditor for WPF Appearance Properties
ComponentOne TimeEditor for WPF includes several properties that allow you to customize the appearance of
the control. You can change the appearance of the text displayed in the control and customize graphic elements of
the control. The following topics describe some of these appearance properties.

Text Properties

The following properties let you customize the appearance of text in the C1TimeEditor control.

Property Description

FontFamily Gets or sets the font family of the control. This is a
dependency property.

FontSize Gets or sets the font size. This is a dependency property.

FontStretch Gets or sets the degree to which a font is condensed or
expanded on the screen. This is a dependency property.

FontStyle Gets or sets the font style. This is a dependency property.

http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592514
http://msdn2.microsoft.com/en-us/library/ms592515
http://msdn2.microsoft.com/en-us/library/ms592516

18

FontWeight Gets or sets the weight or thickness of the specified font.
This is a dependency property.

Color Properties
The following properties let you customize the colors used in the control itself.

Property Description

Background Gets or sets a brush that describes the background of a

control. This is a dependency property.

Foreground Gets or sets a brush that describes the foreground color.

This is a dependency property.

Border Properties

The following properties let you customize the control's border.

Property Description

BorderBrush Gets or sets a brush that describes the border background

of a control. This is a dependency property.

BorderThickness Gets or sets the border thickness of a control. This is a

dependency property.

Size Properties

The following properties let you customize the size of the C1TimeEditor control.

Property Description

ActualHeight Gets the rendered height of this element. This is a

dependency property.

ActualWidth Gets the rendered width of this element. This is a

dependency property.

Height Gets or sets the suggested height of the element. This is a

dependency property.

MaxHeight Gets or sets the maximum height constraint of the

element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of the element.

This is a dependency property.

MinHeight Gets or sets the minimum height constraint of the

element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of the element.

This is a dependency property.

Width Gets or sets the width of the element. This is a

dependency property.

http://msdn2.microsoft.com/en-us/library/ms592517
http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518
http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512
http://msdn.microsoft.com/en-us/library/system.windows.frameworkelement.actualheight.aspx
http://msdn.microsoft.com/en-us/library/system.windows.frameworkelement.actualwidth.aspx
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

19

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide
your own UI for data managed by ComponentOne TimeEditor for WPF. Extensible Application Markup
Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to
designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1TimeEditor control and, in the menu,
selecting Edit Template. Select Edit a Copy to create an editable copy of the current template or Create Empty to
create a new blank template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's
property. If you manually create a template in XAML you will have to link the appropriate template property to the
template you've created.

Note that you can use the Template property to customize the template.

TimeEditor for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use
the C1TimeEditor control in general. If you are unfamiliar with the ComponentOne TimeEditor for WPF
product, please see the TimeEditor for WPF quick start first.

Each topic in this section provides a solution for specific tasks using the ComponentOne TimeEditor for WPF
product.

Each task-based help topic also assumes that you have created a new WPF project.

Allowing Null Values
By default, the C1TimeEditor control doesn't allow users to enter null values, but you can force the control to
accept a null value by setting the AllowNull property to True. In this topic, you will learn how to set the
AllowNull property to True in the designer, in XAML, and in code.

In the Designer

Complete the following steps:

1. Click the C1TimeEditor control once to select it.

http://msdn2.microsoft.com/en-us/library/ms592524

20

2. In the Properties window, select the AllowNull check box.

In XAML

To allow null values, place AllowNull="True" to the <my:C1TimeEditor> tag so that the markup
resembles the following:

<my:C1TimeEditor AllowNull="True"/>

In Code

Complete the following steps:

1. Open the Window1.xaml.cs page.

2. Place the following code beneath the InitializeComponent() method:

 Visual Basic
C1TimeEditor1.AllowNull = True

 C#
c1TimeEditor1.AllowNull = true;

3. Run the project.

Removing the Spin Buttons
You can remove the C1TimeEditor control's spin buttons by setting the ShowButtons property to False. In this
topic, you will learn how to set the ShowButtons property to False in the designer, in XAML, and in code.

In the Designer

Complete the following steps:

1. Click the C1TimeEditor control once to select it.

2. In the Properties window, clear the ShowButtons check box.

In XAML

To remove the spin buttons, place ShowButtons="False" to the <my:C1TimeEditor> tag so that the
markup resembles the following:

<my:C1TimeEditor ShowButtons="False"/>

In Code

Complete the following steps:

1. Open the Window1.xaml.cs page.

2. Place the following code beneath the InitializeComponent() method:

 Visual Basic
C1TimeEditor1.ShowButtons = False

 C#
c1TimeEditor1.ShowButtons = false;

3. Run the project.

This Topic Illustrates the Following:

The following image depicts a C1TimeEditor control with its spin buttons removed.

21

Selecting the Time Format
By default, the C1TimeEditor control displays the time in a long format that includes seconds, but it can also
display time in a shorter format or into a time span format. In this topic, you will learn how to change the time
format in the designer, in XAML, and in code.

In the Designer

To change the time format, complete the following steps:

1. Click the C1TimeEditor control once to select it.

2. In the Properties window, click the Format drop-down arrow and select a mode from the list. For this
example, select ShortTime.

In XAML

To change the time format, place Format="ShortTime" to the <my:C1TimeEditor> tag so that the markup
resembles the following:

<my:C1TimeEditor Format="ShortTime">

In Code

To change the time format, complete the following steps:

1. Open the Window1.xaml.cs page.

2. Import the following namespace:

 Visual Basic
Imports C1.WPF.DateTimeEditors

 C#
using C1.WPF.DateTimeEditors;

3. Place the following code beneath the InitializeComponent() method:

 Visual Basic
C1TimeEditor1.Format = C1TimeEditorFormat.ShortTime

 C#
c1TimeEditor1.Format = C1TimeEditorFormat.ShortTime;

4. Run the project.

This Topic Illustrates the Following:

In this topic, you set the Format to ShortTime, which provides a shortened time display. The final result will
resemble the following image:

Setting the Spin Interval
By default, the Interval property is set to 33 milliseconds, which allows users to scroll through the time values at
faster rates. In this topic, you will specify a longer interval between value changes by setting the Interval property
to 1000 milliseconds. For more information on spin intervals, visit the Spin Interval (page 16) topic.

22

In the Designer

Complete the following steps:

1. Click the C1TimeEditor control once to select it.

2. In the Properties window, locate the Interval property and enter "1000" into its text box.

3. Run the project and then click and hold the increase time button . Observe that the value only increases
once a second.

In XAML

Complete the following steps:

1. Add Interval="1000" to the <my:C1TimeEditor> tag so that the markup resembles the following:

<my:C1TimeEditor Interval="1000"/>

2. Run the project and then click and hold the increase time button . Observe that the value only increases
once a second.

In Code

Complete the following steps:

1. Open the Window1.xaml.cs page.

2. Place the following code beneath the InitializeComponent() method:

 Visual Basic
C1TimeEditor1.Interval = 1000

 C#
c1TimeEditor1.Interval = 1000;

3. Run the project and then click and hold the increase time button . Observe that the value only increases
once a second.

Setting the Value Increment
By default, the time on a C1TimeEditor control is set to move in one minute increments. You can change this by
setting the Increment property to whatever time increment you specify. In this topic, you will set the time
increment on the C1TimeEditor control to one hour and thirty minutes. For more information about time
increments, visit the Value Increment (page 17) topic.

In the Designer

Complete the following steps:

1. Click the C1TimeEditor control once to select it.

2. In the Properties window, locate the Increment property and enter "01:30:00" into its text box.

3. Run the project and click the increase time button . Observe that time jumps ahead by one hour and
thirty minutes.

In XAML

Complete the following steps:

1. Add Increment="01:30:00" to the <my:C1TimeEditor> tag so that the markup resembles the
following:

23

<my:C1TimeEditor Increment="01:30:00"/>

2. Run the project and click the increase time button . Observe that time jumps ahead by one hour and
thirty minutes.

In Code

Complete the following steps:

1. Open the Window1.xaml.cs page.

2. Place the following code beneath the InitializeComponent() method:

 Visual Basic
C1TimeEditor1.Increment = New TimeSpan(01, 30, 00)

 C#
c1TimeEditor1.Increment = new TimeSpan(01,30,00);

3. Run the project and click the increase time button . Observe that time jumps ahead by one hour and
thirty minutes.

Specifying the Current Time
You can specify the current time of a C1TimeEditor control by setting the Value property in the designer, in
XAML, and in code.

Note: Try to avoid setting the Value property in XAML as a string value. Parsing these values from strings is

culture specific. If you set a value with your current culture and a user is using different culture, the user can get
XamlParseException when loading your site. The best practice is to set these values from code or via data binding.

In the Designer

Complete the following steps:

1. Click the C1TimeEditor control once to select it.

2. In the Properties window, set the Value property to " 07:00:00".

In XAML

To specify the current time, place Value="07:00:00" to the <my:C1TimeEditor> tag so that the markup
resembles the following:

<my:C1TimeEditor Value="07:00:00"/>

In Code

Complete the following steps:

1. Open the Window1.xaml.cs page.

2. Place the following code beneath the InitializeComponent() method:

 Visual Basic
C1TimeEditor1.Value = New TimeSpan(7, 0, 0)

 C#
c1TimeEditor1.Value = new TimeSpan(7,0,0);

3. Run the project and observe that the C1TimeEditor control shows a current time of 7:00:00 a.m.

24

Working with Time Spans
You can modify a C1TimeEditor control so that it will display a time span. In this tutorial, you will create a
C1TimeEditor control that represents a time span between 5:00 and 10:00. You will also write code for the project
that sets the starting value to 7:00 a.m.

Complete the following steps:

1. Click the C1TimeEditor control once to select it.

2. In the Properties window, complete the following steps:

 Set the Format property to TimeSpan.

 Set the Maximum property to a value, such as "10:00:00".

 Set the Minimum property to a value, such as "05:00:00".

 Set the Value property to a value, such as "07:00:00".

3. Run the project and observe that the control loads with a time of 07:00:00 a.m.

4. Click the increase time button until you can go no further. It will stop at 10:00:00.

5. Click the decrease time button until you can go no further. It will stop at 05:00:00.

	TimeEditor for WPF

	Installing TimeEditor for WPF

	TimeEditor for WPF Setup Files

	System Requirements

	Installing Demonstration Versions

	Uninstalling TimeEditor for WPF

	End-User License Agreement

	Licensing FAQs

	What is Licensing?

	How does Licensing Work?

	Common Scenarios

	Troubleshooting

	Technical Support

	Redistributable Files

	About this Documentation

	XAML and XAML Namespaces

	Creating a Microsoft Blend Project

	Creating a .NET Project in Visual Studio

	Creating an XAML Browser Application (XBAP) in Visual Studio

	Adding the TimeEditor for WPF Components to a Blend Project

	Adding the TimeEditor for WPF Components to a Visual Studio Project

	Key Features

	TimeEditor for WPF Quick Start

	Step 1 of 3: Creating an Application with a C1TimeEditor Control

	Step 2 of 3: Customizing the Control

	Step 3 of 3: Running the Application

	Working with C1TimeEditor

	C1TimeEditor Elements

	Spin Interval

	Value Increment

	Time Formats

	TimeEditor for WPF Layout and Appearance

	TimeEditor for WPF Appearance Properties

	Text Properties

	Color Properties

	Border Properties

	Size Properties

	Templates

	TimeEditor for WPF Task-Based Help

	Allowing Null Values

	Removing the Spin Buttons

	Selecting the Time Format

	Setting the Spin Interval

	Setting the Value Increment

	Specifying the Current Time

	Working with Time Spans

