

ComponentOne

Windows for WPF

Copyright  1987-2012 GrapeCity, Inc. All rights reserved.

ComponentOne, a division of GrapeCity

201 South Highland Avenue, Third Floor

Pittsburgh, PA 15206 • USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All other
trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and

handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/
http://www.doctohelp.com/

 iii

Table of Contents

ComponentOne Windows for WPF Overview..1

Help with ComponentOne Studio for WPF .. 1

Key Features ..1

Windows for WPF Quick Start ..3

Step 1 of 4: Setting up the Application ... 3

Step 2 of 4: Adding C1Window Controls .. 4

Step 3 of 4: Adding Code to the Application ... 5

Step 4 of 4: Running the Application ... 6

Modal and Modeless Dialog Windows .. 11

Modal Dialog Windows... 11

Modeless Dialog Windows .. 11

C1Window Elements .. 11

Working with Windows for WPF .. 12

Basic Properties .. 12

Basic Events ... 13

Basic Methods .. 13

Window State ... 14

Window Layout and Appearance .. 14

Window Appearance Properties .. 14

Color Properties .. 14

Alignment Properties .. 14

Border Properties .. 15

Size Properties .. 15

ComponentOne ClearStyle Technology .. 15

How ClearStyle Works ... 15

ClearStyle Properties .. 16

Window Templates .. 16

Window Styles ... 17

Window Template Parts .. 17

iv

Window Visual States .. 18

XAML Elements .. 18

Windows for WPF Samples .. 21

Windows for WPF Task-Based Help.. 21

Setting the Title Text .. 21

Hiding Header Buttons .. 22

Minimizing and Maximizing the Window .. 23

Setting the Modal Background Color .. 25

 1

ComponentOne Windows for WPF

Overview
Replace standard browser dialog windows with ComponentOne

Window™ for WPF. The C1Window control shows content in a
floating window. Experience enhanced performance and ease-of-use
with a rich object model and time-saving customization.

For a list of the latest features added to ComponentOne Studio for

WPF, visit What's New in Studio for WPF.

 Getting Started

Get started with the
following topics:

- Key Features (page 1)

- Quick Start (page 3)

- Task-Based Help (page
21)

Help with ComponentOne Studio for WPF
Getting Started

For information on installing ComponentOne Studio for WPF, licensing, technical support, namespaces and

creating a project with the control, please visit Getting Started with Studio for WPF.

What's New

For a list of the latest features added to ComponentOne Studio for WPF, visit What's New in Studio for WPF.

Key Features
ComponentOne Windows for WPF allows you to create customized, rich applications. Make the most of

Windows for WPF by taking advantage of the following key features:

 Modal and Modeless Dialog Windows

Decide whether users can interact with other windows while the dialog window is present through modal
and modeless dialog windows.

 Separate XAML Files to Define Window Objects

C1Window objects are not children of any elements on the page. Because of this, they are defined in

separate XAML files whose root element is a C1Window object.

 Resizable Windows

You can easily determine whether or not the window should be resized. Scroll bars are automatically
added when the window becomes too small to show all of the content.

 Window State

Windows for WPF can be minimized and restored to its original size; the developer can set the current
state of the window. The developer can also configure the window so it cannot be maximized.

 Window Elements

http://www.componentone.com/SuperProducts/StudioWPF/What%27s+New/
http://helpcentral.componentone.com/nethelp/c1studiowpf/
http://www.componentone.com/SuperProducts/StudioWPF/Features/#WhatsNew

2

You can edit the XAML file in Microsoft Expression Blend and add any elements you want. With

Windows for WPF, creating and maintaining C1Window objects is very easy.

 XBAP Support

XBAPs are WPF Applications built for the Web. ComponentOne Windows for WPF are supported in
XBAP scenarios for both modal and modeless windows.

 3

Windows for WPF Quick Start
The following quick start guide is intended to get you up and running with Windows for WPF. In this quick start

you'll start in Visual Studio and create a new project, add the Windows for WPF control to your application, and
customize the appearance and behavior of the control.

Note that while this example uses Visual Studio, you should also similarly be able to complete this quick start in

Microsoft Expression Blend.

Step 1 of 4: Setting up the Application
In this step you'll begin in Visual Studio to create a WPF application using Windows for WPF. In this step you’ll
add two buttons and a text box to the form. The buttons ill open modal and modal C1Window dialog windows.

To set up your project and add a C1Window control to your application, complete the following steps:

1. In Visual Studio 2008, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select WPF

Application. Enter a Name for your project and click OK. The project will be created and a form will
appear. For more information about creating a WPF project, see Creating a .NET Project in Visual
Studio.

3. Right-click the project in the Solution Explorer window and select Add Reference.

4. In the Add Reference dialog box, locate and select the C1.WPF.dll assembly and click OK to add a

reference to your project.

5. Click once on the form to select it, navigate to the Visual Studio Toolbox, and add a TextBlock and two

Button controls (double-clicking on an item in the Toolbox to add it to the form).

6. Resize the form, and resize the controls on the form.

7. Select each control in turn, and set the following properties for each in the Properties window:

 Set TextBlock1's Text property to "Click a button to open a dialog window:"

 Set Button1's Content property to "Open a modeless window."

 Set Button2's Content property to "Open a modal window."

The XAML markup will appear similar to the following:
<Window x:Class="Window1"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Title="ComponentOne Windows for WPF" Height="220" Width="368">

 <Grid>

 <TextBlock Height="23" Margin="10,10,31,0" Name="TextBlock1"

VerticalAlignment="Top" Text="Click a button to open a dialog window:"

/>

 <Button Height="23" Margin="10,41,148,0" Name="Button1"

VerticalAlignment="Top">Open a modeless window.</Button>

 <Button Margin="10,74,148,0" Name="Button2" Height="23"

VerticalAlignment="Top">Open a modal window.</Button>

 </Grid>

</Window>

The form will appear similar to the following image:

4

 What You've Accomplished

You've successfully created a WPF application and added controls to the form. In the next step you'll add and
customize the C1Window control.

Step 2 of 4: Adding C1Window Controls
In the previous step you created a new project and added button controls to the application. In this step you'll

continue by adding a C1Window control in a user control.

Complete the following steps:

1. Right-click the project in the Visual Studio Solution Explorer and select the Add | New Item option. The

Add New Item dialog box will open.

2. In the Add New Item dialog box, select the WPF item on the left and in the right Templates section

choose User Control (WPF), name the new control "MyWindow.xaml" and click Add to add the new

user control. If it does not open automatically, double-click the MyWindow.xaml file in the Solution

Explorer to open it.

3. Navigate to the Toolbox and double-click the TextBlock item to add the control to the form.

4. Set the TextBlock's Text property to "Hello World!" The user control's XAML markup will now appear
similar to the following:

<UserControl x:Class="MyWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="300"

Height="300">

 <Grid>

 <TextBlock Height="21" HorizontalAlignment="Left"

Margin="10,10,0,0" Name="TextBlock1" VerticalAlignment="Top"

Width="120" Text="Hello World!" />

 </Grid>

</UserControl>

Note that you can add additional controls to the form, if you choose – items you add will be included in

the body of the C1Window control.

You've successfully set up your application's user interface, but if you run your application right now the buttons
will do nothing when pressed. In the next step you'll add code to your application to add functionality to the
controls.

 5

Step 3 of 4: Adding Code to the Application
In the previous steps you set up the application's user interface and added controls to your application. In this step
you'll add code to your application to finalize it.

Complete the following steps:

1. Return to the Design view of the form.

2. Select Button1 on the form, navigate to the Properties window, click the lightning bolt Events icon to

view events, and click the space next to the Click item to create a Button1_Click event handler and switch
to Code view.

3. Return to Design view and repeat the previous step with Button2 to create the Button2_Click event
handler.

4. In Code view, add the following import statement to the top of the page:

 Visual Basic
Imports C1.WPF

 C#
using C1.WPF;

5. Add the following code to the event handlers added earlier:

 Visual Basic
Private Sub Button1_Click(ByVal sender As Object, ByVal e As

RoutedEventArgs)

 ShowWindow(False)

End Sub

Private Sub Button2_Click(ByVal sender As Object, ByVal e As

RoutedEventArgs)

 ShowWindow(True)

End Sub

 C#
void button1_Click(object sender, RoutedEventArgs e)

{

 ShowWindow(false);

}

void button2_Click(object sender, RoutedEventArgs e)

{

 ShowWindow(true);

}

6. Add the following code below the Button_Click event handlers:

 Visual Basic
Private Sub ShowWindow(ByVal showModal As Boolean)

 Dim wnd As New C1Window()

 wnd.Header = "This is the header."

 wnd.Height = 120

 wnd.Width = 200

 wnd.Content = New MyWindow()

 wnd.CenterOnScreen()

 If showModal Then

 wnd.ShowModal()

 Else

6

 wnd.Show()

 End If

End Sub

 C#
private void ShowWindow(bool showModal)

{

 C1Window wnd = new C1Window();

 wnd.Header = "This is the header.";

 wnd.Height = 120;

 wnd.Width = 200;

 wnd.Content = new MyWindow();

 wnd.CenterOnScreen();

 if (showModal)

wnd.ShowModal();

 else

wnd.Show();

}

This code specifies the size of the window and opens a new window.

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 4 of 4: Running the Application
Now that you've created a WPF application and customized the application's appearance and behavior, the only

thing left to do is run your application. To run your application and observe Windows for WPF's run-time
behavior, complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time. The

application will appear similar to the following:

2. Click the Open a modeless window button. A modeless dialog window will open:

 7

With modeless dialog windows, you can interact with other items on the page while the window is open.

3. Click the Open a modeless window button again. Another modeless dialog window will open.

4. Click the first dialog box and notice that the focus shifts to it. It will appear like the following image:

8

5. Click the dialog window's header and drag it to move it.

6. Click and drag a border to resize the dialog window. It will appear like the following image:

7. Click the "X" button to close the dialog window.

8. Click the "_" button to minimize the second dialog window. It will appear like the following image:

9. Click the Open a modal window button. A modal dialog window will open. It will appear like the

following image:

 9

Notice that except for the new dialog window the entire page is grayed out. With modal dialog windows,
users will not be able to interact with any other element while the dialog window is open.

10. Try to select the minimized dialog window and notice that you cannot.

11. Click on the "X" close button to close the modal dialog box. Notice that you can now interact with
elements on the page again.

Congratulations! You've completed the Windows for WPF quick start and created a simple WPF application,

added controls, including a C1Window control, and viewed some of the run-time capabilities of Windows for

WPF.

 11

Modal and Modeless Dialog Windows
Dialog boxes are commonly used in applications to retrieve input from the user. In some applications a dialog box
is used to prompt the user for input and once the application retrieves the input the dialog box is automatically
closed or destroyed.

On the other hand, some applications use dialog boxes to display information while the user works in other
windows. For example, when you check spelling in Microsoft Word a dialog box remains open so you can go
through and edit your text in the document while the spell checker looks for the next misspelled word. To support

the different ways applications use dialog boxes, C1Window supports two different types of dialog windows:

modal (page 11) and modeless (page 11) dialog windows.

Modal Dialog Windows
A modal dialog window is a child window that must be closed before the user can continue working on the current
application. Typically modal dialog windows either take control of the entire system or application displaying
them until they are closed. For example, you can use a modal dialog window to retrieve login information from a
user before the user can continue working on an application. Modal windows are useful in presenting important
information or requiring user interaction.

You can show the C1Window control as a modal dialog box using the ShowModal method.

Modeless Dialog Windows
A modeless dialog window enables users to interact with other windows while the dialog window is present. Use
this type of dialog window when the requested information is not necessary to continue. Modeless dialog windows
do not keep the input focus so you can work on two applications at once.

A modeless dialog window is commonly used in menus and help systems where the user can use the dialog
window and the application window concurrently. For example, a toolbar is a modeless dialog window because it
can be detached from the application and the user can select items in the toolbar to apply features to the detached
or separated application.

You can show the C1Window control as a modeless dialog box using the Show method.

C1Window Elements
This section provides a visual and descriptive overview of the elements that comprise the C1Window control. Like

a typical dialog box, the C1Window control includes two main elements: a header and a content area:

Header

12

The header area includes the typical caption bar elements including title text and Minimize, Maximize, and Close
buttons:

You can set the text in the header with the Header property. You can set the visibility of the buttons using the

ShowCloseButton, ShowMaximizeButton, and ShowMinimizeButton properties. By default all three properties

are True and the buttons are visible. You can also set the Header property to a UIElement. For example, this
would allow you to add an icon next to the text in the caption bar.

Content Area

The content area of the C1Window control can be set using the Content property. The content area can contain

controls, a panel (such as a Grid or StackPanel) that contains controls, text, or other elements. You can, for

example, set the Content property to a UserControl that contains many controls and elements.

Working with Windows for WPF
ComponentOne Windows for WPF includes the C1Window control, a simple dialog window control that shows
content in a floating window. When added to your application, the C1Window control appears similar to a
traditional dialog box within a WPF application.

The control's default interface looks similar to the following image:

Basic Properties
ComponentOne Windows for WPF includes several properties that allow you to set the functionality of the
control. Some of the more important properties are listed below. Note that you can see Window Appearance
Properties (page 14) for more information about properties that control appearance.

The following properties let you customize the C1Window control:

Property Description

Content Gets or sets the content of a ContentControl. This is a
dependency property.

ContentTemplate Gets or sets the data template used to display the content of

the ContentControl. This is a dependency property.

http://msdn2.microsoft.com/en-us/library/ms609797
http://msdn2.microsoft.com/en-us/library/ms609797

 13

DialogResult Gets or sets the dialog result for the window.

Header Gets or sets the header of this control.

HeaderTemplate Gets or sets the data template used to display the header.

IsResizable Gets or sets whether the window can be resized and

maximized.

Language Gets or sets localization/globalization language information that

applies to an element.

ModalBackground Gets or sets the brushed used on the background when

showing a modal window.

ShowCloseButton Gets or sets whether the close button of this window is shown.

ShowMaximizeButton Gets or sets whether the maximize button of this window is
shown.

ShowMinimizeButton Gets or sets whether the minimize button of this window is
shown.

WindowState Gets or sets a value that indicates whether a window is

restored, minimized, or maximized.

Basic Events
ComponentOne Windows for WPF includes several events that allow you to set interaction and customize the
control. Some of the more important events are listed below.

The following events let you customize the C1Window control:

Event Description

Closed Event fired when the window is closed by the user or the

Close() method.

Closing Event fired when the window is about to close, allows the

handler to stop the window from being closed.

PositionChanged Fires when the window position changes.

WindowStateChange

d

Event raised when the WindowState property has changed

Basic Methods
ComponentOne Windows for WPF includes several methods that allow you to set interaction and customize the
control. Some of the more important methods are listed below.

The following methods let you customize the C1Window control:

Event Description

BringToFront Puts the window in front of all windows.

CenterOnScreen Centers the window in its container.

Close Closes the window.

Hide Hides the window without closing it.

Show Opens the window as a modeless dialog window.

http://helpcentral.componentone.com/nethelp/c1silverlight/XMLDocuments/Ref/html/M_C1_Silverlight_C1Window_Close.htm
http://helpcentral.componentone.com/nethelp/c1silverlight/XMLDocuments/Ref/html/P_C1_Silverlight_C1Window_WindowState.htm

14

ShowModal Opens the window as a modal dialog window.

Window State
The C1Window dialog window can be floating, maximized, or minimized. You can customize the dialog
window's state by setting the WindowState property to one of the following options:

Event Description

Floating The window is floating (neither maximized nor minimized).

Maximized The window is maximized.

Minimized The window is minimized.

Window Layout and Appearance
The following topics detail how to customize the C1Window control's layout and appearance. You can use built-in
layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to customize the
appearance of the grid and take advantage of WPF's XAML-based styling. You can also use templates to format
and lay out the control and to customize the control's actions.

Window Appearance Properties
ComponentOne Windows for WPF includes several properties that allow you to customize the appearance of the

control. You can change the color, border, and height of the control. The following topics describe some of these
appearance properties.

Color Properties

The following properties let you customize the colors used in the control itself:

Property Description

Background Gets or sets a brush that describes the background of a

control. This is a dependency property.

Foreground Gets or sets a brush that describes the foreground

color. This is a dependency property.

ModalBackground Gets or sets the brushed used on the background when

showing a modal window. For an example, see Setting
the Modal Background Color (page 25).

Alignment Properties

The following properties let you customize the control's alignment:

Property Description

HorizontalAlignment Gets or sets the horizontal alignment characteristics
applied to this element when it is composed within a

parent element, such as a panel or items control. This
is a dependency property.

VerticalAlignment Gets or sets the vertical alignment characteristics

applied to this element when it is composed within a

http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518
http://msdn2.microsoft.com/en-us/library/ms600881
http://msdn2.microsoft.com/en-us/library/ms600904

 15

parent element such as a panel or items control. This is

a dependency property.

Border Properties

The following properties let you customize the control's border:

Property Description

BorderBrush Gets or sets a brush that describes the border

background of a control. This is a dependency property.

BorderThickness Gets or sets the border thickness of a control. This is a

dependency property.

Size Properties

The following properties let you customize the size of the C1Window control:

Property Description

Height Gets or sets the suggested height of the element. This
is a dependency property.

MaxHeight Gets or sets the maximum height constraint of the
element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of the
element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of the

element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of the

element. This is a dependency property.

Width Gets or sets the width of the element. This is a

dependency property.

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft
Visual Studio this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a bit
easier. Having to jump between two environments can be a bit challenging to developers who are not familiar with
Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your
designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls
in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style

properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a

DataGrid has SelectedBrush and MouseOverBrush for rows.

http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

16

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is
also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with

those less common situations where a full custom design is required.

ClearStyle Properties

The following table lists all of the ClearStyle-supported properties in the C1Window control as well as a
description of the property:

Property Description

Background Gets or sets a brush that describes the background of a control.
The default Background color is LightBlue.

ButtonBackground A brush used to define the appearance of the background of the

control.

ButtonForeground A brush used to define the appearance of the foreground of the
control.

MouseOverBrush A brush used to define the appearance of the control, when the

control is in moused over.

PressedBrush A brush used to define the appearance of the control, when the

control is selected.

Window Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne Windows for WPF. Extensible Application Markup Language

(XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to designing your
UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1Window control and, in the menu,

selecting Edit Control Parts (Templates). Select Edit a Copy to create an editable copy of the current template or

Create Empty, to create a new blank template.

 17

Note: If you create a new template through the menu, the template will automatically be linked to that template's
property. If you manually create a template in XAML you will have to link the appropriate template property to the

template you've created.

Note that you can use the Template property to customize the template.

Window Styles
ComponentOne Windows for WPF's C1Window control provides several style properties that you can use to
change the appearance of the control. Some of the included styles are described in the table below:

Style Description

FontStyle Gets or sets the font style. This is a dependency property.

HeaderFontStyle Gets or sets the font style of the header.

Style Gets or sets the style used by this element when it is rendered. This
is a dependency property.

Window Template Parts
In Microsoft Expression Blend, you can view and edit template parts by creating a new template (for example,

click the C1Window control to select it and choose Object | Edit Template | Edit a Copy). Once you've created

a new template, the parts of the template will appear in the Parts window:

Note that you may have to select the ControlTemplate for its parts to be visible in the Parts window.

In the Parts window, you can double-click any element to create that part in the template. Once you have done so,

the part will appear in the template and the element's icon in the Parts pane will change to indicate selection.

Template parts available in the C1Window control include:

Name Type Description

Close Button Represents a button control used to close the dialog

window.

Content FrameworkElement This element contains the window's content.

Drag FrameworkElement This element listens for mouse events to drag the window.

http://msdn2.microsoft.com/en-us/library/ms592524
http://msdn2.microsoft.com/en-us/library/ms592516
http://helpcentral.componentone.com/nethelp/c1silverlight/XMLDocuments/Ref/html/P_C1_Silverlight_C1HeaderedContentControl_HeaderFontStyle.htm
http://msdn2.microsoft.com/en-us/library/ms600899
http://msdn2.microsoft.com/en-us/library/ms609089
http://msdn2.microsoft.com/en-us/library/ms602714
http://msdn2.microsoft.com/en-us/library/ms602714

18

Maximize Button Represents a button control used to maximize the dialog

window.

Minimize Button Represents a button control used to minimize the dialog

window.

Resize Border Draws a border, background, or both around another object.

Here the border is used to resize the control.

Root FrameworkElement The root element of the template.

Window Visual States
In Microsoft Expression Blend, you can add custom states and state groups to define a different appearance for
each state of your user control – for example, the visual state of the control could change on mouse over. You can
view and edit visual states by creating a new template and adding a new template part (page 17). Once you've done

so the available visual states for that part will be visible in the Visual States window:

Common states include Normal for the normal appearance of the item, MouseOver for the item on mouse over,

and Disabled for when the item is not enabled. Window state states include Maximized for when the window is

maximized, Minimized for when the window is minimized, and Floating for when the window is neither

maximized nor minimized.

Active states include Active when the window is active and in focus and Inactive for when the window is inactive

and not in focus. Drag states include Still for when the window is not being dragged, and Dragged when the user
is in the process of completing a drag-and-drop operation with the window.

XAML Elements
Several auxiliary XAML elements are installed with ComponentOne Windows for WPF. These elements include

templates and themes and are located in the Windows for WPF installation directory. You can incorporate these
elements into your project, for example, to create your own theme based on the default theme.

Included Auxiliary XAML Elements

The following auxiliary XAML element is included with Windows for WPF:

Element Folder Description

http://msdn2.microsoft.com/en-us/library/ms609089
http://msdn2.microsoft.com/en-us/library/ms609089
http://msdn.microsoft.com/en-us/library/system.windows.controls.border%28VS.95%29.aspx
http://msdn2.microsoft.com/en-us/library/ms602714

 19

generic.xaml XAML Specifies the templates for different styles and the initial style
of the control.

 21

Windows for WPF Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or
demos, which may make use of other ComponentOne development tools included with the ComponentOne

Studios. Samples can be accessed from the ComponentOne Studio for WPF ControlExplorer. To view samples,

on your desktop, click the Start button and then click All Programs | ComponentOne | Studio for WPF |

Samples | WPF ControlExplorer.

C# Samples

The following C# sample is included:

Sample Description

ControlExplorer The Windows page in the ControlExplorer sample demonstrates showing a modal
or modeless window and how to customize the C1Window control.

Windows for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use

the C1Window control in general. If you are unfamiliar with the ComponentOne Windows for WPF product,

please see the Windows for WPF Quick Start (page 3) first.

Each topic in this section provides a solution for specific tasks using the ComponentOne Windows for WPF
product.

Each task-based help topic also assumes that you have created a new WPF project. For additional information on
this topic, see Creating a .NET Project in Visual Studio or Creating a Microsoft Blend Project.

Setting the Title Text
You can easily customize Windows for WPF control's header area by adding a title. For more information the

header area, see C1Window Elements (page 11). By default the window does not include text in the caption bar,
but you can customize this at design time in Microsoft Expression Blend, in XAML, and in code by setting the

Header property.

At Design Time in Blend

To set the Header property in Blend, complete the following steps:

1. Click the C1Window control once to select it.

2. Navigate to the Properties tab and locate the Header item.

3. Click in the text box next to the Header item, and enter "Hello World!" or some other text.

This will set the Header property and the text in the caption bar of the dialog window to the text you

chose.

In XAML

For example, to set the Header property add Header="Hello World!" to the <c1:C1Window> tag so that it

appears similar to the following:
<c1:C1Window Height="110" HorizontalAlignment="Right" Margin="0,54,71,0"

VerticalAlignment="Top" Width="220" Content="C1Window" Header="Hello

World!"/>

22

In Code

For example, to set the Header property, add the following code to your project:

 Visual Basic
Me.C1Window1.Header = "Hello World!"

 C#
this.c1window1.Header = "Hello World!";

Run the application and observe:

The caption bar of the C1Window control will appear with "Hello World!" or the text you chose:

Hiding Header Buttons
You can easily customize user interaction by setting what buttons are visible on the Windows for WPF control's
caption bar. For more information about the header area, see C1Window Elements (page 11). By default the

window displays Minimize, Maximize, and Close buttons, but you can customize this in Microsoft Expression
Blend, in XAML, and in code.

At Design Time in Blend

To hide the Maximize and Minimize buttons in Blend, complete the following steps:

1. Click the C1Window control once to select it.

2. Navigate to the Properties window tab.

3. Locate the ShowMaximizeButton item and clear the check box next to the item.

4. Locate the ShowMinimizeButton item and clear the check box next to the item.

This will hide the Maximize and Minimize buttons.

In XAML

For example, to remove the Maximize and Minimize add ShowMaximizeButton="False"

ShowMinimizeButton="False" to the <c1:C1Window> tag so that it appears similar to the following:
<c1:C1Window Height="129" HorizontalAlignment="Right" Margin="0,54,71,0"

VerticalAlignment="Top" Width="220" Content="C1Window"

ShowMaximizeButton="False" ShowMinimizeButton="False"/>

In Code

For example, to hide the Maximize and Minimize buttons, add the following code to your project:

 Visual Basic
Me.C1Window1.ShowMaximizeButton = False

Me.C1Window1.ShowMinimizeButton = False

 C#
this.c1window1.ShowMaximizeButton = false;

 23

this.c1window1.ShowMinimizeButton = false;

Run the application and observe:

The caption bar of the C1Window control will appear without the Maximize and Minimize buttons displayed:

Note that to hide the Close button, you can set the ShowCloseButton property.

Minimizing and Maximizing the Window
The C1Window control includes caption bar buttons that will minimize or maximize the control. However you
can also customize the appearance of the control using the WindowState property. In this topic you'll add a
C1Window control to the form and three buttons: one that will minimize the window, one that will maximize the
window, and one that will restore a minimized or maximized window.

Complete the following steps:

1. Create a new WPF project in Microsoft Expression Blend.

2. Click the Assets button in the Toolbar (the double-chevron icon).

3. In the dialog box locate and select the C1Window icon.

Note that if you cannot locate the C1Window icon in the dialog box, you may need to add a reference to

the C1.WPF assembly first.

4. Select the page and double-click the C1Window icon in the Toolbar. The dialog window will be added to
the page.

5. Select the C1Window control, navigate to the Properties window, and set the following properties:

 Set the control's Name property to "window".

 Set the control's Height to 150 and Width to 200.

 Set the control's Margin property to 5.

 Set the control's Content property to " Minimize or Maximize me!".

6. In the Toolbox, click the Panels icon (by default a Grid) and select the StackPanel item.

7. Double-click the StackPanel to add one to the application.

8. Select the StackPanel and in the Properties window set its HorizontalAlignment and VerticalAlignment

properties to Center.

9. Set the StackPanel's Height and Width properties to Auto.

10. Double-click the Button icon in the Toolbox three times to add three Button controls to the StackPanel

below the C1Window control.

11. Select each of the buttons in turn and set the following properties in the Properties window:

24

 Set the first button's Name and Content properties to "Minimize".

 Set the second button's Name and Content properties to "Maximize".

 Set the third button's Name and Content properties to "Restore".

12. Set the Margin property for each of the buttons to 5.

13. Select the Minimize button, click the lightning bolt Events icon in the Properties window.

14. Double-click the space next to the Click event to create an event handler and switch to Code view. Return

to Design view and repeat this step with the remaining buttons to create a Button_Click event handler for
each one.

15. In Code view, add the following import statement to the top of the page:

 Visual Basic
Imports C1.WPF

 C#
using C1.WPF;

16. Add code to the Button_Click event handlers you created earlier. They will appear similar to the
following:

 Visual Basic
Private Sub Minimize_Click(ByVal sender as Object, ByVal e as

System.Windows.RoutedEventArgs)

 window1.WindowState = C1WindowState.Minimized

End Sub

Private Sub Maximize_Click(ByVal sender as Object, ByVal e as

System.Windows.RoutedEventArgs)

 window1.WindowState = C1WindowState.Maximized

End Sub

Private Sub Restore_Click(ByVal sender as Object, ByVal e as

System.Windows.RoutedEventArgs)

 window1.WindowState = C1WindowState.Floating

End Sub

 C#
private void Minimize_Click(object sender,

System.Windows.RoutedEventArgs e)

{

 this.window.WindowState = C1WindowState.Minimized;

}

private void Maximize_Click(object sender,

System.Windows.RoutedEventArgs e)

{

 this.window.WindowState = C1WindowState.Maximized;

}

private void Restore_Click(object sender,

System.Windows.RoutedEventArgs e)

{

 this.window.WindowState = C1WindowState.Floating;

}

Run the application and observe:

 25

A dialog box appears with three buttons on the page. You can click the Minimize button to minimize the

C1Window control:

You can maximize the C1Window dialog window control by clicking the Maximize button, and you can return

the C1Window control to its original appearance by clicking the Restore button.

Setting the Modal Background Color
At run time when you open a modal dialog window, you will notice that the area behind the window is grayed
out. This indicates that the dialog window must be closed before the user can interact with elements on the page.
For example:

You can customize this background color by setting the ModalBackground property. For an example, complete the
following steps:

1. Create an application that includes a button that opens a modal dialog window named "window". For
example, complete the steps in the outlined in the Windows for WPF Quick Start (page 3).

2. In Code view, add the following code to the Button_Click event:

 Visual Basic
Dim bgcol As New SolidColorBrush()

bgcol.Color = Color.FromArgb(150, 255, 0, 0)

window.ModalBackground = bgcol

 C#
SolidColorBrush bgcol = new SolidColorBrush();

bgcol.Color = Color.FromArgb(150, 255, 0, 0);

window.ModalBackground = bgcol;

26

This code will create a new red-colored brush and set the ModalBackground property to the brush. The

code in the Button_Click event will now appear similar to the following:

 Visual Basic
Private Sub ShowDialog(ByVal sender As Object, ByVal e As

RoutedEventArgs)

 Dim window = New C1Window()

 window.Content = New MyWindow()

 window.CenterOnScreen()

 Dim bgcol As New SolidColorBrush()

 bgcol.Color = Color.FromArgb(150, 255, 0, 0)

 window.ModalBackground = bgcol

 window.ShowModal()

End Sub

 C#
void ShowDialog(object sender, RoutedEventArgs e)

{

 var window = new C1Window();

 window.Content = new MyWindow();

 window.CenterOnScreen();

 SolidColorBrush bgcol = new SolidColorBrush();

 bgcol.Color = Color.FromArgb(150, 255, 0, 0);

 window.ModalBackground = bgcol;

 window.ShowModal();

}

Run the application and observe:

Run the application and open the dialog window as a modal dialog box. You will notice that the background color
behind the window appears red or the color you chose:

	ComponentOne Windows for WPF Overview
	Help with ComponentOne Studio for WPF

	Key Features
	Windows for WPF Quick Start
	Step 1 of 4: Setting up the Application
	Step 2 of 4: Adding C1Window Controls
	Step 3 of 4: Adding Code to the Application
	Step 4 of 4: Running the Application

	Modal and Modeless Dialog Windows
	Modal Dialog Windows
	Modeless Dialog Windows

	C1Window Elements
	Working with Windows for WPF
	Basic Properties
	Basic Events
	Basic Methods
	Window State

	Window Layout and Appearance
	Window Appearance Properties
	Color Properties
	Alignment Properties
	Border Properties
	Size Properties

	ComponentOne ClearStyle Technology
	How ClearStyle Works
	ClearStyle Properties

	Window Templates
	Window Styles
	Window Template Parts
	Window Visual States
	XAML Elements

	Windows for WPF Samples
	Windows for WPF Task-Based Help
	Setting the Title Text
	Hiding Header Buttons
	Minimizing and Maximizing the Window
	Setting the Modal Background Color

