

ComponentOne

FlexReport for WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
FlexReport for WinForms Overview 5

Help with WinForms Edition 5

Upgrading C1Report to FlexReport 5-7

FlexReport versus C1Report 7-8

C1Report to FlexReport Breaking Changes 8-10

Key Features 11

Feature Comparison Matrix 12-23

FlexReport Dissection 24

Components and Controls 24

Object Model Summary 24-26

Sections of FlexReport 26-28

FlexReport Quick Start 29

Step 1 of 4: Creating a Report Definition 29-46

Step 2 of 4: Modifying the Report 46-49

Step 3 of 4: Loading the Report in the C1FlexReport Component 49-50

Step 4 of 4: Rendering the Report 50-51

Design-Time Support 52

C1FlexReport Tasks Menu 52

C1FlexViewer Tasks Menu 52-53

Working with FlexReport 54-55

C1FlexReport and C1Document 55

C1Document Breaking Changes 55-57

Data Binding in FlexReport 57-58

Retrieving Data from a Database 58

Retrieving Data from a Stored Procedure 58-60

Using Data Table Object as Data Source 60

Using Custom Data Source Objects 60-61

Data Sources in FlexReport 61-62

Connecting to Multiple Data Sources using Code 62

Binding Data to Charts in Multiple Data Source Report 62-67

Binding Data to Parameters in Multiple Data Source Report 67-68

Defining Calculated Fields 68-69

Developing FlexReport for Desktop 69

Load FlexReport at Design Time 69-70

FlexReport for WinForms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Create FlexReport at Design Time 70-71

Load FlexReport at Run Time 71-73

Adding Parameters 73-74

Grouping Data 74-76

Adding Subtotals and Other Aggregates 76-79

Creating Cross-Tab Reports 79-85

Sorting Data 85-86

Filtering Data 86-88

Exporting Reports to Various Formats 88-89

Working with VBScript 90-92

VBScript Elements, Objects, and Variables 92-96

Compatibility Functions: Iif and Format 96-97

Aggregate Functions 97-98

Managing Splitting of FlexReport Objects 98-99

Modifying the Fields 99-100

Formatting a Field According to Its Value 100-102

Hiding a Section If there is No Data 102-103

Showing or Hiding a Field Depending on a Value 103-104

Resetting Page Counter 104-105

Adding Sub-sections 105-106

Working with FlexReportDesigner 107

About FlexReportDesigner 107-109

File Menu 109-110

Design Mode 110-111

Home Tab 111-115

Insert Tab 115-116

Arrange Tab 116-117

Page Setup Tab 117

Preview Mode 117-119

Setting FlexReportDesigner Options 119-124

Style Gallery 124-127

Adding Multiple Sub-Sections 127-129

Adding FlexReport Fields 129

FlexChart Field 129-130

Binding FlexChart Field with Data 130-131

Difference Between FlexChartField and FlexChart 131-134

FlexReport for WinForms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexChart Field Data Object Model 134-135

Supported Chart Types 135-141

Grouping and Aggregates 141-143

FlexChart Navigation 143-144

Text Field 144-145

Rtf Field 145-147

Paragraph Field 147-149

Checkbox Field 149-150

Barcode Field 150

Barcode Symbology 150-156

Barcode Properties 156-158

Calculated Field 158-160

Image Field 160-161

Shape Field 162

Subreport Field 162-166

Legacy Chart Field 166

Chart Types 166-172

Design Time Support 172-175

Plotting Data in Data-Bound Charts 175-176

Plotting Data in Unbound Charts 176-178

Charts with Multiple Series 178-179

Charts in Grouped Reports 179-181

Adding FlexReport Custom Fields 181-182

Map Custom Field 182

Map Custom Field Properties 182-185

Adding Map Custom Field 185-188

SuperLabel Custom Field 188-190

Working with Parameters 190-192

Data Binding 192-193

Calculated Fields 193-195

Subreports 195-196

Cascading Parameters 196-198

Multi-value Parameters 198-199

Pass Parameters Silently 199-200

Adding Multiple Data Sources 200-201

Changing Data Source of FlexReport 201-203

FlexReport for WinForms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Sorting Data using Designer 203-206

Previewing and Printing FlexReport 206-207

Importing Reports in FlexReportDesigner 207-208

Importing Microsoft Access Reports 208-211

Importing Crystal Reports 211-214

Exporting and Publishing a Report 214

Export to PDF/A 214-215

Enhancing Look of FlexReports 215

Background 215-217

Border 217-219

Report and Document Viewer (FlexViewer Control) 220

FlexViewer Key Features 220-221

FlexViewer Toolbar 221-222

Rotate View of Reports 222-223

Binding FlexReport with FlexViewer 223-224

FlexReport Samples 225-226

Task Based Help 227

Adding Alternating Background 227-228

Adding Conditional Formatting 228-230

Specifying Custom Paper Size 230-231

Adding Dynamic Page Header 231-232

Creating a Gutter Margin 232-233

Grouping and Sorting 233-236

Cascading Parameters 236-238

FlexReport for WinForms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexReport for WinForms Overview
ComponentOne Studio introduces FlexReport for WinForms - newer, updated, and faster version of C1Report.

FlexReport is a comprehensive reporting tool that provides complete reporting solution - from building complex
reports to previewing, exporting, and printing. With a rich object model, and modern user interfaces in its previewing
control and designer application, FlexReport provides flexibility to generate attractive and feature-rich reports.
To work with FlexReport and/or FlexViewer, the minimal system requirements are Windows 7 SP1 or Windows Server
2008 R2 SP1 with Platform Update (KB2670838).

Present your data in a consolidated format, design and customize the reports, and take important business
decisions from the reports generated through FlexReport. High quality rendering, accurate calculations, and ease of
use make FlexReport a must have control for advanced as well as basic level report designers.

Help with WinForms Edition
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

Upgrading C1Report to FlexReport
The reports created using C1Report are fully compatible with C1FlexReport. The following are the two simple ways to
upgrade or convert your existing C1Report report definition (.xml) to C1FlexReport report definition (.flxr):

Upgrading C1Report report definition in the designer

1. Run C1FlexReportDesigner.4.exe.
2. Go to File|Open and select the C1Report report definition (.xml) that you want to upgrade. You will see the

following dialog box:

3. Click OK.
4. Go to File|Save.
5. In the Save Report Definition File dialog box, specify the File name and click Save.

The report definition is saved as type .flxr. Your report definition is now converted from C1Report's .xml
to C1FlexReport's .flxr.

Upgrading the existing C1Report Windows Application Project to FlexReport Windows Application
Project in Visual Studio

1. Open existing Windows Application project that contains C1Report (.xml) file.
2. Delete C1Report from the Form.
3. Delete C1Report's previewing control C1PrintPreview or C1RibbonPreviewControl from the Form.
4. Add C1FlexReport component to the Toolbox:

a. Right-click a tab and select Choose items... A Choose Toolbox Items dialog box appears.

FlexReport for WinForms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/

b. Click Browse and select C1.Win.FlexReport.4.dll from the bin\v4.0 folder. The C1FlexReport
component will be added in the Toolbox.

5. Add FlexViewer control to the Toolbox:
a. Right-click a tab and select Choose items... A Choose Toolbox Items dialog box appears.
b. Click Browse and select C1.Win.FlexViewer.4.dll from the bin\v4.0 folder. The FlexViewer control will be

added in the Toolbox.
6. Drop C1FlexReport on the Form. The following dlls with the same version as the version of C1FlexReport

should get added to the references:
C1.C1Pdf.4
C1.Win.4
C1.Win.BarCode.4
C1.Win.C1Document.4
C1.Win.FlexReport.4

If these references do not have the same version, you need to add them manually.
7. Drop FlexViewer control on the Form. The following dlls with the same version as the version of C1FlexViewer

should get added to the references:
C1.C1Zip.4
C1.Win.C1DX.4
C1.Win.C1Ribbon.4
C1.Win.FlexViewer.4
C1.Win.ImportServices.4

If these references do not have the same version, you need to add them manually.
8. Add the following dlls to the references:

C1.C1Word.4
C1.C1Excel.4
C1.Win.C1Chart.4
C1.Win.C1Chart3D.4

To use map and super-label custom fields, add following dlls to the references:
C1.Win.FlexReport.CustomFields.4
C1.WPF.Maps.4
C1.WPF.4

9. Rename C1Report component to C1FlexReport component. In code, you can change the name of the
component as follows:

Dim report As New C1Report()
'To
Dim report As New C1FlexReport()

C1Report report = new C1Report();

//To

C1FlexReport report = new C1FlexReport();

10. Change the name of namespace from C1.C1Report to C1.Win.FlexReport in code-behind.
11. Delete all references to the dlls of C1Report and its dependencies - C1.C1Report, C1.Win.C1Report,

C1.Win.C1Barcode, and C1.Win.C1RibbonPreview.
12. Delete namespace C1.Win.C1Preview.
13. Delete license entires of C1Report and the referenced viewer (C1Preview or C1RibbonPreview) from

Visual Basic

C#

FlexReport for WinForms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

licenses.licx.
14. In order to bind C1FlexReport with C1FlexViewer, following code will have to be changed as follows:

Dim c1r As C1.C1Report.C1Report = New C1Report()
c1r.Load(filepath, reportname)
C1PrintPreviewControl1.Document = clr
'To
Dim report As New C1FlexReport()
report.Load(filepath, reportname)
C1FlexViewer1.DocumentSource = report

C1.C1Report.C1Report c1r = new C1Report();
c1r.Load(filepath, reportname);
c1PrintPreviewControl1.Document=clr;

//To
C1FlexReport report = new C1FlexReport();
report.Load(filepath, reportname);
c1FlexViewer1.DocumentSource = report;

Note that FlexReport can be previewed at runtime by using FlexViewer control only. The FlexViewer control is
not compatible with C1PrintPreviewControl or C1RibbonPreviewControl.

Visual Basic

C#

FlexReport versus C1Report
FlexReport is the newer and improved C1Report, with the following main differences:

Hierarchy of report field types

The structure of Field objects in FlexReport is hierarchical, with FieldBase as a base class, and other different class types to represent different
fields. So, there are different types of report fields to represent text, image, shape, subreports, and other different types of data. The
advantage of having a hierarchy of Field objects in FlexReports is that it makes working with fields quite easy and flexible.

C1Report, on the other hand, has complex field objects that require defining the C1.C1Report.Field.Text property and setting Calculated to
True. Here, each field is interpreted as an expression which is evaluated individually for each record, which slows down the process of
rendering of data in C1Report's fields.

Regardless of this, the field types in FlexReport are fully compatible with the field types in C1Report, which enables loading or rendering of
C1Report definitions in FlexReport.

Multiple data sources

A FlexReport definition can have several data sources each identified by a unique name. In case a report contains multiple data sources, one
of the data sources acts as the main data source for the report; the values from the other data sources can be used for adding report
parameters and creating chart fields. For more information, see Data Sources in FlexReport.

Improved data sorting

FlexReport provides improved data source sorting capability. You can define several sort expressions for a data to specify the sorting
condition and its direction using DataSource.SortDefinitions property.

In addition, sorting and grouping of data are independent of each other, that is, you can apply grouping on a set of records as well as control
the order of records through sorting. A simple example is sorting the data - City while grouping by - Country. This results in improved
compatibility with Crystal Reports. See Sorting Data for more information.

Improved data filtering

FlexReport provides improved data filtering that can be specified in a regular VBScript (as all other expressions in C1Report or FlexReport) or
in DataView (several expressions to specify the criteria to filter the data). The syntax type for filtering data in FlexReport is specified by
setting FilterExpressionSyntax enum to DataView (which is default) or VBScript.

FlexReport for WinForms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Filtering in C1Report, on the other hand, is specified by C1Report.Filter property, which uses the limited syntax as the DataView.Filter
property. Regardless of this, filtering in FlexReport is fully compatible with filtering in C1Report. For more information, see Filtering Data.

Calculated fields for data source

In FlexReport, data source supports Calculated fields, that is, calculated fields can be defined in the data sources to fetch calculated data. The
expressions in the Calculated fields are specified through VBScript expressions in DataSource.CalculatedFields collection. These
expressions can use other data source fields, report parameters, and so on. For more information, see Defining Calculated Fields.

Report parameters

The report parameters in a report are used to modify the default values of the data and hence update the values when the report is
rendered. In FlexReport, report parameters can be defined in the C1FlexReport.Parameters collection, where each element is an instance of
the ReportParameter class, with some additional properties, that are described in Adding Parameters topic.

In C1Report, parameters could be specified either in DataSource.RecordSource or in DataSource, using PARAMETERS "key word" in the
connection string, such as the following string:

C1Report.DataSource.RecordSource = “PARAMETERS param1 int 0; select * from Customers where id < param1”.

When C1Report report definitions are loaded in FlexReport, parameters specified using DataSource.RecordSource and DataSource.Filter are
imported correctly into the C1FlexReport.Parameters collection.

Multiple Sub-sections

In C1FlexReport, each section contains at least one sub-section. The sub-sections, just like sections, contain report fields. The advantage of
adding sub-sections is that they help in enhancing the data present in their parent section. Sub-sections can be
accessed through Section.SubSections collection property. For more information, see Adding Multiple Sub-sections.

Visual properties

Borders
In FlexReport, borders can be specified for fields, sub-sections, and sections using VisualReportObject.Border property. In addition,
borders can have each side having its own style and each corner having a different radii for rounded corners. See Border for more
information.
In C1Report, borders can be defined only on fields.
Backgrounds
In FlexReport, backgrounds can be specified for fields, sub-sections, and sections. The background color can be solid or gradient,
which can be set using VisualReportObject.Background property. See Background for more information.
In C1Report, BackColor property is used to set background colors for fields and sections.

C1Report to FlexReport Breaking Changes
FlexReport code has been written from scratch; as a result, you will find following breaking changes in the API on migrating from
C1Report to FlexReport:

In C1Report, parameters can only be specified directly in the DataSource.RecordSource, immediately before the SQL statement
and after the key word PARAMETERS.

In FlexReport, there is a separate dedicated report-level collection C1FlexReport.Parameters, where the report parameters can
be specified. When importing a C1Report report definition from a .xml file, any parameters specified old-style using
PARAMETERS keyword are automatically added to the C1FlexReport.Parameters collection.

In FlexReport, the OnOpen script is fired AFTER the data source has been opened, so any changes to the main data source
made in that script does not affect the report. In order to change something in the data source before the report is generated,
use GlobalScripts. GlobalScripts can contain function and procedure definitions, and codes that are not within these definitions;
all such definitions and codes are now executed when the report starts rendering, before the data source is opened.

In C1Report, Custom fields derived from Field overrides the GetRenderContent() method. The method's signature in
C1FlexReport has been changed to:

 public virtual void GetDesignerRenderContent(
 ref string text,
 ref Image image,
 ref bool disposeImage);

If the overriding method sets disposeImage to true, C1FlexReport calls Dispose() on the image after it has been used.

The C1Report.OutlineRootLevel property has been removed. To control the outline structure, use properties OutlineLabel

FlexReport for WinForms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

and OutlineParent. To turn off outlines generated by a subreport, use the SubreportField.OutlinesVisible property.

In C1Report, there are two slightly different methods to generate/layout text - default and 'gdi+' (if
C1Report.UseGdiPlusTextRendering were set to true - non-default). These methods can produce slightly different text layouts,
e.g. line breaks could be in different places etc. FlexReport always generates/lays out text like C1Report with
UseGdiPlusTextRendering set, but still there may be differences in line breaks between C1Report with UseGdiPlusTextRendering
set, and FlexReport.

The AddOutlineEntry event has been removed. To change the text of the outline entry generated by a field/section/sub-
section, use the OutlineLabel property.

A new specialized event type has been added for the C1FlexReport.ReportError event: ReportErrorEventHandler,
accepting ReportErrorEventArgs event arguments. The ReportEventArgs type has been modified - Exception and Handled have
been removed from the event arguments.

If a report contains Map custom field(s), it must be generated synchronously (call Render() rather than RenderAsync()), else the
map field cannot be displayed in the FlexViewer control. You should set the FlexViewer.UseAsyncRendering property to False.

In C1Report, EndReport event is not fired in case of an error. In FlexReport, the EndReport event is fired even if a fatal error
occurs during rendering.

Following C1Report methods/properties have been removed from C1FlexReport:

C1Report.Document.Generate()
C1Report.Document.Export()
C1Report.Document.CreationDpi
C1Report.DocumentInternal
C1Report.Document.DoEvents
C1Report.Document.HasEditableTags
C1Report.CreationDevice
StartReport(), StartSection(), EndSection(), RenderField()
C1Report.DataSource.DataObject: In C1FlexReport, the same can be accessed through DataSource.Recordset property.
C1Report.EmfType: In C1FlexReport, use EMF+ instead.
C1Report.GetReportInfo(): In C1FlexReport, use C1FlexReport.ReportInfo instead.
C1Report.PageRenderingMode: In C1FlexReport, use C1FlexReport.GetPageImage in order to get a page’s metafile.

C1Report Render<X> method cannot be accessed in code behind with C1FlexReport. These methods are for internal use.

C1Report Render<X> object cannot be used by using following code:
c1Report1.Document.Body.Children.Add(RenderGraphic obj)

This method is not supported in FlexReport.

C1FlexReport.Document cannot be converted to System.Drawing.Printing.PrintDocument. PrintDocument should not be used
with FlexReport since PrintDocument's C1Report.Document property does not exist.

In FlexReport, IC1FlexReportRecordset does not have ApplyFilter() and ApplySort() methods. Instead, DataSource in
FlexReport has filters/sort definition, so these should be used. IC1FlexReportRecordset is assigned to DataSource.Recordset
while filters/sorts can be defined on the DataSource.

C1Report’s FieldBase object can no longer be used with FlexReport.

Field is a 'legacy' type with C1FlexReport. Now specialized types are derived from FieldBase in C1FlexReport. Following field
objects should be directly created in code-behind:

TextField text = new TextField();
BarCodeField barcode = new BarCodeField();
SubreportField subreport = new SubreportField();
ChartField chart = new ChartField();
RTFField rtf=new RTFField();
CheckBoxField checkbox = new CheckBoxField();
CalculatedField calField=new CalculatedField();
ImageField img = new ImageField();
ShapeField shape = new ShapeField();

Use corresponding properties, same as used to be set for C1Report FieldBase object.

FlexReport for WinForms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

CanGrow and CanShrink properties of C1Report have been renamed in C1FlexReport.
Use C1FlexReport.AutoHeight, C1FlexReport.AutoWidth, and C1FlexReport.AutoSizeBehavior instead. CanGrow=True and
CanShrink=True can be used as C1FlexReport.AutoSizeBehavior.GrowAndShrink.

In FlexReport, instead of the AddScriptObject event there is GetScriptObject event. So in this case, instead of

private void c1flxr_StartReport(object sender, System.EventArgs e)
{
 c1flxr.AddScriptObject("LookUp", new LookUpObject());
}

this works:

c1flxr.GetScriptObject += c1flxr_GetScriptObject;
...

void c1flxr_GetScriptObject(object sender, C1.Win.FlexReport.ReportGetScriptObjectEventArgs e)
{
 if (e.Name.ToLower() == "lookup")
 e.Object = new LookUpObject();
}

C1FlexReport caches rendered content and does not regenerate a report if the report template is not changed. To ensure that
report is regenerated, you can call C1FlexReport.SetDirty() method.

FlexReport for WinForms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

Key Features
The key features of FlexReport for WinForms are as follows:

Light-weight and Fast
FlexReport is light-weight and fast in particular for smaller reports. FlexReport is rendered twice as fast as
C1Report; major exports such as PDF and HTML are much faster than C1Report.

High Quality Rendering
FlexReport uses DirectWrite/Direct2D to draw and generate high performance and quality report content that
does not depend on measurement context like printer, screen, etc.

Single Viewer for all Document types
FlexViewer is a new control that has been introduced in 2015 v3 with FlexReport. It can be used to
view multiple document types such as C1Report, C1FlexReport, SSRS, and C1Document. It gives you
capabilities of using/resetting Parameters, options to Refresh and Cancel Report rendering, Bookmarks to jump
to report locations, and more.
More accurate Crystal Report Migration
FlexReport supports some features that improve its compatibility with Crystal Reports. The proper migration for
following features are supported:

Sub-sections
Complex Expressions
Special Ordered Group
Enhanced Border Styles
See Importing Crystal Reports for more information.

Modern UI
Report designing application (FlexReportDesigner) and Previewing tool (FlexViewer) provide a Ribbon-based
UI offering an intuitive and rich user experience with easy to access and well placed designer and viewer
options.

New Designer Application with Rich User Experience
The FlexReportDesigner application has additional features that makes report designing much easier than
before. The new features are:

Snap Lines to show/align distance from controls.
Collapsible/Expandable Sections and Sub-sections.
Show Captions settings for optionally displaying Section/Sub-sections header strips.
Chart Editors at Design time to set Chart Field's Properties, Data source, and Visual Effects
Data Tab to add, edit and remove Data Sources, Parameters, Sort Expressions, and Calculated Fields.
Ability to edit expressions through 'Edit Expression' in context menu.
Ability to align numbers to left and other values to right using Align General button in the designer.
Errors tab to show errors and warnings while importing or previewing a report.
See About FlexReportDesigner for more information.

New and extensive set of Charts:
FlexReport provides more than 70 Chart types to choose from. Binding data to charts, setting properties,
adding visual effects, and other related tasks can be performed easily through the Design-Time
editors available in the FlexReportDesigner application.

Added support for SQLite database
The SQLite connection can be specified in the FlexReportDesigner to fetch data, just like any other database.
For that, you should have SQLite ADO.NET provider installed on your system, see https://system.data.sqlite.org
for more details.

FlexReport for WinForms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://system.data.sqlite.org/

Feature Comparison Matrix
Explore all of the features offered by FlexReport, Visual Studio Reporting, Report Builder 3.0, and Crystal Reports. You
can download the matrix in PDF.

End User Designer for Section Report

Features FlexReport Visual
Studio

Reporting
Control

Report
Builder

3.0

Crystal
Reports

Designer available with installer ✓ Available
with MS
SQL Server

Separate
Installer

Available with
Crystal Reports
Installer

Create blank report ✓ ✓ ✓ Through
Database
Expert Wizard

Add chart to blank report ✓ ✓ ✓ ✓

Add map to blank report ✓ ✓ ✓ ✓

Add CrossTab to blank report ✓ ✓ ✓

Interface style Modern UI,
Ribbon
Interface

✓ Modern
UI, Ribbon
Interface

Traditional
WinForms
interface

Visual Studio Templates

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

Reporting Application
Available

✓ WinForms,
WPF

Template applications
that bind Report with
Viewer

✓ ✓

Report (blank), Report
Wizard available in
"Add new item"

✓ ✓

Report Wizard

Features FlexReport Visual Studio
Reporting

Control

Report
Builder

3.0

Crystal Reports

Report Wizard ✓ ✓ ✓ ✓

Table list Any data source Any data source SQL ✓

FlexReport for WinForms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://prerelease.componentone.com/help/WinForms/FeatureComparisonMatrix_FlexReport.pdf

Query
for
Access,
SQL
Server
data
source

View list Any data source Any data source SQL
Query
for
Access

✓

Stored procedure list Any data source SQL
Query
for
Access,
SQL
Server
data
source

✓

Grouping set during
Report Wizard binding

✓ ✓ ✓ ✓

Grouping set only for
Table/Matrix

✓ ✓

Report Styles

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

Built-in Report Styles 34 types 6 types 6 types 12 types

Columnar ✓

Tabular ✓ ✓ ✓ ✓

Justified ✓

Labels ✓ ✓

Stepped ✓

Outline ✓

Aligned ✓

Standard ✓

Form Letters ✓

OLAP ✓

Query Builder

Features FlexReport Visual Studio Report Crystal Reports

FlexReport for WinForms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

Reporting
Control

Builder
3.0

Graphical Query
Designer

Any datasource SQL
Server
Relational
Databases
only

Text-based Query
Designer

✓ Oracle,
OLEDB,
ODBC,
TeraData

Any datasource

Report Layout & Controls

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

Section-based design
template

.FLXR .RPT

Page-based design
template

.RDL/.RDLC .RDL/.RDLC

Multiple reports in a
report

✓

Data Binding

Features FlexReport Visual Studio
Reporting Control

Report Builder
3.0

Crystal Reports

MS SQL
Server

✓ ✓ ✓

Object
Datasource

✓ ✓

OLEDB ✓ ✓ ✓ ✓

SQLite ✓

Stored
Procedure

✓ ✓

XML ✓ ✓ ✓ ✓

Bind report
to multiple
tables

✓ ✓ ✓

Drag &
drop
bound
fields to
report

✓ ✓ ✓ ✓

FlexReport for WinForms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

Microsoft
SQL Server
Analysis
Services
for MDX

✓ ✓

DMX ✓ ✓

Microsoft
Power
Pivot and
tabular
models

✓ ✓

Microsoft
Azure SQL
Database

✓ ✓

SQL Server
Parallel
Data
Warehouse

✓ ✓

Oracle ✓ ✓

SAP
NetWeaver
BI

✓ ✓

Hyperion
Essbase

✓ ✓

Microsoft
SharePoint
List

✓ ✓

Teradata ✓ ✓

ODBC ✓ ✓ ✓

Access ✓ ✓ ✓ ✓

Excel ✓

ADO.NET ✓

Java Beans ✓

Salesforce ✓

OLAP ✓

SAP Table ✓

SAP BW ✓

Outlook ✓

Design Preview

Features FlexReport Visual Studio Report Crystal

FlexReport for WinForms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

Reporting
Control

Builder 3.0 Reports

Preview Reports Designer; not
Visual Studio

Designer; not
Visual Studio

Designer; not
Visual Studio

HTML preview Designer
Edition only

Edit reports in preview Designer
Edition only

Portrait/landscape
control in preview

✓ ✓ ✓

Viewers

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal Reports

HTML ✓ WebViewer

MVC ✓

UWP ✓

Windows ✓ ✓ ✓ ✓

WinForms ✓ ✓ ✓

WPF ✓ ✓ ✓

Web ✓ ✓

Report Features

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal Reports

Adding Sort
Expressions
on Groups at
report level

✓

Drillthrough ✓ ✓

Filtering ✓ ✓ ✓ ✓

Formatting
controls -
Done
through tabs
and groups
of Ribbon

✓ ✓ ✓ ✓

Grouping ✓ ✓ ✓ ✓

Hyperlinks ✓ ✓ ✓ ✓

FlexReport for WinForms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

Page
Number

✓ ✓ ✓ ✓

ReportEvents ✓

Runtime
Date & time

✓ ✓ ✓ ✓

Sorting ✓ ✓ ✓ ✓

Summary
Totals

✓ ✓ ✓ ✓

Built-in
Special
Fields

✓ ✓ ✓ ✓

Report
Scheduling

✓

Adding Sort
Expressions
on Groups
available on
Data
Regions

✓ ✓ ✓

Subreports ✓ ✓ ✓ ✓

Interactive
Sorting at
Runtime

✓ ✓ ✓ ✓

Parameters

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

AllowBlank
Parameters

✓ ✓ ✓

Boolean ✓ ✓ ✓ ✓

DateTime ✓ ✓ ✓ ✓

Float ✓ ✓ ✓

Hidden Parameters ✓ ✓

Integer ✓ ✓ ✓

Multivalue ✓ ✓ ✓

Nullable ✓ ✓ ✓

Passing parameters
to reports

✓ ✓ ✓ ✓

String ✓ ✓ ✓ ✓

FlexReport for WinForms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

Time ✓ ✓

Date ✓ ✓

Currency ✓

Number ✓ ✓ ✓ ✓

Internal Parameters ✓

Options to refresh
report with change in
Parameter values

✓ ✓ ✓ ✓

Formats

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal Reports

Boolean ✓ ✓

Currency ✓ ✓ ✓ ✓

Date ✓ ✓ ✓ ✓

LongDate ✓ ✓ ✓ ✓

LongTime ✓ ✓ ✓ ✓

Number ✓ ✓ ✓ ✓

Percentage ✓ ✓ ✓ ✓

Short Date ✓ ✓ ✓ ✓

Short Time ✓ ✓ ✓ ✓

Time ✓ ✓ ✓ ✓

Decimal ✓ ✓ ✓

Full Date/time
long

✓ ✓ ✓

Full Date/time
short

✓ ✓ ✓

General ✓ ✓ ✓

General Date/time
long

✓ ✓ ✓

General Date/time
short

✓ ✓ ✓

Month day ✓ ✓ ✓

RFC1123 pattern ✓ ✓

Round trip ✓ ✓

Scientific ✓ ✓

FlexReport for WinForms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

Year Month ✓ ✓ ✓

Charts

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal
Reports

Total Chart Types 70+ 50+ 50+ 40

2D 38 ✓ ✓ 33

3D 36 ✓ ✓ 7

Area ✓ ✓ ✓ ✓

Bar ✓ ✓ ✓ ✓

Column ✓ ✓ ✓ ✓

Cone ✓

Cylinder ✓ ✓ ✓

Doughnut ✓ ✓ ✓

Gantt ✓ ✓

Histogram ✓ ✓

Line ✓ ✓ ✓ ✓

Pie ✓ ✓ ✓ ✓

Polar ✓ ✓ ✓

Pyramid ✓ ✓ ✓

Radar ✓ ✓ ✓ ✓

Scatter ✓ ✓ ✓ ✓

Stacked ✓ ✓ ✓ ✓

Step ✓

Stock ✓ ✓ ✓ ✓

Bubble ✓ ✓ ✓

Candlestick ✓ ✓

Funnel ✓ ✓ ✓

Range ✓ ✓

Chart Wizards

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal Reports

Properties ✓ ✓

FlexReport for WinForms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

Bind data source ✓ ✓ ✓ ✓

Visual Effects Advanced ✓ Basic

Choose chart type ✓ ✓ ✓ ✓

Export

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

Total Formats 14 3 7 10

BMP ✓

Excel (.xls) ✓ ✓

Open XML Excel
(.xlsx)

✓ ✓ ✓

GIF ✓

HTML ✓

JPEG ✓

PDF ✓ ✓ ✓ ✓

PNG ✓

RTF ✓ ✓

TIFF ✓ ✓ ✓

Open XML Word
(.docx)

✓ ✓ ✓

Zip compressed files ✓

Crystal Reports ✓

XML ✓

CSV ✓ ✓ ✓

MHTML ✓ ✓

Word (.doc) ✓ ✓ ✓

Import

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal Reports

C1Report ✓

ADP Reports ✓

MDB Reports ✓ ✓

Crystal Reports ✓ ✓

FlexReport for WinForms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

Code Behind

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

Can create report in
code behind

✓ ✓

Scripting & Expressions

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

VB Script Editor ✓ ✓ ✓

Syntax check
available

✓ ✓ ✓ ✓

C# Editor ✓

Deployment Licensing

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal Reports

Internal
business use
for client
application

No license
required

✓ ✓ No license
required

Third-party
servers

License required

Royalty-free
development

✓ ✓

Sample Reports

Features FlexReport Visual Studio
Reporting

Control

Report Builder
3.0

Crystal
Reports

Installed with setup ✓ ✓ Not
installed
at setup;
available
separately

Available for
download

✓ ✓

Medical Report ✓

Inventory ✓

FlexReport for WinForms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

Management

Balance Sheet ✓ ✓

Budget Report ✓

Hospital Bills ✓

SPC Process Control
Chart

✓

Telephone bill for
FlexReport

✓

IntelliSense

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

Report Fields ✓

Database Fields ✓

Calculated Fields ✓

Parameters ✓

VB Script Functions ✓

Aggregates ✓

Associated Properties ✓

Property description ✓

Report Design

Add/insert resize
actions for report
sections

✓ ✓ ✓

Can grow, Grow and
Shrink, Can shrink, Keep
Together available to
control layout of text

✓ ✓ ✓

Caption settings like All,
Section, Hairline,
Hidden

✓

Expand/Collapse
buttons for
sections/subsections

✓

Group header/footer ✓

Reorder ✓

Resize actions for
report sections
available

✓

FlexReport for WinForms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

Snap to grid ✓

Subsections ✓

Server Edition

Features FlexReport Visual Studio
Reporting

Control

Report
Builder 3.0

Crystal
Reports

SAP Crystal Reports
Server

Jul-16 ✓

SAP Business Objects
Enterprise

✓

FlexReport for WinForms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexReport Dissection
Before starting with FlexReport, it is important to know about the components and controls that are shipped with
FlexReport, the object model of FlexReport, and sections or bands available in FlexReport. The following sections
provide indepth information about these.

Components and Controls
FlexReport for WinForms consists of following assemblies:

C1.Win.FlexReport dll

It includes all report rendering and document generating functionalities through following component:

C1FlexReport:
The C1FlexReport component is a report generating component that generates data-based banded reports.
You can render reports directly to a printer or preview control, or export to various portable formats (including
XLS, PDF, HTML, text, and images). The FlexReport component also exposes a rich object model for creating,
customizing, loading, and saving report definitions.

C1.Win.FlexViewer dll

It includes all viewing functionalities through following controls or components:

C1FlexViewer:
The FlexViewer control is a multiple document previewing control. It has a ribbon-based UI with all preview
related options (viewer pane and status bar) easily accessible.
C1FlexViewerPane:
The FlexViewerPane control displays the pages of the document being previewed, allows panning, zooming
and other preview operations. In the form designer, standard toolbars and status bar can be created on the
current form through context menu items.
C1FlexViewerDialog:
The FlexViewerDialog is a form that is displayed with the nested FlexViewer control.

Included Applications

In addition to the reporting components and controls, FlexReport also includes following stand-alone applications:

C1FlexReportDesigner.4 exe and C1FlexReportDesigner32.4.exe
These are built-in applications for creating and editing C1FlexReport report definition files. The designers
allows you to create, edit, load, and save files (XML) that can be read by the C1FlexReport component.

Object Model Summary
C1FlexReport has a rich object model, which is largely based on the Microsoft Access model. The objects, collections,
and the associated properties and methods together provide an ease and flexibility in generating FlexReport. The
following table lists objects and their main properties and methods:

C1FlexReport Object

ReportName, Load, GetReportList, Save, Clear, Render, Parameters, Document, DoEvents, Cancel, Page,
 MaxPages, Font, OnOpen, OnClose, OnNoData, OnPage, OnError, Evaluate, Execute

Layout Object

Width, MarginLeft, MarginTop, MarginRight, MarginBottom, PaperSize, Orientation, Columns,

FlexReport for WinForms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ColumnLayout, PageHeader, PageFooter

DataSource Object

CalculatedFields, ConnectionString, Filter, RecordSource, SortDefinitions

DataSourceCollection

Report, Add, RemoveAt

SortDefinition Object

Direction, Expression

SortDefinitionCollection

Owner, Report

CalculatedField Object

DataSource, Expression, Type

CalculatedFieldCollection

Owner, Report

Group

GroupBy, KeepTogether, SectionHeader, SectionFooter, Sort, SortExpression

GroupCollection

Add, Clear, RemoveAt, Report

ReportParameter Object

AllowedValuesDefinition, DisplayText, ParentReport, SetName

ReportParameterCollection

InsertItem, RemoveItem, SetItem, Report

AllowedValuesDefinition Object

AssignFrom, Binding, Values

Section Object

Calculated, Fields, Height, KeepTogether, SplitBehavior, SubSections

SectionCollection

Detail, Footer, Header, PageFooter, PageHeader

SubSection Object

Calculated, Fields, Height, ParentReport, ParentSection, SplitBehavior, Visible

SubSectionCollection

Add, Remove, RemoveAt, Report

FieldBase Object

Anchor, Height, KeepTogether, ForcePageBreak, MarginBottom, MarginLeft, MarginRight, MarginTop, Section,
 SplitHorzBehavior, SplitVertBehavior

FieldCollection

FlexReport for WinForms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

Add, Remove, RemoveAt

BarCodeField Object

BarCode, BarCodeOptions, Font, Text

CheckBoxField Object

CheckAlign, CheckMark, Text, ThreeState, Value

DataField Object

Calculated, Name, Type, Value

ImageField Object

AssignFrom, PictureAlign, PictureScale

RtfField Object

AssignFrom, DetectUrls, Text

ShapeField Object

Line, Shape, ShapeBackColor, ShapeBackground, ShapeType

SubreportField Object

ParameterValues, Subreport, SubreportFilter

TextField Object

Format, Text

VisualReportObject

Background, Border, BordersSplitHorzMode, BordersSplitVertMode, OutlineLabel

BehaviorOptions

AssignFrom, Reset, IgnoreInvisibleFieldsInGrowShrinkSections

Sections of FlexReport
Every report consists of the following five basic sections:

Section Description

Detail The Detail section contains fields that are rendered once for each record in the source
recordset.

Header The Report Header section is rendered at the beginning of the report.

Footer The Report Footer section is rendered at the end of the report.

Page Header The Page Header section is rendered at the top of every page (except optionally for pages
that contain the Report Header).

Page Footer The Page Footer section is rendered at the bottom of every page.

There are two additional sections for each group: a Group Header and a Group Footer Section. For example, a report

FlexReport for WinForms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

with 3 grouping levels will have 11 sections.

An additional section, called Sub-section can also be added to any section of a report.

Note that sections can be made invisible, but they cannot be added or removed, except by adding or removing
groups.

The following diagram shows how each section is rendered on a typical report. It also displays how a sub-section in
the Detail section is rendered in the report:

Report Header
The first section rendered is the Report Header. This section usually contains information that identifies the report.

Page Header
After the Report Header comes the Page Header. If the report has no groups, this section usually contains labels that
describe the fields in the Detail Section.

Group Headers and Group Footers
The next sections are the Group Headers, Detail, and Group Footers. These are the sections that contain the actual
report data. Group Headers and Footers often contain aggregate functions such as group totals, percentages,
maximum and minimum values, and so on. Group Headers and Footers are inserted whenever the value of the
expression specified by the GroupBy property changes from one record to the next.

Detail
The Detail section contains data for each record. It is possible to hide this section by setting its Visible property to
False, and display only Group Headers and Footers. This is a good way to create summary reports.

Page Footer

FlexReport for WinForms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

At the bottom of each page is the Page Footer Section. This section usually contains information such as the page
number, total number of pages in the report, and/or the date on which the report was printed.

Report Footer
Finally, the Report Footer section is printed before the last page footer. This section is often used to display summary
information about the entire report.

Sub-section
The sub-section can be added to any section of a report; by default it gets added at the bottom of the section that is
currently selected. This section contains the additional data that enhances the data present in its parent section. A
section’s height is determined by the sum of heights of its sub-sections.

Customized sections
You can determine whether or not a section is visible by setting its Visible property to True or False. Group Headers
can be repeated at the top of every page (whether or not it is the beginning of a group) by setting their Repeat
property to True. Page Headers and Footers can be removed from pages that contain the Report Header and Footer
sections by setting the PageHeader and PageFooter properties on the Layout object.

FlexReport for WinForms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexReport Quick Start
Although you can use C1FlexReport in many different scenarios, on the desktop, the main sequence of steps is always
the same:

1. Create a report definition

This can be done directly with the FlexReportDesigner application or using the report designer in Microsoft
Access and Crystal Report, and then importing it into the FlexReportDesigner. You can also do it using code,
either by using the object model to add groups and fields or by writing a custom XML file.

2. Load the report into the C1FlexReport component

This can be done at design time, using the Load Report context menu, or programmatically using
the C1FlexReport.Load method. If you load the report at design time, it will be persisted (saved) with the
control and you won't need to distribute the report definition file.

3. Render the report

You can render the report into a FlexViewer control using the C1FlexViewer.DocumentSource property. The
preview control will display the report on the screen, and users will be able to preview it with full zooming,
panning, and so on. Note that report rendering is supported only for desktop applications.

The following steps will show you how to create a report definition, load the report into the C1FlexReport component,
and render the report.

Step 1 of 4: Creating a Report Definition
The following topic shows how you can create a report definition using the FlexReportDesigner application and the code.
Note that creating a report definition is different from rendering a report. To render a report, you can simply load an existing
definition and call the C1FlexReport.Render method. The easiest way to create a report definition is to use the
C1FlexReportDesigner, which is a stand-alone application similar to the report designer in Microsoft Access and Crystal
Report. You can find the detailed information about FlexReportDesigner and how it looks in About FlexReportDesigner.

The C1FlexReportDesigner.exe for 64 bit platform and C1FlexReportDesigner32.4.exe for 32 bit platform are located at
C:\Program Files (x86)\ComponentOne\Apps\v4.0 on your computer.

Creating a Report Definition Using the FlexReportDesigner:

You can create a new report definition in FlexReportDesigner using FlexReport Wizard. The FlexReport Wizard walks you
through the steps of creating a new report from start to finish. To begin, complete the following steps:

1. Run the C1FlexReportDesigner.exe file from the location discussed in About FlexReportDesigner.
2. Go to File Menu in the menu bar and select New command.

Blank space appears in the FlexReportdesigner to create a new report.
3. Click New Report drop down from the Reports tab located on the extreme left of designer and select Report

Wizard.

The FlexReport Wizard opens.

FlexReport for WinForms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

From the C1FlexReport Wizard, complete the following five steps to create your report:

1. Select the data source for the new report.

Use this page to select the DataSource.ConnectionString and DataSource.RecordSource that will be used to retrieve
the data for the report.

You can specify the DataSource.ConnectionString in three ways:

Type the string directly into the editor.
Use the drop-down list to select a recently used connection string (the Designer keeps a record of the last
eight connection strings).
Click the ellipses button (...) to bring up the standard connection string builder.

You can specify the DataSource.RecordSource string in two ways:

Click the Table option and select a table from the list.
Click the SQL option and type (or paste) an SQL statement into the editor.

Complete Step 1:

Complete the following steps:

1. Click the ellipses button to bring up the standard connection string builder. The Data Link Properties dialog
box opens.

2. Select the Provider tab and select a data provider from the list. For this example, select Microsoft Jet 4.0 OLE
DB Provider.

3. Click the Next button or select the Connection tab. Now you must choose a data source.
4. Click the ellipses button to select a database. The Select Access Database dialog box appears. For this

example, select the C1NWind.mdb located in the Common folder in the ComponentOne Samples directory
(by default installed in the Documents folder). Note that this directory reflects the default installation path and
its path may be different if you made changes to the installation path.

5. Click Open. You can test the connection and click OK.
6. Click OK to close the Data Link Properties dialog box.
7. Once you have selected your data source, you can select a table, view, or stored procedure to provide the

actual data. You can specify the DataSource.RecordSource string in two ways:
Select the Data source tab and select the Products table from the Tables list.
Select the SQL tab and type (or paste) an SQL statement into the editor.

For example:

select * from products

FlexReport for WinForms 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Click Next. The wizard will walk you through the remaining steps.

2. Select the fields you want to include in the report.

This page contains a list of the fields available from the recordset you selected in Step 1, and two lists that define the
group and detail fields for the report. Group fields define how the data will be sorted and summarized, and detail
fields define what information you want to appear in the report.

You can move fields from one list to another by dragging them with your mouse pointer. Drag fields into the Detail
list to include them in the report, or drag within the list to change their order. Drag fields back into the Available list
to remove them from the report.

Complete Step 2:

Complete the following steps:

1. With your mouse pointer, select the CategoryID field and drag it into the Groups list.
2. Press the >> button to move the remaining fields into the Detail list.

FlexReport for WinForms 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Click Next. The wizard will walk you through the remaining steps.

3. Select the layout for the new report.

This page offers you several options to define how the data will be organized on the page. When you select a layout, a
thumbnail preview appears on the left to give you an idea of what the layout will look like on the page. There are two
groups of layouts, one for reports that have no groups and one for reports with groups. Select the layout that best
approximates what you want the final report to look like.

This page also allows you to select the page orientation and whether fields should be adjusted to fit the page width.

The Labels layout option is used to print Avery-style labels. If you select this option, you will see a page that prompts
you for the type of label you want to print.

Complete Step 3:

Complete the following steps:

1. Keep the Outline layout.

FlexReport for WinForms 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Click Next. The wizard will walk you through the remaining steps.

4. Select the style for the new report.

This page allows you to select the fonts and colors that will be used in the new report. Like the previous page, it shows
a preview to give you an idea of what each style looks like. Select the one that you like best (and remember, you can
refine it and adjust the details later).

Complete Step 4:

1. Select the Verdana style.

FlexReport for WinForms 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Click Next. The wizard will walk you through the remaining steps.

5. Select a title for the new report.

This last page allows you to select a title for the new report and to decide whether you would like to preview the new
report right away or whether you would like to go into edit mode and start improving the design before previewing it.

Complete Step 5:

1. Enter a title for the new report, Products Report, for example.

FlexReport for WinForms 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Choose to Preview the report and click Finish.

You will immediately see the report in the preview pane of the Designer.

You will notice that the report will require some adjustments.

You can invoke C1FlexReportDesigner from Visual Studio as well. To do so, complete the following steps:

1. Create a .NET project and add the C1FlexReport component to your Toolbox.
2. From the Toolbox, double-click the C1FlexReport icon to add the component to your project. Note that the

component will appear below the form in the Component Tray.
3. Click the C1FlexReport component's smart tag and select Edit Report from its Tasks menu.

The C1FlexReportDesigner opens and the C1FlexReport Wizard is ready to guide you through the five easy steps
discussed above.

Creating a Report Definition Using Code:

The following steps show how you can create a report definition using the FlexReportDesigner application or using code.
You can even write your own report designer or ad-hoc report generator.

The example uses code to create a simple tabular report definition based on the C1NWind database. The code is commented
and illustrates the most important elements of the C1FlexReport object model. Complete the following steps:

1. First, add a button control, C1FlexReport component, and FlexViewer control to your form. Set the following
properties:

Button.Name = btnEmployees

C1FlexReport.Name = c1FlexReport1 (default name in C#)

C1FlexViewer.Name = c1FlexViewer1 (default name in C#)

2. Initialize the control, named c1FlexReport1, using the Clear method to clear its contents and set the control font (this
is the font that will be assigned to new fields):

Visual Basic

FlexReport for WinForms 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

Private Sub RenderEmployees()

C1FlexReport1.DataSource.RecordSourceType = RecordSourceType.Auto '
clear any existing fields
C1FlexReport1.Clear()

' set default font for all controls
C1FlexReport1.Font.Name = "Tahoma"
C1FlexReport1.Font.Size = 8

End Sub

private void RenderEmployees()
{
c1FlexReport1.DataSource.RecordSourceType = RecordSourceType.Auto;
 // clear any existing fields
 c1FlexReport1.Clear();
 // set default font for all controls
 c1FlexReport1.Font.Name = "Tahoma";
 c1FlexReport1.Font.Size = 8;
}

3. Next, set up the DataSource object to retrieve the data that you want from the C1NWind.mdb database. This is done
using the ConnectionString and RecordSource properties:

' initialize DataSource
Dim ds As DataSource = C1FlexReport1.DataSource
ds.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\...\ComponentOne Samples\Common\C1NWind.mdb;"
ds.RecordSource = "Employees"

//initialize DataSource
DataSource ds = c1FlexReport1.DataSource;
ds.ConnectionString = @"Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=C:\...\ComponentOne Samples\Common\C1NWind.mdb;";
ds.RecordSource = "Employees";

4. Next, initialize the Layout object that defines how the report will be laid out on the page. In this case, render the
report in Portrait mode and set its Width to 6.5 inches (8.5 page width minus one inch for margins on either side):

'initialize Layout
Dim l As Layout = C1FlexReport1.Layout
l.Orientation = OrientationEnum.Portrait
l.Width = 6.5 * 1440 ' 8.5 - margins, in twips

Visual Basic

C#

Visual Basic

C#

Visual Basic

C#

FlexReport for WinForms 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

//initialize Layout
Layout l = c1FlexReport1.Layout;
l.Orientation = OrientationEnum.Portrait;
l.Width = 6.5 * 1440; // 8.5 - margins, in twips

5. Now comes the interesting part. Every report has five basic sections: Detail, Report Header, Report Footer, Page
Header, and Page Footer. Use the following code to set up the report header by setting a couple of properties and
adding a title field to it:

' create a report header
Dim s As Section = C1FlexReport1.Sections(SectionTypeEnum.Header)
s.Height = 1440
s.Visible = True
s.BackColor = Color.FromArgb(200, 200, 200)
Dim textFld1 As New TextField()
textFld1.Name = "FldTitle"
textFld1.Text = "Employees Report"
textFld1.Left = 0
textFld1.Top = 0
textFld1.Width = 8000
textFld1.Height = 1440
textFld1.Font.Size = 24
textFld1.Font.Bold = True
textFld1.ForeColor = Color.FromArgb(0, 0, 100)
C1FlexReport1.Sections.Header.Fields.Add(textFld1)

// create a report header
Section s = c1FlexReport1.Sections[SectionTypeEnum.Header];
s.Height = 1440;
s.Visible = true;
s.BackColor = Color.FromArgb(200, 200, 200);
TextField textFld1 = new TextField();
textFld1.Name = "FldTitle";
textFld1.Text = "Employees Report";
textFld1.Left = 0;
textFld1.Top = 0;
textFld1.Width = 8000;
textFld1.Height = 1440;
textFld1.Font.Size = 24;
textFld1.Font.Bold = true;
textFld1.ForeColor = Color.FromArgb(0, 0, 100);
c1FlexReport1.Sections.Header.Fields.Add(textFld1);

The section object has a Fields collection. The collection's Add method creates a new field and assigns it to the
Section. The parameters specify the new field's Name, Text, Left, Top, Width, and Height properties. By default, the
field has the same font as the control. Since this is a title, it makes sense to change the font and make it larger. Note
that the field should be tall enough to accommodate the font size, or nothing will appear in it.

6. Next, set up the Page Footer Section. This section is more interesting because it contains expressions in the text fields.
To evaluate the expressions in the text field, simply set the expression in the TextField.Text.Expression property. The
expression in the text field is evaluated when the report is rendered. In C1Report, same is achieved by setting the
field's Calculated property to True. To create a page footer, add the following code:

Visual Basic

C#

FlexReport for WinForms 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

' create a page footer
s = C1FlexReport1.Sections(SectionTypeEnum.PageFooter)
s.Height = 500
s.Visible = True

Dim textFld2 As New TextField()
textFld2.Name = "FldFtrLeft"
textFld2.Text.Expression = ""
"Employees: Printed on "
" & Now"
textFld2.Left = 0
textFld2.Top = 0
textFld2.Width = 4000
textFld2.Height = 300
textFld2.Font.Size = 8
textFld2.Font.Bold = False
C1FlexReport1.Sections.PageFooter.Fields.Add(textFld2)

Dim textFld3 As New TextField()
textFld3.Name = "FldFtrRight"
textFld3.Text.Expression = ""
"Page "
" + Page + "
" of "
" & Pages"
textFld3.Left = 4000
textFld3.Top = 0
textFld3.Width = 4000
textFld3.Height = 300
textFld3.Align = FieldAlignEnum.RightTop
textFld3.Width = C1FlexReport1.Layout.Width - textFld3.Left
C1FlexReport1.Sections.PageFooter.Fields.Add(textFld3)

'add a line before page footer
Dim shpfld As New ShapeField()
shpfld.Name = "FldLine"
shpfld.ShapeType = ShapeType.Line
shpfld.Left = 0
shpfld.Top = 0
shpfld.Width = C1FlexReport1.Layout.Width
shpfld.Height = 20
C1FlexReport1.Sections.PageFooter.Fields.Add(shpfld)

// create a page footer
s = c1FlexReport1.Sections[SectionTypeEnum.PageFooter];
s.Height = 500;
s.Visible = true;

TextField textFld2 = new TextField();
textFld2.Name = "FldFtrLeft";

VB

C#

FlexReport for WinForms 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

textFld2.Text.Expression = @ ""
"Employees: Printed on "
" & Now";
textFld2.Left = 0;
textFld2.Top = 0;
textFld2.Width = 4000;
textFld2.Height = 300;
textFld2.Font.Size = 8;
textFld2.Font.Bold = false;
c1FlexReport1.Sections.PageFooter.Fields.Add(textFld2);

TextField textFld3 = new TextField();
textFld3.Name = "FldFtrRight";
textFld3.Text.Expression = @ ""
"Page "
" + Page + "
" of "
" & Pages";
textFld3.Left = 4000;
textFld3.Top = 0;
textFld3.Width = 4000;
textFld3.Height = 300;
textFld3.Align = FieldAlignEnum.RightTop;
textFld3.Width = c1FlexReport1.Layout.Width - textFld3.Left;
c1FlexReport1.Sections.PageFooter.Fields.Add(textFld3);

//add a line before page footer
ShapeField shpfld = new ShapeField();
shpfld.Name = "FldLine";
shpfld.ShapeType = ShapeType.Line;
shpfld.Left = 0;
shpfld.Top = 0;
shpfld.Width = c1FlexReport1.Layout.Width;
shpfld.Height = 20;
c1FlexReport1.Sections.PageFooter.Fields.Add(shpfld);

The Page Footer section uses expressions with variables that are not intrinsic to VBScript, but are defined by
C1FlexReport.Page and Pages are variables that contain the current page number and the total page count. The
section also uses a field configured to look like a line.

7. Next, set up the Page Header Section. This section gets rendered at the top of every page and will display the field
labels. Using a Page Header section to display field labels is a common technique in tabular reports. The code is
simple, but looks a bit messy because of all the field measurements. In a real application, these values would not be
hard-wired into the program. To create a page header with field labels, add the following code:

'create a page header with field labels
s = C1FlexReport1.Sections(SectionTypeEnum.PageHeader)
s.Height = 500
s.Visible = True
C1FlexReport1.Font.Bold = True

Dim textFld4 As New TextField()
textFld4.Name = "LblID"

Visual Basic

FlexReport for WinForms 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

textFld4.Text = "ID"
textFld4.Left = 0
textFld4.Top = 50
textFld4.Width = 400
textFld4.Height = 300
textFld4.Align = FieldAlignEnum.RightTop
C1FlexReport1.Sections.PageHeader.Fields.Add(textFld4)

Dim textFld5 As New TextField()
textFld5.Name = "LblFirstName"
textFld5.Text = "First"
textFld5.Left = 500
textFld5.Top = 50
textFld5.Width = 900
textFld5.Height = 300
C1FlexReport1.Sections.PageHeader.Fields.Add(textFld5)

Dim textFld6 As New TextField()
textFld6.Name = "LblLastName"
textFld6.Text = "Last"
textFld6.Left = 1500
textFld6.Top = 50
textFld6.Width = 900
textFld6.Height = 300
C1FlexReport1.Sections.PageHeader.Fields.Add(textFld6)

Dim textFld7 As New TextField()
textFld7.Name = "LblTitle"
textFld7.Text = "Title"
textFld7.Left = 2500
textFld7.Top = 50
textFld7.Width = 2400
textFld7.Height = 300
C1FlexReport1.Sections.PageHeader.Fields.Add(textFld7)

Dim textFld8 As New TextField()
textFld8.Name = "LblTitle"
textFld8.Text = "Notes"
textFld8.Left = 5000
textFld8.Top = 50
textFld8.Width = 8000
textFld8.Height = 300
C1FlexReport1.Sections.PageHeader.Fields.Add(textFld8)
C1FlexReport1.Font.Bold = False

Dim shpfld2 As New ShapeField()
shpfld2.Name = "FldLine"
shpfld2.ShapeType = ShapeType.Line
shpfld2.Left = 0
shpfld2.Top = 400
shpfld2.Width = C1FlexReport1.Layout.Width
shpfld2.Height = 20
C1FlexReport1.Sections.PageHeader.Fields.Add(shpfld2)

C#

FlexReport for WinForms 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

//create a page header with field labels
s = c1FlexReport1.Sections[SectionTypeEnum.PageHeader];
s.Height = 500;
s.Visible = true;
c1FlexReport1.Font.Bold = true;

TextField textFld4 = new TextField();
textFld4.Name = "LblID";
textFld4.Text = "ID";
textFld4.Left = 0;
textFld4.Top = 50;
textFld4.Width = 400;
textFld4.Height = 300;
textFld4.Align = FieldAlignEnum.RightTop;
c1FlexReport1.Sections.PageHeader.Fields.Add(textFld4);

TextField textFld5 = new TextField();
textFld5.Name = "LblFirstName";
textFld5.Text = "First";
textFld5.Left = 500;
textFld5.Top = 50;
textFld5.Width = 900;
textFld5.Height = 300;
c1FlexReport1.Sections.PageHeader.Fields.Add(textFld5);

TextField textFld6 = new TextField();
textFld6.Name = "LblLastName";
textFld6.Text = "Last";
textFld6.Left = 1500;
textFld6.Top = 50;
textFld6.Width = 900;
textFld6.Height = 300;
c1FlexReport1.Sections.PageHeader.Fields.Add(textFld6);

TextField textFld7 = new TextField();
textFld7.Name = "LblTitle";
textFld7.Text = "Title";
textFld7.Left = 2500;
textFld7.Top = 50;
textFld7.Width = 2400;
textFld7.Height = 300;
c1FlexReport1.Sections.PageHeader.Fields.Add(textFld7);

TextField textFld8 = new TextField();
textFld8.Name = "LblTitle";
textFld8.Text = "Notes";
textFld8.Left = 5000;
textFld8.Top = 50;
textFld8.Width = 8000;
textFld8.Height = 300;
c1FlexReport1.Sections.PageHeader.Fields.Add(textFld8);
c1FlexReport1.Font.Bold = false;

ShapeField shpfld2 = new ShapeField();

C#

FlexReport for WinForms 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

shpfld2.Name = "FldLine";
shpfld2.ShapeType = ShapeType.Line;
shpfld2.Left = 0;
shpfld2.Top = 400;
shpfld2.Width = c1FlexReport1.Layout.Width;
shpfld2.Height = 20;
c1FlexReport1.Sections.PageHeader.Fields.Add(shpfld2);

This code illustrates a powerful technique for handling fonts. Since every field inherits the control font when it is
created, set the control's Font.Bold property to True before creating the fields, and set it back to False afterwards. As
a result, all controls in the Page Header section have a bold font.

8. To finalize the report, add the Detail Section. This is the section that shows the actual data. It contains expressions in
the text fields below each label in the Page Header Section. To create the Detail section, add the following code:

' create the Detail section
s = C1FlexReport1.Sections(SectionTypeEnum.Detail)
s.Height = 330
s.Visible = True

Dim textField As New TextField()
textField.Name = "FldID"
textField.Text.Expression = "EmployeeID"
textField.Left = 0
textField.Top = 0
textField.Width = 400
textField.Height = 300
C1FlexReport1.Sections.Detail.Fields.Add(textField)

Dim textField1 As New TextField()
textField1.Name = "FldFirstName"

textField1.Text.Expression = "FirstName"
textField1.Left = 500
textField1.Top = 0
textField1.Width = 900
textField1.Height = 300
C1FlexReport1.Sections.Detail.Fields.Add(textField1)

Dim textField2 As New TextField()
textField2.Name = "FldLastName"
textField2.Text.Expression = "LastName"
textField2.Left = 1500
textField2.Top = 0
textField2.Width = 900
textField2.Height = 300
C1FlexReport1.Sections.Detail.Fields.Add(textField2)

Dim textField3 As New TextField()
textField3.Name = "FldTitle"
textField3.Text.Expression = "Title"
textField3.Left = 2500
textField3.Top = 0

Visual Basic

FlexReport for WinForms 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

textField3.Width = 2400
textField3.Height = 300
C1FlexReport1.Sections.Detail.Fields.Add(textField3)

Dim textField4 As New TextField()
textField4.Name = "FldNotes"
textField4.Text.Expression = "Notes"
textField4.Left = 5000
textField4.Top = 0
textField4.Width = 8000
textField4.Height = 300
C1FlexReport1.Sections.Detail.Fields.Add(textField4)

textField4.Width = C1FlexReport1.Layout.Width - textField4.Left
textField4.AutoHeight = AutoSizeBehavior.CanGrow
textField4.Font.Size = 6
textField4.Align = FieldAlignEnum.JustTop

 'add a line after each field in detail section
Dim shpfld3 As New ShapeField()
shpfld3.Name = "FldLine"
shpfld3.ShapeType = ShapeType.Line
shpfld3.Left = 0
shpfld3.Top = 310
shpfld3.Width = C1FlexReport1.Layout.Width
shpfld3.Height = 20
C1FlexReport1.Sections.Detail.Fields.Add(shpfld3)

// create the Detail section
s = c1FlexReport1.Sections[SectionTypeEnum.Detail];
s.Height = 330;
s.Visible = true;

TextField textField = new TextField();
textField.Name = "FldID";
textField.Text.Expression = "EmployeeID";
textField.Left = 0;
textField.Top = 0;
textField.Width = 400;
textField.Height = 300;
c1FlexReport1.Sections.Detail.Fields.Add(textField);

TextField textField1 = new TextField();
textField1.Name = "FldFirstName";

textField1.Text.Expression = "FirstName";
textField1.Left = 500;
textField1.Top = 0;
textField1.Width = 900;
textField1.Height = 300;
c1FlexReport1.Sections.Detail.Fields.Add(textField1);

TextField textField2 = new TextField();

C#

FlexReport for WinForms 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

textField2.Name = "FldLastName";
textField2.Text.Expression = "LastName";
textField2.Left = 1500;
textField2.Top = 0;
textField2.Width = 900;
textField2.Height = 300;
c1FlexReport1.Sections.Detail.Fields.Add(textField2);

TextField textField3 = new TextField();
textField3.Name = "FldTitle";
textField3.Text.Expression = "Title";
textField3.Left = 2500;
textField3.Top = 0;
textField3.Width = 2400;
textField3.Height = 300;
c1FlexReport1.Sections.Detail.Fields.Add(textField3);

TextField textField4 = new TextField();
textField4.Name = "FldNotes";
textField4.Text.Expression = "Notes";
textField4.Left = 5000;
textField4.Top = 0;
textField4.Width = 8000;
textField4.Height = 300;
c1FlexReport1.Sections.Detail.Fields.Add(textField4);

textField4.Width = c1FlexReport1.Layout.Width - textField4.Left;
textField4.AutoHeight = AutoSizeBehavior.CanGrow;
textField4.Font.Size = 6;
textField4.Align = FieldAlignEnum.JustTop;

//add a line after each field in detail section
ShapeField shpfld3 = new ShapeField();
shpfld3.Name = "FldLine";
shpfld3.ShapeType = ShapeType.Line;
shpfld3.Left = 0;
shpfld3.Top = 310;
shpfld3.Width = c1FlexReport1.Layout.Width;
shpfld3.Height = 20;
c1FlexReport1.Sections.Detail.Fields.Add(shpfld3);

Note that all text fields contain expressions and each text field corresponds to the names of fields in the source record
source. Setting the expressions in the TextField.Text.Expression property ensures that the Text property is
interpreted as a database field name, as opposed to being rendered literally. It is important to adopt a naming
convention for report fields that makes them unique, different from recordset field names. If you had two fields
named "LastName", an expression such as "Left(LastName,1)" would be ambiguous. This example has adopted the
convention of beginning all report field names with "Fld".

Note that the "FldNotes" field has its AutoHeight property set to CanGrow, and a smaller font than the others. This
was done to make sure that the "Notes" field in the database, which contains a lot of text, will appear in the report.
Rather than make the field very tall and waste space, setting the AutoHeight property to CanGrow tells the control to
expand the field as needed to fit its contents; it also sets the containing section's AutoHeight property to True, so the
field doesn't spill off the Section.

9. The report definition is done. To render the report into the FlexViewer control, double-click the Employees button to
add an event handler for the btnEmployees_Click event. The Code Editor will open with the insertion point placed

FlexReport for WinForms 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

within the event handler. Enter the following code:

RenderEmployees()
C1FlexViewer1.DocumentSource = C1FlexReport1

RenderEmployees();
c1FlexViewer1.DocumentSource = c1FlexReport1;

Here's what the basic report looks like:

Visual Basic

C#

FlexReport for WinForms 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 2 of 4: Modifying the Report
With the FlexReportDesigner in preview mode, you cannot make any adjustments to the report. Click the Design
button to switch to Design mode and begin making modifications. The right pane of the main window switches from
Preview mode to Design mode, and it shows the controls and fields that make up the report.

Modify the Report:

FlexReport for WinForms 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

For this example, we will resize the Group Header section and fields as well as format a field value. To do this,
complete the following steps:

1. To resize the Group Header section, select its border and with your mouse pointer drag to the position where
you want it.

2. With your mouse pointer, drag the handles in the field corners to resize fields.

Tip: If text is not fitting in the field, set the Appearance.WordWrap property for the field to True in
the Properties window.

3. In the Properties window, select the UnitPriceCtl field in Detail section under the Unit Price column.
4. Set the Appearance.Format property for the field to Currency.

FlexReport for WinForms 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Click the Preview button to switch to Preview mode and see your modifications.
6. Click Design button to switch from Preview mode to Design mode.
7. Click the File menu and select Save As from the menu that appears.

FlexReport for WinForms 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. In the Save Report Definition File dialog box, enter ProductsReport.flxr in the File name box. Save the file
to a location that you will remember for later use.

9. Close the Designer and return to your Visual Studio project.

You have successfully created a report definition file; in the next step you will load the report in the C1FlexReport
component.

Step 3 of 4: Loading the Report in the C1FlexReport
Component
To load a report definition from a file at design time, complete one of the following tasks:

Right-click the C1FlexReport component and select the Load Report menu option.

OR

Click the smart tag () above the C1FlexReport component and select Load Report from the C1FlexReport
Tasks menu.

Using the Load Report dialog box to select the report you want, complete the following tasks:

1. Click the ellipses button. The Open dialog box appears.
2. Browse to the location that you just saved your Products Report.flxr file, select it, and click Open.
3. The available report definitions are listed in the Report drop-down box. Select the Products Report definition

to load.
4. Click Load and OK to close the dialog box.

FlexReport for WinForms 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the next step you will render the report into a preview control.

Step 4 of 4: Rendering the Report
Once the report definition has been created, a data source defined and loaded into the C1FlexReport component, you
can render the report to the printer, to the preview control - C1FlexViewer, or export to different file formats.

To preview the report in the FlexViewer control, the steps are as follows:

1. From the Toolbox, double-click the C1FlexViewer control to add it to your project.
2. From the Properties window, set the C1FlexViewer.Dock property to Fill.
3. Select the Windows Form with your mouse and drag the corners to resize it.
4. Double-click the form and enter the following code in the Form1_Load event handler:

'load report definition
c1FlexReport1.Load("..\..\Products Report.flxr", "Products Report")
'preview the report
c1FlexViewer1.DocumentSource = c1FlexReport1

C#

//load report definition
c1FlexReport1.Load(@"..\..\Products Report.flxr", "Products Report");
//preview the report
c1FlexViewer1.DocumentSource = c1FlexReport1;

Visual Basic

FlexReport for WinForms 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexReport for WinForms 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

Design-Time Support
You can easily configure FlexReport for WinForms at design time using the property grid, menus, and designers in
Visual Studio. The following sections describe how to use design-time environment for configuring FlexReport and
FlexViewer.

C1FlexReport Tasks Menu
In Visual Studio, the C1FlexReport component includes a smart tag. A smart tag represents a short-cut tasks menu
that provides the most commonly used properties.

The C1FlexReport component provides quick and easy access to the FlexReport Wizard (for reports definitions that
have not been created) or the FlexReportDesigner (for report definitions that already exist in the project), as well as
loads reports through its smart tag.

To access the C1FlexReport Tasks menu, click the smart tag () in the upper-right corner of the C1FlexReport
component.

The C1FlexReport Tasks menu operates as follows:

Current Report:

Shows the name of the current report, specified in the ReportName property.

Load Report

Clicking Load Report opens the Load Report dialog box. For more information about loading a report, see
Load FlexReport at Design Time.

Edit Report

Clicking Edit Report opens the FlexReport Wizard if you have not already created a report definition or the
C1FlexReportDesigner if you have already created a report.

For more information on using the FlexReport Wizard, see Step 1 of 4: Creating a Report Definition. For
details on using the C1FlexReportDesigner, see Working with FlexReportDesigner.

Clear Report

Clears the report loaded in C1FlexReport. On clicking Clear Report, user is asked - 'Are you sure to clear Report
[Report Name]?'.

About

Clicking About displays the About dialog box, which is helpful in finding the version number of
C1.Win.FlexReport, as well as information about licensing and online resources.

FlexReport for WinForms 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1FlexViewer Tasks Menu
In C1FlexViewer Tasks menu, you can quickly and easily dock the FlexViewer control in the parent container and
access the Localize dialog box.

To access the FlexViewer Tasks menu, click the smart tag () in the upper right corner of the control.

The C1FlexViewer Tasks menu operates as follows:

Localize

Clicking Localize opens the Localize dialog box. In the Localize dialog box, you can customize your
localization settings.

About FlexViewer

Clicking About displays the control's About dialog box, which is helpful in finding the build version of the
control.

Dock in Parent Container/Undock in Parent Container

Clicking Dock in Parent Container sets the Dock property for C1FlexViewer to Fill.

If C1FlexViewer is docked in the parent container, the option to undock it from the parent container will be
available. Clicking Undock in Parent Container sets the Dock property for C1FlexViewer to None.

FlexReport for WinForms 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with FlexReport
The main sequence of working with C1FlexReport is as follows:

1. You start by creating a report using the FlexReportDesigner application to create report definitions; report
definitions are saved as .flxr files, and can be designed from scratch or imported from existing Microsoft Access
Reports and Crystal Reports. You can then modify the basic report using the designer.

2. The C1FlexReport component reads the report definitions and renders the reports using data from any
standard .NET data source.

3. The report definitions can be loaded at design time, and embedded in your application, or they can be read
and modified at run time. (You can even create report definitions from scratch, using the C1FlexReport object
model.)

4. Reports can be rendered directly to a printer, into a FlexViewer control, or exported to different formats.

The following diagram shows the relationship between the components in the FlexReport for WinForms package:

Note: Boxes with a bold border represent code components (controls and applications). Boxes with a thin
border represent files containing information (report definitions, data, and finished reports).

The following numbers refer to the numbered arrows in the image, indicating relationships between the components:

1. Use the C1FlexReportDesigner application to create, edit, and save FLXR report definition files.
2. The C1FlexReport component loads report definitions from the FLXR files created with the designer. This can

be done at design time (in this case the FLXR file is persisted with the control and not needed at run time) or at
run time using the Load method.

3. The C1FlexReport component loads data from the data source specified in the report definition file.
Alternatively, you can provide your own custom data source.

FlexReport for WinForms 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. The C1FlexReport component formats the data according to the report definition and renders reports to a (a)
printer, (b) to a previewing control, (c) or to one of several file formats.

5. Custom applications can communicate with the C1FlexReport component using a rich object model, so you can
easily customize your reports or generate entirely new ones. C1FlexReportDesigner is a good example of such
an application.

Note: To work with FlexReport the operating system must support NT 6.1 core. Therefore, the minimal system
requirements are Windows 7 SP1 or Windows Server 2008 R2 SP1 with Platform Update (KB2670838).

C1FlexReport and C1Document
C1FlexReport uses the C1.Win.C1Document assembly, that further exposes the following two classes, which are
base classes for C1FlexReport and C1SsrsDocumentSource:

C1Document: represents ComponentOne document. Its main functions are as follows:

Persists the document as a RenderObjects tree.
Renders the document content.
Highlights the Text selection.
Checks a specific location of an object with respect to other elements through methods such as HitTest.

C1Document is similar to our WinForms’ C1Framework library. It is a set of rather low level utility classes used
by other components. Currently it is used by C1SsrsDocumentSource, C1SsrsViewer, and C1FlexReport.

C1DocumentSource: provides functionality to work with different documents and report types. It is a base
class to build C1Document objects. Its main functions are as follows:

Provides infrastructure for asynchronous rendering of documents.
Provides parameter support while generating the document.
Provides support for text search in the generated document.

C1FlexReport is derived from C1DocumentSource. It uses C1DocumentSource to provide asynchronous
rendering, parameter support and text search. This also means that it will be easy to port C1FlexReport to other
platforms (XAML).

C1Document Breaking Changes
With the development of FlexReport, there are some breaking changes that took place
in C1.Win.C1Document.C1DocumentSource and C1.Win.C1Document.C1SSRSDocumentSource. You should be aware
of the following breaking changes while using C1.Win.C1Document.C1DocumentSource and
C1.Win.C1Document.C1SSRSDocumentSource.

All OpenXXX methods have been removed:
public void Open(C1DocumentLocation documentLocation);
public IAsyncActionWithProgress<double> OpenAsyncEx(C1DocumentLocation documentLocation);
public IAsyncActionWithProgress<double> OpenAsyncEx();
public void Open();
public Task OpenAsync();
public Task OpenAsync(C1DocumentLocation documentLocation);

Now C1SSRSDocumentSource.Generate() can be used immediately after defining all necessary properties like
DocumentLocation, ConnectionOptions, etc.

All GenerateXXX methods are now accessible only in C1SSRSDocumentSource; in C1DocumentSource these

FlexReport for WinForms 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

methods are internal:
public void Generate();
public IAsyncActionWithProgress<double> GenerateAsyncEx();
public Task GenerateAsync();

All ApplyParameterValuesXXX and CheckParameterValuesXXX methods have been removed:
public List<ParameterValueError> ApplyParameterValues();
public IAsyncOperationWithProgress<List<ParameterValueError>, double>
ApplyParameterValuesAsyncEx();
public Task<List<ParameterValueError>> ApplyParameterValuesAsync();
public List<ParameterValueError> CheckParameterValues();
public Task<List<ParameterValueError>> CheckParameterValuesAsync();
public IAsyncOperationWithProgress<List<ParameterValueError>, double>
CheckParameterValuesAsyncEx();

Use C1SSRSDocumentSource.ValidateParameters(...) instead. The values of parameters are applied
automatically before generating.
Methods ExecuteCustomActionXXX, GetPageXXX and GetBookmarkPositionXXX() are now internal and
inaccessible:

public IAsyncOperationWithProgress<C1BookmarkPosition, double>
ExecuteCustomActionAsyncEx(CustomAction action);
public Task<C1BookmarkPosition> ExecuteCustomActionAsync(CustomAction action);
public C1Page GetPage(int pageIndex);
public Task<C1Page> GetPageAsync(int pageIndex);
public IAsyncOperationWithProgress<C1Page, double> GetPageAsyncEx(int pageIndex);
public virtual C1Page GetLoadedPage(int pageIndex);
public bool IsPageLoading(int pageIndex);
public C1BookmarkPosition GetBookmarkPosition(string bookmark);
public IAsyncOperationWithProgress<C1BookmarkPosition, double>
GetBookmarkPositionAsyncEx(string bookmark);
public Task<C1BookmarkPosition> GetBookmarkPositionAsync(string bookmark);

All functionality related to text searching has been moved to C1FlexViewer. In addition, following methods and
properties have been removed:

public C1FoundPosition FindTextStart(int startPageIndex, bool wholeDocument, C1FindTextParams
findParams);
public IAsyncOperationWithProgress<C1FoundPosition, double> FindTextStartAsyncEx(int
startPageIndex, bool wholeDocument, C1FindTextParams findParams);
public Task<C1FoundPosition> FindTextStartAsync(int startPageIndex, bool wholeDocument,
C1FindTextParams findParams);
public C1FoundPosition FindTextNext(C1FoundPosition foundPosition);
public IAsyncOperationWithProgress<C1FoundPosition, double>
FindTextNextAsyncEx(C1FoundPosition foundPosition);
public Task<C1FoundPosition> FindTextNextAsync(C1FoundPosition foundPosition);
public C1FoundPosition FindTextPrevious(C1FoundPosition foundPosition);
public IAsyncOperationWithProgress<C1FoundPosition, double>
FindTextPreviousAsyncEx(C1FoundPosition foundPosition);
public Task<C1FoundPosition> FindTextPreviousAsync(C1FoundPosition foundPosition);
public void FindTextReset();
public C1HighlightAttrs FindMatchHighlight { get; set; }
public C1HighlightAttrs ActiveFindMatchHighlight { get; set; }
public IList<C1FoundPosition> FoundPositions { get; }
public C1FoundPosition ActiveFoundPosition { get; set; }

The following properties have been removed (text selection functionality has been moved to viewers):
public C1DocumentRange SelectedRange { get; set; }
public C1HighlightAttrs SelectionHighlight { get; set; }

The property - C1DocumentSource.State { get; set; } and enum - C1DocumentSourceState have been removed.

FlexReport for WinForms 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

Instead, use C1DocumentSource.BusyState property as follows:
public C1DocumentSourceBusyState BusyState { get; }

// Summary:
// Describes the busy state of a C1DocumentSource object.
public enum C1DocumentSourceBusyState
{
// Summary:
// The document is ready (not busy).
Ready,
// Summary:
// The document is currently generating.
Generating,
// Summary:
// The document is currently exporting.
Exporting,
// Summary:
// The document is currently printing.
Printing,
}
The following properties can be used to determine the current state of the C1DocumentSource:
// Summary:
// Gets the value indicating whether the current C1DocumentSource busy.
public bool IsBusy { get; }
// Summary:
// Gets a value indicating whether this C1DocumentSource is disposed and can not be longer used.
public bool IsDisposed { get; }
The following events have been removed:

event EventHandler<ExecuteCustomActionCompletedEventArgs> ExecuteCustomActionCompleted;
event EventHandler<GetPageCompletedEventArgs> GetPageCompleted;
event EventHandler<GetLinkTargetPositionCompletedEventArgs> GetLinkTargetPositionCompleted;
event EventHandler PagesClear;

The following events have been moved to C1SSRSDocumentSource:
event EventHandler<AsyncCompletedEventArgs> GenerateCompleted;
event EventHandler<ValidateParametersCompletedEventArgs> ValidateParametersCompleted;
event EventHandler<ExportCompletedEventArgs> ExportCompleted;

The following methods are accessible only through C1SSRSDocumentSource():
public void Clear();
public void Cancel();

Methods ValidateParameterXXX have been added to replace ApplyParameterValues and
CheckParameterValues:

public List<ParameterValidationError> ValidateParameters();
Async variants:

public new IAsyncOperationWithProgress<List<ParameterValidationError>, double>
ValidateParametersAsyncEx();
public Task<List<ParameterValidationError>> ValidateParametersAsync();

These methods validate the current parameter values and refresh their valid values lists if the values are valid.
Note that parameter values are now applied automatically when a report generation starts.

Data Binding in FlexReport

FlexReport for WinForms 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

In addition to a report definition, FlexReport needs the actual data to create the report. In most cases, the data comes
from a database, but there are other options. The following topics explore how to retrieve data from other sources.

Retrieving Data from a Database
For retrieving or loading the report data in FlexReport, following DataSource properties of C1FlexReport should be set:

ConnectionString
RecordSource

To set data source:

'initialize data source
 Dim ds As DataSource = C1FlexReport1.DataSource
 ds.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\...\ComponentOne Samples\Common\C1Nwind.mdb;"
 ds.RecordSource = "Employees"

//initialize DataSource
 DataSource ds = c1FlexReport1.DataSource;
 ds.ConnectionString = @"Provider=Microsoft.Jet.OLEDB.4.0; Data
Source=C:\...\ComponentOne Samples\Common\C1NWind.mdb;";
 ds.RecordSource = "Employees";

If these properties are set, C1FlexReport initializes the data source and uses them to load the data from the database
automatically. This is same as initializing data source through the code or the designer as illustrated in Step 1 of 4:
Creating a Report Definition.

Visual Basic

C#

Retrieving Data from a Stored Procedure
Stored procedures (or sprocs) can assist you in achieving a consistent implementation of logic across applications,
improve performance, and shield users from needing to know the details of the tables in the database. One of the
major advantages of stored procedures is you can pass in parameters to have the database filter the recordset. This
returns a smaller set of data, which is quicker and easier for the report to manipulate.

You can populate a report from a stored procedure in the C1FlexReport Wizard. To open the C1FlexReport Wizard
complete one of the following:

In Visual Studio by selecting Edit Report from the C1FlexReport context menu
In Visual Studio by selecting Edit Report from the C1FlexReport Tasks menu
From the C1FlexReportDesigner application, click the New Report button from the Reports tab

For more information on accessing the Edit Report link, see Design-Time Support.

Populating a report from a stored procedure is no different than using SQL statements or straight tables. In the first
screen of the C1FlexReport Wizard, click the ellipses button to choose a datasource. Then choose a Stored
Procedure from the list of available Data sources:

FlexReport for WinForms 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

Select Next and continue through the wizard.

As with loading other forms of data, you have two options:

You can use the DataSource's ConnectionString and RecordSource properties to select the datasource:

In the Designer, use the DataSource dialog box to select the connection string (by clicking the ellipses button
"..."), then pick the table or sproc you want to use from the list. For example:

connectionstring = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Users\Windows
8.1\Documents\ComponentOne Samples\Common\C1NWind.mdb;Persist Security
Info=False;" RecordSource = "[Products by Category]"

(In this case the stored procedure name has spaces, so it's enclosed in square brackets).

You can create the data source using whatever method you want, then assign it to the DataSource's Recordset
property:

This method requires you to write code, and is useful when you have your data cached somewhere and want to
use it to produce several reports. It overrides the previous method (if you specify ConnectionString,
RecordSource, and Recordset, C1FlexReport uses the Recordset).

The syntax is different depending on the type of connection/adapter you want to use (OleDb, SQL, Oracle, and
so on). The easier way to get the syntax right is to drag tables or sprocs from Visual Studio's Server Explorer
onto a form. This adds all the cryptic elements required, and then you can go over the code and pick up the
pieces you want.

You can specify stored procedures as data sources by their name. If the sproc has parameters, you pass them

FlexReport for WinForms 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

as parameters. For example, in a report definition built against MSSQL and ADVENTURE_WORKS.mdf database,
the SQL request that is specified in C1FlexReportDesigner (adjust the path to ADVENTUREWORKS_DATA.MDF
as needed) is:

PARAMETERS Employee Int 290;
DECLARE @RC int
DECLARE @EmployeeID int
set @EmployeeID = [Empoyee]
EXECUTE @RC = [C:\ADVENTUREWORKS_DATA.MDF].[dbo].[uspGetEmployeeManagers]
@EmployeeID

Using Data Table Object as Data Source
Many applications need to work on the data outside C1FlexReport and load it into DataTable objects. In such cases,
you can use DataTable objects as report data sources, avoiding the need to load them again while rendering the
report.

This approach is also useful in applications where:

Security restrictions dictate that connection strings must be kept private and only the data itself may be
exposed (not its source).
The database is not supported by OleDb (the provider used internally by C1FlexReport).
The data does not come from a database at all. Instead, the DataTable is created and populated using custom
code.

To use a DataTable object as a C1FlexReport data source, simply load the report definition and then assign the
DataTable to C1FlexReport.DataSource.Recordset property. For example:

' load DataTable from cache or from a secure/custom provider
Dim dt As DataTable = GetMyDataTable()

' load report definition (before setting the data source)
C1FlexReport1.Load(@"reportFile", "reportName")

' use DataTable as the data source
C1FlexReport1.DataSource.Recordset = dt

// load DataTable from cache or from a secure/custom provider
DataTable dt = GetMyDataTable();

// load report definition (before setting the data source)
c1FlexReport1.Load(@"reportFile", "reportName");

// use DataTable as the data source
c1FlexReport1.DataSource.Recordset = dt;

Visual Basic

C#

Using Custom Data Source Objects
You can use custom objects as data sources. The only requirement is that the custom object must implement the
IC1FlexReportRecordset interface.

FlexReport for WinForms 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

IC1FlexReportRecordset is a simple and easy-to-implement interface that can be added to virtually any collection of
data with ease. This is often more efficient than creating a DataTable object and copying all the data into it. For
example, you could use custom data source objects to wrap a file system or custom .xml or .flxr files.

To use custom data source objects, load the report definition and then assign the object to the C1FlexReport's
Recordset property. For example:

' get custom data source object
Dim rs As IC1FlexReportRecordset = CType(GetMyCustomDataSource(),
IC1FlexReportRecordset)

' load report definition (before setting the data source)
C1FlexReport1.Load(@"reportFile", "reportName")

' use custom data source object in C1FlexReport component
C1FlexReport1.DataSource.Recordset = rs

// get custom data source object
IC1FlexReportRecordset rs =
(IC1FlexReportRecordset)GetMyCustomDataSource();

// load report definition (before setting the data source)
c1FlexReport1.Load(@"reportFile", "reportName");

// use custom data source object in C1FlexReport component
c1FlexReport1.DataSource.Recordset = rs;

Visual Basic

C#

Data Sources in FlexReport
A FlexReport definition can include several data sources, which are accessible through C1FlexReport.DataSources
collection. The data sources in this collection are identified by unique names. These data sources can be used as:

Main data source: It is the main data source for a report. The main data source is specified by
using C1FlexReport.DataSourceName property on the report. If the main data source is not specified
(DataSourceName is empty or contains a name not found in the DataSources collection), C1FlexReport is
rendered in unbound mode, containing a single instance of the Detail section.
Data source for Parameters: It is the source of valid values for the report parameters (elements in
the C1FlexReport.Parameters collection). The data source for parameters is specified using
ReportParameter.AllowedValuesDefinition.Binding.DataSourceName property.
Data source for Charts: It is the data source for the Chart field. The data source for charts is specified using
ChartField.DataSource property.

The list of supported data source types in FlexReport are as follows:

OLE DB
ODBC
XML
Object in external assembly
Microsoft SQL Server Compact Data Provider version 3.5 and 4.0

FlexReport for WinForms 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

SQLite

For backwards compatibility with C1Report, C1FlexReport has a DataSource property which points to
DataSources[DataSourceName]. When a new C1FlexReport is created, a single element with the name 'Main' is added
to its C1FlexReport.DataSources collection, and 'Main' is assigned to the C1FlexReport.DataSourceName property.

Note that in C1Report, Main data source is the only data source for the report.

Connecting to Multiple Data Sources using Code
You have learned how to create a report bound to a main data source in FlexReport Quick Start. Since a report can
have multiple data sources, you should know how to connect to these data sources while using charts and
parameters.

The following sections dive into how to bind data to charts and parameters in the reports with multiple data sources.

Binding Data to Charts in Multiple Data Source Report
When you add a Chart field to your report, the first step is to bind the chart to a data source.

Let's say your report has two data sources, 'Employees' and 'Products'. You want to create two charts, one that
displays FullName and Age from Employees data source, and other that displays CategoryName and
Sum(UnitsInStock) from Products data source.

The steps to achieve this scenerio are as follows:

1. Create two data sources ("Employees", "Products") in the report.
2. Define two calculated fields ("FullName", "Age") in Employees data source.
3. Define two calculated fields ("CategoryName", "Sum(UnitsInStock)") in Products data source.
4. Create two chart fields which bind to "Employees" and "Products" data sources separately.

The following code illustrates the scenerio:

Private report As C1FlexReport
 Private Function CreateChartSampleReport() As C1FlexReport
 report = New C1FlexReport() With { _
 .ReportName = "ChartSample" _
 }
 ' add data source "Employees"
 Dim dsEmployees = New DataSource() With { _
 .Name = "Employees", _
 .ConnectionString =
"Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=..\..\Reports\C1Nwind.mdb;Persist Security Info=False", _
 .DataSource = "Select * from Employees" _
 }
 report.DataSources.Add(dsEmployees)
 ' add calculated field "FullName".
 Dim calcFullName = New CalculatedField("FullName",
GetType(String), "=LastName & "" "" & FirstName")
 dsEmployees.CalculatedFields.Add(calcFullName)
 ' add calculated field "Age".

Visual Basic

FlexReport for WinForms 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Dim calcAge = New CalculatedField("Age", GetType(Integer),
"=Year(Now())-Year(BirthDate) + 1")
 dsEmployees.CalculatedFields.Add(calcAge)
 ' add data source "Products"
 Dim dsProducts = New DataSource() With { _
 .Name = "Products", _
 .ConnectionString =
"Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=..\..\Reports\C1Nwind.mdb;Persist Security Info=False", _
 .RecordSource = "Select Products.CategoryID as
CategoryID, Categories.CategoryName as CategoryName,
Products.UnitsInStock as UnitsInStock from Products inner join
Categories on Products.CategoryID = Categories.CategoryID" _
 }
 report.DataSources.Add(dsProducts)
 report.Sections.Header.Visible = True
 ' add ChartField using Employees data source.
 Dim sectionEmployees =
report.Sections.Header.SubSections.Add()
 sectionEmployees.Name = "ChartWithEmployees"
 sectionEmployees.Height = 5200
 sectionEmployees.Visible = True
 sectionEmployees.Fields.Add(CreateChartForEmployees())
 ' add ChartField using Products data source.
 Dim sectionProducts =
report.Sections.Header.SubSections.Add()
 sectionProducts.Name = "ChartWithProducts"
 sectionProducts.Height = 5200
 sectionProducts.Visible = True
 sectionProducts.Fields.Add(CreateChartForProducts())
 Return report
 End Function
 Private Function CreateChartForEmployees() As ChartField
 Dim chart = CreateChartField("Chart1", "Employees")
 chart.Header.Text = "Employees Age"
 chart.ChartArea2D.Inverted = True
 chart.ChartArea2D.AxisX.OnTop = True
 Dim group = chart.ChartGroups2D.Group0
 group.ChartType = Chart2DType.Bar
 Dim data = group.ChartData
 data.IsForEachRecord = True ' show value of each
record in data source
 data.CategoryGroups.AddNewGroup("=FullName") ' group
by FullName
 Dim seriesTemplate = data.SeriesValues.AddNewSeries()
 seriesTemplate.DataValues.AddNewValue("=Age") ' show
Age in AxisY
 Return chart
 End Function
 Private Function CreateChartForProducts() As ChartField
 Dim chart = CreateChartField("Chart2", "Products")

FlexReport for WinForms 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

 chart.Header.Text = "Sum of UnitsInStock by Category"
 chart.ChartArea2D.Inverted = True
 chart.ChartArea2D.AxisX.OnTop = True
 Dim group = chart.ChartGroups2D.Group0
 group.ChartType = Chart2DType.Bar
 Dim data = group.ChartData
 Dim categoryGroup =
data.CategoryGroups.AddNewGroup("=CategoryID")
 ' group by each CategoryID
 categoryGroup.LabelExpression = "=CategoryName" ' show the
CategoryName in AxisX
 Dim seriesTemplate = data.SeriesValues.AddNewSeries()
 seriesTemplate.DataValues.AddNewValue("=Sum(UnitsInStock)")
 ' show sum of UnitsInStock in AxisY
 Return chart
 End Function
 Private Function CreateChartField(name As String, datasource As
String) As ChartField
 Dim chart = New ChartField() With { _
 .Name = name, _
 .Width = 7500, _
 .Height = 5000, _
 .Top = 100, _
 .Left = 100, _
 .DataSource = datasource _
 }
 chart.Border.Color = Color.Black
 chart.Border.Width = 15
 chart.Border.Style = DashStyle.Solid
 chart.Border.CornerRadius = New CornerRadius(200.0)
 chart.ChartArea2D.AxisY.AutoMin = False
 Return chart
 End Function
 Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click
 CreateChartSampleReport()
 C1FlexViewer1.DocumentSource = report
 End Sub

 private C1FlexReport CreateChartSampleReport()
 {

 var report = new C1FlexReport { ReportName =
"ChartSample" };
 // add data source "Employees"
 var dsEmployees = new DataSource
 {
 Name = "Employees",
 ConnectionString =
 @"Provider=Microsoft.Jet.OLEDB.4.0;Data

C#

FlexReport for WinForms 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

Source=..\..\Reports\C1Nwind.mdb;Persist Security Info=False",
 RecordSource = "Select * from Employees",
 };
 report.DataSources.Add(dsEmployees);
 // add calculated field "FullName".
 var calcFullName = new CalculatedField("FullName",
typeof(string), "=LastName & \" \" & FirstName");
 dsEmployees.CalculatedFields.Add(calcFullName);

 // add calculated field "Age".
 var calcAge = new CalculatedField("Age", typeof(int),
"=Year(Now())-Year(BirthDate) + 1");
 dsEmployees.CalculatedFields.Add(calcAge);
 // add data source "Products"
 var dsProducts = new DataSource
 {
 Name = "Products",
 ConnectionString =
 @"Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=..\..\Reports\C1Nwind.mdb;Persist Security Info=False",
 RecordSource =
 "Select Products.CategoryID as CategoryID,
Categories.CategoryName as CategoryName, Products.UnitsInStock as
UnitsInStock from Products inner join Categories on
Products.CategoryID = Categories.CategoryID"
 };
 report.DataSources.Add(dsProducts);
 report.Sections.Header.Visible = true;
 // add ChartField using Employees data source.
 var sectionEmployees =
report.Sections.Header.SubSections.Add();
 sectionEmployees.Name = "ChartWithEmployees";
 sectionEmployees.Height = 5200;
 sectionEmployees.Visible = true;
 sectionEmployees.Fields.Add(CreateChartForEmployees());
 // add ChartField using Products data source.
 var sectionProducts =
report.Sections.Header.SubSections.Add();
 sectionProducts.Name = "ChartWithProducts";
 sectionProducts.Height = 5200;
 sectionProducts.Visible = true;
 sectionProducts.Fields.Add(CreateChartForProducts());

 return report;
 }

 private ChartField CreateChartForEmployees()
 {
 var chart = CreateChartField("Chart1", "Employees");
 chart.Header.Text = "Employees Age";
 chart.ChartArea2D.Inverted = true;

FlexReport for WinForms 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

 chart.ChartArea2D.AxisX.OnTop = true;
 var group = chart.ChartGroups2D.Group0;
 group.ChartType = Chart2DType.Bar;
 var data = group.ChartData;
 data.IsForEachRecord = true; // show value of each
record in data source
 data.CategoryGroups.AddNewGroup("=FullName"); // group
by FullName
 var seriesTemplate = data.SeriesValues.AddNewSeries();
 seriesTemplate.DataValues.AddNewValue("=Age"); // show
Age in AxisY
 return chart;
 }
 private ChartField CreateChartForProducts()
 {
 var chart = CreateChartField("Chart2", "Products");
 chart.Header.Text = "Sum of UnitsInStock by Category";
 chart.ChartArea2D.Inverted = true;
 chart.ChartArea2D.AxisX.OnTop = true;
 var group = chart.ChartGroups2D.Group0;
 group.ChartType = Chart2DType.Bar;
 var data = group.ChartData;
 var categoryGroup =
data.CategoryGroups.AddNewGroup("=CategoryID"); // group by each
CategoryID
 categoryGroup.LabelExpression = "=CategoryName"; // show
the CategoryName in AxisX.
 var seriesTemplate = data.SeriesValues.AddNewSeries();

seriesTemplate.DataValues.AddNewValue("=Sum(UnitsInStock)"); // show
sum of UnitsInStock in AxisY.
 return chart;
 }
 private ChartField CreateChartField(string name, string
datasource)
 {
 var chart = new ChartField
 {
 Name = name,
 Width = 7500,
 Height = 5000,
 Top = 100,
 Left = 100,
 DataSource = datasource,
 };
 chart.Border.Color = Color.Black;
 chart.Border.Width = 15;
 chart.Border.Style = DashStyle.Solid;
 chart.Border.CornerRadius = new CornerRadius(200d);
 chart.ChartArea2D.AxisY.AutoMin = false;
 return chart;

FlexReport for WinForms 66

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }
private void button1_Click(object sender, EventArgs e)
 {
 CreateChartSampleReport();
 c1FlexViewer1.DocumentSource = report;
 }

Binding Data to Parameters in Multiple Data Source Report
Binding data to parameters defines the valid values for the report parameters (elements in the
C1FlexReport.Parameters collection). The ReportParameter.AllowedValuesDefinition.Binding.DataSourceName

FlexReport for WinForms 67

Copyright © 2017 GrapeCity, inc. All rights reserved.

property indicates the data source which is used to build the list of possible values in the parameters. The following
code illustrates how to bind data to the parameters in a report with multiple data sources.

' add datasource and parameter using this datasource
Dim mds As DataSource = C1FlexReport.DataSource
Dim ds As New DataSource()
ds.Name = "CategoriesDS"
ds.ConnectionString = mds.ConnectionString
ds.RecordSource = "select * from categories"
ds.DataProvider = DataProvider.OLEDB
C1FlexReport.DataSources.Add(ds)
mds.RecordSource = "select * from products where categoryid =
[CategoryParam]"
Dim rp As New ReportParameter()
rp.DataType = Doc.ParameterType.[Integer]
rp.Prompt = "Category"
rp.Name = "CategoryParam"
rp.AllowedValuesDefinition.Binding.DataSourceName = "CategoriesDS"
rp.AllowedValuesDefinition.Binding.ValueExpression = "CategoryID"
rp.AllowedValuesDefinition.Binding.LabelExpression = "CategoryName"
C1FlexReport.Parameters.Add(rp)

// add datasource and parameter using this datasource
DataSource mds = c1FlexReport.DataSource;
DataSource ds = new DataSource();
ds.Name = "CategoriesDS";
ds.ConnectionString = mds.ConnectionString;
ds.RecordSource = "select * from categories";
ds.DataProvider = DataProvider.OLEDB;
c1FlexReport.DataSources.Add(ds);
mds.RecordSource = "select * from products where categoryid =
[CategoryParam]";
ReportParameter rp = new ReportParameter();
rp.DataType = Doc.ParameterType.Integer;
rp.Prompt = "Category";
rp.Name = "CategoryParam";
rp.AllowedValuesDefinition.Binding.DataSourceName = "CategoriesDS";
rp.AllowedValuesDefinition.Binding.ValueExpression = "CategoryID";
rp.AllowedValuesDefinition.Binding.LabelExpression = "CategoryName";
c1FlexReport.Parameters.Add(rp);

Visual Basic

C#

Defining Calculated Fields
Calculated fields contain expressions that are evaluated at run-time. These can be added to a data source using
DataSource.CalculatedFields.Add method.

The code to add a calculated field, say 'Calc1' that calculates 'CategoryID * 2' , of the Integer type, is as follows:

Visual Basic

FlexReport for WinForms 68

Copyright © 2017 GrapeCity, inc. All rights reserved.

Dim ds As DataSource = C1FlexReport1.DataSources(0)
ds.CalculatedFields.Add(New CalculatedField("Calc1", GetType(Integer),
"CategoryID * 2"))

DataSource ds = c1FlexReport1.DataSources[0];
ds.CalculatedFields.Add(new CalculatedField("Calc1", typeof(int),
"CategoryID * 2"));

Note that if there are more than one Calculated field, they must have unique names.

Visual Basic

C#

Developing FlexReport for Desktop
In typical desktop scenarios, C1FlexReport runs on the same computer where the reports are generated and viewed
(the report data itself may still come from a remote server). The following sections assume that FlexReport is hosted in
a Visual Studio environment.

Load FlexReport at Design Time
In this scenario, an application generates reports using a fixed set of report definitions that are built into the
application. This type of application does not rely on any external report definition files, and end-users can not modify
these reports.

The main advantage of this type of application is that you don't need to distribute the report definition file, and you
can be sure that no one can modify the report format. The disadvantage is that to make any modifications to the
report, you must recompile the application.

If you want to use a report definition that you already have, without any modifications, follow these steps:

1. Add one C1FlexReport component for each report definition you want to distribute. You may want to name
each control after the report it will render (this will make your code easier to maintain).

2. Right-click each C1FlexReport component and select the Load Report menu option to load report definitions
into each control. (You can also click the smart tag () above the component to open the C1FlexReport Tasks
menu and choose the Load Report option.)
The Load Report dialog box appears, which allows you to select a report definition file and then a report
within that file.
To load a report, click the ellipses button to select the report definition file you created in Step 1, then select
the report from the drop-down list and click OK. The Load Report dialog box shows the name of the report
you selected and a count of groups, sections, and fields. This is what the dialog box looks like:

FlexReport for WinForms 69

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Add FlexViewer control to the form. Also, add a control that will allow the user to pick a report (this could be a
menu, a list box, or a group of buttons).

4. Add code to render the report selected by the user. For example, if you added a button in the previous step
with the name btnProductsReport, the code would look like this:

Private Sub btnProductsReport_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnProductsReport.Click
 c1FlexViewer1.DocumentSource =rptProducts
End Sub

private void btnProductsReport_Click(object sender, System.EventArgs
e)
{
c1FlexViewer1.DocumentSource =rptProducts;
}

Note that rptProducts is the name of the C1FlexReport component that contains the report selected by the
user and c1FlexViewer1 is the name of the FlexViewer control.

Visual Basic

C#

Create FlexReport at Design Time
The Load Report option, described in Load FlexReport at Design Time, makes it easy to embed reports you already
have in your application. In some cases, however, you may want to customize the report, or use data source objects
that are defined in your Visual Studio application rather than using connection strings and record sources. In these
situations, use the Edit Report command instead.

To create or edit reports at design time, right-click the C1FlexReport component and select the Edit Report menu
option to invoke the C1FlexReportDesigner application (you can also click the smart tag () above the component
to open the C1FlexReport Tasks menu and select the Edit Report option).

Note: If the Edit Report command doesn't appear on the context menu and Properties window, it is probably
because the control could not find the C1FlexReportDesigner application. To fix this, simply run the
C1FlexReportDesigner application once in stand-alone mode. The designer will save its location to the registry,
and the C1FlexReport component should be able to find it afterwards.

The C1FlexReportDesigner application shows the report that is currently loaded in the C1FlexReport component. If
the C1FlexReport component is empty, the Designer shows the C1FlexReport Wizard so you can create a new report.

FlexReport for WinForms 70

Copyright © 2017 GrapeCity, inc. All rights reserved.

This is the same C1FlexReportDesigner application that is used in stand-alone mode. The only differences you will
notice when you start the C1FlexReportDesigner application in this mode are:

You can use the data source objects defined in your application as data sources for your new reports.
When you close the Designer, any changes you made will be saved back into the C1FlexReport component on
the form (unless you choose to discard the changes by selecting File | Exit from the Designer's menu, and
select No to saving the changes).

To use data source objects defined in your application, click the Data Source button in the Designer, then select the
Tables option in the Select a Data Source dialog box.

The Tables page shows a list of data objects currently defined on the form (the page will not be visible if there aren't
any valid data sources on the form). Alternatively, you can use the Connection string to build and select a connection
string and record source as usual.

For example, if the main form contains a DataSet object with several DataTables attached to it, the data source picker
dialog box might look like this:

Once you are done creating or editing the report, you can close the Designer by selecting File | Save and File | Exit
from the menu. This will save the report definition directly into the component (as if you had loaded it from a file
using the Load Report command).

If you change your mind and decide to cancel the changes, quit the Designer selecting File | Exit from the menu and
choose No to saving the changes.

Load FlexReport at Run Time
Loading reports at run time requires a report definition file and a viewer. The main advantage of this type of
application is that if you modify the report format, there's no need to update the application. Simply send the new
report definition file to the users and you are done.

To create an application with reports loaded at run time, follow these steps:

1. Create all the required reports in the C1FlexReportDesigner application. For more information, see Working

FlexReport for WinForms 71

Copyright © 2017 GrapeCity, inc. All rights reserved.

with C1FlexReportDesigner.
2. Add the following controls to the application:

C1FlexReport component named c1FlexReport1
C1FlexViewer control named fv
ComboBox control named cmbReport
Button control named button1

3. Add the following Import statements to the top of the file:

Imports C1.Win.FlexReport
Imports System.IO

using C1.Win.FlexReport;
using System.IO;

This allows you to reference the C1FlexReport and System.IO classes and objects without having to specify
the full namespaces.

4. Add the following code in the button click event to read the report definition file and build a list of all reports:

Visual Basic
' get application path
Dim appPath As String
appPath = Path.GetDirectoryName(Application.ExecutablePath).ToLower()
Dim i As Integer = appPath.IndexOf(vbBack & "in")
If (i < 0) Then
 i = appPath.IndexOf(vbBack & "in")
End If
If (i > 0) Then
 appPath = appPath.Remove(i, appPath.Length - i)
End If
' get names of reports in the report definition file
m_ReportDefinitionFile = appPath & Convert.ToString("\Data\Products Report.flxr")
Dim reports As String() = C1FlexReport.GetReportList(m_ReportDefinitionFile)
' populate combo box
cmbReport.Items.Clear()

For Each report As String In reports
 cmbReport.Items.Add(report)
Next

C#
// get application path
string appPath;
appPath = Path.GetDirectoryName(Application.ExecutablePath).ToLower();
int i = appPath.IndexOf("\bin");
if ((i < 0)) { i = appPath.IndexOf("\bin"); }
if ((i > 0)) { appPath = appPath.Remove(i, appPath.Length - i); }
// get names of reports in the report definition file
m_ReportDefinitionFile = appPath + @"\Data\Products Report.flxr";
string[] reports = C1FlexReport.GetReportList(m_ReportDefinitionFile);
// populate combo box
cmbReport.Items.Clear();

Visual Basic

C#

FlexReport for WinForms 72

Copyright © 2017 GrapeCity, inc. All rights reserved.

foreach (string report in reports)
{
 cmbReport.Items.Add(report);
}

The code starts by getting the location of the file that contains the report definitions. This is done using static
methods in the system-defined Path and Application classes. You may have to adjust the code to reflect the
location and name of your report definition file.

Then it uses the GetReportList method to retrieve an array containing the names of all reports in the report
definition file (created in step 1), and populates the combo box allowing users to select the report.

5. Add code to render the report selected by the user. For example:
Visual Basic

Try
 Cursor = Cursors.WaitCursor

 ' load report
 fv.StatusText = "Loading" + cmbReport.Text
 C1FlexReport1.Load(m_ReportDefinitionFile, cmbReport.Text)

 ' render into print preview control
 fv.StatusText = "Rendering" + cmbReport.Text
 fv.DocumentSource = C1FlexReport1

 ' give focus to print preview control
 fv.Focus()
Finally
 Cursor = Cursors.[Default]
End Try

C#
try
{
 Cursor = Cursors.WaitCursor;

 // load report
 fv.StatusText = "Loading" + cmbReport.Text;
 c1FlexReport1.Load(m_ReportDefinitionFile, cmbReport.Text);

 // render into print preview control
 fv.StatusText = "Rendering" + cmbReport.Text;
 fv.DocumentSource = c1FlexReport1;

 // give focus to print preview control
 fv.Focus();
}
finally
{
 Cursor = Cursors.Default;
}

6. Run the project.

Adding Parameters
Parameters are an important part of any report. They influence the data populated by manipulating the data passed
in the report. Parameters can be used for modifying the default values of data and applying filtering to the data. You
can also select more than one value using multi-value parameters.

FlexReport for WinForms 73

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexReport has parameters collection, C1FlexReport.Parameters, where parameters can be defined to specify types,
captions, default value, possible values, and so on.

Each element that is defined as parameters in the C1FlexReport.Parameters collection is an instance of
the ReportParameter class, with the following properties:

Nullable Gets or sets a value indicating whether the value of this parameter can be Null. Cannot
be true if this is a multi-value parameter.

AllowBlank Gets or sets a value indicating whether the value of this parameter can be an empty
string. Ignored unless DataType is String.

MultiValue Gets or sets a value indicating whether this is a multivalue parameter (a parameter that
can take a set of values).

Hidden Gets or sets a value indicating whether the parameter should be hidden from the end
user (however, it will still be available for programmatic use with subreports, drill-
through reports etc.)

Prompt Gets or sets the prompt shown to the end user when prompting for parameter values.

Value Gets or sets the parameter value. Value can be specified as an array if MultiValue is true
(in this case all items should have the same item type).

DataType Gets or sets the data type of the Parameter.

AllowedValuesDefinition Gets AllowedValuesDefinition defining the list of allowed values for this parameter.
Allowed values can be specified as a static list using AllowedValuesDefinition.Values
property, or as a dynamic list bound to one of report’s data sources using
AllowedValuesDefinition.Binding property.

Report parameters can be easily added through the FlexReportDesigner application. For more information,
see Working with Parameters and Binding Data to Parameters in Multiple Data Source Report .

Grouping Data
Grouping is the most commonly used method to represent data in an organized manner. After designing the basic layout,
you may decide to segregate the records by certain fields, or other criteria that would make the report easier to read. By
grouping data, you can separate groups of records and display introductory and summary data for each group. The group
break is based on a grouping expression. This expression is usually based on one or more recordset fields but it can be as
complex as you want.

In FlexReport, grouping is achieved by using C1FlexReport.Groups.

Lets say you want to view a list of employees falling under a designation or title. In this case, the list should be grouped by
Title. The following steps illustrate how to Group the list of employees by the Title. This example uses sample created
in FlexReport Quick Start.

1. Add a C1CheckBox to the Form in the FlexReport Quick Start project.
2. Set the C1CheckBox Name to 'groupC1CheckBox' and Text to 'Group Report by Title'.
3. Create CheckedChanged event as c1CheckBox1_CheckedChanged.
4. Add the following code.

Private grp As Group
Private s As Section
Private Sub c1CheckBox1_CheckedChanged(sender As Object, e As EventArgs)

Visual Basic

FlexReport for WinForms 74

Copyright © 2017 GrapeCity, inc. All rights reserved.

 If groupC1CheckBox.Checked Then
 ' group employees by title and sort titles in ascending order
 grp = C1FlexReport1.Groups.Add("GrpTitle", "Title",
SortEnum.Ascending)
 ' format the Header section for the new group
 s = grp.SectionHeader
 s.Height = 1000
 s.Visible = True
 Dim f As New TextField()
 f.Name = "Title"
 f.Text.Expression = "Title"
 f.Left = 0
 f.Top = 0
 f.Width = C1FlexReport1.Layout.Width
 f.Height = 500
 f.Align = FieldAlignEnum.LeftMiddle
 f.Font.Bold = True
 f.Font.Size = 12
 f.Border = New Border(2, Color.Black, DashStyle.Solid)
 f.BackColor = Color.FromArgb(150, 150, 220)
 f.MarginLeft = 100
 s.Fields.Add(f)
 C1FlexReport1.Render()
 Else
 btnEmployees.PerformClick()
 End If
End Sub

Group grp;
Section s;
private void c1CheckBox1_CheckedChanged(object sender, EventArgs e)
 {
 if (groupC1CheckBox.Checked)
 {
 // group employees by title and sort titles in ascending
order
 grp = c1FlexReport1.Groups.Add("GrpTitle", "Title",
SortEnum.Ascending);
 // format the Header section for the new group
 s = grp.SectionHeader;
 s.Height = 1000;
 s.Visible = true;

 TextField f = new TextField();
 f.Name = "Title";
 f.Text.Expression = "Title";
 f.Left = 0;
 f.Top = 0;
 f.Width = c1FlexReport1.Layout.Width;
 f.Height = 500;
 f.Align = FieldAlignEnum.LeftMiddle;
 f.Font.Bold = true;
 f.Font.Size = 12;

C#

FlexReport for WinForms 75

Copyright © 2017 GrapeCity, inc. All rights reserved.

 f.Border = new Border(2, Color.Black, DashStyle.Solid);
 f.BackColor = Color.FromArgb(150, 150, 220);
 f.MarginLeft = 100;
 s.Fields.Add(f);
 c1FlexReport1.Render();
 }
 else
 {
 btnEmployees.PerformClick();
 }
 }

5. Run the project. Click Employees button to render the report.
6. Click 'Group Report by Title' checkbox to view grouping the report. Observe that the titles are sorted in the ascending

order.

Adding Subtotals and Other Aggregates
C1FlexReport supports aggregate expressions in all its calculated fields. The aggregate expressions includes

FlexReport for WinForms 76

Copyright © 2017 GrapeCity, inc. All rights reserved.

aggregates - Sum, Min, Max, Avg, Count, Range, Var, and so on.

All aggregate functions take an expression as an argument and evaluate it within a scope that is determined by their
position in the report. For example, aggregates in group headers or footers have the scope of the group. Aggregates
in the report header or footer have the scope of the entire report.

For example, the following aggregate expression would return the sum of all values in the Sales field for the scope of
the aggregate (group or report): Sum(Sales)

The following aggregate expression would return the total amount of sales taxes paid for all values in the report
(assuming an 8.5% sales tax):Sum(Sales * 0.085)

The following example uses Count aggregate to calculate number of records for employees falling under a
designation.

1. Add the following code in the check box event (c1CheckBox1_CheckedChanged) created in the
sample Grouping Data.

Dim f1 As New Field()
f1.Name = "CountRecords"
f1.Text = "Count(GrpTitle)"
f1.Left = 2000
f1.Top = 500
f1.Width = C1FlexReport1.Layout.Width - 2000
f1.Height = 400
f1.Align = FieldAlignEnum.LeftMiddle
f1.MarginLeft = 100
f1.Calculated = True
f1.Visible = True
f1.BackColor = Color.Yellow
f1.Font.Bold = True
f1.Font.Size = 10
s.Fields.Add(f1)
Dim tf As New TextField()
tf.Name = "Text"
tf.Text = "Number Of Records: "
tf.Left = 0
tf.Top = 500
tf.Width = C1FlexReport1.Layout.Width - f1.Width
tf.Height = 400
tf.Align = FieldAlignEnum.LeftMiddle
tf.Font.Bold = True
tf.Font.Size = 10
tf.BackColor = Color.Transparent
tf.BackColor = Color.Yellow
tf.MarginLeft = 100
tf.Visible = True
s.Fields.Add(tf)

Field f1 = new Field();
f1.Name = "CountRecords";
f1.Text = "Count(GrpTitle)";

Visual Basic

C#

FlexReport for WinForms 77

Copyright © 2017 GrapeCity, inc. All rights reserved.

f1.Left = 2000;
f1.Top = 500;
f1.Width = c1FlexReport1.Layout.Width - 2000;
f1.Height = 400;
f1.Align = FieldAlignEnum.LeftMiddle;
f1.MarginLeft = 100;
f1.Calculated = true;
f1.Visible = true;
f1.BackColor = Color.Yellow;
f1.Font.Bold = true;
f1.Font.Size = 10;
s.Fields.Add(f1);
TextField tf = new TextField();
tf.Name = "Text";
tf.Text = "Number Of Records: ";
tf.Left = 0;
tf.Top = 500;
tf.Width = c1FlexReport1.Layout.Width - f1.Width;
tf.Height = 400;
tf.Align = FieldAlignEnum.LeftMiddle;
tf.Font.Bold = true;
tf.Font.Size = 10;
tf.BackColor = Color.Transparent;
tf.BackColor = Color.Yellow;
tf.MarginLeft = 100;
tf.Visible = true;
s.Fields.Add(tf);

2. Run the project. Click 'Employees' button to render the report.
3. Click 'Group Report by Title' checkbox to view grouping in the report. Observe that Number of Records are

calculated for each group.

FlexReport for WinForms 78

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating Cross-Tab Reports
Cross-tab reports group data in two dimensions (down and across). They are useful for summarizing large amounts of data in
a format that cross-references information.

The following steps create a cross-tab report in the report created in FlexReport Quick Start.

1. Add a Button to the Form in the FlexReport Quick Start project.
2. Set the Button Name to 'crossC1Button' and Text to 'View Cross Tab-Report'.
3. Create Click event as crossC1Button_Click.
4. Write the following code.

Private grp2 As Group
Private Sub crossC1Button_Click(sender As Object, e As EventArgs)
 btnEmployees.PerformClick()
 c1FlexReport1.Sections.Detail.Visible = False
 grp2 = c1FlexReport1.Groups.Add("GrpCountry", "Country",
SortEnum.Ascending)
 ' format the Header section for the new group

Visual Basic

FlexReport for WinForms 79

Copyright © 2017 GrapeCity, inc. All rights reserved.

 c1FlexReport1.Sections.PageHeader.Height = 600
 shpfld2.Top = 600
 s = grp2.SectionHeader
 s.Height = 400
 s.AutoHeight = AutoSizeBehavior.GrowAndShrink
 s.Visible = True
 textFld4.Text = "Country"
 textFld4.Width = 1000
 textFld4.Align = FieldAlignEnum.CenterMiddle
 textFld4.Height = 400
 textFld4.Font.Bold = True
 textFld4.Font.Size = 10
 textFld5.Text = "Total"
 textFld5.Width = 1000
 textFld5.Left = 1000
 textFld5.Align = FieldAlignEnum.CenterMiddle
 textFld5.Height = 400
 textFld5.Font.Bold = True
 textFld5.Font.Size = 10
 textFld6.Text = "Sales Representative"
 textFld6.Width = 2000
 textFld6.Left = 2000
 textFld6.Align = FieldAlignEnum.CenterMiddle
 textFld6.Height = 500
 textFld6.Font.Bold = True
 textFld6.Font.Size = 10
 textFld7.Text = "Vice President"
 textFld7.Width = 1500
 textFld7.Left = 4000
 textFld7.Align = FieldAlignEnum.CenterMiddle
 textFld7.Height = 400
 textFld7.Font.Bold = True
 textFld7.Font.Size = 10
 textFld8.Text = "Sales Manager"
 textFld8.Width = 1500
 textFld8.Left = 5800
 textFld8.Align = FieldAlignEnum.CenterMiddle
 textFld8.Height = 400
 textFld8.Font.Bold = True
 textFld8.Font.Size = 10
 Dim isc As New TextField()
 isc.Text = "Inside Sales Coordinator"
 isc.Width = 1500
 isc.Left = 7500
 isc.Align = FieldAlignEnum.CenterMiddle
 isc.Height = 400
 isc.Font.Bold = True
 isc.Font.Size = 10
 isc.Visible = True
 c1FlexReport1.Sections.PageHeader.Fields.Add(isc)
 Dim f1 As New Field()
 f1.Name = "Country"
 f1.Text = "Country"
 f1.Left = 80

FlexReport for WinForms 80

Copyright © 2017 GrapeCity, inc. All rights reserved.

 f1.Top = 0
 f1.Width = 1000
 f1.Height = 400
 f1.Align = FieldAlignEnum.CenterMiddle
 f1.MarginLeft = 100
 f1.Calculated = True
 f1.Visible = True
 f1.BackColor = Color.Transparent
 f1.Font.Bold = True
 f1.Font.Size = 10
 s.Fields.Add(f1)
 Dim f7 As New TextField()
 f7.Name = "RunCount"
 f7.Text = "=Count(Title)"
 f7.Left = 1080
 f7.Top = 0
 f7.Width = 1000
 f7.Height = 400
 f7.Align = FieldAlignEnum.CenterMiddle
 f7.MarginLeft = 100
 f7.Visible = True
 f7.Font.Bold = True
 f7.Font.Size = 10
 s.Fields.Add(f7)
 Dim f8 As New TextField()
 f8.Name = "SRCount"
 f8.Text = "=Count(Title, Title = ""Sales Representative"")"
 f8.Left = 2080
 f8.Top = 0
 f8.Width = 1000
 f8.Height = 400
 f8.Align = FieldAlignEnum.CenterMiddle
 f8.MarginLeft = 100
 f8.Visible = True
 f8.Font.Bold = True
 f8.Font.Size = 10
 s.Fields.Add(f8)
 Dim f9 As New TextField()
 f9.Name = "VPCount"
 f9.Text = "=Count(Title, Title = ""Vice President, Sales"")"
 f9.Left = 4000
 f9.Top = 0
 f9.Width = 1000
 f9.Height = 400
 f9.Align = FieldAlignEnum.CenterMiddle
 f9.MarginLeft = 100
 f9.Visible = True
 f9.Font.Bold = True
 f9.Font.Size = 10
 s.Fields.Add(f9)
 Dim f10 As New TextField()
 f10.Name = "SMCount"
 f10.Text = "=Count(Title, Title = ""Sales Manager"")"
 f10.Left = 5800

FlexReport for WinForms 81

Copyright © 2017 GrapeCity, inc. All rights reserved.

 f10.Top = 0
 f10.Width = 1000
 f10.Height = 400
 f10.Align = FieldAlignEnum.CenterMiddle
 f10.MarginLeft = 100
 f10.Visible = True
 f10.Font.Bold = True
 f10.Font.Size = 10
 s.Fields.Add(f10)
 Dim f11 As New TextField()
 f11.Name = "ISCCount"
 f11.Text = "=Count(Title, Title = ""Inside Sales Coordinator"")"
 f11.Left = 7500
 f11.Top = 0
 f11.Width = 1000
 f11.Height = 400
 f11.Align = FieldAlignEnum.CenterMiddle
 f11.MarginLeft = 100
 f11.Visible = True
 f11.Font.Bold = True
 f11.Font.Size = 10
 s.Fields.Add(f11)
 c1FlexReport1.Render()
End Sub

Group grp2;
 private void crossC1Button_Click(object sender, EventArgs e)
 {

 btnEmployees.PerformClick();
 c1FlexReport1.Sections.Detail.Visible = false;

 grp2 = c1FlexReport1.Groups.Add("GrpCountry", "Country",
SortEnum.Ascending);
 // format the Header section for the new group
 c1FlexReport1.Sections.PageHeader.Height = 600;
 shpfld2.Top = 600;
 s = grp2.SectionHeader;
 s.Height = 400;
 s.AutoHeight = AutoSizeBehavior.GrowAndShrink;
 s.Visible = true;
 textFld4.Text = "Country";
 textFld4.Width = 1000;
 textFld4.Align = FieldAlignEnum.CenterMiddle;
 textFld4.Height = 400;
 textFld4.Font.Bold = true;
 textFld4.Font.Size = 10;
 textFld5.Text = "Total";
 textFld5.Width = 1000;
 textFld5.Left = 1000;
 textFld5.Align = FieldAlignEnum.CenterMiddle;
 textFld5.Height = 400;
 textFld5.Font.Bold = true;

C#

FlexReport for WinForms 82

Copyright © 2017 GrapeCity, inc. All rights reserved.

 textFld5.Font.Size = 10;
 textFld6.Text = "Sales Representative";
 textFld6.Width = 2000;
 textFld6.Left = 2000;
 textFld6.Align = FieldAlignEnum.CenterMiddle;
 textFld6.Height = 500;
 textFld6.Font.Bold = true;
 textFld6.Font.Size = 10;
 textFld7.Text = "Vice President";
 textFld7.Width = 1500;
 textFld7.Left = 4000;
 textFld7.Align = FieldAlignEnum.CenterMiddle;
 textFld7.Height = 400;
 textFld7.Font.Bold = true;
 textFld7.Font.Size = 10;
 textFld8.Text = "Sales Manager";
 textFld8.Width = 1500;
 textFld8.Left = 5800;
 textFld8.Align = FieldAlignEnum.CenterMiddle;
 textFld8.Height = 400;
 textFld8.Font.Bold = true;
 textFld8.Font.Size = 10;
 TextField isc = new TextField();
 isc.Text = "Inside Sales Coordinator";
 isc.Width = 1500;
 isc.Left = 7500;
 isc.Align = FieldAlignEnum.CenterMiddle;
 isc.Height = 400;
 isc.Font.Bold = true;
 isc.Font.Size = 10;
 isc.Visible = true;
 c1FlexReport1.Sections.PageHeader.Fields.Add(isc);
 Field f1 = new Field();
 f1.Name = "Country";
 f1.Text = "Country";
 f1.Left = 80;
 f1.Top = 0;
 f1.Width = 1000;
 f1.Height = 400;
 f1.Align = FieldAlignEnum.CenterMiddle;
 f1.MarginLeft = 100;
 f1.Calculated = true;
 f1.Visible = true;
 f1.BackColor = Color.Transparent;
 f1.Font.Bold = true;
 f1.Font.Size = 10;
 s.Fields.Add(f1);
 TextField f7 = new TextField();
 f7.Name = "RunCount";
 f7.Text = "=Count(Title)";
 f7.Left = 1080;
 f7.Top = 0;
 f7.Width = 1000;
 f7.Height = 400;

FlexReport for WinForms 83

Copyright © 2017 GrapeCity, inc. All rights reserved.

 f7.Align = FieldAlignEnum.CenterMiddle;
 f7.MarginLeft = 100;
 f7.Visible = true;
 f7.Font.Bold = true;
 f7.Font.Size = 10;
 s.Fields.Add(f7);
 TextField f8 = new TextField();
 f8.Name = "SRCount";
 f8.Text = "=Count(Title, Title = \"Sales Representative\")";
 f8.Left = 2080;
 f8.Top = 0;
 f8.Width = 1000;
 f8.Height = 400;
 f8.Align = FieldAlignEnum.CenterMiddle;
 f8.MarginLeft = 100;
 f8.Visible = true;
 f8.Font.Bold = true;
 f8.Font.Size = 10;
 s.Fields.Add(f8);
 TextField f9 = new TextField();
 f9.Name = "VPCount";
 f9.Text = "=Count(Title, Title = \"Vice President, Sales\")";
 f9.Left = 4000;
 f9.Top = 0;
 f9.Width = 1000;
 f9.Height = 400;
 f9.Align = FieldAlignEnum.CenterMiddle;
 f9.MarginLeft = 100;
 f9.Visible = true;
 f9.Font.Bold = true;
 f9.Font.Size = 10;
 s.Fields.Add(f9);
 TextField f10 = new TextField();
 f10.Name = "SMCount";
 f10.Text = "=Count(Title, Title = \"Sales Manager\")";
 f10.Left = 5800;
 f10.Top = 0;
 f10.Width = 1000;
 f10.Height = 400;
 f10.Align = FieldAlignEnum.CenterMiddle;
 f10.MarginLeft = 100;
 f10.Visible = true;
 f10.Font.Bold = true;
 f10.Font.Size = 10;
 s.Fields.Add(f10);
 TextField f11 = new TextField();
 f11.Name = "ISCCount";
 f11.Text = "=Count(Title, Title = \"Inside Sales Coordinator\")";
 f11.Left = 7500;
 f11.Top = 0;
 f11.Width = 1000;
 f11.Height = 400;
 f11.Align = FieldAlignEnum.CenterMiddle;
 f11.MarginLeft = 100;

FlexReport for WinForms 84

Copyright © 2017 GrapeCity, inc. All rights reserved.

 f11.Visible = true;
 f11.Font.Bold = true;
 f11.Font.Size = 10;
 s.Fields.Add(f11);
 c1FlexReport1.Render();
 }

5. Run the project. Click 'View Cross Tab-Report' button to view cross-tab report. Observe that the details corresponding
to the employee titles in the two countries are shown.

Sorting Data
Sorting is another way to organize data in ascending or descending order.

In FlexReport, sorting is achieved by using DataSource.SortDefinitions.

Lets say you want to view the list of employees with their names in ascending order. In this case the list should be sorted by
First Name. The following steps illustrate how to Sort the names of the list of employees in alphabetical order. This example
uses sample created in FlexReport Quick Start.

1. Add a C1Button to the form in the FlexReport Quick Start project.
2. Set the C1Button Name to 'sortC1Button' and Text to 'Sort Report by Employee First Name'.
3. Create Click event as sortC1Button_Click.
4. Add the following code.

Private asc As Boolean = True
 Private Sub sortC1Button_Click(sender As Object, e As EventArgs)
Handles Button2.Click
 If asc Then
 Dim sd As New SortDefinition("[FirstName]",
SortDirection.Ascending)
 C1FlexReport1.DataSource.SortDefinitions.Add(sd)
 asc = False
 Else

Visual Studio

FlexReport for WinForms 85

Copyright © 2017 GrapeCity, inc. All rights reserved.

 btnEmployees.PerformClick()
 asc = True
 End If
 C1FlexReport1.Render()
 End Sub

 bool asc = true;
 private void sortC1Button_Click(object sender, EventArgs e)
 {
 if (asc)
 {
 SortDefinition sd = new SortDefinition("[FirstName]",
SortDirection.Ascending);
 c1FlexReport1.DataSource.SortDefinitions.Add(sd);
 asc = false;
 }
 else
 {
 btnEmployees.PerformClick();
 asc = true;
 }
 c1FlexReport1.Render();
 }

5. Preview the report. Click Employees button to render the report.
6. Click 'Sort Report by Employee First Name' button to view sorting in the report.

C#

Filtering Data
Filtering a data is important where you want to view only a portion of data based on certain criteria. In FlexReport, the

FlexReport for WinForms 86

Copyright © 2017 GrapeCity, inc. All rights reserved.

data is filtered by using DataSource.Filter.

Lets say you want to view the employee detail corresponding to an Employee ID for the report created in FlexReport
Quick Start. Add the following code where EmployeeID field is added in the Detail section, to Filter the employee
detail corresponding to the 'EmployeeID = 2'.

C1FlexReport1.DataSource.Filter = "EmployeeID = 2"

c1FlexReport1.DataSource.Filter = "EmployeeID = 2";

Run the project. You see that the First name, Last name, Title, and Notes for the employee with EmployeeID = 2 is
displayed.

Visual Basic

C#

FlexReport for WinForms 87

Copyright © 2017 GrapeCity, inc. All rights reserved.

Exporting Reports to Various Formats
Export using FlexViewer

With FlexViewer control, you can preview the reports as well as export them. The reports can be exported to several
file formats: .pdf, .html, .rtf, .docx, .xls, .xlsx, .zip, .tiff, .bmp, .png, .jpg, and .gif. The following code describes how to
export a FlexReport using Export method of C1FlexViewer Class:

'Load report definition
C1FlexReport1.Load(@"reportFile", "reportName")

'Specify the report shown by the viewer
C1FlexViewer1.DocumentSource = C1FlexReport1

Visual Basic

FlexReport for WinForms 88

Copyright © 2017 GrapeCity, inc. All rights reserved.

'Export
C1FlexViewer1.Export()

//Load report definition
c1FlexReport1.Load(@"reportFile", "reportName");

//Specify the report shown by the viewer
c1FlexViewer1.DocumentSource = c1FlexReport1;

//Export
c1FlexViewer1.Export();

Export to PDF using FlexReport

The following code describes how to export a FlexReport to PDF using PdfFilter class. Similarly, you can also export
the report to other formats mentioned above.

Visual Basic

'create report object
Dim c1FlexReport1 As New C1FlexReport()

'Load a report
c1FlexReport1.Load("../../ProductsReport.flxr", "Products Report")
c1FlexReport1.Render()

'Create PdfFilter object
Dim filter As New C1.Win.C1Document.Export.PdfFilter()
filter.ShowOptions = False

'Give file name and path where exported file will be saved
filter.FileName = "Products Report" + "../../ProductsReport.pdf"
'The report is exported as ProductsReport.pdf in bin\debug folder

'Export
c1FlexReport1.RenderToFilter(filter)

C#

//create report object
C1FlexReport c1FlexReport1 = new C1FlexReport();

//Load a report
c1FlexReport1.Load(@"..\..\ProductsReport.flxr", "Products Report");
c1FlexReport1.Render();

//Create PdfFilter object
C1.Win.C1Document.Export.PdfFilter filter = new C1.Win.C1Document.Export.PdfFilter();
filter.ShowOptions = false;

//Give file name and path where exported file will be saved
filter.FileName = "Products Report" + @"..\..\ProductsReport.pdf";
//The report is exported as ProductsReport.pdf in bin\debug folder

//Export
c1FlexReport1.RenderToFilter(filter);

C#

FlexReport for WinForms 89

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with VBScript
VBScript expressions are widely used throughout a report definition to retrieve, calculate, display, group, sort, filter,
parameterize, and format the contents of a report. Some expressions are created for you automatically (for example,
when you drag a field from the Toolbox onto a section of your report, an expression that retrieves the value of that
field is displayed in the text box). However, in most cases, you create your own expressions to provide more
functionality to your report.

Note the following differences between VBScript expressions and statements:

Expressions return values, you can assign them to things like Field.Text, for example:
 Field1.Text.Expression = "iif(1=1, 1+2, 1+3)"
Statements don't return values. You can assign them to event properties like OnFormat. For example:
c1FlexReport.OnOpen = "if 1=1 then msgbox("OK!!!") else msgbox("ooops")"

C1FlexReport relies on VBScript to evaluate expressions in calculated fields and to handle report events.

VBScript is a full-featured language, and you have access to all its methods and functions when writing C1FlexReport
expressions. For the intrinsic features of the VBScript language, refer to the Microsoft Developer's Network (MSDN).

Global Scripts can be written in the new VBScript Editor. This editor allows users to define VBScript functions and
subroutines that are accessible throughout the report. To directly access the VBScript Editor, press F7 and to close the
editor and save the changes, use the shortcut key Ctrl+W. Users can switch between scripts and also change options
such as fonts or colors within the editor. The editor also makes the scripting experience intuitive and easy for
developers with advanced features such as syntax check, pre-defined VBScript functions, and rearranged scripting
functions.

To write global scripts using VBScript Editor option,

1. Go to Home Tab of C1FlexReportDesigner.
2. Click VBScript Editor and write desired global script; for example,

 function Backcolor()
 Detail.Backcolor=rgb(255,0,0)
 end function

You can also write global scripts using GlobalScripts property of C1FlexReportDesigner as follows:

1. Select the report in which you want to write global script.
2. Go to the GlobalScripts property of the report and then click ellipses. This opens VBScript Editor dialog box.
3. Write the global script as above, in the VBScript Editor.

FlexReport for WinForms 90

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn1.microsoft.com/en-us/default.aspx

So, you have defined a global function 'Backcolor()', which can be used throughout the report.

The VBScript Editor has the following additional features:

IntelliSense: Provides auto code completion prompts for the scripts supported by VBScript Editor. IntelliSense
in VBScript Editor has following features:

The IntelliSense window that displays a context-dependent list of available words also displays a
detailed help on VBScript functions and keywords in a small tooltip or help window. The italic font on
the detailed help basically shows the category to which the current item belongs (such as 'VBScript
function', 'C1FlexReport aggregate script function', .NET object property, and so on).
On editing DataSource.Filter, the editor opens as Expression Editor - DataSource.Filter and
IntelliSense shows keywords or functions available in that with corresponding help.
Icons associated with IntelliSense entries indicate the type of the entry. The icons' color palette is
different for VBScript, report built-in stuff, and DataSource.Filter.
When a user types and Intellisense window is opened, the list is filtered according to the letters being
typed for example, typing 't' will only show words that contain the letter 't', typing 'te' will narrow the
list to words that contain 'te', and so on.
Backspace in the IntelliSense window undoes the last filter.
Pressing square bracket '[' shows the list of available db fields.
Pressing dot '.' after the name of an object such as a report, field, or section shows the .NET properties
available for that object
Pressing Ctrl+J, Ctrl+Space, or a letter after a non-letter character shows the list of available VBScript
functions, keywords, etc. depending on the context.

FlexReport for WinForms 91

Copyright © 2017 GrapeCity, inc. All rights reserved.

Split Window: Lets you view or write two same or different scripts in single VBScriptEditor. By default, the
VBScript editor opens as a single window.

To switch to Split Window
Switch to the split window mode by clicking the split window glyph and dragging it down to open another
editor at the top. The windows can be resized by dragging the divider between the windows.

To switch back to the single window
Click the 'x' glyph on the top right corner of the window to close the top window, turn the split mode off, and
zoom out the bottom window. The enabled or disabled state of ribbon buttons depends on the current
window, which is shown with a light green caption bar. The split window mode has following additional
functionalities:

Switch between the two windows by pressing F6.
Hide the top window in a split window mode by dragging the split window glyph or the divider line high
enough across the top window.

Note that Global Scripts dropdown in VBScript Editor is enabled only if you have previously defined global
script(s) in your report.

C1FlexReport extends VBScript by exposing additional objects, variables, and functions. These extensions are
described in the following sections.

VBScript Elements, Objects, and Variables
The following tables detail VBScript elements, objects, and variables.

Operators

The following table contains the VBScript operators:

Operator Description

And Performs a logical conjunction on two expressions.

Or Performs a logical disjunction on two expressions.

Not Performs a logical disjunction on two expressions.

Mod Divides two numbers and returns only the remainder.

Reserved symbols

The following table contains the VBScript reserved symbols and how to use them:

Keyword Description

True The True keyword has a value equal to -1.

False The False keyword has a value equal to 0.

Nothing Used to disassociate an object variable from any actual object. To assign
Nothing to an object variable, use the Set statement, for example: Set
MyObject = Nothing Several object variables can refer to the same actual
object. When Nothing is assigned to an object variable, that variable no longer
refers to any actual object. When several object variables refer to the same
object, memory and system resources associated with the object to which the

FlexReport for WinForms 92

Copyright © 2017 GrapeCity, inc. All rights reserved.

variables refer are released only after all of them have been set to Nothing,
either explicitly using Set, or implicitly after the last object variable set to
Nothing.

Null The Null keyword is used to indicate that a variable contains no valid data.

vbCr When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbCrLf When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbLf When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbFormFeed When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbNewLine When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbNullChar When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbTab When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbVerticalTab When you call print and display functions, you can use the following constants
in your code in place of the actual values.

vbBlack Black. Value = 0x0.

vbRed Red. Value = 0xFF.

vbGreen Green. Value = 0xFF00.

vbYellow Yellow. Value = 0xFFFF.

vbBlue Blue. Value = 0xFF0000.

vbMagenta Magenta. Value = 0xFF00FF.

vbCyan Cyan. Value = 0xFFFF00.

vbWhite White. Value = 0xFFFFFF.

Built-in functions

The VBScript built-in functions are listed below:

Abs Date Iif Minute Sign

Acos DateAdd InputBox Month Space

Asc DateDiff InStr MonthName Sqr

Asin DatePart InStrRev MsgBox StrComp

Atn DateSerial Int Now String

CBool DateValue IsDate Oct Tan

Keyword Description

FlexReport for WinForms 93

Copyright © 2017 GrapeCity, inc. All rights reserved.

CByte Day IsEmpty Pi Time

CCur Exp IsNull Replace Timer

CDate Fix IsNumeric RGB TimeSerial

CDbl Format IsObject Right TimeValue

Chr FormatCurrency LCase Rnd Trim

CInt FormatDateTime Left Round TypeName

CLng FormatNumber Len RTrim UCase

Cos FormatPercent Log Second WeekDay

CSng Hex LTrim Sgn WeekDayName

CStr Hour Mid Sin Year

For more information on the VBScript functions, see the MSDN documentation.

The key features of VBScript that are part of C1FlexReport are as follows:

Aggregate functions (Sum, Average, StDev, Var, Count, and so on)
Report and Database field names
Page/Pages variables
Report objects
String functions (Chr, Format, and so on)
Data Conversion (CBool, CByte, an so on)
Math functions (cos, sin, and so on)
Date/Time functions (DateAdd, Hour, and so on)
Functions and Subs
Conditional statements
Built-in functions (Like and In)

Built-in script functions, Like and In have functionality similar to SQL operators LIKE and IN and return True or False.
Like(str, template): Compares 'str' to 'template', which can contain wildcard '%'. Some examples of Like function are as
follows:

Like("abc", "%bc") returns True.
Like("abc", "%bcd") returns False.
Like("abc", "ab%") returns True.
Like("abc", "abd%") returns False.
Like("abc", "%b%") returns True.
Like("abc", "%d%") returns False.
Like("abc", "abc") returns True.
Like("abc", "abcd") returns False.
Like("Abc", "abc") returns False.

In(obj, obj1, ... objN): Tests whether 'obj' is among objects 'obj1', ... , 'objN'. Some examples of In function are as
follows:

In(1,1,2,3) returns True.
In(1,2,3) returns False.
In("a", "a", "b", "c") returns True.
In("a", "b", "c") returns False.
In("A", "a", "b", "c") returns False.

As you can observe, both the functions are case-sensitive, so "abc" is not the same as "Abc".

FlexReport for WinForms 94

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/3ca8tfek.aspx

Note that the following VBScript features are not supported in C1FlexReport:

Arrays
Select/Case statements

Statement keywords

The VBScript statement keywords are listed below:

If ElseIf To While Dim

Then EndIf Next Wend Redim

Else For Step Const

Report Field Names

Names of Field objects are evaluated and return a reference to the object, so you can access the field's properties. The
default property for the Field object is Value, so by itself the field name returns the field's current value. For example:

MyField.BackColor = RGB(200,250,100)
MyField.Font.Size = 14
MyField * 2 ' (same as MyField.Value * 2)

Note: If you give a report field the same name as a database field, you won't be able to access the report field.

Report Section Names

Names of Section objects are evaluated and return a reference to the object, so you can access the section's
properties. The default property for the Section object is Name. For example:
If Page = 1 Then [Page Footer].Visible = False

Database Field Names

Names of fields in the report's dataset source are evaluated and return the current field value. If a field name contains
spaces or periods, it must be enclosed in square brackets. For example:

OrderID
UnitsInStock
[Customer.FirstName]
[Name With Spaces]

Report Variables

Page

The page variable returns or sets the value of the Page property. This property is initialized by the control when it
starts rendering a report, and is incremented at each page break. You may reset it using code. For example:

If Country <> LastCountry Then Page = 1
LastCountry = Country

Pages

The pages variable returns a token that gets replaced with the total page count when the report finishes rendering.
This is a read-only property that is typically used in page header or footer fields. For example:
"Page " & Page & " of " & Pages

Report Object

FlexReport for WinForms 95

Copyright © 2017 GrapeCity, inc. All rights reserved.

The report object returns a reference to the control object, so you can access the full C1FlexReport object model from
your scripts and expressions. For example:

"Fields: " & Report.Fields.Count

Cancel

Set Cancel to True to cancel the report rendering process. For example:

If Page > 100 Then Cancel = True

Compatibility Functions: Iif and Format
To increase compatibility with code written in Visual Basic and Microsoft Access (VBA), C1FlexReport exposes two
functions that are not available in VBScript: Iif and Format.

Iif evaluates a Boolean expression and returns one of two values depending on the result. For example:

Iif(SalesAmount > 1000, "Yes", "No")

Format converts a value into a string formatted according to instructions contained in a format expression. The value
may be a number, Boolean, date, or string. The format is a string built using syntax similar to the format string used in
Visual Basic or VBA.

The following table describes the syntax used for the format string:

Value Type Format String Description

Number Percent, % Formats a number as a percentage, with zero or two decimal places. For
example: Format(0.33, "Percent") = "33%"
Format(0.3333333, "Percent") = "33.33%"

#,###.##0 Formats a number using a mask. The following symbols are recognized:
digit placeholder 0 digit placeholder, force display , use thousand
separators (enclose negative values in parenthesis % format as
percentage For example: Format(1234.1234, "#,###.##") =
"1,234.12"
Format(-1234, "#.00") = "(1234.12)"
Format(.1234, "#.##") = ".12"
Format(.1234, "0.##") = "0.12"
Format(.3, "#.##%") = "30.00%"

Currency Currency, $ Formats a number as a currency value. Displays number with thousand
separator, if appropriate; displays two digits to the right of the decimal
separator. For example: Format(1234, "$") = "$1,234.00"

Boolean Yes/No Returns "Yes" or "No".

Date Long Date Format(#12/5/1#, "long date") = "December 5, 2001"

Short Date Format(#12/5/1#, "short date") = "12/5/2001"

Medium Date Format(#12/5/1#, "medium date") = "05-Dec-01"

q,m,d,w,yyyy Returns a date part (quarter, month, day of the month, week of the year,
year). For example: Format(#12/5/1#, "q") = "4"

String @@-@@/@@ Formats a string using a mask. The "@" character is a placeholder for a

FlexReport for WinForms 96

Copyright © 2017 GrapeCity, inc. All rights reserved.

single character (or for the whole value string if there is a single "@").
Other characters are intercodeted as literals. For example:
Format("AC55512", "@@-@@/@@") = "AC-555/12"
Format("AC55512", "@") = "AC55512"

@;Missing Uses the format string on the left of the semi-colon if the value is not
null or an empty string, otherwise returns the part on the right of the
semi-colon. For example: Format("@;Missing", "UK") = "UK"
Format("@;Missing", "") = "Missing"

Note that VBScript has its own built-in formatting functions (FormatNumber, FormatCurrency, FormatPercent,
FormatDateTime, and so on). You may use them instead of the VBA-style Format function described here.

Value Type Format String Description

Aggregate Functions
Aggregate functions are used to summarize data over the group being rendered. When used in a report header field,
these expressions return aggregates over the entire dataset. When used in group headers or footers, they return the
aggregate for the group.

All FlexReport aggregate functions take two arguments:

A string containing a VBScript expression to be aggregated over the group.
An optional string containing a VBScript expression used as a filter (domain aggregate). The filter expression is
evaluated before each value is aggregated. If the filter returns False, the value is skipped and is not included in
the aggregate result.

FlexReport defines the following aggregate functions:

Function Description

Avg Average value of the expression within the current group. For
example, the following expression calculates the average sales
for the whole group and the average sales for a certain type of
product: Avg(SalesAmount)
Avg(SalesAmount, ProductType = 3)

Sum Sum of all values in the group.

Count Count of records in the group with non-null values. Use an
asterisk for the expression to include all records. For example,
the following expressions count the number of employees with
valid (non-null) addresses and the total number of employees:
Count(Employees.Address)
Count(*)

CountDistinct Count of records in the group with distinct non-null values.

Min, Max Minimum and maximum values for the expression. For example:
"Min Sale = " & Max(SaleAmount)

Range Range between minimum and maximum values for the
expression.

StDev, Var Standard deviation and variance of the expression in the
current group. The values are calculated using the sample (n-1)

FlexReport for WinForms 97

Copyright © 2017 GrapeCity, inc. All rights reserved.

formulas, as in SQL and Microsoft Excel.

StDevP, VarP Standard deviation and variance of the expression in the
current group. These values are calculated using the population
(n) formulas, as in SQL and Microsoft Excel.

Median Returns median from the values in the group.

Mode Returns mode from the values in the group.

To use the aggregate functions, add a calculated field to a Header or Footer section, and assign the expression to the
field's Text property.

For example, the "Employee Sales by Country" report in the sample NWind.xml file contains several aggregate fields.
The report groups records by Country and by Employee.

The SalespersonTotal field in the Footer section of the Employee group contains the following expression:

=Sum([SaleAmount])

Because the field is in the Employee group footer, the expression returns the total sales for the current employee.

The CountryTotal and GrandTotal fields contain exactly the same expression. However, because these fields are in
the Country group footer and report footer, the expression returns the total sales for the current country and for the
entire recordset.

You may need to refer to a higher-level aggregate from within a group. For example, in the "Employee Sales by
Country" report, there is a field that shows sales in the current country as a percentage of the grand total. Since all
aggregates calculated within a country group refer to the current country, the report cannot calculate this directly.
Instead, the PercentOfGrandTotal field uses the following expression:

=[CountryTotal]/[GrandTotal]

CountryTotal and GrandTotal are fields located in the Country and Report Footer sections. Therefore, CountryTotal
holds the total for the current country and GrandTotal holds the total for the whole recordset.

It is important to realize that evaluating aggregate functions is time-consuming, since it requires the control to
traverse the recordset. Because of this, you should try to use aggregate functions in a few calculated fields only. Other
fields can then read the aggregate value directly from these fields, rather than evaluating the aggregate expression
again.

For example, the "Employee Sales by Country" report in the NorthWind database has a detail field,
PercentOfCountryTotal, that shows each sale as a percentage of the country's total sales. This field contains the
following expression:

=[SaleAmount]/[CountryTotal]

SaleAmount is a reference to a recordset field, which varies for each detail record. CountryTotal is a reference to a
report field that contains an aggregate function. When the control evaluates this expression, it gets the aggregate
value directly from the report field, and does not recalculate the aggregate.

For the complete report, see report "Employee Sales by Country" in the Nwind.xml report definition file, which is
available in the ComponentOne Samples folder.

Function Description

Managing Splitting of FlexReport Objects
Since creating reports is all about representing data, it is important to control the fit of the objects depending upon
their height and width.

FlexReport for WinForms 98

Copyright © 2017 GrapeCity, inc. All rights reserved.

In FlexReports, any Section or Sub-section can be forced to split or not to split (keep together) between the pages by
setting SplitBehavior property to SplitIfNeeded or KeepTogether. Similarly, the splitting of Fields and Borders is
governed by SplitHorzBehavior and SplitVertBehavior properties.

The following code sets the SplitBehavior for a Section and a Sub-section:

'Allow section to split if needed
 C1FlexReport1.Sections.Header.SplitBehavior =
SplitBehavior.SplitIfNeeded

'Allow sub-section to split if needed
 C1FlexReport1.Sections.Header.SubSections(0).SplitBehavior =
SplitBehavior.SplitIfNeeded

// Allow section to split if needed
 c1FlexReport1.Sections.Header.SplitBehavior =
SplitBehavior.SplitIfNeeded;

// Allow sub-section to split if needed
 c1FlexReport1.Sections.Header.SubSections[0].SplitBehavior =
SplitBehavior.SplitIfNeeded;

Visual Studio

C#

Modifying the Fields
You are not restricted to using VBScript to evaluate expressions in calculated fields. You can also specify scripts that
are triggered when the report is rendered, and you can use those to change the formatting of the report.These scripts
are contained in event properties. An event property is similar to a Visual Basic event handler, except that the scripts
are executed in the scope of the report rather than in the scope of the application that is displaying the report.

For example, you can use an event property to set a field's Font and ForeColor properties depending on its value. This
behavior would then be a part of the report itself, and would be preserved regardless of the application used to
render it.

Of course, traditional events are also available, and you should use them to implement behavior that affects the
application rather than the report. For example, you could write a handler for the StartPage event to update a page
count in your application, regardless of which particular report is being rendered.

The following table lists the event properties that are available and typical uses for them:

Object Property Description

C1FlexReport OnOpen Fired when the report starts rendering. Can be used to modify the
ConnectionString or RecordSource properties, or to initialize VBScript variables.

OnClose Fired when the report finishes rendering. Can be used to perform clean-up
tasks.

OnNoData Fired when a report starts rendering but the source recordset is empty. You can
set the Cancel property to True to prevent the report from being generated.
You could also show a dialog box to alert the user as to the reason why no

FlexReport for WinForms 99

Copyright © 2017 GrapeCity, inc. All rights reserved.

report is being displayed.

OnPage Fired when a new page starts. Can be used to set the Visible property of
sections of fields depending on a set of conditions. The control maintains a
Page variable that is incremented automatically when a new page starts.

OnError Fired when an error occurs.

Section OnFormat Fired before the fields in a section are evaluated. At this point, the fields in the
source recordset reflect the values that will be rendered, but the report fields
do not.

OnPrint Fired before the fields in a section are printed. At this point, the fields have
already been evaluated and you can do conditional formatting.

The following topics illustrate typical uses for these properties.

Object Property Description

Formatting a Field According to Its Value
Formatting a field according to its value is probably the most common use for the Section.OnPrint property. Take for
example a report that lists order values grouped by product. Instead of using an extra field to display the quantity in
stock, the report highlights products that are below the reorder level by displaying their name in bold red characters.

To highlight products that are below the reorder level using code:
To highlight products that are below the reorder level by displaying their name in bold red characters, use an event
script that looks like this:

Dim script As String = _
 "If UnitsInStock < ReorderLevel Then" & vbCrLf & _
 "ProductNameCtl.ForeColor = RGB(255,0,0)" & vbCrLf & _
 "ProductNameCtl.Font.Bold = True" & vbCrLf & _
 "Else" & vbCrLf & _
 "ProductNameCtl.ForeColor = RGB(0,0,0)" & vbCrLf & _
 "ProductNameCtl.Font.Bold = False" & vbCrLf & _
 "End If"
C1Flexreport.Sections.Detail.OnPrint = script

 string script =
 "if (UnitsInStock& ReorderLevel) then\r\n" +
 "ProductNameCtl.ForeColor = rgb(255,0,0)\r\n" +
 "ProductNameCtl.Font.Bold = true\r\n" +
 "else\r\n" +
 "ProductNameCtl.ForeColor = rgb(0,0,0)\r\n" +
 "ProductNameCtl.Font.Bold = false\r\n" +
 "end if\r\n";
 c1FlexReport1.Sections.Detail.OnPrint = script;

Visual Basic

C#

FlexReport for WinForms 100

Copyright © 2017 GrapeCity, inc. All rights reserved.

To highlight products that are below the reorder level using
FlexReportDesigner:
Alternatively, instead of writing the code, you can use the C1FlexReportDesigner application to type the following
script code directly into the VBScript Editor of the Detail section's Section.OnPrint property. Complete the following
steps:

1. Select Detail from the Properties window drop-down list in the Designer. This reveals the section's available
properties.

2. Click the empty box next to the Section.OnPrint property, then click the drop-down arrow, and select
Expression Editor from the list. VBScript Editor window appears.

3. In the VBScript Editor window, type the following script:

If UnitsInStock < ReorderLevel Then
 ProductNameCtl.ForeColor = RGB(255,0,0)
 ProductNameCtl.Font.Bold = True
Else
 ProductNameCtl.ForeColor = RGB(0,0,0)
 ProductNameCtl.Font.Bold = False
End If

4. Click OK to close the editor.

The control executes the VBScript code whenever the section is about to be printed. The script gets the value of the
"ReorderLevel" database field and sets the "ProductName" report field's Field.Font.Bold and Field.ForeColor
properties according to the value. If the product is below reorder level, its name becomes bold and red.

The following screen capture shows a section of the report with the special effects:

FlexReport for WinForms 101

Copyright © 2017 GrapeCity, inc. All rights reserved.

Hiding a Section If there is No Data
You can change a report field's format based on its data by specifying an expression for the Detail section's OnFormat
property.

For example, your Detail section has fields with an image control and when there is no data for that record's image
you want to hide the record. To hide the Detail section when there is no data, in this case a record's image, add the
following script to the Detail section's OnFormat property:

If isnull(PictureFieldName) Then
 Detail.Visible = false
 Else
 Detail.Visible = true
End If

To hide a section if there is no data for it using code:
To hide a section if there is no data, in this case a record's image, for it, use an event script that looks like this:

C1FlexReport1.Sections.Detail.OnFormat = "Detail.Visible =
notisnull(PictureFieldName)"

Visual Basic

FlexReport for WinForms 102

Copyright © 2017 GrapeCity, inc. All rights reserved.

c1FlexReport1.Sections.Detail.OnFormat = "Detail.Visible =
notisnull(PictureFieldName)";

To hide a section if there is no data for it using FlexReportDesigner:
Alternatively, instead of writing the code, you can use the C1FlexReportDesigner to type the following script code
directly into the VBScript Editor of the Detail section's OnFormat property. Complete the following steps:

1. Select Detail from the Properties window drop-down list in the Designer. This reveals the section's available
properties.

2. Click the empty box next to the Section.OnFormat property, then click the drop-down arrow, and select
Expression Editor from the list. VBScript Editor window appears.

3. In the VBScript Editor:
Simply type the following script in the window:
If isnull(PictureFieldName) Then
Detail.Visible = false
Else
Detail.Visible = true
End If
Or you could use the more concise version:
Detail.Visible = not isnull(PictureFieldName)

C#

Showing or Hiding a Field Depending on a Value
Instead of changing the field format to highlight its contents, you could set another field's Visible property to True or
False to create special effects. For example, if you inserted a new field Shape field named "Shapefld" around the
product name and set its Shape property to True, then you could write the script as follows:

If UnitsInStock < ReorderLevel Then
Shapefld.Visible = True
Else
Shapefld.Visible = False
End If

To highlight products that are below the reorder level using code:
To highlight products that are below the reorder level by displaying a box, use an event script that looks like this:

Dim script As String = _
 "If UnitsInStock < ReorderLevel Then" & vbCrLf & _
 " BoxCtl.Visible = True" & vbCrLf & _
 "Else" & vbCrLf & _
 " BoxCtl.Visible = False" & vbCrLf & _
 "End If"
C1FlexReport1.Sections.Detail.OnPrint = script

Visual Basic

FlexReport for WinForms 103

Copyright © 2017 GrapeCity, inc. All rights reserved.

string script =
 "if (UnitsInStock < ReorderLevel) then\r\n" +
 "BoxCtl.Visible = true\r\n" +
 "else\r\n" +
 "BoxCtl.Visible = false\r\n" +
 "end if\r\n";
c1FlexReport1.Sections.Detail.OnPrint = script;

The code builds a string containing the VBScript event handler, and then assigns it to the section's OnPrint property.

To highlight products that are below the reorder level using
FlexReportDesigner:
Alternatively, instead of writing the code, you can use the C1FlexReportDesigner application to type the following
script code directly into the VBScript Editor of the Detail section's OnPrint property. Complete the following steps:

1. Select Detail from the Properties window drop-down list in the Designer. This reveals the section's available
properties.

2. Click the ellipses next to the OnPrint property, to open VBScript Editor.
3. In the VBScript Editor, simply type the following script:

If UnitsInStock < ReorderLevel Then
Shapefld.Visible = True
Else
Shapefld.Visible = False
End If

The following screen capture shows a section of the report with the special effects:

C#

FlexReport for WinForms 104

Copyright © 2017 GrapeCity, inc. All rights reserved.

Resetting Page Counter
The C1FlexReport.Page variable is created and automatically updated by the control. It is useful for adding page
numbers to page headers or footers. In some cases, you may want to reset the page counter when a group starts. For
example, in a report that groups records by country. You can do this by adding code or using the Designer.

Using Code:

To reset the page counter when a group (for example, a new country) starts, set the PageFooter field's Text property.
Enter the following code:

C1FlexReport1.Fields("PageFooter").Text = "[ShipCountry] & "" "" &
[Page]"

c1FlexReport1.Fields["PageFooter"].Text = "[ShipCountry] + [Page]";

Using FlexReportDesigner:

To reset the page counter when a group (for example, a new country) starts, set the PageFooter field's Text property
by completing the following steps:

1. Select the PageFooter's page number field from the Properties window drop-down list in the Designer or select
the field from the design pane. This reveals the field's available properties.

2. Click the box next to the Text property, then click the drop-down arrow, and select Expression Editor from the
list. VBScript Editor windows appears.

3. In the VBScript Editor, type the following script:
="Page " & GroupPage(0) & " of " & GroupPages(0) & " for " & Country

4. Click OK to close the editor.

Visual Basic

C#

Adding Sub-sections
Sub-sections are the additional sections that can be added to any section of a report. A FlexReport generally contains
- Detail, Header, Footer, PageHeader, Page Footer, Group Header and Group Footer - sections as described
in Sections of FlexReport.

Each of these sections contains atleast one sub-section, but you can add as many sub-sections in a section.

To add a sub-section in the Header section of a report, the following code should be used:

 'create a subsection in the header section
 Dim ss As SubSection =
C1FlexReport1.Sections.Header.SubSections.Add()
 'set height to 10 mm
 ss.Height = 10 * 1440 / 25.4

Visual Studio

C#

FlexReport for WinForms 105

Copyright © 2017 GrapeCity, inc. All rights reserved.

//create a subsection in the header section
 SubSection ss = rep.Sections.Header.SubSections.Add();
// set height to 10 mm
 ss.Height = 10 * 1440 / 25.4;

C#

FlexReport for WinForms 106

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with FlexReportDesigner
FlexReportDesigner is a stand-alone application for designing FlexReport, similar to the report designer in Microsoft
Access. The default location of the designer is C:\Program Files (x86)\ComponentOne\Apps\v4.0\. There are two
designer applications:

C1FlexReportDesigner.4.exe targets 'Any CPU' so the application runs in 64 bit mode on 64 bit systems and
in 32 bit mode on 32 bit systems. This application does not support use of 32 bit only data providers such as
Microsoft.Jet.OLEDB.4.0.
C1FlexReportDesigner32.4.exe targets x86 that allows using 32 bit only data providers such as
Microsoft.Jet.OLEDB.4.0.

You can create a basic report definition file, modify, print, and export the report definition. The following
topics explain all about the FlexReportDesigner application.

About FlexReportDesigner
The FlexReportDesigner application is a tool used for creating and editing C1FlexReport report definition files. The
Designer allows you to create, edit, load, and save files (FLXR) that can be read by the C1Report component. It also
allows you to import report definitions from Microsoft Access files (.mdb) and Crystal Reports (.rpt).

To run the Designer, double-click C1FlexReportDesigner.exe for 64 bit platform and
C1FlexReportDesigner32.4.exe for 32 bit platform located at the following location on your computer:

C:\Program Files (x86)\ComponentOne\Apps\v4.0

Note that this directory reflects the default installation path and its path may be different if you made changes to the
installation path.

Here's what the Designer looks like with the FlexCommonTasks.flxr file opened:

FlexReport for WinForms 107

Copyright © 2017 GrapeCity, inc. All rights reserved.

The main Designer window has the following components:

File menu: Contains information for handling report definition files - load, save, import and export.
Tabs - Home, Insert, Arrange, PageSetup - provide all functionalities related to a report definition
- editing, formatting, inserting fields and sections, positioning and sizing, and page layout and
printer settings.

Design mode: Provides shortcuts to the Edit, Text, Data, etc. menu functions. By default, Design
Mode is selected which consists of Home, Insert, Arrange, and Page Setup Tabs.
Preview mode: Provides a preview of the report. See Preview Mode for more information.

Reports tab: Lists all reports contained in the current report definition file. You can double-click a
report name to preview or edit the report. You can also use the list to rename, copy, and delete
reports.
Data tab: Lists all the Data Sources and Parameters in the current report. The data sources and
parameters can be added or edited from here.
Properties tab: Allows you to edit properties for the objects that are selected in the Designer.
Error tab: Displays list of errors, their severity and count, generated when importing or previewing a
report.

FlexReport for WinForms 108

Copyright © 2017 GrapeCity, inc. All rights reserved.

Status bar: Displays information about what the Designer is working on. If a field is selected, status
bar displays selected field's name, type, and if the field is data bound (calculated) or static. If a
section is selected, status bar displays the name of the section, section type, and its visibility if the
section is hidden. It also displays processes such as loading, saving, printing, rendering, importing,
and so on. You can zoom in and out of a selected report by dragging the zoom slider at the right of
the status bar.

Collapse/Expand Glyphs: Each section provides option to expand or collapse the sub-sections
contained within them by clicking expand () or collapse ()glyphs.

Database icon: Indicates that a field is bound to a data source (i.e., a calculated field), if the data
base icon appears on the top-right corner of the field. If the data base icon does not appear, it
means the field is static.

Snap Lines: Help in the alignment of the fields. When the size of a field is increased or decreased,
vertical and horizontal snap lines appear, that help in positioning the fields relative to each other.

Sub-sections: Sub-sections are sections within sections. Sub-sections, by default, appear at the
bottom of a section and are automatically named as /, /<C>..., and so on.

Help button: Provides options to open the online help file and view the About screen, which
displays information about the application.

The topics that follow explain how you can use the C1FlexReportDesigner application to create, edit, use, and save
report definition files.

File Menu
The File menu provides shortcut to load and save report definition files and to import and export report definitions.
You can also access the C1FlexReportDesigner application's options through the File menu.

The following image displays the File menu:

FlexReport for WinForms 109

Copyright © 2017 GrapeCity, inc. All rights reserved.

The menu includes the following options:

New: Creates a new report definition file.
Open: Brings up the Open Report Definition File dialog box, enabling you to select an existing file to open.
Close: Closes the current report definition file.
Save: Saves the report definition file, to the location previously saved.
Save As: Opens the Save Report Definition dialog box allowing you to save your report definition as an .flxr
file.
Print: Prints the current report. Note that Print button is enabled only in preview mode of
C1FlexReportDesigner application.
Import: Opens the Import Report Definition dialog box enabling you to import Microsoft Access (.mdb and
.adp) files and Crystal Reports (.rpt) files. See Importing Microsoft Access Reports and Importing Crystal
Reports for more information.
Export: Exports the current report file as an HTML, PDF /A, PDF, RTF, DOCX, XLS, XLSX, TIFF, BMP, PNG, JPG,
ZIP, or GIF. See Exporting and Publishing a Report for more information.
Recent files: Lists recently opened report definition files. To reopen a file, select it from the list.
Options: Opens the C1FlexReportDesigner Options dialog box which allows you to customize the default
appearance and behavior of the C1FlexReportDesigner application. See Setting C1FlexReportDesigner
Options for more information.
Exit: Closes the C1FlexReportDesigner application.

Design Mode
In Design mode, sections and fields of the selected report are displayed. This is the main working area of the designer
where reports can be created or modified. The ribbon on the Design mode consists of the following tabs:

Home tab: Provides shortcuts to the Edit, Text, Border, Format, Data, and View menu functions. See Home Tab

FlexReport for WinForms 110

Copyright © 2017 GrapeCity, inc. All rights reserved.

for more information.
Insert tab: Provides shortcuts to various fields such as Arrow, Calculated, and Chart. See Insert Tab for more
information.
Arrange tab: Provides shortcuts to Grid, Alignment, Position, and Size menu functions. See Arrange Tab for
more information.
Page Setup tab: Provides shortcuts to Page Layout menu functions. See Page Setup Tab for more information.

Home Tab

Home tab consists of several menu functions arranged in following groups:

Edit group: It consists of the following options:

Paste: Pastes the last copied item.
Cut: Cuts the selected item, removing it from the report and allowing it to be pasted elsewhere.
Copy: Copies the selected item so that it can be pasted elsewhere.
Delete: Deletes the selected item.
Undo: Undoes the last change that was made to the report definition.
Redo: Redoes the last change that was made to the report definition.

Text group: It consists of the following options:

Font: Displays the current font of the selected text and allows you to choose another font for the selected item (to do so,
click the drop-down arrow next to the font name).
Font Size: Displays the current font size of the selected text and allows you to choose another font size. Type a number in the
font size box or click the drop-down arrow to choose a font size.
Increase Font Size: Increases the font size by one point.
Decrease Font Size: Decreases the font size by one point.
Bold: Makes the selected text bold (you can also press CTRL+B).
Italic: Italicizes the selected text (you can also press CTRL+I).
Underline: Underlines the selected text (you can also press CTRL+U).
Align General: Aligns numbers to left and other values to right automatically.
Align Text Left: Aligns text to the left.
Center Text: Aligns text to the center.
Align Text Right: Aligns text to the right.
Justify Text: Justifies the selected text.
Font Color: Allows you to select the color of the selected text.
Fill Color: Allows you to select the background color of the selected text.

Border group: It consists of the following options:

Border Line Style: Defines the style of the border lines of the currently selected field(s). The styles available are: Solid, Dash,
Dot, Dash-Dot, Dash-Dot-Dot, and Transparent.
Border Line Color: Defines the color of the border lines of the currently selected field(s).
Border Line Width: Defines the thickness of border line of the currently selected field(s) in twips.

Format group: The Format group consists of the following options:

Report Styles: Opens the Report Style Editor dialog box, where you can choose a built-in style or create and edit your own
custom style.
Format Painter: Applies style to the current selection.
As Table Row: Formats the current selection as a table row.

You can access the Report Style Editor dialog box by clicking Report Styles in the Format group.

FlexReport for WinForms 111

Copyright © 2017 GrapeCity, inc. All rights reserved.

It consists of following elements:

Style Gallery List: Displays all the currently available built-in and custom styles. See Style Gallery for information about the
available built-in styles.
Add button: Adds a custom style to the Style Gallery list. The style that is added is based on the style selected in the Style
Gallery list when the Add button was clicked.
Remove button: Removes a selected custom style. The button is enabled only when a custom style is selected in the Style
Gallery list.
Property grid: Lets you change the properties and edit a custom style. The Property grid is only available and editable when
a custom style is selected in the Style Gallery list.
Preview window: Displays a preview of the style selected in the Style Gallery list.
Apply button: Applies the style to your selection without closing the dialog box.
OK button: Closes the dialog box, applies your changes, and sets the style as the current selected style.
Cancel button: Cancels any changes you have made to styles.

Data group: It consists of the following options:

Data Sources: Clicking this button lists down the options Main and Add Data Source.

Main option lets you Edit or Remove the main data source to which the report is bound. Clicking Edit or Add Data Source
opens the Data Sources dialog box. You can then you to choose a new data source, change the connection string, and edit
the Sql statement. Clicking the drop down next to Data Source option displays the list of data sources present in the report.
From the Data source tab, you can select the tables, views, and stored procedures in the current data source. Clicking the Sql
statement tab allows you to view the current SQL statement:

FlexReport for WinForms 112

Copyright © 2017 GrapeCity, inc. All rights reserved.

To change the connection string, click the ellipses button. This will open the Data Link Properties dialog box. To edit or
change the SQL statement, click the Query builder... button which will open the Sql Builder dialog box.

Groups : Clicking this button opens the Groups dialog box where you can add and delete grouping and sorting criteria.
For more information see Grouping Data and Sorting Data.

Report Info : Opens the Report Information dialog box. This dialog box allows you to set the report's Title, Author,
Subject, Creator, and Keywords. You can also choose to apply report information to all reports.

FlexReport for WinForms 113

Copyright © 2017 GrapeCity, inc. All rights reserved.

VBScript Editor: Opens VBScript Editor - Report.GlobalScripts dialog box. Multiple scripts can be easily edited in the
VBScript Editor, allowing users to switch between statements and expressions.

View group: It consists of the following options:

Properties: Brings the Properties tab into view on the left pane. The shortcut key for viewing the Properties tab is F4.
Data: Brings the Data tab into view on the left pane. The shortcut key combination for viewing the Data tab is Shift+F4.
Error List: Displays the list of warnings and errors generated while importing or previewing a report.
Captions: Lets you make a choice of viewing captions for sections or sub-sections in the designer panel. You can choose
options - All (shows strip on all), Section (shows strip on Sections and not subsections), Hairline (hides the section header
strips), Hidden, Expand All and Collapse All options. The drop-down consists of the following options:

All

Section

FlexReport for WinForms 114

Copyright © 2017 GrapeCity, inc. All rights reserved.

Hairline

Hidden

Expand
All

Collapse
All

Zoom: Allows you to select a value to set the zoom level of the report. You can also press Ctrl+Plus or Ctrl+Minus to zoom in
or zoom out the designer panel.

Insert Tab

Insert tab consists of several fields which can be inserted while designing a report. Each field button creates a field
and initializes its properties. The Insert tab consists of two groups:

Fields group: It consists of the following items:

Arrow: Returns the cross mouse cursor to an arrow cursor.
Text: Creates a field bound to the source recordset or an unbound (static) text label. When you click this
button, a list appears and you can select the recordset field. Bound fields are not limited to displaying raw data
from the database. You can edit their Text property and use any VBScript expression.

FlexReport for WinForms 115

Copyright © 2017 GrapeCity, inc. All rights reserved.

RTF: Creates an RTF field. When you click this button, a list appears where you can select other fields that are
contained in the same report definition file to be displayed in RTF format.
Paragraph: Creates an Paragraph field. For more information, see Paragraph Field.
Checkbox: Creates a bound field that displays a Boolean value as a check box. By default, the check box
displays a regular check mark. You can change it into a radio button or cross mark by changing the value of the
field's CheckMark.Style property after it has been created.
Barcode: Creates a field that displays a barcode. When you click this button, a menu appears where you can
select other fields that are contained in the same report definition file to be displayed as a barcode.
See Barcode Field for more information.
Calculated: Creates a calculated field. When you click this button, the code editor dialog box appears so you
can enter the VBScript expression or an arbitrary formula whose value you want to evaluate. When you click the
drop down, you can select commonly used expressions that render the date or time when the report was
created or printed, the page number, page count, or "page n of m", or the report name.
Image: Creates a field for data bound stored in the recordset image or static (unbound) image. When you click
this button, 'Open' dialog box appears that lets you choose an image that is static (unbound), such as a logo.
When you click the drop-down, you can select an image field in the source recordset (if there is one; not all
recordsets contain this type of field).
Shape: Creates a geometric shape - Line, Isosceles Triangle, Right Triangle, Rectangle, Ellipse, and Arc. These
shapes can be used to enhance the look of a report.
Subreport: Creates a field that displays another report. When you click this button, a list appears and you can
select other reports that are contained in the same report definition file.
FlexChart: Creates a field that displays a FlexChart. For more information, see FlexChart Field.
Chart: Creates a field that displays a chart. See Chart Field for more information.

Note: By default, Chart Field is hidden in the Insert tab and can be used as a Legacy Chart Field.

Subsection group: It consists of the following items:

Add: Adds a sub-section at the bottom of the current section.
Remove: Removes the currently selected sub-section.
Move Up: Moves the currently selected sub-section upward, jumping one sub-section at a time.
Move Down: Moves the currently selected sub-section downward, jumping one sub-section at a time.

Custom Fields group: It consists of the following items:

SuperLabel: Creates a field that renders HTML formatted text. The text property of the field is set to any HTML
text that is required to be rendered.
Map: Creates a field that displays a region of earth, i.e., a map. See Maps in Reports for more information.

For more information on adding fields to your report, see Adding FlexReport Fields and Adding FlexReport Custom
Fields.

Arrange Tab

The Arrange tab provides shortcuts to grid, alignment, positioning , and sizing. It consists of the following groups.

Grid group: The Grid group consists of the following items:

Snap to Grid: Snaps fields to the grid. When this item is selected fields cannot be placed in between lines of
the grid.

FlexReport for WinForms 116

Copyright © 2017 GrapeCity, inc. All rights reserved.

Show Grid: Shows a grid in the background of the report in the preview. The grid can help you place and align
fields. By default, this option is selected.
Lock Fields: Locks and unlocks the fields in the report. After you've placed the fields in the desired positions,
you can lock them to prevent inadvertent moving of fields with mouse or keyboard.
Grid Properties: Opens the FlexReportDesigner Options dialog box. For details see Setting
C1FlexReportDesigner Options.

Alignment group: The Alignment group consists of the following items:

Left: Aligns the selected field horizontally to the left.
Right: Aligns the selected field horizontally to the right.
Center: Aligns the selected field horizontally to the center.
Top: Aligns the selected field vertically to the top.
Bottom: Aligns the selected field vertically to the bottom.
Middle: Aligns the selected field vertically to the middle.

Note that the elements in a report can be both horizontally and vertically aligned - so, for example, an element can be
both left and top aligned.

Position group: The Position group controls spacing between elements and how elements are layered. It consists of
the following items:

Equalize Horizontal: Equalizes horizontal spacing between selected fields.
Increase Horizontal: Increases the horizontal spacing between selected fields.
Decrease Horizontal: Decreases the horizontal spacing between selected fields.
Equalize Vertical: Equalizes vertical spacing between selected fields.
Increase Vertical: Increases the vertical spacing between selected fields.
Decrease Vertical: Decreases the vertical spacing between selected fields.
Snap to Grid: Snaps the currently selected field(s) to the nearest grid line(s).
Bring to Front: Brings the selected field to the front of all layered fields.
Send to Back: Sends the selected field behind all layered fields.

Size group: The Size group consists of the following items:

To Tallest: Sets the height of all selected fields to the tallest field.
To Shortest: Sets the height of all selected fields to the shortest field.
To Widest: Sets the width of all selected fields to the width of the widest field.
To Narrowest: Sets the width of all selected fields to the width of the narrowest field.
Size to Grid: Snaps the bounds of the selected fields to the nearest grid lines.

Page Setup Tab

The Page Setup tab provides shortcuts to Page Layout menu functions. It consists of the following options:

Portrait: Changes the layout of your report to Portrait view (where the height is longer than the width).
Landscape: Changes the layout of your report to Landscape view (where the height is shorter than the width).
Page Setup: Opens the printer's Page Setup dialog box.

FlexReport for WinForms 117

Copyright © 2017 GrapeCity, inc. All rights reserved.

Preview Mode

The Preview mode displays preview of the current report. The ribbon on the Preview mode consists of the following
items:

Page Layout group: It consists of the following options:

Portrait: Changes the layout of your report to Portrait view (where the height is longer than the width).
Landscape: Changes the layout of your report to Landscape view (where the height is shorter than the width).
Page Setup: Opens the printer's Page Setup dialog box.

View group: It consists of the following options:

Paginated: Switch between paginated and non-paginated views of the report.
Parameters: Show or hide report parameter panel. It is enabled only if the report contains parameters.
Outlines: Displays a text outline of the document.
Thumbnails: Switch between normal and thunbnail view.
One page: Allows you to preview one page at a time.
Two pages: Allows you to preview two pages at a time.
Zoom: Zooms the page in to a specific percent or to fit in the window. The shortcut key for zooming in is
Ctrl+Plus and for zooming out is 'Ctrl+Minus'.

Navigation group: It consists of the following options:

First Page: Navigates to the first page of the preview.
Previous Page: Navigates to the previous page of the preview.
Page: Entering a number in this textbox navigates the preview to that page.
Next Page: Navigates to the next page of the preview.
Last Page: Navigates to the last page of the preview.
Previous View: Returns to the last page viewed.
Next View: Moves to the next page viewed. This is only visible after the Previous View button is clicked.

Tools group: It consists of the following options:

Hand Tool: The hand tool allows you to move the preview through a drag-and-drop operation.
Text Select Tool: The text select tool allows you to select text through a drag-and-drop operation. You can
then copy and paste this text to another application.
Find: Clicking the Find option opens the Find pane where you can search for text in the document. To find text
enter the text to find, choose search options (if any), and click Search.

Export Group: Each item in the Export group opens the Export Report to File dialog box where you can choose a
location for your exported file. The Export group consists of the following options:

PDF: Exports the report to a PDF file. The drop-down arrow includes options for PDF with non-embedded
(linked) fonts and PDF /A (embedded fonts) to choose if you want to use system fronts or embed your
chosen fonts in the PDF file.
HTML: Exports the report to an HTML file. You can then copy and paste this text to another application. The
drop-down arrow includes options for Plain HTML, Paged HTML, and Drilldown HTML, and Table-based
HTML allowing you to choose if you want to export to a plain HTML file, multiple HTML files that can be paged
using included arrow links.
Excel: Exports the report to a Microsoft Excel file. The drop-down arrow includes options for Microsoft Excel

FlexReport for WinForms 118

Copyright © 2017 GrapeCity, inc. All rights reserved.

97 and Microsoft Excel 2007 - OpenXML allowing you to choose if you want to save the document as an XLS
or XLSX file.
RTF: Exports the report to a Rich Text File (RTF).
Word: Exports the report to Open XML Word (DOCX) format.
More: Clicking the More drop-down arrow includes additional options to export the report including: Tagged
Image File Format (export as TIFF), Compressed Metafiles (export as ZIP), BMP (Bitmap Images), PNG(Portable
Network Graphic), JPEG or GIF.

For more information on exporting, see Exporting and Publishing a Report.

Generate:

It consists of Refresh button. Clicking Refresh regenerates the current report. This button changes to Stop while the
report is regenerating; so you can also stop regenerating the report.

Setting FlexReportDesigner Options
To access the FlexReportDesigner Options dialog box, click the File menu and then Options. For more information,
see File Menu.

The FlexReportDesigner Options dialog box includes five tabs to control the appearance and behavior of the
application. The tabs and the options available under each tab are:

General tab:

It consists of the following options:

Categorize property grid: Categorizes the Properties grid by property type. The Properties grid can be
accessed by clicking the Properties tab located in the bottom of the left pane in Design view.
Enable undo/redo: Enables undo and redo in the application.

FlexReport for WinForms 119

Copyright © 2017 GrapeCity, inc. All rights reserved.

Filter field properties: Filters the Properties grid by properties that have been set. The Properties grid can be
accessed by clicking the Properties tab located in the bottom of the left pane in Design view.
Sort report list: Sorts the list of reports listed on the Reports tab. Reports can be accessed by clicking the
Reports tab located in the bottom of the left pane in Design view.
Designer Theme: Sets the theme from the options in Built in or in Themes folder.

Design Pane tab:

It consists of the following options:

Show grid: Shows the grid in the report preview window.
Snap to grid: Snaps all objects the grid in the report. If this option is selected, you will not be able to place
objects between grid lines.
Show subreport content: Shows sub-report content in the report.
Use C1FlexReport.CreationGraphics as reference graphics to render fields: Uses
C1FlexReport.CreationGraphics as reference to render fields.
Grid units: Indicates how the grid is spaced. Options include Automatic, English (in), Metric (cm), and
Custom.
Grid spacing: Sets the spacing of grid lines. This option is only available when the Grid Units option is set to
Custom.
Grid major color: Set the color of major grid lines.
Grid minor color: Sets the color of minor grid lines.
Field edges color: Sets the color of field edges in the report.

Save/Load tab:

FlexReport for WinForms 120

Copyright © 2017 GrapeCity, inc. All rights reserved.

 It consists of the following options:

Reload last file on startup: If this option is checked, the last opened file will appear whenever the
C1FlexReportDesigner application is opened.
Save changes before rendering: Checking this option saves the report before rendering.
Show options when exporting: Checking this option saves the report's options when exporting.
Embed images into Xml when saving: Checking this option embeds images into XML when the report is
saved.
Default export format: Sets the default export format. For more information about exporting see Exporting
and Publishing a Report.

Connection tab:

FlexReport for WinForms 121

Copyright © 2017 GrapeCity, inc. All rights reserved.

It consists of the options for transaction isolation level.

Script Editor:

FlexReport for WinForms 122

Copyright © 2017 GrapeCity, inc. All rights reserved.

 It consists of the following options:

Auto syntax checking: Determines if syntax is automatically checked in the VBScript Editor dialog box.
Syntax coloring: Determines if syntax text is automatically colored in the VBScript Editor dialog box.
Font: Defines the appearance of the text used in the VBScript Editor dialog box.

Warnings tab:

FlexReport for WinForms 123

Copyright © 2017 GrapeCity, inc. All rights reserved.

 It consists of the following options:

Check for updates on startup: Checking this option checks for any updates when C1FlexReportDesigner
application is opened.
Import from Crystal Reports: warn if RAS API is unavailable: Checking this option throws warning if RAS
API is unavailable while importing Crystal Reports in C1FlexReportDesigner.

In each of the above tabs, clicking OK saves the changes and clicking Cancel cancels any changes that you have made
in the FlexReportDesigner Options dialog box.

Style Gallery
The Style Gallery dialog box details all the available built-in and custom styles that you can use to format your report.
Built-in styles include standard Microsoft AutoFormat themes, including Vista and Office 2007 themes. You can access
the Style Gallery from the C1FlexReportDesigner application by selecting the Home tab and clicking Report Styles.

The following built-in styles are included:

Style Name Preview

Access 2007

Style Name Preview

Oriel

FlexReport for WinForms 124

Copyright © 2017 GrapeCity, inc. All rights reserved.

Access 2003

Apex

Aspect

Civic

Concourse

ComponentOne

Equity

Origin

Paper

Solstice

Technic

Trek

Urban

Verve

Style Name Preview Style Name Preview

FlexReport for WinForms 125

Copyright © 2017 GrapeCity, inc. All rights reserved.

Flow

Foundry

Median

Metro

Module

None

Northwind

Windows Vista

Bold

Casual

Compact

Corporate

Formal

Soft Gray

Style Name Preview Style Name Preview

FlexReport for WinForms 126

Copyright © 2017 GrapeCity, inc. All rights reserved.

Office

Opulent

Verdana

WebReport

Style Name Preview Style Name Preview

Adding Multiple Sub-Sections
A FlexReport generally contains - Detail, Header, Footer, PageHeader, Page Footer, Group Header and Group Footer -
sections. Each of these sections contains atleast one sub-section. You can add as many sub-sections in a section.

Sub-sections are useful in providing additional information about the data present in the parent section. You can
add data fields in the same way as other sections. You can also enhance the look of a report by just adding a shape
field to a sub-section.

To add Multiple Sub-sections

Following steps let you add multiple sub-sections to Detail section of a report:

1. Click the Detail section. Observe that it already has a sub-section named Detail/ <A>.
2. Go to Insert Tab and click Add from the Subsection group. This adds one sub-section in the Detail section,

which is automatically named as Detail/ .
3. Again click Add from the Subsection group to add one more sub-section. This adds another subsection named

as Detail/ <C>.

FlexReport for WinForms 127

Copyright © 2017 GrapeCity, inc. All rights reserved.

Following steps let you add a field to a sub-section:

4. Go to Insert Tab and click Shape field from the Subsection group.
5. In the sub-section Detail/ , drop the Shape field.
6. From the Properties window, set Shape property to Line. Drag the selection handle to increase or decrease

length of the line.
7. Preview the report.

FlexReport for WinForms 128

Copyright © 2017 GrapeCity, inc. All rights reserved.

You see a line is drawn after every field in the Detail section.

Adding FlexReport Fields
Adding fields in FlexReport is quite simple. All the available fields are provided in the Insert tab of
C1FlexReportDesigner. You just have to click the field and drop it into the report.

The following sections explain various types of fields, their properties, and how to add them to your reports. Note that
the database used for adding fields is C1NWind.mdb.

FlexChart Field
FlexReportDesigner provides a new field type, FlexChart field. The FlexChart field simplifies adding data visualization
capabilities to FlexReport using flexible data binding, multiple chart types, and supports grouping and data
aggregation. For more information on FlexChart, see FlexChart documentation.

FlexReport for WinForms 129

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/FlexChartWin/FlexChart.html

Binding FlexChart Field with Data
When you add the FlexChart field to your report, you need to bind it to data for populating data in the displayed
chart, say Column chart, as shown below. The following steps show how to bind the FlexChart field with data in
FlexReportDesigner application.

1. Create a new report in C1FlexReportDesigner.
2. In Data tab, bind the Main data source with Products table of C1Nwind.mdb database.
3. Under INSERT tab, select FlexChart field and draw it in the Header section.
4. Select the FlexChart.
5. In the Properties window, set the desired Chart Type, say Column chart, from ChartType dropdown.
6. Navigate to Series and click the ellipsis button next to it.
7. In the Series Collection Editor, click Add button to add a series data group.
8. Navigate to Data and set the DataSourceName as Main.
9. Set Label as ProductID.

10. Set XExpression to ProductID.
11. Set YExpression to UnitPrice.
12. Close the Editor.
13. Click on Preview.

FlexReport for WinForms 130

Copyright © 2017 GrapeCity, inc. All rights reserved.

Difference Between FlexChartField and FlexChart
FlexChart field inherits majority of properties from FlexChart. However, since FlexChart field is used in reporting
scenarios, few properties and their nature are different from FlexChart. The major difference between the two controls
appears in binding the controls with data as the binding properties are different in FlexChart field from that of
FlexChart. The following table shows the high-level object model difference between the FlexChartField (FlexReport)
and FlexChart (WinForms).

FlexChartField (FlexReport) FlexChart (WinForms)

- AccessibleDescription

- AccessibleName

- AccessibleRole

- AllowDrop

Anchor Anchor

AutoHeight -

AutoWidth AutoWidth

AxisX AxisX

AxisY AxisY

Background BackColor

- BackgroundImage

- BackgroundImageLayout

- Binding

FlexReport for WinForms 131

Copyright © 2017 GrapeCity, inc. All rights reserved.

- BindingMode

- BindingX

Bookmark -

Border -

BodersPlitHorzMode -

BordersSplitVertMode -

- CausesValidation

CategoryGroups -

ChartType ChartType

- ContextMenuStrip

- Cursor

DataLabel DataLabel

- DataMember

- DataSource

- Dock

DataSourceName -

- Enabled

Font Font

Footer Footer

- ForeColor

ForcePageBreak -

- GenerateMember

Header Header

Height -

Hyperlink -

- ImeMode

Left -

Legend Legend

- LegendToggle

- Location

- Locked

- Margin

MarginBottom -

MarginLeft -

FlexReport for WinForms 132

Copyright © 2017 GrapeCity, inc. All rights reserved.

MarginRight -

MarginTop -

- MaximumSize

- MinimumSize

- Modifiers

Options Options

OutlineLabel -

OutlineParent -

- Padding

Palette Palette

PlotMargin PlotMargin

PlotStyle PlotStyle

- RenderMode

RightToLeft RightToLeft

Rotated Rotated

- SelectedIndex

- SelectedMode

- SelectionStyle

Series Series

SeriesGroups -

- Size

- SmoothingMode

SplitHorzBehavior -

SplitVertBehavior -

Stacking Stacking

Tag -

- Text

- ToolTip

- ToolTip on ttCopy

Top -

Visible -

Width -

XLabelExpression -

- UseWaitCursor

FlexReport for WinForms 133

Copyright © 2017 GrapeCity, inc. All rights reserved.

- Visible

Zorder -

The following table shows the Series Object Model comparison.

FlexChartField FlexChart

AltStyle AltStyle

Binding

BindingMode

BindingX

ChartType ChartType

DataMember

DataSource

DataSourceName

Hyperlink

Label

Name

Style Style

SymbolMarker SymbolMarker

SymbolSize SymbolSize

SymbolStyle SymbolStyle

Visibility Visibility

XExpression

Y1Expression

Y2Expression

Y3Expression

YExpression

FlexChart Field Data Object Model
The following table lists objects and the main properties of FlexChart field.

FlexChartField

Properties: DataSourceName, DataLabel.Content

CategoryGroups

Properties: GroupExpression, SortExpression, Sort, FilterExpression, FilterOutName

FlexChart Series

FlexReport for WinForms 134

Copyright © 2017 GrapeCity, inc. All rights reserved.

Properties: DataSourceName, XExpression, YExpression, Label

SeriesGroups

Properties: GroupExpression, SortExpression,Sort, FilterExpression, FilterOutName

Supported Chart Types
The FlexChart field in FlexReport allows you to set a specific chart type using C1.Chart.ChartType property. It allows
you to visualize data through thirteen different chart types, which includes Area, SplineArea, Bar, Bubble, Column,
Scatter, Line, LineSymbols, Spline, SplineSymbols, Candlestick, HiLoOpenClose, and Funnel. The chart types can be
easily selected using the ChartType property in the Properties window of the C1FlexReportDesigner.

Area chart: An Area chart draws data series by connecting data points against Y-axis and filling the area between the
series and X-axis. Each series is drawn on top of the preceding series.

SplineArea chart: A SplineArea Chart is similar to an area chart. The only difference is that it connects data points
using splines instead of straight lines and fills the area enclosed by the splines.

Bar chart: A Bar chart compares values across various categories or displays variations in a data series over time. It
represents data series in the form of bars of the same color and width, whose length is determined by its value. Each

FlexReport for WinForms 135

Copyright © 2017 GrapeCity, inc. All rights reserved.

new series is displays horizontal bars for data series plotted against X-axis and arranges categories or items on Y-axis.

Column chart: . A Column chart, just like the Bar Chart, represents variation in a data series over time or compares
different items. It displays values of one or more items as vertical bars against Y-axis and arranges items or categories
on X-axis.

Bubble Chart: A Bubble chart combines two independent values to supply both the point y value and the point sizes.
Bubble charts are used to represent an additional data value at each point by changing its size. The Y array elements
determine the Cartesian position (as in a XY-Plot chart), and the Y1 element values determine the size of the bubble at
each point. The size of the points can be encoded according to area or diameter.

FlexReport for WinForms 136

Copyright © 2017 GrapeCity, inc. All rights reserved.

Scatter chart: A Scatter chart uses two values to represent each data point. It depicts relationship among items of
different data series. This type of chart is often used to represent scientific data, and can highlight the deviation of
assembled data from predicted data or result.

Line chart: A Line chart displays trends over a period of time by connecting different data points in a series with a
straight line. It is the most effective way of denoting changes in the values between different groups of data.

FlexReport for WinForms 137

Copyright © 2017 GrapeCity, inc. All rights reserved.

LineSymbols chart: A LineSymbols chart is a combination of the Line chart and the Scatter chart. The chart plots data
points by using symbols and connects those data points by using lines.

Spline chart: A Spline chart is similar to a line chart except that it connects data points by using splines rather than
straight lines. It is specifically used for representing data that requires the use of curve fittings.

FlexReport for WinForms 138

Copyright © 2017 GrapeCity, inc. All rights reserved.

SplineSymbols: A SplineSymbols chart combines the Spline chart and the Scatter chart. The chart plots data points by
using symbols and connects those data points by using splines.

Funnel chart: A funnel chart represents sequential stages in a linear process. This chart can be useful in identifying
potential problem areas in processes where it is noticeable at what stages and rate the values decrease.

FlexReport for WinForms 139

Copyright © 2017 GrapeCity, inc. All rights reserved.

Stock Charts: Stock charts used in financial applications to show the opening, closing, high and low prices of a given
stock. The types of stock charts are as follows:

Candlestick chart: A Candlestick chart is a special type of HiLoOpenClose chart that integrates Bar and Line
charts to depict a range of values over time. It consists of visual elements known as candles that are further
comprised of three elements: body, wick, and tail. The body represents the opening and the closing value,
while the wick and the tail represent the highest and the lowest value respectively.

HiLoOpenClose: HiLoOpenClose charts combine four independent values to supply high, low, open, and close
data for a point in a series. In addition to showing the high and low value of a stock, the Y2 and Y3 array
elements represent the stock's opening and closing price, respectively.

FlexReport for WinForms 140

Copyright © 2017 GrapeCity, inc. All rights reserved.

Grouping and Aggregates
FlexReport allows using FlexChart field to render a FlexChart in FlexReport and perform grouping and aggregation in
it. Let us create a report to show grouping and aggregation of data.

The image below shows FlexReport containing FlexChart field where grouping and aggregation is performed on data.

FlexReport for WinForms 141

Copyright © 2017 GrapeCity, inc. All rights reserved.

To create a report showing grouping and aggregation of data in FlexChart, follow these steps.

1. In the C1FlexReportDesigner application, create a new report by navigating through the Report Wizard.
2. Bind the report to the Main data source, by specifying the following Sql Statement.

SELECT Categories.*, Categories.CategoryID as CategoryID, Products.* FROM
Categories INNER JOIN Products ON Categories.CategoryID = Products.CategoryID

3. Add a SubSection to the Header section and add FlexChart field to it.
4. In the Properties window, expand AxisX and set the value of LabelAngle property to -10.
5. Navigate to AxisX|Style and set Font properties to Arial, 9pt, Regular, StrokeColor to Olive, and StrokeWidth

to 30.
6. Navigate to AxisY and set Font properties to Arial, 9pt, Regular, StrokeColor to Olive, and StrokeWidth to 15.
7. Set the Border Color to Black, Style to Solid and Width to 10.
8. Navigate to CategoryGroups and click ellipsis button next to it.

The DataGroup Collection Editor opens.
9. In the DataGroup Collection Editor, click Add button to add a data group and set it's GroupExpression to

CategoryID.
10. Close the Editor.
11. Navigate to Footer|Content and set it to Group By Category and Series.
12. Navigate to Header|Content and set it to Count of products per Category.
13. Navigate to Legend|Title and set it to Reorder Level.
14. Navigate to Series and click the ellipsis button next to it.

FlexReport for WinForms 142

Copyright © 2017 GrapeCity, inc. All rights reserved.

15. In the Series Collection Editor, click Add button to add a series.
16. Navigate to Data|YExpression and set it's value to Count(*).

With Count(*), we are setting aggregate data to the FlexChartField.
17. Close the Editor.
18. Navigate to SeriesGroups and click the ellipsis button next to it.
19. In the Data Group Collection Editor, click Add button to add a series and set it's GroupExpression to

RecordLevel.
20. Close the Editor.
21. Navigate to XLabelExpression and set it to CategoryName.
22. Click Preview button to switch to Preview mode to view the report.

FlexChart Navigation
FlexChart field allows navigation to another report, a URL or script via the Hyperlink property of FlexChartField or a
particular Series.

Suppose you want to show Total Orders per Year and monthly sales for a particular year. Both these tasks can
be achieved in FlexReport using FlexChart navigation feature. In one report, the chart shows Total Orders per year and
in the other, the chart shows Sales per Month along with the total orders and amount received every month. If you
click on one series, the report navigates to the chart and pass the year for which Monthly sales are shown.

Let us create a report to navigate from a series to other report, or data within a report.

1. In the C1FlexReportDesigner application, create two new reports, Orders Report and Sales Report, by
navigating through the Report Wizard.

2. Bind the reports to the Main data source, by specifying the following Sql Statement.
SELECT o.OrderDate, od.Quantity * od.UnitPrice AS OrderItemSum FROM Orders AS o,
[Order Details] AS od WHERE o.OrderId = od.OrderId

3. Add a parameter, pYear, to the report and set it's DataType to Integer, Prompt to Year, and Value to 2012.
4. Add one FlexChart field in Orders Report and two FlexChart field in Sales Report.
5. Select FlexChart field in Orders Report.
6. In the Properties window, navigate to Series and click the ellipsis button next to it.
7. In the Series Collection Editor, click Add button to add a series data group, navigate to Data|YExpression and

set it's value to Sum(OrderItemSum).
8. Navigate to Hyperlink|LinkTarget and set it to Bookmark.
9. Click the ellipsis button next to the ParameterValues, add a parameter named pYear with =Year(OrderDate)

value, and close the ParametersValues Editor.
10. Set the Hyperlink|Report to Sales Report.
11. Close the Editor.
12. Navigate to SeriesGroups and click the ellipsis button next to it.
13. In the Data Group Collection Editor, click Add button to add a series and set it's GroupExpression to

Year(OrderDate).
14. Close the Editor.
15. Select the first FlexChart field in Sales Report.
16. In the Properties window, navigate to Series and click the ellipsis button next to it.
17. In the Series Collection Editor, click Add button to add a series data group.
18. Navigate to Hyperlink|LinkTarget and set it to Bookmark.
19. Set the Bookmark to =Month(OrderDate).
20. Close the Editor.
21. Navigate to SeriesGroups and click the ellipsis button next to it.
22. In the Data Group Collection Editor, click Add button to add a series and set it's GroupExpression to

Month(OrderDate).
23. Close the Editor.
24. Select the second FlexChart field in Sales Report.

FlexReport for WinForms 143

Copyright © 2017 GrapeCity, inc. All rights reserved.

25. In the Properties window, navigate to Series and click the ellipsis button next to it.
26. In the Series Collection Editor, click Add button to add a series data group, navigate to Data|YExpression and

set it's value to Sum(OrderSum).
27. Close the Editor.
28. Select the Orders Report and click Preview button to switch to the Preview mode to see how FlexChart

navigation works in FlexReport.

Text Field
The Text field is the most commonly used report field to display data. It is used to insert:

a data-bound text field
an unbound (static) text label

To add a data-bound text field using FlexReportDesigner application

1. Create a new report in C1FlexReportDesigner.
2. Bind the report with Products Table.
3. Create a Group Header in which text field 'CategoryName' for the products will be displayed.
4. Go to the Insert tab and click the Text field icon. All the Data Fields (bound to the data source) are listed.

5. Add the 'CategoryName' data field to the group header section of the report.

6. Preview the report.

FlexReport for WinForms 144

Copyright © 2017 GrapeCity, inc. All rights reserved.

To add an unbound (static) text label using FlexReportDesigner:

1. Go to the Insert tab and click the Text field icon.
2. Drag the crosshair on the design area of the report and draw the field in the section in which you want the field to

appear.
3. Click the field and enter the text you want to be displayed as a label.

Rtf Field
The Rich Text Formatted (RTF) field is used to display a formatted text. When you click this button, a menu appears
where you can select other fields that are contained in the same report definition file to be displayed in RTF format.
These are data-bound RTF fields.

RTF fields are particularly used in creating Mail Merge reports.

To create a mail merge using RTF field in FlexReportDesigner application:

FlexReport for WinForms 145

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Create a new report C1FlexReportDesigner.
2. Bind the report to 'Customers' and 'Orders' Table by giving the following Sql statement:

SELECT
Customers.CustomerID, Customers.CompanyName,
Customers.ContactName, Customers.Address,
Customers.City, Customers.Region, Customers.Country, Customers.PostalCode,
Orders.OrderID, Orders.OrderDate, [Order Subtotals].Subtotal
FROM Customers INNER JOIN ([Order Subtotals] INNER JOIN Orders
ON [Order Subtotals].OrderID = Orders.OrderID)
ON Customers.CustomerID = Orders.CustomerID
WHERE CompanyName = "Ernst Handel"

3. From the Insert tab add the RTF field.
4. From the Properties window, set the Background color to a light color.
5. Set the Text property to following expression:

"Dear " + ContactName + "," + vbcrlf + vbcrlf + _
"Your order for past year totals to " + Format(Subtotal, "Currency") + vbcrlf +
vbcrlf + _
"Because you have been such a terrific customer, " + _
"we decided to credit your account with $0.10. The amount will be credited in
next 10 days._
Your Address for future correspondance is "+"Address" + vbcrlf + vbcrlf + _
"Congratulations!"

6. Arrange the fields as shown.

7. Preview the report.

FlexReport for WinForms 146

Copyright © 2017 GrapeCity, inc. All rights reserved.

Paragraph Field
In order to use multi formatted text, Database fields, scripts, Parameters, Calculated Fields within a single Field, Paragraph
field is the best option for you. In edit mode, you can implement following features through Paragraph field:

Type static text.
Insert a newline by pressing Ctrl+Enter.
Set font/fore color/back color for any part of the text.
Insert expressions (like DB field values) within a single field together with the text.
Press Alt+Enter to open Properties on any Field.
Right-click any expression and choose 'Edit expression' to open the Expression editor.

FlexReport for WinForms 147

Copyright © 2017 GrapeCity, inc. All rights reserved.

To add a Paragraph field in FlexReportDesigner application:

1. Create a new FlexReport in C1FlexReportDesigner.
2. Bind it with Products Table.
3. From the Insert tab, add Paragraph field on the report.
4. Double-click the Paragraph field to enter in edit more.
5. Type "Product:"

To insert Database fields:

1. In edit mode, right-click the Paragraph field and select Insert Expression.
2. In the Expression editor, select 'ProductID' from DatabaseFields dropdown.
3. Click Done.
4. Select "Product:{ProductID}" and set Forecolor as Green from the Ribbon.

To change new line in edit mode:

1. In edit mode, press Ctrl+Enter.
2. In the next line, type static text "Unit Price is" and insert 'UnitPrice' Database Field using steps above.
3. Set {UnitPrice} as Bold.

To insert scripts:

1. After the text - "UnitPrice is {UnitPrice}", type - "We have".
2. Right-click and select Insert Expression.
3. Add following script: Iif(UnitsInStock > 0, UnitsInStock, "No")
4. Click Done.

FlexReport for WinForms 148

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. After this script expression, type static text - "units in stock."
6. Select the script while in edit mode and set it to Bold.
7. Press Ctrl+Enter.
8. In newline, right-click and select Insert Expression.
9. Type following script: Iif(Discontinued, "This product is no longer available", "") /

10. Click Done.
11. Select the above mentioned script and set Highlight color to 'Orange, Accent 6 Lighter 60%' and Forecolor to Red.
12. Preview the report.

Checkbox Field
The Checkbox field is used to add a visual for Yes or No. The checkbox field, by default, appears as an empty box with the
text on the right. It takes the boolean value; if it evaluates to true, a check mark appears in the check box.

To add data bound check box in FlexReportDesigner application:

1. Create a new FlexReport in C1FlexReportDesigner.
2. Bind it with Products Table. Select these fields - 'Product Name', 'Quantity Per Unit', 'Stock', and 'Discontinued'.
3. From the Insert tab, click Checkbox field and select 'Discontinued' data field.
4. Drop the data field in the Detail section of the report, below the Discontinued label in the group header.
5. From Properties window, set CheckAlign to CenterMiddle.

6. Preview the report.

FlexReport for WinForms 149

Copyright © 2017 GrapeCity, inc. All rights reserved.

Barcode Field
Barcodes in FlexReport let you integrate several industry-standard barcodes in Barcode field, that can be quickly and
easily generated in your reports. Simply drop the barcode field on your report, select the barcode symbology, provide
the text, and you are done!

The functionality of barcodes in FlexReport further extended by properties associated with them. The checksums to
the value being encoded are automatically added to eliminate reader errors.

For barcodes, C1.Win.Barcode assembly is used.

Barcode Symbology
Barcode symbology specifies the encoding scheme used to convert character data into the pattern of wide and
narrow bars and spaces in a barcode. The following table illustrates the barcode symbology used in FlexReport.

Style Name Example Description

Ansi39

ANSI 3 of 9 (Code 39) uses upper case,
numbers, - , * $ / + %. This is the
default barcode style.

Ansi39x ANSI Extended 3 of 9 (Extended Code
39) uses the complete ASCII character
set.

Codabar Codabar uses A B C D + - : . / $ and
numbers.

FlexReport for WinForms 150

Copyright © 2017 GrapeCity, inc. All rights reserved.

Code_128_A Code 128 A uses control characters,
numbers, punctuation, and upper case.

Code_128_B Code 128 B uses punctuation, numbers,
upper case and lower case.

Code_128_C Code 128 C uses only numbers.

Code_128auto Code 128 Auto uses the complete ASCII
character set. Automatically selects
between Code 128 A, B and C to give
the smallest barcode.

Code_2_of_5 Code 2 of 5 uses only numbers.

Code93 Code 93 uses uppercase, % $ * / , + -,
and numbers.

Code25intlv Interleaved 2 of 5 uses only numbers.

Code39 Code 39 uses numbers, % * $ /. , - +,
and upper case.

Code39x Extended Code 39 uses the complete
ASCII character set.

Code49 Code 49 is a 2D high-density stacked
barcode containing two to eight rows
of eight characters each. Each row has a
start code and a stop code. Encodes the
complete ASCII character set.

Code93x Extended Code 93 uses the complete
ASCII character set.

FlexReport for WinForms 151

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataMatrix Data Matrix is a high density, two-
dimensional barcode with square
modules arranged in a square or
rectangular matrix pattern.

EAN_13 EAN-13 uses only numbers (12
numbers and a check digit). It takes
only 12 numbers as a string to calculate
a check digit (CheckSum) and add it to
the thirteenth position. The check digit
is an additional digit used to verify that
a barcode has been scanned correctly.
The check digit is added automatically
when the CheckSum property is set to
True.

EAN8 EAN-8 uses only numbers (7 numbers
and a check digit).

EAN128FNC1 EAN-128 is an alphanumeric one-
dimensional representation of
Application Identifier (AI) data for
marking containers in the shipping
industry.

This type of barcode contains the
following sections:

Leading quiet zone (blank area)
Code 128 start character
FNC (function) 1 character which
allows scanners to identify this
as an EAN-128 barcode
Data (AI plus data field)
Symbol check character (Start
code value plus product of each
character position plus value of
each character divided by 103.
The checksum is the remainder
value.)
Stop character
Trailing quiet zone (blank area)

The AI in the Data section sets the type
of the data to follow (i.e. ID, dates,
quantity, measurements, etc.). There is
a specific data structure for each type
of data. This AI is what distinguishes
the EAN-128 code from Code 128.

FlexReport for WinForms 152

Copyright © 2017 GrapeCity, inc. All rights reserved.

Multiple AIs (along with their data) can
be combined into a single barcode.

EAN128FNC1 is a UCC/EAN-128
(EAN128) type barcode that allows you
to insert FNC1 character at any place
and adjust the bar size, etc., which is
not available in UCC/EAN-128.

To insert FNC1 character, set “\n” for
C#, or “vbLf” for VB to Text property at
runtime.

IntelligentMail Intelligent Mail, formerly known as the
4-State Customer Barcode, is a 65-
barcode used for domestic mail in the
U.S.

JapanesePostal This is the barcode used by the
Japanese Postal system. Encodes alpha
and numeric characters consisting of 18
digits including a 7-digit postal code
number, optionally followed by block
and house number information. The
data to be encoded can include
hyphens.

Matrix_2_of_5 Matrix 2 of 5 is a higher density
barcode consisting of 3 black bars and
2 white bars.

MicroPDF417 MicroPDF417 is two-dimensional (2D),
multi-row symbology, derived from
PDF417. Micro-PDF417 is designed for
applications that need to encode data
in a two-dimensional (2D) symbol (up
to 150 bytes, 250 alphanumeric
characters, or 366 numeric digits) with
the minimal symbol size.

MicroPDF417 allows you to insert an
FNC1 character as a field separator for
variable length Application Identifiers
(AIs).

To insert FNC1 character, set “\n” for
C#, or “vbLf” for VB to Text property at
runtime.

MSI MSI Code uses only numbers.

FlexReport for WinForms 153

Copyright © 2017 GrapeCity, inc. All rights reserved.

Pdf417 Pdf417 is a popular high-density 2-
dimensional symbology that encodes
up to 1108 bytes of information. This
barcode consists of a stacked set of
smaller barcodes. Encodes the full ASCII
character set. It has ten error correction
levels and three data compaction
modes: Text, Byte, and Numeric. This
symbology can encode up to 1,850
alphanumeric characters or 2,710
numeric characters.

PostNet PostNet uses only numbers with a
check digit.

QRCode QRCode is a 2D symbology that is
capable of handling numeric,
alphanumeric and byte data as well as
Japanese kanji and kana characters.
This symbology can encode up to 7,366
characters.

RM4SCC Royal Mail RM4SCC uses only letters
and numbers (with a check digit). This
is the barcode used by the Royal Mail
in the United Kingdom.

RSS14 RSS14 is a 14-digit Reduced Space
Symbology that uses EAN.UCC item
identification for point-of-sale
omnidirectional scanning.

RSS14Stacked RSS14Stacked uses the EAN.UCC
information with Indicator digits as in
the RSS14Truncated, but stacked in two
rows for a smaller width.
RSS14Stacked allows you to set
Composite Options, where you can
select the type of the barcode in the
Type drop-down list and the value of
the composite barcode in the Value
field.

RSS14StackedOmnidirectional RSS14StackedOmnidirectional uses the
EAN.UCC information with
omnidirectional scanning as in the
RSS14, but stacked in two rows for a
smaller width.

FlexReport for WinForms 154

Copyright © 2017 GrapeCity, inc. All rights reserved.

RSS14Truncated RSS14Truncated uses the EAN.UCC
information as in the RSS14, but also
includes Indicator digits of zero or one
for use on small items not scanned at
the point of sale.

RSSExpanded RSSExpanded uses the EAN.UCC
information as in the RSS14, but also
adds AI elements such as weight and
best-before dates.

RSSExpanded allows you to insert an
FNC1 character as a field separator for
variable length Application Identifiers
(AIs).

To insert FNC1 character, set “\n” for
C#, or “vbLf” for VB to Text property at
runtime.

RSSExpandedStacked RSSExpandedStacked uses the
EAN.UCC information with AI elements
as in the RSSExpanded, but stacked in
two rows for a smaller width.

RSSExpandedStacked allows you to
insert an FNC1 character as a field
separator for variable length
Application Identifiers (AIs).

To insert FNC1 character, set “\n” for
C#, or “vbLf” for VB to Text property at
runtime.

RSSLimited RSS Limited uses the EAN.UCC
information as in the RSS14, but also
includes Indicator digits of zero or one
for use on small items not scanned at
the point of sale.
RSSLimited allows you to set
Composite Options, where you can
select the type of the barcode in the
Type drop-down list and the value of
the composite barcode in the Value
field.

UCCEAN128 UCC/EAN –128 uses the complete ASCII
character Set. This is a special version of
Code 128 used in HIBC applications.

UPC_A UPC-A uses only numbers (11 numbers
and a check digit).

FlexReport for WinForms 155

Copyright © 2017 GrapeCity, inc. All rights reserved.

UPC_E0 UPC-E0 uses only numbers. Used for
zero-compression UPC symbols. For the
Caption property, you may enter either
a six-digit UPC-E code or a complete
11-digit (includes code type, which
must bezero) UPC-A code. If an 11-digit
code is entered, the Barcode control
will convert it to a six-digit UPC-E code,
if possible. If it is not possible to
convert from the 11-digit code to the
six-digit code, nothing is displayed.

UPC_E1 UPC-E1 uses only numbers. Used
typically for shelf labeling in the retail
environment. The length of the input
string for U.P.C. E1 is six numeric
characters.

You can directly insert a barcode field in the FlexReportDesigner using the BarCode property in the Properties
window. You can also use Barcode to set the type of BarCode in the barcode field.

Note that the following barcodes support FNC1 characters:

EAN128FNC1
MicroPDF417
RSSExpanded
RSSExpandedStacked

Barcode Properties
The BarcodeOptions provides additional properties for rendering barcodes in FlexReport. Following are the
common properties exposed by BarcodeOptions:

BarDirection: Lets you select the barcode's direction, horizontally or vertically. The available options are
LeftToRight, RightToLeft, TopToBottom, and BottomToTop. The direction of barcode can also be
set using BarDirectionEnum.
CaptionGrouping: Lets you split the text of the caption into groups for the barcode types it supports. Its value
is either True or False.
CaptionPosition: Lets you select the caption's vertical position relative to the barcode symbol. The available
options are None, Above, and Below.
CheckSumEnabled: Determines whether a checksum of the barcode will be computed and included in the
barcode when applicable.
TextAlign: Lets you select the caption text alignment. The available options are Left, Center, and Right.
SupplementNumber: Lets you specify the supplement for the barcode data, supplement is 2 or 5 digit for EAN
or UPC symbologies.
SizeOptions:

BarHeight: Specifies the height of a barcode in twips.
ModuleSize: Specifies the module (narrowest bar width) of a barcode in twips.
NarrowWideRatio: Specifies the ratio between the width of narrow and wide bars.
SizeMode: Specifies the sizing mode of a barcode. The options available are:

Normal: Keeps the size of a barcode same as the original size.
Scale: Scales the barcode image to take as much field area as possible. Different type of
barcodes are scaled in different ways; for example, in Bar type barcodes like Code128, the height

FlexReport for WinForms 156

Copyright © 2017 GrapeCity, inc. All rights reserved.

is increased and in barcodes such as Matrix, Rss, and Composite, height and width get scaled
proportionally.

SupplementSpacing: Specifies the spacing between the main and the supplement barcodes.

Other options exposed by BarcodeOptions corresponding to different barcode styles are as follows:

Code49:

Grouping: Lets you use grouping in the barcode. Its value is either True or False.
Group: Obtains or sets group numbers for barcode grouping. Its value is between 0 and 8.

DataMatrix:

EccMode: Lets you select the ECC mode. The possible values are ECC000, ECC050, ECC080, ECC100, ECC140, or
ECC200.
Ecc200SymbolSize: Lets you select the size of the ECC200 symbol. The default value is SquareAuto.
Ecc200EncodingMode: Lets you select the ECC200 encoding mode. The possible values are Auto, ASCII, C40,
Text, X12, EDIFACT, or Base256.
Ecc000_140SymbolSize: Lets you select the size of the ECC000_140 symbol.
StructuredAppend: Lets you select whether the current barcode symbol is part of structured append symbols.
StructureNumber: Lets you specify the structure number of the current symbol within the structured append
symbols.
FileIdentifier: Lets you specify the file identifier of a related group of structured append symbols. The valid file
indentifier value should be within [1,254]. Setting file identifier to 0 lets the file identifier be calculated
automatically.

GS1Composite:

Type: Lets you select the composite symbol type. Its value can be None or CCA. CCA (Composite Component -
Version A) is the smallest variant of the 2-dimensional composite component.
Value: Gets or sets the CCA character data.

MicroPDF417:

CompactionMode: Lets you select the type of CompactionMode. The possible values are Auto,
TextCompactionMode, NumericCompactionMode, or ByteCompactionMode.
FileID: Lets you specify the file id of the structured append symbol. It takes the value from 0 to 899.
SegmentCount: Lets you specify the segment count of the structured append symbol. It takes the value from 0
to 99999.
SegmentIndex: Lets you specify the segment index of the structured append symbol. It takes the value from 0
to 99998 and less than the value of segment count.
Version: Lets you select the symbol size. The default value is ColumnPriorAuto.

PDF417:

Column: Lets you specify the column numbers for the barcode.
Row: Lets you specify the row numbers for the barcode.
ErrorLevel: Lets you specify the error correction level for the barcode.
Type: Lets you select the type of PDF417 barcode. The available types are Normal and Simple.

QRCode

Model: Lets you select the model of QRCode. The available models are Model1 and Model2.
ErrorLevel: Lets you select the error correction level for the barcode. The available options are Low, Medium,
Quality, and High.
Version: Lets you specify the version of the barcode.
Mask: Lets you select the pattern used for masking barcode. In order to make sure QRCode being successfully
read, mask process is required to balance brightness. The options available are Auto, Mask000, Mask001,

FlexReport for WinForms 157

Copyright © 2017 GrapeCity, inc. All rights reserved.

Mask010, Mask011, Mask100, Mask101, Mask110, and Mask111.
Connection: Lets you select whether connection is used for the barcode. It takes the value True of False.
ConnectionNumber: Lets you specify the connection number for the barcode. It takes the integer value
ranging from 0 to 15.

RssExpandedStacked:

RowCount: Lets you specify the number of stacked rows.

The quiet zones for barcodes can be specified easily by using MarginBottom, MarginLeft, MarginRight, and
MarginTop properties in the Property pane of the C1FlexReportDesigner.

Calculated Field
In order to create fields that do not use raw data, Calculated fields are the best option. Calculated fields contain
expressions that are evaluated at run-time. They are used to generate those data values that are not stored in the data
base.

Some predefined expressions are available in the dropdown of Calculated Fields.

To add a predefined Calculated field using FlexReportDesigner application:

1. Create a new FlexReport in C1FlexReportDesigner.
2. From Insert tab, add two Calculated fields - 'Date Created' and 'Page n of m', in the PageFooter section:

3. Note the expressions in these calculated fields in the design area.

4. Preview the report.

FlexReport for WinForms 158

Copyright © 2017 GrapeCity, inc. All rights reserved.

To define a Calculated field and add the field in the FlexReportDesigner application:

1. Create a new report.
2. Bind the report with 'Orders Details' Table.
3. In Group Header, add a Text field 'Total' to display label for the total price.
4. Go to Data tab, and right-click the Main data source and select Add Calculated Field. VBScript Editor appears.
5. In the VBScript Editor, write the following expression:

Quantity*UnitPrice

6. Drop the above mentioned Calculated field as shown.

FlexReport for WinForms 159

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Preview the report.

Image Field
Image field is used to insert images that are data-dound or static. On clicking Image field, a dialog box appears
that prompts you to select an image file to be inserted in the report. A copy of the image you select is made and
placed in the same directory as the report file. You must distribute this file with the application unless you embed the
report file in the application. When you embed a report file in your application, any unbound picture files are
embedded too.

To add a Image field using FlexReportDesigner application:

1. Create a new report in C1FlexReportDesigner.
2. Bind the report with Products Table.
3. Create a Group Header in which text field 'Image' for the products will be displayed.
4. Go to the Insert tab and click the dropdown on the Image field icon.
5. Select 'Picture' and add the Image field to the group header section of the report.

FlexReport for WinForms 160

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Preview the report.

FlexReport for WinForms 161

Copyright © 2017 GrapeCity, inc. All rights reserved.

Shape Field
Shape fields are used to display geometric shapes in reports. Lines are often used as separators, rectangles are used
to highlight groups of fields or to create tables and grids, and so on.

You can also set rules for defining visibility of a shape in the expressions. For example, if you want Product names to
be enclosed in a rectangular shape when the Reorder Level is less than the Units in Stock, you can write following
expression in the OnPrint property of the report, to define when to turn on the visibility of shape:

 If UnitsInStock < ReorderLevel Then
 Shapefld.Visible = True
 Else
 Shapefld.Visible = False
 End If

This scenario is discussed in detail in the topic Showing or Hiding a Field Depending on a Value.

Subreport Field
Subreport fields are used to insert subreports in a report. Subreports are regular reports contained in a field in another
report (the main report). Subreports are usually designed to display detail information based on a current value in the main
report, in a master-detail scenario.

In the following example, the main report contains categories and the subreport in the Detail section contains product details
for the current category:

FlexReport for WinForms 162

Copyright © 2017 GrapeCity, inc. All rights reserved.

To create a master-detail report based on the Categories and Products tables, you need to create a Categories report
(master view) and a Products report (details view).

Step 1: Create the master report
1. Create a basic report definition using the FlexReport Wizard.

1. Select the Categories table from the Northwind database (C1NWind.mdb located in the ComponentOne
Samples\Common folder).

2. Include the CategoryName and Description fields in the report.
2. In the C1FlexReportDesigner application, click the Design button to begin editing the report.
3. Set the Page Header and Header section's Visible property to False.
4. In the Detail section, select the DescriptionCtl and move it directly below the CategoryNameCtl.
5. Use the Properties window to change the Appearance settings (Background).
6. Select the Preview button, the Categories report should now look similar to the following image:

FlexReport for WinForms 163

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 2: Create the detail report
1. In the C1FlexReportDesigner application, click the New Report button to create a basic report definition using the

FlexReport Wizard.
1. Select the Products table from the C1NWind database.
2. Include the following fields in the report: ProductName, QuantityPerUnit, UnitPrice, UnitsInStock, and

UnitsOnOrder.
2. In the Report Designer, click the Design button to begin editing the report.

1. Set the Page Header and Header section's Visible property to False.
2. In the Detail section, arrange the controls so that they are aligned with the heading labels. Use the Properties

window to change the Appearance settings.

Step 3: Create the Subreport field
The C1FlexReportDesigner application now has two separate reports, Categories Report and Products Report. The next
step is to create a subreport:

1. From the Reports list in the Designer, select Categories Report (master report).
2. In design mode, from Fields group in Insert tab, click the Subreport icon and select Products Report from the drop-

down menu.
3. In the Detail section of your report, click and drag the mouse pointer to make the field for the subreport:

FlexReport for WinForms 164

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 4: Link the Subreport to the master report
The master-detail relationship is controlled by the SubreportFilter property of the subreport field. This property should
contain an expression that evaluates into a filter condition that can be applied to the subreport data source.

The Report Designer can build this expression automatically for you. Complete the following steps:

1. Right-click the subreport field and select Link Subreport from the menu.

Link Subreport dialog box appears that allows you to select which fields should be linked.

The Subreport field in design area now appears as follows:

2. Once you make a selection and click OK, the Report Designer builds the link expression and assigns it to the

FlexReport for WinForms 165

Copyright © 2017 GrapeCity, inc. All rights reserved.

SubreportFilter property of the subreport field. In this case, the expression is:
"[CategoryID] = '" & [CategoryID] & "'"

Legacy Chart Field
The Legacy Chart field in FlexReport is now provided built-in with FlexReportDesigner. It uses C1.Win.C1Chart and
C1.Win.C1Chart3D assemblies to render chart fields consisting of 2D and 3D chart types, respectively. For more
information on 2DCharts and 3DCharts, see 2DChart documentation and 3DChart documentation, respectively.

Chart Types
The Chart Field in FlexReport allows you to insert various types of charts using Chart.Chart2DGroup.ChartType and
Chart.Chart3DGroup.ChartType. The chart types that are supported in C1FlexReport are - Area, Bar (horizontal
bars), Column (vertical columns), Doughnut, Scatter (X-Y values), Line, Pie, Step, Stock, Histogram, Radar, Polar, and 3D
charts-Cone, Cylinder, and Pyramid. The chart types can be easily selected using the ChartType property in
the Properties window of the C1FlexReportDesigner.

Area chart: An Area chart draws each series as connected points of data, filled below the points. Each series is drawn
on top of the preceding series.

Bar and Column charts: A Bar chart or a Column chart represents each series in the form of bars of the same color
and width, whose length is determined by its value. Each new series is plotted in the form of bars next to the bars of
the preceding series. A Bar or Column chart draws each series as a bar in a cluster. The number of clusters is the
number of points in the data. Each cluster displays the nth data point in each series. When the bars are arranged
horizontally, the chart is called a bar chart and when the bars are arranged vertically, the chart is called column chart.

The following image represents a Bar chart:

FlexReport for WinForms 166

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1chart2d/#componentone2dchartf.html
http://helpcentral.componentone.com/nethelp/c1chart3d/#componentone3dchartf.html

The following image represents a Column chart:

Bubble Chart: A Bubble chart combines two independent values to supply both the point y value and the point sizes.
Bubble charts are used to represent an additional data value at each point by changing its size. The Y array elements
determine the Cartesian position (as in a XY-Plot chart), and the Y1 element values determine the size of the bubble at
each point. The size of the points can be encoded according to area or diameter.

Scatter chart: A Scatter chart uses two values to represent each data point. This type of chart is often used to support
statistical techniques that quantify the relationship between the variables (typically Linear Regression Analysis).

Pie chart: A Pie chart draws each series as a slice in a pie. The number of pies is the number of points in the data.
Each pie displays the nth data point in each series. You can also customize Pie charts for displaying legends and
labels.

FlexReport for WinForms 167

Copyright © 2017 GrapeCity, inc. All rights reserved.

Doughnut Chart:

A doughnut chart is a pie chart with a non-zero radius and is identical in function to a pie chart, but can be used to
increase aesthetic appeal, particularly when shown with 3D effects. As with all pie charts, each doughnut shows each
series as a fraction of the whole at each data point. If multiple data points are specified, then multiple doughnuts
appear in the chart.

A doughnut chart can be created by setting the InnerRadius property of a pie chart to a non-zero value. The
InnerRadius value represents the percentage of the full pie radius. The InnerRadius property can be accessed in the
pie object of each Chart group.

Radar chart: A Radar chart draws the y value in each data set along a radar line (the x value is ignored except for
labels). If the data has n unique points, then the chart plane is divided into n equal angle segments, and a radar line is
drawn (representing each point) at n/360 degree increments. By default, the radar line representing the first point is
drawn vertically (at 90 degrees). Radar charts can be further customized.

FlexReport for WinForms 168

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step chart: A Step chart is a form of XY plot chart that draws series as connected points of data. These charts are
often used when Y values change by discrete amounts, at specific values of X with a sudden change of value. A simple,
everyday example would be a plot of a checkbook balance with time. As each deposit is made, and each check is
written, the balance (Y value) of the check register changes suddenly, rather than gradually, as time passes (X value).
During the time that no deposits are made, or checks written, the balance (Y value) remains constant as time passes.

Line chart: A Line chart draws each series as connected points of data. It is the most effective way of denoting
changes in values between different groups of data. These charts are commonly used to show trends and
performance over time.

Stock Charts: Stock charts used in financial applications to show the opening, closing, high and low prices of a given
stock. The types of stock charts are as follows:

Candle: A Candle chart is a special type of HiLoOpenClose chart that is used to show the relationship between
the open and close as well as the high and low. Like, HiLoOpenClose charts, Candle charts use the same price
data (high, low, open, and close values) except they include a thick candle-like body that uses the color and
size of the body to reveal additional information about the relationship between the open and close values. For
example, long transparent candles show buying pressure and long filled candles show selling pressure.

The Candle chart is made up of the following elements: candle, wick, and tail. The candle or the body (the solid
bar between the opening and closing values) represents the change in stock price from opening to closing. The
thin lines, wick and tail, above and below the candle depict the high/low range. A hollow candle or transparent
candle indicates a rising stock price (close was higher than open). In a hollow candle, the bottom of the body
represents the opening price and the top of the body represents the closing price. A filled candle indicates a
falling stock price (open was higher than close). In a filled candle the top of the body represents the opening
price and the bottom of the body represents the closing price.

C1Chart creates the Candle chart with using the Y value for the High, Y1 for the low, Y2 for the open, and Y3 for
the close. C1Chart automatically fills the falling candle with the value of the line color.

FlexReport for WinForms 169

Copyright © 2017 GrapeCity, inc. All rights reserved.

HiLo: A HiLo chart combines two independent values to supply high and low data for each point in a series.
HiLo charts are used primarily in financial applications to show the high and low price for a given stock. The
elements of the Y and Y1 arrays in each series of a HiLo chart represent the "high" value, and the "low" value.

HiLoOpenClose: HiLoOpenClose charts are similar to HiLo charts except that they combine four independent
values to supply high, low, open, and close data for a point in a series. In addition to showing the high and low
value of a stock, the Y2 and Y3 array elements represent the stock's opening and closing price, respectively.

Histogram chart: A Histogram chart takes a collection of raw data values and plots the frequency distribution. It is
frequently used with grouped data, which is generated by measuring a collection of raw data and plotting the number
of data values that fall within defined intervals. Note that raw values are not used to generate data for a histogram,
but are used to generate a frequency instead. While showing similarities to bar charts, it is important to note that
histograms are used with quantitative variables whereas bar charts are commonly used with qualitative variables.

While the histogram and bar charts' appearances relate, their functionality does not. A bar chart is created from data
points whereas a Histogram is created from the frequency distribution of the data. The charts following illustrate the
difference between a bar chart and a histogram chart. Both of the charts use exactly the same Y data. The bar chart
(top) shows each average mean temperature for each year in which it occurred. The histogram chart (bottom) using
the same input temperature data automatically tabulates the number of temperatures that fall within each interval
and draws the resulting histogram. For convenience, chart labels with the count in each interval have been added at
the top of each interval.

FlexReport for WinForms 170

Copyright © 2017 GrapeCity, inc. All rights reserved.

A histogram is beneficial for pinpointing prominent features of the distribution of data for a quantitative variable. The
important features for a quantitative variable include the following:

It reveals the typical average value.
The data yields a general shape. The data values can be distributed symmetrically around the middle or they
can be skewed.
If there are distant values from the group of data it shows them as outlier values.
The data values can be near or far to the typical value.
The distribution may result in a single peak or multiple peaks and valleys.

To select the chart type as Histogram, go to ChartGroups|Group0 and set the ChartType to Histogram.

Polar chart: A Polar chart draws the x and y coordinates in each series as (theta,r), where theta is amount of rotation
from the origin and r is the distance from the origin. Theta may be specified in either degrees (default) or radians.
Since the X-axis is a circle, the X-axis maximum and minimum values are fixed. The series can be drawn independently,
or stacked.

3D Charts

Cylinder chart: A Cylinder chart is a variation of the Bar and Column charts. It represents the bars or columns
as cylinders. The Cylinder chart creates long circular boxes of the same base on both ends. Like all bar and
column charts, the Cylinder bar chart is appropriate for comparing individual items or groups of items.

FlexReport for WinForms 171

Copyright © 2017 GrapeCity, inc. All rights reserved.

Cone chart: A Cone chart is a variation of the 3D Bar and Column charts. It represents the bars or columns as
cones. The cone chart essentially is a rotated triangle. It has a flat circular base and one curved side topped by
a higher point.

Pyramid chart: A Pyramid chart is a variation the 3D-Bar and Column charts. It represents the bars or columns
as pyramids. The Pyramid chart is similar to the cone chart except for their base. Pyramid charts are often used
for geographical purposes.

Design Time Support
The Chart field in FlexReport provides design-time support through design-time editors and collection editors that
simplify working with the charts.

The design-time editors for Chart field are as follows:

Chart Properties
Chart Data Source
Chart Visual Effects

These editors can be invoked by right-clicking the chart field and selecting the required editor.

Chart Properties

FlexReport for WinForms 172

Copyright © 2017 GrapeCity, inc. All rights reserved.

It provides an easy and interactive way to create and modify a new or existing chart. It contains the options to select
the type of chart and . However, it also includes additional property settings for the x and y axis along with
appearance settings for the header, footer, legend, chart area, and plot area of the chart. The Chart Properties dialog
box provides more options to address specific details with the design of the chart you are developing. It consists of
following elements:

Gallery Item: The Gallery item in the left pane of the Chart Properties dialog box provides options for
choosing a chart type and/or a sub-type of a chart. To see a description of all chart type selections, see Chart
Types. You can choose from a variety of simple chart types or you could click on complex types to add more
functionality to your chart.
Simple Types Tab: In the Simple Types tab you can choose from one of many simple chart types and then you
can select a specialized chart located in list box next to the simple chart types.
Complex Types Tab: In the Complex Types tab you can specify whether you want to chart one or two chart
groups. Also, you can select the type of chart you would like to create in the drop-down box for each group.
For each group, you have the option to make the groups stacked and/or 3D.

Note: If you don't select a chart type for data [Group1] then the elements for data [Group1] will not appear in
the list box in the left pane of the Chart Properties dialog box.

Chart Data Source

FlexReport for WinForms 173

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Chart Data editor lets you bind the chart by setting data through Chart Data-add or remove data series in your
chart, specify the label and color of each data series, and stack your data by checking the Show stacked data check
box.

Chart Visual Effects

FlexReport for WinForms 174

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Effects is a tool used for visually enhancing the Chart2D control's elements such as the data series, header, and
footer. Any existing project can use the new features provided by this tool. The chart's appearance can dramatically
improve in a few simple steps using the Visual Effects designer.

The collection editors for Chart field are as follows:

ValueLabel Collection Editor: This collection editor can be assessed through the Property
pane-ChartArea|AxisX|ValueLabels. For more information, see the documentation on ValueLabel
CollectionEditor.
ChartDataSeries Collection Editor: This collection editor can be assessed through the Property
pane-ChartGroups|Group0|ChartData|CategoryGroups. For more information, see the documentation on
ChartDataSeries CollectionEditor.
ChartLabel Collection Editor: This collection editor can be assessed through the Property
pane-ChartLabels|DefaultLabelStyle|LabelsCollection. For more information, see the documentation on
LabelCollection Editor.
ChartVisualEffectsStyle Collection Editor: This collection editor can be assessed through the Property
pane-VisualEffects|Styles. For more information, see the documentation on VisualEffectsStyle Collection
Editor.

Plotting Data in Data-Bound Charts

FlexReport for WinForms 175

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1chart2d/#valuelabelcollection.html
http://helpcentral.componentone.com/nethelp/c1chart2d/#valuelabelcollection.html
http://helpcentral.componentone.com/nethelp/c1chart2d/#chartdataseriescolle.html
http://helpcentral.componentone.com/nethelp/c1chart2d/#labelcollectionedito.html
http://helpcentral.componentone.com/nethelp/c1chart2d/#visualeffectsstyleco.html
http://helpcentral.componentone.com/nethelp/c1chart2d/#visualeffectsstyleco.html

The steps to plot a simple 2D chart are as follows:

1. Open the C1FlexReportDesigner application.
2. Create a new report by navigating through the C1FlexReport wizard or open an existing report definition.
3. Add Legacy Chart field to the Detail section.

Note: To add Legacy Chart field to your report, you need to add it to the INSERT tab. In order to do
that, go to File|Options in the designer and select Show "Legacy Chart" button on the INSERT tab.

4. Right-click the chart field, select Chart Properties>Simple Types>Bar.
5. Right-click the chart field and select Chart Data Source.
6. Click Simple 2D Chart and check the Generate simple 2D chart checkbox.
7. Specify X and Y values of the chart.

For example, the chart shown is created using C1NWind.mdb database and Products table, with following properties
set:

Chart Type as 'Bar'
X and Y values of the chart as 'CategoryID' and 'UnitPrice', respectively.

Add series label as follows:

1. Select 2D Chart Group0, and then Series Values.
2. Specify Series Label as ''CategoryID vs UnitPrice'.

Add legend as follows:

1. Go to the Properties window.
2. In the Legend|Text, set the legend name as 'Legend' and Legend|Visible to True.

Add Titles to the chart as follows:

1. Go to Properties window.
2. Select Titles|Header, set the header text as 'Header' and Titles|Header|Visible to True.
3. Select Titles|Footer, set the footer text as 'Footer' to add header and footer to the chart.

You can also add axis titles in the chart, add back color and border to chart area, and more. For more information on
using properties for customizing charts, see 2DChart documentation.

Three dimensional data can be represented in the form of 3D Surface, 3D Bar, and many more by using 3D Chart
types. To plot 3D charts from 2D charts, you can change the VisualizationType property to Chart3D. For more
information on plotting 3D charts, see 3DChart documentation.

FlexReport for WinForms 176

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1chart2d/#chartareaandplotarea.html
http://helpcentral.componentone.com/nethelp/c1chart3d/#componentone3dchartf.html

Plotting Data in Unbound Charts
FlexReport allows you to add data to the charts without binding the charts to a data source. You can plot series on
chart and display it by setting an array of X and Y values directly in unbound mode. Let us add an unbound 2D chart
by performing the following steps:

1. In the C1FlexReportDesigner application, create a new report by navigating through the C1FlexReport
wizard or open an existing report definition.

2. Add Chart field to the Detail section.

Note: To add Legacy Chart field to your report, you need to add it to the INSERT tab. In order to do
that, go to File|Options in the designer and select Show "Legacy Chart" button on the INSERT tab.

3. In Properties window, expand ChartGroups|Group0|ChartType and select a type of chart from the
ChartType dropdown. In our case, we have selected Bar chart type.

4. Navigate to ChartGroups|Group0|ChartData and click the ellipsis button next to UnboundSeriesList
property.

5. In the ChartUnboundDataSeries Collection Editor, add any number of series you want to plot in chart. Here,
we have added two series.

6. Select one of the series and click the ellipsis button next to SeriesData property.
7. In the editor for series data, enter your data.
8. Click OK to close the editors.
9. Click the Preview button to switch to Preview mode to view the report.

For 3D unbound chart, perform the following steps:

1. Add Chart field to the Detail section.
2. In Properties window, expand ChartGroups|Group0|ChartType and select a type of chart from the

ChartType dropdown. In our case, we have selected Surface chart type.
3. Navigate to ChartGroups|Group0|ChartData|UnboundData|GridSet.
4. Set the ColumnCount and RowCount properties to the desired value, if required. In our case, both

ColumnCount and RowCount properties are set to 0.
5. Click the ellipsis button next to the GridData property.
6. In Single Array Editor, enter data and close it.

FlexReport for WinForms 177

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Click the Preview button to switch to Preview mode to view the report.

Charts with Multiple Series

Sometimes you need to create charts that have multiple data sets or multiple series. To create such charts, the values
for each series are required to be set.

FlexReport for WinForms 178

Copyright © 2017 GrapeCity, inc. All rights reserved.

Consider an example of Products table from C1Nwind.mdb database, where you want to view Unit Price, Units in
Stock, and Reorder Level corresponding to the Category IDs. The steps to achieve this scenario are as follows:

1. Right-click the Chart field and select Chart Data Source .
2. Click 2DChartGroup0 and then click Series Values.
3. Click the plus glyph and specify Series Label of your choice and Values from the drop-down list. You can also

add colors to the series from the Fill option in Style tab. In this case, the data specified for our multiple-series
chart is as follows:
Series Label Values Style | Fill

Unit Price UnitPrice Blue Voilet

Units in Stock UnitsinStock Pale Turquoise

Reorder Level ReorderLevel Deep Pink

To create Legend:

1. Right-click Legacy Chart field.
2. Select Chart Properties.
3. Navigate to Appearance | Legend.
4. Select the Visible checkbox and write “Legend” as Text.

Charts in Grouped Reports
FlexReport for WinForms allows you to create reports with multiple groups. For example, instead of listing all
products in a single flat report, you could group products by category. Each group has a header and a footer section
that allow you to display information about the group, including titles and subtotals, for example.

If you add a chart to a group header, the chart will display only the data for the current group. By contrast, adding a
chart to the report header or footer would include all the data in the report.

To illustrate this, here is a diagram depicting a report definition as shown in the report designer and showing the
effect of adding a Chart field to the report header and to a group header:

Report Header section

A chart field here would generate
only one chart for the entire report.

The chart would show all the data
in the report's data source.

Page Header section

Group Header section (CategoryName)

A chart field here would generate
one chart for each CategoryName value.

Each chart would show all the data
for the current CategoryName.

Detail section

Group Footer section (CategoryName)

Page Footer section

FlexReport for WinForms 179

Copyright © 2017 GrapeCity, inc. All rights reserved.

Report Footer section

Continuing with the example mentioned above, lets visualize the report data for each category through chart.

Add a Legacy Chart field to the Group Header section (Category Name) and create the chart as explained in the
topic Plotting Data in Charts. Specify X and Y values of the chart as ProductName and UnitPrice and specify Value in
Series Values as UnitPrice.

The images below show screenshots of the report described above with the group headers, the charts they contain,
and a few detail records to illustrate:

The chart above shows unit prices for products in the "Condiments" category. The chart below shows unit prices for
products in the "Confections" category.

FlexReport for WinForms 180

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding FlexReport Custom Fields
The custom fields in FlexReport are available in C1.Win.FlexReport.CustomFields.4 assembly. You can create your
own custom fields and add them to the Report Designer palette. To do that, you have to:

1. Create a custom field class that derives from C1.Win.FlexReport.CustomFields.
2. Register your custom field assembly in C1FlexReportDesigner.4.exe.settings.

For registering a custom field, say MyField, add your control to the <customfields> section in the
C1FlexReportDesigner.4.exe.settings file as follows:
<customfields>
<!-- THIS LINE ADDS A NEW FIELD TO THE DESIGNER -->
<item value="MyCustomFieldAssembly;MyCustomFieldAssembly.MyField" />
</customfields>

Note that the code above assumes that your field is called "MyField" and it can be found in the assembly called
"MyCustomFieldAssembly". Also, MyCustomFieldAssembly should be in the same folder as the designer.

Following are built-in standard custom fields that are loaded in the FlexReportDesigner application by default:

SuperLabel
Maps

The source code for implementing these custom fields is:
<customfields>

FlexReport for WinForms 181

Copyright © 2017 GrapeCity, inc. All rights reserved.

<item value="C1.Win.FlexReport.CustomFields;C1.Win.FlexReport.CustomFields.SuperLabel"
/>
<item value="C1.Win.FlexReport.CustomFields;C1.Win.FlexReport.CustomFields.Map" />
</customfields>

Map Custom Field
FlexReport supports map fields using its extensible custom field architecture. In the following topics, you'll see how
you can customize map fields in reports using the FlexReportDesigner application. The Map custom field uses two
assemblies, C1.Win and C1.Win.Map, which should be referenced by your project before you begin.

To start using the Map custom field in the FlexReportDesigner application, complete the following steps:

1. Run the C1FlexReportDesigner application.
2. Confirm that the map icon is present in the C1FlexReportDesigner toolbar. If it is not included, you may need

to add the following line to the <customfields> section of the C1FlexReportDesigner.4.exe.settings file:
<item value="C1.Win.FlexReport.CustomFields.4;C1.Win.FlexReport.CustomFields.Map"
/>

3. Create a new report or open an existing report. See Step 1 of 4: Creating a Report Definition for an example.
4. Click the map icon and drag it onto your report to add a Map field.

That's it! The main aspects of the Map field include:

tile and data layers
legends
styles
expressions
auto zooming/centering and data tracking

Note that if C1FlexReport definition contains map field and the report is generated asynchronously, the map
field cannot be displayed in the FlexViewer control. As a workaround please set
the C1FlexViewer.UseAsyncRendering property to False.

Map Custom Field Properties
The important properties of the Map custom field are discussed in the following sections.

Layers

The main part of a map is the tile layer which provides raster graphics representing the Earth surface or part of it, and
zero or more layers representing spatial data.

The tile layer is specified by the TileSource property. It may be set to a VirtualEarth tile source (road, aerial, or hybrid).
The tile source may be set to "none" in which case no tiles will be drawn on the map. This may be useful especially
when other layers such as KML provide enough data for the map visualization.

Note that unless the tile source is "none", the tiles are loaded from a network location when the report runs, which
may slow things down considerably.

Except for the tile layer, all other layers are contained in the Layers collection. Currently, three layer types are
supported as described below:

Points Layer: A points layer allows to show spatial data as points on the map. A marker is drawn for each
record of the data source. A marker's location is specified either by a Longitude/Latitude pair, or by a
MapLocation, as described in Spatial Locations. The following points describe important aspects of the points
layer.

FlexReport for WinForms 182

Copyright © 2017 GrapeCity, inc. All rights reserved.

Data access: when a points layer is processed at run time, the record source (either the layer's
own DataSource if specified, or the report's data source filtered by the current group) is looped
through, and a mark is drawn for each data record.
Visual Styles: the way point markers look is determined by the applied marker style. A points layer
provides a default MarkerStyle property that allows to specify markers' shape, color and so on.
Additionally, a MarkerStyleExpr expression may be specified, in which case at runtime it will be
evaluated for each data record, and if a matching marker style is found in the MarkerStyles collection
of the current map, or failing that of other maps in the report, that style will be applied instead of the
default. (As described above, a style expression should evaluate to a string matching a style name in the
styles collection.)
Clustering: when several point markers are located close to one another they may be "clustered"
together into a single marker. That marker always shows the number of clustered point markers it
represents. The visual style of the cluster marker may differ from the style of the point markers, and may
even vary depending on the number of points it represents. Cluster styles are specified by the points
layer's ClusterStyles collection, if more than one styles are provided the specific style is determined by
the cluster size. Relevant points layer properties are: ClusterDistance, ClusterDistribution and
ClusterStyles.
Tracking: if the Track property is True, automatic centering and zooming includes all layer's points.

Lines Layer: A lines layer is used to draw a straight line between two points for each data row on the map.
Spatial location for each point may be specified in the same manner as for the Points Layer: either with two
Longitude/Latitude pairs (one for each end of the line), or with two MapLocations used to request locations
from an online service. The following points describe important aspects of the lines layer.

Data access: as with the points layer, a lines layer allows to specify its own DataSource, or uses the
report's record source filtered by the current group.
Visual Styles: styles are handled much in the same manner as with points layers, but instead of
MarkerStyles, the LineStyles collection is used.
Tracking: if the Track property is True, automatic centering and zooming includes all layer's lines.

KML Layer: KML (Keyhole Markup Language) is an XML based language that allows to describe various
geographic information. For more info on KML, see Keyhole Markup Language. A KML layer allows to load into
the map and show a local or Web-based KML file. This layer renders a KML (Keyhole Markup Language) or
KMZ (compressed KML) file on the map. The file name is specified by the KmlFileName property on the layer.
The file may be loaded from a URL, from a local disk file, or embedded in the report. If the file is not embedded
(EmbedKmlFile is False), and the directory is not specified, the file is loaded from the directory containing the
report definition.

KML item expressions: when a KML layer is rendered, items present in the KML file are processed in
sequence. As each item is loaded, several expressions specified on the layer are evaluated allowing to
control the process - for example, only load certain items based on various criteria, or modify items'
visual attributes. Additionally, if a DataSource is specified for the KML layer, the data may be filtered for
each KML item prior to evaluating the item expressions. Following is a detailed explanation of the
properties involved in evaluating KML item expressions. Note that in all those expressions, the special
variable kmlItemName may be used, and refers to the KML item name that is currently being
processed.
ItemFilterExpr: if (and only if) a DataSource is specified on the KML layer, this filter is applied to the
retrieved data prior to evaluating other expressions. For example, if the layer's record source contains a
Country field, and the KML file includes country items, the following filter:
kmlItemName=Country
will ensure that for each KML item, other item expressions will evaluate with data corresponding to the
current item's country.
ItemTrackExpr: if specified, determines whether an item is used to automatically center/zoom the map.
If left empty, true is assumed.
ItemVisibleExpr: if specified, determines an item's visibility. If left empty, true is assumed.
ItemStyleExpr: if this expression evaluates to a valid style name in the KmlItemStyles collection (of the
current or any other Map in the report), this style is applied to the item. This may be used for instance to
fill different states with different colors depending on a data value such as orders total for that state.

FlexReport for WinForms 183

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://en.wikipedia.org/wiki/Keyhole_Markup_Language

ItemStyle.ItemNameExpr: the KML item style itself contains one calculated property, the item's name.
This allows to suppress the name rendered on the map, or replace it with report data (such as orders
total).

Tracking

The map shown by a Map field can automatically center and zoom in on the data shown on the map. This behavior is
determined by two factors:

The AutoCenter and AutoZoom properties' values specified for the whole Map field, together with several
related properties fine-tuning the automatic centering and zooming (AutoZoomPadLon, AutoZoomPadLat,
MaxAutoZoom, RoundAutoZoom).
The spatial data represented by the layers, provided that data is "tracked". Tracking (such as whether or not a
particular piece of spatial data should be used for automatic centering and zooming) is determined by the
layer's Track property. Additionally, for KML layers an expression may be specified which will determine
whether a specific KML item should be tracked or not.

Styles

Visual attributes of map elements are mostly defined by styles. There are several types of styles (point marker
styles, line styles and KML item styles); the applicable type is determined by the context, such as points layers use
point marker styles, lines layers use line styles, and so on. Usually a style may be specified as a data driven
expression (so that the actual style depends on run time data), with a fallback style used by default. How style
expressions are specified and evaluated is described next.

The Map custom field contains 3 style collections:

MarkerStyles
LineStyles
KmlItemStyles

These styles are available to all layers defined on the Map, and also to other Map fields in the current report. The
styles in each collection are addressable either by index or - preferably - by name (using the Name property). When a
style expression evaluates to a string, that string is used to search for a matching style, first in the current map and if
that fails, in all other maps on the current report (only matching type styles are searched; for example, only
MarkerStyles collections are searched for a point marker style, and so on).

Spatial Locations

Points and lines layers provide two different ways to specify spatial locations for the data:

As a pair of expressions that evaluate to a longitude/latitude pair at run time. Typically these would directly
reference corresponding data fields (longitude and latitude) stored in the data source.

As a MapLocation, an expression (or a list of expressions) that evaluates to a string that can be used to retrieve
the corresponding spatial location using an external online service (Google Maps). If the specified
MapLocation contains semicolons, it is treated as a list of semicolon-delimited expressions, each of which is
evaluated separately and then combined to use as the query. A typical MapLocation could look like this:

"Address;City;PostalCode;Country"

which would fetch Address, City, PostalCode, and Country fields from the data source and then combine them
to query the external service.

Note that using MapLocation may be very time consuming due to Internet access. Hence by default the
retrieved spatial data is stored in a local disk file. The path to that file is specified by the Map.GeoCachePath
property. By default the file's name is "geocache.xml", and it is stored in the same directory as the report
definition. Disabling geocaching is not recommended.

FlexReport for WinForms 184

Copyright © 2017 GrapeCity, inc. All rights reserved.

Legends

A map can have several associated legends, rendered within its bounds. To facilitate placing a legend outside the
map's bounds, the legend can be associated with any map field in the report, so you can add an empty map field just
to hold a legend describing another map.

Legends are contained within the Legends collection of the Map field. To add a legend, add an item to that
collection. The location of a legend within its map's bounds is determined by the LegendAlignment property.
Orientation determines whether items within the legend are placed vertically (default) or horizontally. Several other
properties allow to fine-tune the way the legend looks.

Items within the legend are represented by the Items collection. That collection may be populated automatically with
data from non-KML layers of the current map, if the Automatic property of the legend is set to True. In that case the
Items collection cannot be edited. Otherwise, the legend items must be added manually.

The following types of legend items are supported:

LegendLayerStyleItem: represents a layer style. The designer allows to select an existing layer or style
represented by the legend item. Depending on the selected layer style, the legend item may represent a point
marker (for points layers/styles), a line (for line layers/styles) or a color swatch (for KML item styles).
LegendColorSwatchItem: represents an arbitrary color swatch.
LegendTextItem: represents arbitrary text.

Adding Map Custom Field
Now that you familiar with the basics of Map field, let us add a map to a report showing Employees, Suppliers, and
Customers summarized by City.

Complete the following steps:

1. Create the base report.

Add a new report in the designer, with C1NWind.mdb as the data source, with the following SQL query:
Customers and Suppliers by City

2. Add the main map.

You'll add the map to the report's header:

Make some room for the map by dragging the header's bottom edge down in the report designer.
Click on the Map custom field icon and drag it onto the header.

3. Adjust the map's properties.

Set the map's properties as follows (only non-defaults are shown here):

AutoCenter: False
AutoZoom: False
CenterLatitude: 10
CenterLongitude: 15
ShowScale: True
TileSource: VirtualEarthAriel
ZoomLevel: .55

4. Add Layers.

Click ellipsis button next to Layers collection to open LayerBase Collection Editor. Add Members 'Employees',
Suppliers', and 'Customers', select the data source and set their marker style and map location properties.

FlexReport for WinForms 185

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note that you need to add a data source every time before you add a member to the LayerBase Collection
Editor as each member uses different data source.

The design area looks like the following image:

FlexReport for WinForms 186

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Preview the report.

FlexReport for WinForms 187

Copyright © 2017 GrapeCity, inc. All rights reserved.

SuperLabel Custom Field
SuperLabel fields are used to insert HTML text in reports.

Let's add a SuperLabel field to the report created in Adding Map Custom Field.

1. Open the report.
2. Set PageHeader's Visible property to True.
3. Drop a SuperLabel field in the Page Header section of the report.

FlexReport for WinForms 188

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. From the Properties window, set Text property to the following text:

SuperLabel.Text

<html><body>Customers and Suppliers by City</body>
</html>

5. In the designer, SuperLabel field should now look as follows:

6. Preview the report:

FlexReport for WinForms 189

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with Parameters
Using Parameters

Report parameters in FlexReport can be used to perform following tasks:

Data binding
Creating expressions for calculated fields

FlexReport for WinForms 190

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating Subreports
Passing multiple values to a field by adding multi-value parameters
Silently passing values to a report
Managing large amount of data using cascading parameters

Adding parameters to a report

The steps to add parameter to a report are as follows:

1. Run C1FlexReportDesigner.exe application.
2. Create a new report. Bind it to a data source, which is the Main data source. The report opens in the Design

mode.
3. Click the Data tab.
4. Right-click Data Sources and click Add Data Source to add a data source for specifying a parameter. Add as

many data sources as the number of parameters that need to be added to the report. See Adding Multiple
Data Sources for more information.

5. Right-click Parameters and select Add Parameter from the context menu.

FlexReport for WinForms 191

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Set the properties of parameters from the Properties window depending upon the task that needs to be
accomplished using parameters.

The following sections explain the various tasks that can be achieved using parameters.

Data Binding
To perform data binding in report parameters, the steps are as follows:

1. Run C1FlexReportDesigner.exe application.
2. Create a new report. Bind it to a data source, which is the Main data source. The report opens in the Design

mode.
3. Click the Data tab.
4. Right-click Data Sources and select Add Data Source The Data Sources dialog box appears.

FlexReport for WinForms 192

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Select a Data Source, say DataSource1, to create a new data source and set Connection, Data provider,
Connection string, etc.

6. You can rename DataSource1 from the Properties window by setting Name property. In our case, we
have set Name to dsCategories.

7. Add a parameter by right-clicking Parameters and then selecting Add Parameter.
8. From the Properties window, click the ellipses button next to AllowedValuesDefinition. The

AllowedValuesDefinition Editor dialog box appears.

9. Select the From Data Source radio button and then select Data Source, Label, and Value for binding the data
source to the parameter as shown. Click OK.

10. From the Properties window, set the DataType to a value that is same as the data type of Value in the
AllowedValuesDefinition Editor. In our case, DataType is set to Integer since Value=CategoryID is integer.

Calculated Fields

FlexReport for WinForms 193

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Run C1FlexReportDesigner.exe application.
2. Create a new report. Bind it to Products table. The report opens in the Design mode.
3. Click the Data tab.
4. Right-click Data Sources and select Add Data Source. The Data Sources dialog box appears.
5. Add another Data source and bind it to Products table. This data source is added for the parameter. Name this data

source as 'dsProducts'.
6. Add a parameter 'Parameter0' by right-clicking Parameters and then selecting Add Parameter.
7. From the Properties window, click the ellipses button next to AllowedValuesDefinition. The

AllowedValuesDefinition Editor dialog box appears.
8. Select the From Data Source radio button and then select Data Source - dsProducts, Label - ProductName, and Value

- ProductName. Click OK.
9. Add another parameter 'Discount'.

10. Edit the 'Main' data source. Write following Sql statement:
Select * from Products where ProductName=Parameter0

11. Add a Calculated field from the Fields group in the Insert tab. The VBScript Editor opens.
12. Specify the following expression in the editor:

UnitPrice*Discount
13. Drop the Calculated field in the Detail section. Also add a Text field to display 'Discounted Price' in the PageHeader

section.

14. Preview the report. Select the product name from Parameter0 and enter the discount value in Discount parameter.
The discounted price is calculated on clicking Apply Parameters.

FlexReport for WinForms 194

Copyright © 2017 GrapeCity, inc. All rights reserved.

Subreports
Subreports are useful in displaying additional information about the data present in the main report. Just as you pass
parameters to a report, you can also pass parameters to subreports and create connection between the data values in
subreports.

For instance, you want to fetch data in subreports that are rendered side by side on a main report. The steps to attain such a
scenario are as follows.

1. Run C1FlexReportDesigner.exe application.
2. Create a new report definition, main report, in an unbound mode.
3. Create another report and bind it to Photos report available in the C1NWind.mdb.
4. From the Insert tab, click Subreport field. All the available reports will be displayed.
5. Drop two Subreport fields side by side.
6. Add two parameters that will be passed one for each subreport.
7. Set the name of parameters from Name property - 'prmLeftPlace' for parameter on left subreport and 'prmRightPlace'

for parameter on right subreport.
8. Add Data Source for parameters - set data provider and connection string. Write a Sql Statement that will be used to

pass values to the parameters. For example, to select 'Place' from the 'Photos' report, the statement should be:
select distinct Place from Photos order by Place

9. Set AllowedValuesDefinition property for both the parameters -
a. Click the ellipses button next to AllowedValuesDefinition.
b. In the AllowedValuesDefinition Editor dialog box, select the From Data Source radio button.
c. Select Data Source, Label, and Value for binding the data source to the parameter.

10. Set the prompt text from Prompt property for each of the parameter.
11. Select Subreport -Photos- click Data tab
12. Edit the data source and write the following Sql Statement:

select distinct Place from Photos order by Place
13. Select the main report and click the Subreport field on left. Click ellipses next to

ParameterValues.ParameterValuesCollection Editor appears. Set the Name and Value as shown.

FlexReport for WinForms 195

Copyright © 2017 GrapeCity, inc. All rights reserved.

14. Similarly, set the Name - prmPlace and Value - prmRightPlace.Value for Subreport field on the right. In the design
view the report should look similar to the following:

15. Preview the report.

You can see two parameter prompts with a list of values (i.e. places), one for each subreport. Select the values and click
Apply Parameters. Here, we have selected Chaumont for left subreport and Cote d'Azur for right subreport.

Cascading Parameters
Cascading parameters are used when a list of values in one parameter depends on the value selected for the other
parameter. So you have two parameters, where one parameter alters the data source used to list data values for another

FlexReport for WinForms 196

Copyright © 2017 GrapeCity, inc. All rights reserved.

parameter.

For instance, if you want to select a Product from a list of products that belong to the selected Category, then you need to do
the following:

1. Create a new report. Bind the report to Order Details available in C1NWind.mdb.
2. Add two Data Sources, one for each parameter:

dsCategory to pass values to parameter prmCategory
dsProduct to pass values to parameter prmProduct

3. Right-click dsCategories and select Edit to edit the data source. Set Data provider, Connection string, and write
following Sql Statement:

select * from categories

4. Repeat the previous step for dsProducts. Write the following Sql Statement:

select * from products where categoryid = prmCategory

5. Right-click Main data source, select Edit and write Sql Statement for Main data source:

select * from [order details] where productid = prmProduct

6. Add two parameters:

FlexReport for WinForms 197

Copyright © 2017 GrapeCity, inc. All rights reserved.

prmCategory to select Category.
prmProduct to select Product that belongs to the category selected in prmCategory parameter.

7. Set the AllowedValuesDefinition property for both the parameters as shown:
prmCategory prmProduct

Data Source dsCategory dsProduct

Label CategoryName ProductName

Value CategoryID ProductID

8. Click Preview.

On selecting a category, a list of products available in that category are displayed in the other parameter. You can then select
the product and then click Apply Parameters. Here, we have displayed data in Aniseed Syrup product that falls in the
Condiments category.

Multi-value Parameters
Multi-value parameters are parameter collection that allows you to pass multiple values for a parameter; that is, you
can select multiple data from a list of data.

In FlexReportDesigner application, a parameter can be made multi-value by setting Parameter.MultiValue to True.

FlexReport for WinForms 198

Copyright © 2017 GrapeCity, inc. All rights reserved.

On previewing a report with multi-value parameter, a list of values bound to the parameter is displayed. You can then
select the values that you want to be rendered in the report.

Pass Parameters Silently
Passing the parameters silently allows passing the values of the parameters without any user prompt (or user
interaction), while rendering the report.

To pass the parameters silently, define parameter properties and set Parameter.Hidden property to True.

FlexReport for WinForms 199

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding Multiple Data Sources
A FlexReport definition can include several data sources. Adding a new data source to a report using
FlexReportDesigner is quiet easy. The steps to add data sources in an existing report bound to the Main data source
are as follows:

1. Click the Data tab.
2. Right-click the Data Sources node.
3. Select Add Data Source.

FlexReport for WinForms 200

Copyright © 2017 GrapeCity, inc. All rights reserved.

Or

1. Click the Home tab.
2. Click the drop-down on the Data Sources option.
3. Click Add Data Source.

4. Data Sources dialog box appears. From the drop-down next to Data Source option, select DataSource1,

DataSource2, and so on for adding as many data sources. You can later on rename these data sources from the
Name property of the data source(s).

FlexReport for WinForms 201

Copyright © 2017 GrapeCity, inc. All rights reserved.

Changing Data Source of FlexReport
When you create a new data bound report, the first thing you do is select a data source. With the FlexReportDesigner
application, you can easily edit all the data sources to which the report and its elements are bound.

The steps to change/edit a data source in a report using FlexReportDesigner are as follows:

1. Click the Data tab.
2. Expand the Data Sources node.
3. Right-click the data source you want to edit and select Edit.

Or

1. Click the Home.
2. Click the drop-down on the Data Sources option.
3. Select the data source, and then click Edit.

4. The Data Sources dialog box opens. Select the new data source, change the connection string, and edit the Sql
statement, and you are done.

FlexReport for WinForms 202

Copyright © 2017 GrapeCity, inc. All rights reserved.

Sorting Data using Designer
The data in a report can be easily sorted using FlexReportDesigner. The steps to sort data in a report are as follows:

1. Create a new report - Products Report - bound to Main data source through C1NWind.mdb. Select Product
Name, Quantity Per Unit, and Stock as the text and calculated fields, so that the report appears as shown:

FlexReport for WinForms 203

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. To view the report where data is sorted by Product Name, go to Design mode.
3. Click Data tab.
4. Expand Data Sources node.
5. Expand the Main data source to which the report is bound.
6. Right-click Sort Definitions.

FlexReport for WinForms 204

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Select Add Sort Definition. Sort Definition dialog box appears.

8. Select ProductName, check the Ascending checkbox, and click OK.

9. Preview the report.

FlexReport for WinForms 205

Copyright © 2017 GrapeCity, inc. All rights reserved.

Previewing and Printing FlexReport
After designing the report, you would like to Preview the report and may also wish to take a Print of the report. Both
the tasks can be accomplished by a few button clicks.

When you create a new report or open an existing report in the designer, the report is displayed in the Design mode.

For previewing the report, click Preview or press shortcut key F5.

For printing the report, go to File menu and click Print or press shortcut keys Ctrl+P. Note that the Print
option is enabled only in Preview mode. The Print dialog box lets you specify the settings on the printer.

FlexReport for WinForms 206

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can also edit the page settings through the options available in the Page Layout group

Importing Reports in FlexReportDesigner
One of the most powerful features of FlexReportDesigner application is the ability to import reports created with
Microsoft Access (.mdb) and Crystal Reports (.rpt).

FlexReport for WinForms 207

Copyright © 2017 GrapeCity, inc. All rights reserved.

To import reports, click the File menu and select Import from the menu. A dialog box prompts you for the name of
the file you want to import.

Importing Microsoft Access Reports
To import a Microsoft Access file, select a Microsoft Access file (MDB or ADP) and the Designer scans the file and shows a dialog box
where you can select which reports you would like to import:

The dialog box also allows you to specify if the Designer should clear all currently defined reports before starting the import process.

Note that importing Microsoft Access report requires Access to be installed on the computer. Once the report is imported into
the Designer, Access is no longer required.

FlexReport for WinForms 208

Copyright © 2017 GrapeCity, inc. All rights reserved.

The import process handles most elements of the source reports, with a few exceptions:

Event handler code

Access reports can use VBA, macros and forms to format the report dynamically. C1FlexReport can do the same things, but it
only uses VBScript. Because of this, all report code needs to be translated manually.

Form-oriented field types

Access reports may include certain fields that are not handled by the Designer's import procedure. The following field types
are not supported: Chart, CommandButton, ToggleButton, OptionButton, OptionGroup, ComboBox, ListBox, TabCtl, and
CustomControl.

Reports that use VBScript reserved words

Because Access does not use VBScript, you may have designed reports that use VBScript reserved words as identifiers for
report objects or dataset field names. This causes problems when the VBScript engine tries to evaluate the expression, and
prevents the report from rendering correctly.

Reserved words you shouldn't use as identifiers include Date, Day, Hour, Length, Minute, Month, Second, Time, TimeValue,
Value, Weekday, and Year. For a complete list, please refer to a VBScript reference.

These limitations affect a relatively small number of reports, but you should preview all reports after importing them, to make sure
they still work correctly.

Importing the C1NWind.mdb File

To illustrate how the Designer fares in a real-life example, try importing the C1NWind.mdb file. It contains the following 13 reports.
(The NWind.xml file that ships with C1FlexReport already contains all the following modifications.)

1. Alphabetical List of Products

No action required.

2. Catalog

No action required.

3. Customer Labels

No action required.

4. Employee Sales by Country

This report contains code which needs to be translated manually. The following code should be assigned to the Group 1
Header OnPrint property:

To write code in Visual Basic

Visual Basic

If SalespersonTotal > 5000 Then
 ExceededGoalLabel.Visible = True
 SalespersonLine.Visible = True
Else
 ExceededGoalLabel.Visible = False
 SalespersonLine.Visible = False
End If

To write code in C#

C#

if (SalespersonTotal > 5000)
{
 ExceededGoalLabel.Visible = true;
 SalespersonLine.Visible = true;

FlexReport for WinForms 209

Copyright © 2017 GrapeCity, inc. All rights reserved.

} else
{
 ExceededGoalLabel.Visible = false;
 SalespersonLine.Visible = false;
}

5. Invoice

No action required.

6. Products by Category

No action required.

7. Sales by Category

This report contains a Chart control that is not imported. To add a chart to your report, you can use the Chart field.

8. Sales by Category Subreport

No action required.

9. Sales by Year

This report contains code and references to a Form object which need to be translated manually. To replace the Form object
in the Data panel, add a "ShowDetails" parameter. Set its DataType property to Boolean and Value property to False:

Use the new parameter in the report's OnOpen event:

To write code in Visual Basic

Visual Basic

Dim script As String = _
 "bDetails = [Show Details]" & vbCrLf & _
 "Detail.Visible = bDetails" & vbCrLf & _
 "[Group 0 Footer].Visible = bDetails" & vbCrLf & _
 "DetailsLabel.Visible = bDetails" & vbCrLf & _
 "LineNumberLabel2.Visible = bDetails" & vbCrLf & _
 "Line15.Visible = bDetails" & vbCrLf & _
 "SalesLabel2.Visible = bDetails" & vbCrLf & _
 "OrdersShippedLabel2.Visible = bDetails" & vbCrLf & _
 "ShippedDateLabel2.Visible = bDetails" & vbCrLf & _
 "Line10.Visible = bDetails"
C1FlexReport1.Sections.Detail.OnPrint = script

To write code in C#

C#

string script = "bDetails = [Show Details]" +
 "Detail.Visible = bDetails\r\n" +
 "[Group 0 Footer].Visible = bDetails\r\n" +
 "DetailsLabel.Visible = bDetails\r\n" +
 "LineNumberLabel2.Visible = bDetails\r\n" +
 "Line15.Visible = bDetails\r\n" +
 "SalesLabel2.Visible = bDetails\r\n" +
 "OrdersShippedLabel2.Visible = bDetails\r\n" +
 "ShippedDateLabel2.Visible = bDetails\r\n" +
 "Line10.Visible = bDetails";
c1FlexReport1.Sections.Detail.OnPrint = script;

Finally, two more lines of code need to be translated:

To write code in Visual Basic

FlexReport for WinForms 210

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Sections ("Detail").OnPrint = _
 "PageHeader.Visible = True"
Sections("Group 0 Footer).OnPrint = _
 "PageHeader.Visible = False"

To write code in C#

C#

Sections ("Detail").OnPrint =
 "PageHeader.Visible = true";
Sections("Group 0 Footer).OnPrint =
 "PageHeader.Visible = false";

10. Sales by Year Subreport

No action required.

11. Sales Totals by Amount

This report contains code that needs to be translated manually. The following code should be assigned to the Page Header
OnPrint property:

To write code in Visual Basic

Visual Basic

PageTotal = 0

To write code in C#

C#

PageTotal = 0;

The following code should be assigned to the Detail OnPrint property:

To write code in Visual Basic

Visual Basic

PageTotal = PageTotal + SaleAmount
HiddenPageBreak.Visible = (Counter = 10)

To write code in C#

C#

PageTotal = PageTotal + SaleAmount;
HiddenPageBreak.Visible = (Counter = 10);

12. Summary of Sales by Quarter

No action required.

13. Summary of Sales by Year

No action required.

Summing up the information on the table, out of the 13 reports imported from the NorthWind database: nine did not require any
editing, three required some code translation, and one had a chart control that required adding a Chart field.

Importing Crystal Reports

FlexReport for WinForms 211

Copyright © 2017 GrapeCity, inc. All rights reserved.

To import reports from a Crystal report definition file (.rpt):

1. Click the File menu and select Import. The Import Report Definition dialog box opens and prompts you for
the name of the file you want to import.

2. Select a Crystal report definition file (.rpt). The FlexReportDesigner application converts the report into the
FlexReport format.

3. Save the report. Your Crystal Report is now converted to FlexReport.

Reports bound to internal or external data sources can be imported and run without any changes required to the
original data source path.

The FlexReportDesigner application supports the following conversions on import of Crystal Reports:

Sections/SubSections

Report Header
Page Header
Group Header
Detail
Group Footer
Page Footer
Report Footer

Fields

Textbox
Chart
Box
Line
Picture
Checkbox
Subreport (needs manual correction of path)
Image Fields - BLOBField (Picture) OLEObject (Picture)
Database Field
Cross-section box control

Special Fields

Time Formats
Page Numbers

Features

Complex expressions combining Text+Database Fields ("Text" + [Expression]), and Aggregates
Grouping
Parameters
Summary Fields
Percentage Aggregate
Textbox Formats (Currency, Date etc)
KeepTogether (Fields, Sections, Subsections, Groups)
Multiple join queries
Hyperlinks
Text Rotation
Special order grouping

Formatting

Text Formatting

FlexReport for WinForms 212

Copyright © 2017 GrapeCity, inc. All rights reserved.

Borders
Backgrounds

The following image shows a Crystal Report imported in FlexReportDesigner:

The following image shows a crystal report imported in CRReportDesigner:

Note: Before you import the report, please ensure that you have Crystal Reports version 13.0.14.xxxx or later.
This version of Crystal Reports should be compatible with Visual Studio installed on your system. Also note that

FlexReport for WinForms 213

Copyright © 2017 GrapeCity, inc. All rights reserved.

if you have Crystal Reports 2013 version installed on the system, then on conversion of Crystal Report to
C1FlexReport, the database path to xtreme.mdb will have to be changed manually in order to run the report.

The import process handles most elements of the source reports, with a few exceptions for elements that are not
exposed by the Crystal object model or not supported by C1FlexReport. The conversions that are not yet supported in
C1FlexReportDesigner application are as follows, however, these features are expected to be incorporated in
upcoming 2016 releases.

Fields: Table, CrossTab, OLAPGrid, Map, Flash, and Formula Fields.
Scripts: Suppress property scripts, complex script expressions, and custom functions.
Features: Alerts, complex expressions (text and parameter Fields), and hierarchical grouping.
Properties: Drop Shadow.

Exporting and Publishing a Report
Instead of printing the report, you may want to export it into a file and distribute it electronically to your clients or co-
workers. The Designer supports the following export formats:

Format Description

Paged HTML (*.html) Creates one HTML file for each page in the report. The HTML pages contain links that
let the user navigate the report.

Plain HTML (*.html) Creates a single HTML file with no drill-down functionality.

PDF with non-embedded
(linked) fonts (*.pdf)

Creates a PDF file that can be viewed on any computer equipped with Adobe's Acrobat
viewer or browser plug-ins.

PDF/A with embedded
fonts (*.pdf)

Creates a PDF file with embedded font information for extra portability.

RTF (*.rtf) Creates an RTF file that can be opened by most popular word processors (for example,
Microsoft Word, WordPad). It can be saved as Paged or Open XML document.

Microsoft Excel 97 (*.xls) Creates an XLS file that can be opened by Microsoft Excel.

Microsoft Excel 2007/2010
Open XML (*.xlsx)

Creates an XLS file that can be opened by Microsoft Excel 2007 and later.

Open XML Word (*.docx) Creates a DOCX file that can be opened by Microsoft Word 2007 and later.

Compressed Metafile (*.zip) Creates a compressed metafile file, of the type EmfOnly, EmfPlusOnly,and EmfPlusDual.

TIFF (*.tiff), BMP, PNG, JPEG,
GIF images

Create image file of type TIFF (Tag Image File Format), BMP (Bitmap Images),
PNG(Portable Network Graphic), JPEG or GIF.

To create an export file, select File | Export from the menu and use the Export Report to File dialog box to specify
the location, File name and Save as type.

Export to PDF/A
A FlexReport can be exported to a PDF format that is in compliance with the PDF/A standards.

PDF/A is commonly used for creating invoices, brochures, manuals or research reports, and storing the reports in

FlexReport for WinForms 214

Copyright © 2017 GrapeCity, inc. All rights reserved.

PDF/A formats. It enables export of JPEG2000 Images, provisions for digital signatures, and support for embedded
fonts.

The steps to export to PDF/A format using FlexReportDesigner are as follows:

1. Run C1FlexReportDeisgner application.
2. Open the report.
3. Click File|Export OR Click Preview and from Export group, select PDF/A from the PDF icon's drop-down.

Export Report to File dialog box opens.
4. Specify the File name. Save as type is by default PDF/A (*.pdf).
5. Click Save. The Save as PDF dialog box opens.

6. Fill the dialog box and then click OK. Your exported PDF/A document opens in the PDF reader installed on your
computer.

You have successfully exported your report that is in compliance with the PDF/A standards!

Note: In 2015v3 release, only PDF/A-2B is supported.

Enhancing Look of FlexReports
A report generally requires some part of it to stand out from the rest. The visual properties such as Background
and Border let you transform a plain report to a visually appealing one. To explore these features, see following
sections.

Background
Setting a Background color using FlexReportDesigner is quiet easy. A background color in FlexReport can be set for

FlexReport for WinForms 215

Copyright © 2017 GrapeCity, inc. All rights reserved.

Fields, Sections, and Sub-sections. The background colors can be Solid or Gradient.

The following image shows a Report header without any background:

To set a background to the Report Header:

1. In the Design mode, select the Header section of the report.
2. From the Properties window, click the drop-down next to Background property. The color palette opens.

3. Select a color for the background. You can choose color from the tabs - Web, System, Custom, and Gradient.
4. Preview the report.

5. You can also set Gradient - Linear or Radial - for the background. For obtaining a Gradient, switch to Design
mode.

6. Select the Header section of the report.
7. From the Properties window, click the drop-down next to Background property. Go to Gradient tab and edit

the settings from the options available as shown:

FlexReport for WinForms 216

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Specify the gradient as Linear. You can also drag the slider to change the start and stop for the gradient.
9. Preview the report. The Report Header now looks as follows:

Border
In FlexReportDesigner, you can easily set Borders for Fields, Sections, and Sub-sections.

To set Border around Fields/Section

1. Select the Field around which you want borders to appear.
2. From the Properties window, select ellipses next to Borders property. The Borders Properties dialog box

opens.

FlexReport for WinForms 217

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Select the Line Style and Line Width; select Borders to show - All or - any one or the combination of Left,
Top, Right, or Bottom borders. Select the color and click OK.

4. Lets insert borders with rounded corners in the Report Header. Select the Report Header.
5. Set the Line Style, Line Width, Borders, and color as before.
6. Set the Radius X and Radius Y for the corners.
7. Preview the report.

FlexReport for WinForms 218

Copyright © 2017 GrapeCity, inc. All rights reserved.

For inserting rounded corners note that:

Range of Radius X is from 0 to field's width.
Range of Radius Y is from 0 to field's height.

FlexReport for WinForms 219

Copyright © 2017 GrapeCity, inc. All rights reserved.

Report and Document Viewer (FlexViewer Control)
The FlexViewer control is a previewing control that can be used to preview different document types such as
C1Report, C1FlexReport, SSRS, and PDF document. With an interactive and user friendly UI, you can view parameters,
reset them, refresh report rendering, view hierarchy in the outlines, and use bookmarks to jump to report locations.
See following topics for more information.

FlexViewer Key Features
The key features of FlexViewer are as follows:

User-friendly UI
FlexViewer has an interactive and user friendly full-featured modern Ribbon-based UI that helps preview
different document types such as FlexReport, SSRS, and PDF document. The ribbon contains command buttons
clustered in groups.
Use/Reset Parameters
With FlexViewer, you can view parameters and reset them as well. You can in enter data parameters of your
choice to display a report. FlexViewer supports String, Boolean, Date, Integer, and Float type parameters.
Refresh and Stop Rendering
FlexViewer provides you options to Refresh and Cancel Report rendering through Refresh and Stop button.
View Thumbnails and Hierarchy
FlexViewer allows you to view the thumbnails of the report pages and the hierarchy in the outlines that allows
you to jump to a required location.
Page Navigation
Page navigation is available in the Navigation group of the FlexViewer control, which contains a set of
command buttons allowing you can navigate through the report pages and if you want to jump to a specific

FlexReport for WinForms 220

Copyright © 2017 GrapeCity, inc. All rights reserved.

page number then, you can type the page number in the page number textbox.
Zoom in/out with Ease
FlexViewer allows you to access Zoom dialog box using Zoom button. It gives you the following options in the
dialog box:

Actual Size – Shows the pages in their actual size.
Page Width - Fits the page to the width of the preview window.
Whole Page - Fits the whole page in the preview window.
Custom - Sets the custom zoom % for the page.
Zoom % - Shows the percentage you set to zoom the page.
Wide Layout by Default - Indicates whether a multi-column layout is applied to wide reports by default.
Facing Pages, Cover on Right - Shows report pages side by side.
Continuous - Shows the pages in continuity.
Rotate View - Allows you to choose the angle of rotation of the page.
Page Columns - Allows you to choose the number of page columns to show in the preview window.
Page Rows - Allows you to choose the number of page rows to show in the preview window.

Print
You can also use the FlexViewer control to print your reports using the Print button which provides you with a
Print Dialog box containing standard printer settings.
Export
FlexViewer allows you to export your reports and documents to the various formats, such as DOCX, RTF, Open
XML Word, Open XML Excel, HTML, PDF, GIF, JPEG, PNG, BMP, and TIFF.
Tools
FlexViewer provides you Hand tool, Text Select tool, and copy text tool that can be used to scroll in the
window, select text to copy, and copy the selected text.

FlexViewer Toolbar
The FlexViewer toolbar appears on the top of the control as shown in the image below:

It consists of the following shortcut command buttons at the top of the toolbar:

Command Button Command Button Name Description

Go back Allows you to go back to the previously opened page

Go forward Allows you to go forward to the next page

Select text to copy Allows you to select a text to copy

All the command buttons are divided in groups in FlexViewer toolbar as listed below:

Group Command Buttons inside Group Description

Print Layout, Stop, Refresh,
Parameters, Outline, Thumbnails

Allows you to view the report pages in
print layout, refresh the view and stop
the preview. It also allows you to view
the parameters, outlines and
thumbnails of the report pages

FlexReport for WinForms 221

Copyright © 2017 GrapeCity, inc. All rights reserved.

Go to the first page of the document,
Go to the previous page of the
document, The current page number,
Number of pages in the current
document, Go to the next page of the
document, Go to the last page of the
document, Back, Forward, Page Sets

Allows you to navigate to the first,
last, previous, next page of the report.
It shows you the current page number
and lets you move back and forward.
The Page Sets button allows you to
navigate to the page sets instead of
pages

Zoom, Actual Size, Page Width,Whole
Page

Allows you to open Zoom dialog box
using Zoom button. Actual Size allows
you to zoom the page to 100% of the
normal size, Page Width allows you to
zoom pages to fill the window width,
and Whole page allows you to zoom
pages to fit within the window

Portrait, Landscape, Page Setup Allows you to change the orientation of
the report pages to portrait or
landscape mode. Page Setup changes
the page settings of the current report.

Print, Export, Find, HandTool,
TextSelect Tool, Copy Text

Allows you to print and export reports.
Find button allows you to find text in
the report, Hand Tool allows you to
scroll in window using the mouse, Text
Select Tool selects text to copy, and
Copy Text button allows you to copy
the selected text

Rotate View of Reports
FlexViewer provides you the flexibility to rotate the view of reports to different angles according to your
requirements. To rotate view of a report to various degrees of rotation, you can set the RotateView property
of C1FlexViewer class. The RotateView property accepts the following values from the FlexViewerRotateView enum
describing the rotation angle of the view:

NoRotation: Rotation is not applied to the view.
Rotation180: Allows rotation of the view by 180 degrees.
Rotation90Clockwise: Allows rotation of the view by 90 degrees in clockwise direction.
Rotation90CounterClockwise: Allows rotation of the view by 90 degrees in counter-clockwise direction.

Rotate View of Report at Design Time

You can rotate the view of reports in FlexViewer at design time by performing the following steps:

1. Right-click on the FlexViewer control and select properties.
2. In Properties window, select a value for the RotateView property from the provided list to rotate the report at

different angles.

Rotate View of Report Programmatically

To rotate view of a report, at first you need to create and load a report and then preview it in the FlexViewer control.
After doing so, you can use FlexViewerRotateView enum to rotate view of a report. The following code illustrates the

FlexReport for WinForms 222

Copyright © 2017 GrapeCity, inc. All rights reserved.

use of FlexViewerRotateView enum:

c1FlexViewer1.RotateView = FlexViewerRotateView.Rotation90Clockwise

C#

c1FlexViewer1.RotateView = FlexViewerRotateView.Rotation90Clockwise;

Visual Basic

Binding FlexReport with FlexViewer
To render a report, you need to bind the report to the FlexViewer control. Once the report definition has been
created, a data source defined, and loaded into the C1FlexReport component, you can render the report to the printer,
to the preview control - FlexViewer, or export to different file formats.

To preview the report in the FlexViewer control, the steps are as follows:

1. From the Toolbox, double-click the FlexViewer control to add it to your project.
2. From the Properties window, set the C1FlexViewer.Dock property to Fill.
3. Select the Windows Form with your mouse and drag to resize it. For this example, we resized the Form to

600x500 so it better reveals the preview panel.
4. Double-click the form and enter the following code in the Form_Load event handler:

FlexReport for WinForms 223

Copyright © 2017 GrapeCity, inc. All rights reserved.

'load report definition
c1FlexReport1.Load("..\..\Products Report.flxr", "Products Report")
'preview the report
c1FlexViewer1.DocumentSource = c1FlexReport1

C#

//load report definition
c1FlexReport1.Load(@"..\..\Products Report.flxr", "Products Report");
//preview the report
c1FlexViewer1.DocumentSource = c1FlexReport1;

Visual Basic

FlexReport for WinForms 224

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexReport Samples
With the C1Studio installer, you get FlexReport samples that help you understand the implementation of the product.
The C# and VB samples are available at the default installation folder -
\Documents\ComponentOneSamples\Winforms\C1FlexReport.

The list of available C# samples is as follows:

Sample Description

AddScriptObject This sample demonstrates how to add custom objects to C1FlexReport's script engine.

AdHocSorting This sample demonstrates how to select the sorting criteria before rendering the report.

CustomFields This sample demonstrates how to load all CustomFields in C1FlexReport.

ExternalDataSource This sample demostrates how to implement the IC1FlexReportRecordset and
IC1FlexReportExternalRecordset interfaces. These interfaces allow an assembly to be used as
a custom record source for C1FlexReport.

FlexCommonTasks This sample demonstrates how to use parameters, charts, subreports, and many other
features in FlexReport. It uses FlexCommonTasks.flxr file.

FlexReport Explorer This sample loads a categorized list of reports, with categories such as enterprise, financial,
medical and so on. Some reports demonstrate specific features of FlexReport, such as
conditional formatting or watermarks, while others combine various features to produce
reports that might be used in different real-life applications.

FlexReportViewer This sample demonstrates various features of FlexViewer.

MapReports The sample renders and previews several sample reports demonstrating the Map custom
field.

ODataRecordset This sample demonstrates how to use data provided by the OData service in the
C1FlexReport.

PdfViewer This sample shows how the C1PdfDocumentSource component can be used with
C1FlexViewer to view PDF document.

SsrsViewer This sample demonstrates how C1SSRSDocumentSource component can be used with
C1FlexViewer to browse the reports tree available on a SSRS server, and to preview
individual reports.

SubReportDataSource This sample demonstrates how to use custom data sources with subreports in
the C1FlexReport component.

Xml2FlxrConverter This sample allows the user to select one or more .XML files containing C1Report report
definitions, and to convert them to the new FlexReport's .FLXR file format.

ZipReport This sample demonstrates how to compress and encrypt report definition files using the
C1FlexReport and C1Zip components.

The list of available VB samples is as follows:

Sample Description

ExternalDataSource This sample demonstrates how to implement the IC1FlexReportRecordset and
IC1FlexReportExternalRecordset interfaces. These interfaces allow an assembly to be used as a
custom record source for C1FlexReport.

FlexReport for WinForms 225

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexCommonTasks This sample demonstrates how to use parameters, charts, subreports, and many other features
in FlexReport. It uses FlexCommonTasks.flxr file.

FlexReport Explorer This sample loads a categorized list of reports, with categories such as enterprise, financial,
medical and so on. Some reports demonstrate specific features of FlexReport, such as
conditional formatting or watermarks, while others combine various features to produce
reports that might be used in different real-life applications.

FlexReportViewer This sample demonstrates various features of FlexViewer.

SsrsViewer This sample demonstrates how C1SSRSDocumentSource component can be used with
C1FlexViewer to browse the reports tree available on a SSRS server, and to preview individual
reports.

FlexReport for WinForms 226

Copyright © 2017 GrapeCity, inc. All rights reserved.

Task Based Help
The task-based help assumes that you are familiar with programming in .NET, have a basic knowledge of reports, and
know how to use controls in general. By following the steps outlined in the help, you will be able to create projects
demonstrating a variety of FlexReport features, and get a good sense of what C1FlexReportDesigner can do.

This section's topics have pre-built reports that illustrate them. The pre-built reports can be found in the
FlexReportCommonTasks.flxr report definition file, which if you have installed the WinForms Edition, can be found in
the Documents or MyDocuments folder in the ComponentOne
Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder.

Adding Alternating Background
To create a report with alternating background color, the OnFormat property of the Detail section is used.

Complete the following steps to create a report with alternating background:

1. Open the C1FlexReportDesigner.
2. Create a new report or open an existing report. Once you have the report in the C1FlexReportDesigner, you

can modify the report properties.
3. Switch to Design mode to begin editing the report.
4. In Design mode, select the report from the drop-down list above the Properties window.
5. Go to the OnOpen property of the report and enter cnt = 0. This initializes the 'cnt' variable.
6. Select Detail section from the drop-down list above the Properties window or from the design area.
7. Go to the OnFormat property and then click the ellipses button. The VBScript Editor appears. Enter the

following VBScript expression in the editor and click Done:
cnt = cnt + 1
if cnt mod 2 = 0 then
 Detail.Background.StartColor = Rgb(238, 214, 200)
 Detail.Background.EndColor = Rgb(238, 200, 177)
else
 Detail.Background.StartColor = vbWhite
 Detail.Background.EndColor = vbWhite
endif

8. Click the Preview button to preview the report with alternating background.

FlexReport for WinForms 227

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: For the complete report, see report 'Alternating Background' in the FlexCommonTasks.flxr report
definition file, which is available in the ComponentOne
Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder. The data base used is C1NWind.mdb which
is also available in the ComponentOne Samples folder.

Adding Conditional Formatting
In some cases you may want to change a field's appearance depending on the data it represents. This can be done
using parameters.

For example, you may want to highlight some data fields depending on a condition, then, you can define two
parameters - one to define the condition and other to highlight the data fields depending on the condition.

Complete the following steps to create a report with conditional formatting:

1. Open the C1FlexReportDesigner.
2. Create a new report or open an existing report.
3. Switch to Design mode to begin editing the report.
4. Add two Parameters - 'pCondition' and 'pHighlightColor'.
5. Set DataType of 'pCondition' as Integer and 'pHighlightColor' as String.
6. Specify the properties for each parameters in AllowedValuesDefinition property as follows:

pCondition pHighlightColor

Values Label -Unit price greater than 50, Value - CInt(1) Label - Red, Value - Red

FlexReport for WinForms 228

Copyright © 2017 GrapeCity, inc. All rights reserved.

Label -Unit price greater than 100, Value - CInt(2) Label - Green, Value - Green

7. In Design mode, select Detail from the drop-down list above the Properties window (since this section contains
the fields to add conditional formatting to).

8. Go to the OnFormat property and click the ellipses next to it.
9. The VBScript Editor appears. Enter the following VBScript expression in the editor:

row = row + 1
if row mod 2 = 1 Then
 rowColor = Rgb(238, 214, 200)
Else
 rowColor = "Transparent"
EndIf
doHighlight = False
if pCondition = 1 Then
 doHighlight = UnitPrice > 50
ElseIf pCondition = 2 Then
 doHighlight = UnitPrice > 100
ElseIf pCondition = 3 Then
 doHighlight = UnitsInStock > 50
EndIf
if doHighlight Then
 textColor = pHighlightColor
Else
 textColor = Rgb(90, 70, 50)
EndIf
Detail.BackColor = rowColor
for i = 0 to Detail.Fields.Count - 1
 Detail.Fields(i).BackColor = rowColor
 Detail.Fields(i).ForeColor = textColor
Next

10. Preview the report.

FlexReport for WinForms 229

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: For the complete report, see report 'Conditional Formatting' in the FlexCommonTasks.flxr report
definition file, which is available in the ComponentOne
Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder. The data base used is C1NWind.mdb which
is also available in the ComponentOne Samples folder.

Specifying Custom Paper Size
By default, C1FlexReport creates reports using the default paper size on the default printer.

You can specify the paper size and orientation using the PaperSize and Orientation properties. However, C1FlexReport
checks that the selected paper size is available on the current printer before rendering, and changes to the default
paper size if the selected setting is not available.

If you want to specify a certain paper size and use it regardless of the printers available, set the PaperSize property to
Custom, and set the Layout.CustomWidth and Layout.CustomHeight properties to the page dimensions (in twips).

To specify a custom paper size of 8.5" x 25" for your report using FlexReportDesigner:

1. Open the C1FlexReportDesigner.
2. Create a new report or open an existing report. Once you have the report in the C1FlexReportDesigner, you

can modify the report properties.
3. In the Design mode, select your report from the drop-down list above the Properties window.

FlexReport for WinForms 230

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Go to Layout and expand the property node to view all available properties.
5. Set the following properties:

CustomHeight=36000
CustomWidth=12472
PaperSize=Custom

When specified this way, the custom paper size is used regardless of what printers are installed and what paper sizes
are actually available.

Note: For the complete report, see report 'Custom Paper Size' in the FlexCommonTasks.flxr report definition
file, which is available in the ComponentOne Samples\Winforms\C1FlexReport\CS\FlexCommonTasks
folder. The data base used is C1NWind.mdb which is also available in the ComponentOne Samples folder.

Adding Dynamic Page Header
You may want to generate dynamic page header, that is different page headers on different pages of a report,
depending on a condition. This can be done using OnFormat property of PageHeader.

For example, you want to display different report headers on even and odd pages of a report. Complete the following
steps to create a report with dynamic page header:

1. Open the C1FlexReportDesigner.
2. Create a new report or open an existing report.
3. Switch to Design mode to begin editing the report.
4. Add two subsections in the PageHeader section, say OddPageHeader and EvenPageHeader. OddPageHeader

section will be visible for odd pages and EvenPageHeader will be visible for even pages.
5. Add text and/or paragraph fields in each of the above subsections that contain expressions for displaying the

headers on odd and even pages.
6. Go to the OnFormat property of PageHeader and click the ellipses next to it.
7. The VBScript Editor appears. Enter the following VBScript expression in the editor:

odd = (page mod 2 <> 0)
PageHeader.SubSections(0).Visible = odd
PageHeader.SubSections(1).Visible = not odd

8. To suppress the page header on first page of a report, set the Layout.PageHeader property of the report
to NotWithReportHdr.

9. Preview the report.

FlexReport for WinForms 231

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: For the complete report, see report 'Dynamic Page Header' in the FlexCommonTasks.flxr report
definition file, which is available in the ComponentOne
Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder. The data base used is C1NWind.mdb which
is also available in the ComponentOne Samples folder.

Creating a Gutter Margin
Gutter margins are extra space added to the margins next to the binding. They make it easier to bind the pages into
folders, brochures, and so on.

To add a gutter margin to a report, you should increase the left margin on odd pages. This can be done by increasing
the value of Layout.MarginLeft on odd pages and using the default value on even pages.

To create gutter margin in a report, complete the following steps:

1. Open the C1FlexReportDesigner.
2. Create a new report or open an existing report.
3. In Design mode, select Detail from the Properties window drop-down list. This reveals the section's available

properties.
4. Go to the report's OnOpen property and then click the ellipsis button. The VBScript Editor appears. Enter the

following VBScript expression in the editor:

FlexReport for WinForms 232

Copyright © 2017 GrapeCity, inc. All rights reserved.

cnt = 0
gutter = report.layout.marginleft
marginRight = report.layout.marginRight

5. Go to the report's OnPage property and then click the ellipsis button. The VBScript Editor appears. Enter the
following VBScript expression in the editor:
if page mod 2 = 1 then
 Report.layout.marginleft = gutter
 Report.Layout.marginright = marginRight
else
 Report.layout.marginleft = gutter - 1440
 Report.Layout.marginright = marginRight + 1440
EndIf

6. Preview the report.

Note: For the complete report, see report 'Gutter' in the FlexCommonTasks.flxr report definition file, which is
available in the ComponentOne Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder. The data
base used is C1NWind.mdb which is also available in the ComponentOne Samples folder.

Grouping and Sorting
This topic uses "Groups and Sorting" report to demonstrate how grouping, group total, subtotal, and sorting are performed in a report.

Grouping

Grouping allows you to create groups of records based on common attributes of the records. For example, in this report, all the records
having same EmployeeID are grouped together to form EmployeeGroup. For more information on grouping feature in FlexReport,
refer Grouping Data.

FlexReport for WinForms 233

Copyright © 2017 GrapeCity, inc. All rights reserved.

This report contains two groups, namely EmployeeGroup and OrderGroup with EmployeeID and OrderID as their respective grouping
criterion. Here, EmployeeGroup is added first and then the OrderGroup, so the data is first grouped on the basis of Employee ID and then
the subgroups are formed within these groups on the basis of Order ID.

The report also calculates the group totals and subtotals. You can calculate the total or subtotal using =Sum(OrderSum) expression in a
TextField. When a TextField with this expression is dropped in the EmployeeGroup header section, it calculates the total sales for all the
orders by an employee, which is the group total. Similarly, when a TextField with the same expression is dropped in the OrderGroup footer
section, it calculates the group subtotal.

Sorting

Sorting allows you to organize data in ascending or descending order. In FlexReport, the groups are sorted using group expressions.
However, you can change the manner in which the groups are sorted using Group.SortExpression property. The expression may contain
aggregate functions, for example in this report the groups are sorted using Sum(OrderSum) expression which contains an aggregate
function. For more information on sorting, refer Sorting Data.

In this report, the EmployeeGroup is sorted on the basis of total sales in descending order. However, you can also sort the group
alphabetically. In addition, you can provide the sorting options in Parameters Panel too. Please refer the steps below to see how this can
be done.

To create the report in FlexReportDesigner

Step 1: Create a report from scratch
Step 2: Connect the report to a data source
Step 3: Add calculated fields and parameters
Step 4: Group and sort data
Step 5: View the report

Step 1: Create a report from scratch

1. Open the C1FlexReportDesigner and go to FILE|New.
2. Click New Report drop down from the Reports tab and select Empty Report to create a report.

Step 2: Connect the report to a data source

1. Switch to the Data tab, right-click the Main data source and choose Edit to open and the Data Sources Wizard and start editing.
2. Select OLEDB Data Provider from the Data provider drop-down and click the ellipsis button next to the Connection string

textbox to select the C1NWind.mdb file.
3. Specify the following Sql statement in the Sql statement tab:

SELECT Employees.EmployeeID as EmployeeID,
 Employees.FirstName as FirstName,
 Employees.LastName as LastName,
 Orders.OrderID as OrderID,
 Orders.OrderDate as OrderDate,
 Orders.ShippedDate as ShippedDate,
 Products.ProductName as ProductName,
 od.UnitPrice as UnitPrice,
 od.Quantity as Quantity
 FROM (([Order Details] od INNER JOIN Orders ON od.OrderID = Orders.OrderID)
 INNER JOIN Products ON od.ProductID = Products.ProductID)
 INNER JOIN Employees ON Orders.EmployeeID = Employees.EmployeeID

Step 3: Add calculated fields and parameters

1. Switch to the Calculated Fields tab and add two calculated fields with the following properties:
Name FullName OrderSum

Expression FirstName & " " & LastName UnitPrice * Quantity

2. In the Data tab, right-click Parameters and select Add Parameters to add three parameters, pEmployeeSortExpression,
pEmployeeSortOrder, and pRepeatEmployeeHeader.

3. Set the following properties for the parameters from the Properties window.
pEmployeeSortExpression pEmployeeSortOrder pRepeatEmployeeHeader

Prompt Employees Sort Expression Employees Sort Order Repeat Employee Header

FlexReport for WinForms 234

Copyright © 2017 GrapeCity, inc. All rights reserved.

Value Sum(OrderSum) Descending False

DataType String String Boolean

4. Click the ellipsis button next to the AllowedValuesDefinition property, select Values radio button, click Add button to add the
following values for pEmployeeSortExpression and pEmployeeSortOrder parameters:
pEmployeeSortExpression

Label Alphabetical Sales

Value FullName Sum(OrderSum)

pEmployeeSortOrder

Label NoSort Ascending Descending

Value NoSort Ascending Descending

Note that Add button will add blank values. To edit them, double click below the Label to add the required labels and Values to
add the required values.

Step 4: Group and sort data

1. Switch to the Design mode to start editing the report.
2. Click Groups in Home tab and add EmployeeGroup and then add OrderGroup.

Note that the groups are nested in the order in which they appear in the group wizard. Therefore, as you add the OrderGroup after
the EmployeeGroup, it is added as the subgroup of the EmployeeGroup.

3. In the Groups wizard, set the following properties for the newly created groups:
EmployeeGroup OrderGroup

GroupBy EmployeeID OrderID

Keep Together KeepFirstDetail KeepWholeGroup

Sort Ascending No Sort

ShowGroupFooter True True

ShowGroupHeader True True

OutlineLabel =FullName -

4. Click OK to close the Groups wizard.
5. In the EmployeeGroup_Header, add three TextFields from the INSERT tab and set the following properties:

TextField1.Text =FullName

TextField2.Text Total Sales:

TextField3.Text =Sum(OrderSum)

The Sum(OrderSum) calculates the group total, i.e., total sales for all the orders by an Employee.
6. Add a ParagraphField in the EmployeeGroup_Footer and display the group total using the following expression:

Total Sales for {FullName}:{Sum(OrderSum)}
7. Right-Click the OrderGroup_Header and select Add SubSection from the context menu to divide the header into two parts.
8. In OrderGroup_Header/ <A>, add six more TextFields and set the following properties:

TextField4.Text Order ID

TextField5.Text =OrderID

TextField6.Text Order Date

TextField7.Text =OrderDate

TextField8.Text Shipped Date

TextField9.Text =ShippedDate

9. In OrderGroup_Header/ , add three more TextFields, Product Name, Unit Price, and Quantity.
10. In the Details section, add three more TextFields corresponding to the TextFields in OrderGroup_Header/ , and set the

FlexReport for WinForms 235

Copyright © 2017 GrapeCity, inc. All rights reserved.

following properties:
TextField13.Text =ProductName

TextField14.Text =UnitPrice

TextField15.Text =Quantity

11. In the OrderGroup_Footer, display the subtotal of the order group by using a TextField with its Text property set to
=Sum(OrderSum).

12. Select the report name from the drop-down situated above the list of properties in the Properties window.
13. Go to GlobalScripts property of the report and write following expression in the VBScriptEditor.

EmployeeGroup.SortExpression = pEmployeeSortExpression.Value
EmployeeGroup.Sort = pEmployeeSortOrder.Value

14. Go to OnOpen property of the report and write the following expression in the VBScript Editor.
If pEmployeeSortOrder = "NoSort" Then
 fldSortDesc = "No Sorting"
Else
 fldSortDesc = pEmployeeSortExpression.DisplayText & " (" & pEmployeeSortOrder.DisplayText & ")"
EndIf

EmployeeGroup_Header.Repeat = pRepeatEmployeeHeader.Value

Step 5: View the report

1. Preview the report.
2. In the Preview mode, click Parameters from the View group to open the parameters panel and apply parameters.

Note: For the complete report, see report 'Groups and Sorting' in the FlexCommonTasks.flxr report definition file, which is available
in the ComponentOne Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder. The data base used is C1NWind.mdb
which is also available in the ComponentOne Samples folder.

Cascading Parameters

FlexReport for WinForms 236

Copyright © 2017 GrapeCity, inc. All rights reserved.

In order to manage large amount of data in reports, you need to use cascading parameters. With cascading
parameters, set of related parameters can be defined so that the list of values for one parameter depends on the value
selected in another parameter.

Here, we will create a report that contains two parameters pCountry and pCustomers. After selecting a country, you
can select one or more customers from the selected country and list all orders for those customers. The
ReportParameter.DisplayText property is used to display parameters in this report.

Let us create a report in which cascading parameters is used.

1. Create a new report and bind it to the Main data source using the following Sql Statement:
Select orderid, orders.customerid, companyname, employees.firstname,
employees.lastname, orderdate, RequiredDate, shippeddate, Freight
from (orders inner join customers on orders.customerid = customers.customerid)
inner join employees on orders.employeeid = employees.employeeid
where orders.CustomerID in pCustomers

2. Switch to the Calculated Fields tab and add a field named Salesperson with the following expression:
FirstName & " " & lastname

3. Add a new data source, dsCountries, and bind the report to the data source using the following Sql
Statement:
Select Country, Count(*) as CustomerCount
from Customers group by Country order by Country

4. Switch to the Calculated Fields tab and add a field named CountryDesc with the following expression:
Country & " (" & CustomerCount & " customers)"

5. Add another data source named dsCustomers and bind the report to the data source using the following Sql
Statement:
Select CustomerID, CompanyName from Customers where Country = pCountry

6. Add a parameter, pCountry, and set the following properties from the Properties window.
DataType String

Prompt Country

Value Germany

7. Click the ellipsis button next to the AllowedValuesDefinition property, select From Data Source radio button,
and set the following properties:
Data Source dsCountries

Label CountryDesc

Value Country

8. Add a parameter, pCustomers, and set the following properties from the Properties window.
DataType String

MultiValue True

Prompt Customers

Value [MORGK, LEHMS]

9. Click the ellipsis button next to the AllowedValuesDefinition property and select From Data Source radio
button, and set the following properties:

FlexReport for WinForms 237

Copyright © 2017 GrapeCity, inc. All rights reserved.

Data Source dsCustomers

Label CompanyName

Value CustomerID

10. Preview the report.

Note: For the complete report, see report 'Cascading Parameters' in the FlexCommonTasks.flxr report
definition file, which is available in the ComponentOne
Samples\Winforms\C1FlexReport\CS\FlexCommonTasks folder. The data base used is C1NWind.mdb which
is also available in the ComponentOne Samples folder.

FlexReport for WinForms 238

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	FlexReport for WinForms Overview
	Help with WinForms Edition
	Upgrading C1Report to FlexReport
	FlexReport versus C1Report
	C1Report to FlexReport Breaking Changes

	Key Features
	Feature Comparison Matrix
	FlexReport Dissection
	Components and Controls
	Object Model Summary
	Sections of FlexReport

	FlexReport Quick Start
	Step 1 of 4: Creating a Report Definition
	Step 2 of 4: Modifying the Report
	Step 3 of 4: Loading the Report in the C1FlexReport Component
	Step 4 of 4: Rendering the Report

	Design-Time Support
	C1FlexReport Tasks Menu
	C1FlexViewer Tasks Menu

	Working with FlexReport
	C1FlexReport and C1Document
	C1Document Breaking Changes

	Data Binding in FlexReport
	Retrieving Data from a Database
	Retrieving Data from a Stored Procedure
	Using Data Table Object as Data Source
	Using Custom Data Source Objects

	Data Sources in FlexReport
	Connecting to Multiple Data Sources using Code
	Binding Data to Charts in Multiple Data Source Report
	Binding Data to Parameters in Multiple Data Source Report

	Defining Calculated Fields

	Developing FlexReport for Desktop
	Load FlexReport at Design Time
	Create FlexReport at Design Time
	Load FlexReport at Run Time

	Adding Parameters
	Grouping Data
	Adding Subtotals and Other Aggregates
	Creating Cross-Tab Reports

	Sorting Data
	Filtering Data
	Exporting Reports to Various Formats
	Working with VBScript
	VBScript Elements, Objects, and Variables
	Compatibility Functions: Iif and Format
	Aggregate Functions

	Managing Splitting of FlexReport Objects
	Modifying the Fields
	Formatting a Field According to Its Value
	Hiding a Section If there is No Data
	Showing or Hiding a Field Depending on a Value
	Resetting Page Counter

	Adding Sub-sections

	Working with FlexReportDesigner
	About FlexReportDesigner
	File Menu
	Design Mode
	Home Tab
	Insert Tab
	Arrange Tab
	Page Setup Tab

	Preview Mode

	Setting FlexReportDesigner Options
	Style Gallery
	Adding Multiple Sub-Sections
	Adding FlexReport Fields
	FlexChart Field
	Binding FlexChart Field with Data
	Difference Between FlexChartField and FlexChart
	FlexChart Field Data Object Model
	Supported Chart Types
	Grouping and Aggregates
	FlexChart Navigation

	Text Field
	Rtf Field
	Paragraph Field
	Checkbox Field
	Barcode Field
	Barcode Symbology
	Barcode Properties

	Calculated Field
	Image Field
	Shape Field
	Subreport Field
	Legacy Chart Field
	Chart Types
	Design Time Support
	Plotting Data in Data-Bound Charts
	Plotting Data in Unbound Charts
	Charts with Multiple Series
	Charts in Grouped Reports

	Adding FlexReport Custom Fields
	Map Custom Field
	Map Custom Field Properties
	Adding Map Custom Field

	SuperLabel Custom Field

	Working with Parameters
	Data Binding
	Calculated Fields
	Subreports
	Cascading Parameters
	Multi-value Parameters
	Pass Parameters Silently

	Adding Multiple Data Sources
	Changing Data Source of FlexReport
	Sorting Data using Designer
	Previewing and Printing FlexReport
	Importing Reports in FlexReportDesigner
	Importing Microsoft Access Reports
	Importing Crystal Reports

	Exporting and Publishing a Report
	Export to PDF/A

	Enhancing Look of FlexReports
	Background
	Border

	Report and Document Viewer (FlexViewer Control)
	FlexViewer Key Features
	FlexViewer Toolbar
	Rotate View of Reports
	Binding FlexReport with FlexViewer

	FlexReport Samples
	Task Based Help
	Adding Alternating Background
	Adding Conditional Formatting
	Specifying Custom Paper Size
	Adding Dynamic Page Header
	Creating a Gutter Margin
	Grouping and Sorting
	Cascading Parameters

