
ComponentOne

DataObjects for .NET

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
DataObjects for .NET Overview 6

Help with WinForms Edition 6

Key Features 7-8

DataObjects for .NET Quick Start 9

Step 1 of 4: Setting up the Form and Importing a Database Structure 9-11

Step 2 of 4: Creating a Data Schema using the Schema Designer 11-13

Step 3 of 4: Binding the Data Source to a Grid 13-14

Step 4 of 4: Running the Program 14-15

DataObjects for .NET Top Tips 16-23

DataObjects for .NET (Enterprise Edition) 24

DataObjects for .NET and ADO.NET 24-25

Schema Objects 25

Importing Database Structure 25-27

Converting Schema from Other Sources 27-28

Database Structure Evolution and the Schema 28-32

Database Connections 32-34

Connections and Transactions at Run Time 34

Supporting Distributed (COM+) Transactions 34-35

Native and OLE DB Database Access 35-36

Using Other (Custom) .NET Data Providers 36

Simple Tables 36-37

Creating and Modifying Tables 37-38

Using Table Properties 38-39

Table Business Logic Events 39-40

Table Fields 40-43

Structured Data Storage: Tables and Table Views 43-44

How the Data is Fetched 44-45

How the Data is Modified 45-46

How to Access Table Data 46-47

Bound, SQL-Based, and Unbound Tables 47-48

Simple Relations 48-49

Creating and Modifying a Simple Relation 49-50

Simple Relation Properties 50-51

Composite Tables 51-52

DataObjects for .NET 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Composite Table Diagram 52-53

Creating and Modifying Composite Table Diagrams 53-58

Composite Table Fields 58-59

Composite Table Properties and Business Logic Events 59

How Composite Table Data is Fetched, Stored, and Updated 59-60

How to Access Composite Table Data 60

Composite Relations 60-61

Data Sets 61-62

Creating and Modifying a Data Set Definition 62-66

Table Views 66-67

Table View Fields 67-68

Table View Business Logic Events 68

View Relations 68-69

Custom View Relations 69

How to Access Table View Data 69-70

Data Binding 70-71

Programmatic Access 71-72

Business Logic 72

How Business Logic Works on Different Levels 72-73

Business Logic Events 73

Events on Editing Row 73-74

Events on Modifying Row 74-75

Events on Adding Row 75-76

Events on Deleting Row 76

Events on Updating Database 76-77

Business Methods 77

Using Typed Data Objects 77-79

Action Order and Execution Mode 79-80

Application Configurations 80-81

Direct Client 81-82

Data Library 82

Creating a Data Library Project 82-83

Using a Data Library 83

2-Tier Application 83-84

3-Tier Application 84-85

Configuring the Data Library on the Server 85-86

DataObjects for .NET 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

Security Considerations 86-87

Virtual Mode – Dealing with Large Datasets 87

Understanding Large Data Sets 87-88

Table Views in Virtual Mode 88-89

When a Virtual Table View Fetches Data Segments 89

Virtual Mode in Distributed 3-Tier Applications 89-90

Using C1DataTableSource and Bound Controls 90-91

Asynchronous Fetch Modes 91-92

Sorting Data in Virtual Mode 92

Virtual Mode Restrictions 92

Necessary Requirements for Virtual Mode 92-93

Functionality Restrictions in Virtual Mode 93

Virtual Mode Performance Tuning 93-94

Updating the Database 94

When the Database is Updated 94-95

Update in 2-Tier and 3-Tier Configurations 95

Update Process on the Server 95

Generated SQL Statements 96

Deleted Row 96-97

Added Row 97-98

Modified Row 98-99

Events in Updating a Row 99

Changing Data as a Result of Update (Refresh) 99-100

Updating SQL-Based and Unbound Tables 100

Updating SQL-Based Tables 100

Updating Unbound Tables 100

Controlling the Update Process 101

Handling Errors in Update 101-102

Handling Concurrency Conflicts 102

Handling Update Errors on the Client 102-103

Features and Techniques 103

DataObjects for .NET Expressions 103-104

ADO.NET Expression Language Reference 104

Escaping Special Characters and Reserved Words 104

Constant Values 104

Operators 104

DataObjects for .NET 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Parent/Child Fields 104-105

Aggregation Functions 105

Field Value Qualifying Functions 105

Other Functions 105

Adding Rows and Primary Keys 105-106

Keys Assigned by Client: New Row Detached and Attached State 106-107

Keys Assigned by Server or Database 107

Key Assigned Automatically by Database 107-108

Programmatic Key Assignment 108-109

Working with ADO.NET Dataset 109-110

DataObjects for .NET Enterprise Edition Design-Time Support 110

C1SchemaDef Tasks and Context Menus 111-112

C1DataSet Tasks and Context Menus 112

C1DataView Tasks and Context Menus 112

C1SchemaRef Tasks and Context Menus 113

C1TableLogic Tasks and Context Menus 113-114

C1DataTableSource Tasks and Context Menus 114-115

DataObjects for .NET Tutorials 115

Tutorial 1: Creating a Data Schema 115-131

Tutorial 2: Defining Business Logic 131-141

Tutorial 3: Creating Distributed 3-Tier Applications 141-144

Tutorial 4: Virtual Mode: Dealing with Large Datasets 144-155

DataObjects for .NET Express Edition 156

C1ExpressTable: Working with Simple and Composite Tables 156

Connecting to Database and Working with Data 156-158

Using Composite Tables 158

Defining Fields 158-159

DB Fields and Calculated Fields 159

Field Properties 159-160

Programmatic Access to Data 160

Customizing Data Logic with Events 160-162

C1ExpressConnection: Combining Tables into Data Sets 162

Defining Relations 162

Master-Detail Relations 162-163

Enforcing Referential Integrity (Foreign Key) Constraints 163

DataObjects for .NET 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Relation Properties 163-164

C1ExpressView: Filtering, Sorting and Working with Tables in Other Forms 164-165

Working with Tables in Other Forms 165

DataObjects for .NET Express Design-Time Support 165

C1ExpressTable Tasks and Context Menus 165-166

C1ExpressConnection Tasks and Context Menus 166-167

C1ExpressView Tasks and Context Menus 167-168

Notes for Users of DataObjects for .NET Enterprise Edition 168-169

DataObjects for .NET Express Tutorials 169

Tutorial 1: Binding to a Simple Table 169-172

Tutorial 2: Creating a Composite Table 172-177

Tutorial 3: C1ExpressConnection and Master-Detail Relations 177-181

Tutorial 4: Using C1ExpressView Component 181-184

Tutorial 5: Customizing Data Behavior with Events 184-187

DataObjects for .NET Samples 188-190

DataObjects for .NET Task-Based Help 191

Avoiding a Memory Leak 191-192

Changing the Connection String 192

Creating a Composite Table Programmatically 192-197

Exporting Data from a C1DataSet to XML 197

Importing Schema Information using the Conversion Wizard 197-202

Using the C1SchemaRef Control 202-203

Creating a Schema with the Import Wizard 203-207

Creating and Customizing the Schema using the Schema Designer 207-211

Viewing the SQL Statement Generated when a TableView is Sorted 211

DataObjects for .NET 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Overview
DataObjects for .NET is a complete data and business objects framework that can be
used in .NET applications of any range, scalability and architecture, from simple
desktop applications to classic client-server applications to 3-tier distributed
applications and enterprise-wide business object libraries. DataObjects for .NET
includes two editions with a variety of components to best suits your needs:
DataObjects Enterprise for .NET and DataObjects Express for .NET.

DataObjects for .NET Enterprise Edition is comprehensive while DataObjects
Express for .NET has virtually no learning curve and, mediating the complexities of
ADO.NET, makes data access and data binding in .NET applications simple. Both have
extensive design-time support, particularly the more powerful Enterprise Edition
which includes an easy-to-use Schema Designer. DataObjects for .NET includes many
powerful features absent in standard ADO.NET including virtual mode technology and
the ability to update the database immediately after the user changes a row. With data
libraries, composite multi-table support, and more, DataObjects for .NET makes
creating sophisticated, fully scalable Web-based distributed applications a matter of
point-and-click.

 Getting Started

Get started with the
following topics:

Key Features
ADO.NET
Quick Start
Samples

Help with WinForms Edition

Getting Started
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

DataObjects for .NET 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/

Key Features
DataObjects for .NET's key features include:

Visual Studio Integration
DataObjects for .NET includes integration with Visual Studio Windows Forms features including Smart Tags
and Data-binding.
Based on ADO.NET Technology
DataObjects for .NET is based on Microsoft ADO.NET technology and enhances it to empower and simplify
database application development in Visual Studio. DataObjects for .NET' programmatic object model closely
follows ADO.NET, so it will look very familiar to those who are used to the ADO.NET object model.
Reuse Business Logic Components
DataObjects for .NET Enterprise Edition uses the standard business object paradigm to allow you to develop
business logic components (data libraries) and reuse them in multiple client projects. It provides clear
separation of business and data logic from the presentation (GUI) layer.
Structured, Consistent Data
Expose data to users and client applications in a structured consistent way, so that all structural dependencies
are maintained automatically without manual coding.
Multi-Table Object Support
Unlike other business object, data object, and data persistence frameworks, DataObjects for .NET fully
supports multi-table objects (composite tables) automatically enforcing data relations without manual coding.
3-tier Web-based Application Support
DataObjects for .NET Enterprise Edition completely automates the task of developing distributed 3-tier
Web-based applications. No special server-based code is necessary; making your application distributed
becomes a simple matter of deployment configuration.
Virtual Mode Technology
With an innovative virtual mode technology, DataObjects for .NET allows you to use large datasets in .NET
Windows Forms applications, a feature that is not supported in Visual Studio and ADO.NET without
DataObjects for .NET.
Data Libraries
In enterprise development, DataObjects for .NET Enterprise Edition allows you to create a centralized and
reusable repository of data schema and business logic (data libraries) used in applications throughout the
enterprise.
Automated Database Updates
DataObjects for .NET completely automates database updates so there's no need for manual coding or to use
ADO.NET DataAdapter or other special components. DataObjects for .NET can even update the database
when multiple and interrelated changes have been made to multiple tables.
Immediate Database Updates
In DataObjects for .NET you can update the database immediately after the user changes a row, just by
setting a single property. This optional feature, not supported by standard ADO.NET, is commonly used in
desktop and classic client-server applications.
ADO.NET Data Storage
DataObjects for .NET stores data in an accessible ADO.NET DataSet; this enables a powerful combination of
DataObjects for .NET and ADO.NET in the same code. Your code can work with the same data using either
DataObjects for .NET or ADO.NET interface, whichever is most suitable for the task at hand.
ADO.NET Integration
Continue to do everything with your data that you can do with ADO.NET, including features not supported in
DataObjects for .NET (for example, DataSet.Merge).
Import and Export XML Data
Work with XML data in DataObjects for .NET and import and export your data in self-describing XML to and
from other tools and programs.
Import and Export ADO.NET Data
Export/import your data from/to DataObjects for .NET in ADO.NET DataSet format.

DataObjects for .NET 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Programmatic Customization
DataObjects for .NET supports an extensive set of events enabling full programmatic customization.

DataObjects for .NET 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Quick Start
This quick start tutorial shows you how to add the C1DataSet and C1SchemaDef components to your form, create a
simple schema, and connect to a data source. By following the steps outlined in the quick start, you will be able create
a rich data view. Note that the quick start uses True DBGrid for WinForms and the C1NWind.mdb database
(standard MS Access sample database included in Visual Studio) which, unless the product was installed to another
location, is installed in the Documents or MyDocuments folder at ComponentOne Samples\Common directory by
default.

Step 1 of 4: Setting up the Form and Importing a Database
Structure
In this step you'll set up the form, add DataObjects for .NET components, and import a database structure using the
Schema Designer. Complete the following steps:

1. Create a new .NET 2.0 project.
2. Navigate to the Toolbox and add the C1DataSet, C1SchemaDef, and C1TrueDBGrid components to the form.
3. Click C1TrueDBGrid1's smart tag to open the C1TrueDBGrid Tasks menu and select Dock in parent

container.
4. Click C1SchemaDef1's smart tag to open the C1SchemaDef Tasks menu, and select Schema Designer.

The DataObjects Schema Designer opens and the Import Database Structure Wizard appears. For more
information about the C1SchemaDef Tasks menu, see C1SchemaDef Tasks and Context Menus.

5. Click the ellipsis button to the right of the connection string. The standard OLE DB Data Link Properties
dialog box opens.

Note: Select Schema | Import database structure in the Schema Designer to open the Import Wizard
if it does not automatically appear.

DataObjects for .NET 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. In the Connection tab, click the ellipsis button under Select or enter a database name to locate a database.
7. Locate the C1NWind.mdb database (by default installed in Documents\ComponentOne

Samples\Common) and click Open. If desired you can test the connection now by clicking the Test
Connection button.

8. Click OK to close the DataLink Properties dialog box and import the connection string.

DataObjects for .NET 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

9. Click Next. In this window, you can select the tables to import into the schema.
10. To select all of the available tables, click the >> button to add all the tables to the schema, and click Finish.

The Import Wizard creates the schema and closes.

You've just completed step 1 of the quick start guide; you've set up the form, added DataObjects for .NET
components, and imported a database structure. In the next step you'll create a simple data schema using the
Schema Designer.

Step 2 of 4: Creating a Data Schema using the Schema
Designer
Now that you've imported a database connection, you can create a simple data schema. Schemas are the basis of
DataObjects for .NET and allow you to manipulate the data in very useful ways. As you'll discover, creating a data
schema is easy using the DataObjects Schema Designer. For more information about the Schema Designer, see
Creating and Customizing the Schema Using the Schema Designer.

To create a simple data schema complete the following steps:

1. If the DataObjects Schema Designer is not open, click C1SchemaDef1's smart tag to open the C1SchemaDef
Tasks menu, and select Schema Designer.
Notice that the tables you added in step 1 now appear in the Tables window in the Schema Designer and that
the relations between these tables appear in the Relations window.

DataObjects for .NET 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. To add a DataSet, click the Add button on the DataSets toolbar.

A new DataSet with the default name DataSet will appear in the window and a DataSet tab will appear in the
center of the Schema Designer.

3. To add a table to the DataSet, select the Add tables button in the DataSet tab.

The Add tables dialog box opens.

4. Select Products from the Existing tables list, click the button to add the table to the DataSet, and click

DataObjects for .NET 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

OK. The Add tables dialog box closes and the Products table is added to the DataSet.

5. Close the Schema Designer and click Yes in the dialog box to save the schema.

You've completed step 2 of the quick start guide and created a simple data schema. In the next step you'll bind the
data source to the grid.

Step 3 of 4: Binding the Data Source to a Grid
Now that you've created a simple data schema, the next thing to do is to bind the DataObjects for .NET data source
to the grid. Complete the following steps:

1. Select the C1DataSet control you added to the form and in the C1DataSet1 Properties window, set the
SchemaDef property to C1SchemaDef1 and set the DataSetDef property to DataSet.

DataObjects for .NET 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Select the C1TrueDBGrid control you added to the form and in the C1TrueDBGrid1 Properties window set the
DataSource property to C1DataSet1 and the DataMember property to Products.

3. Click Yes in the dialog box that appears asking if the column layout should be replaced.

You've just bound the DataObjects for .NET data source to the grid and completed step 3 of the quick start guide. In
the next step you'll run the program.

Step 4 of 4: Running the Program
In the previous steps you've added the controls, imported the database structure, and created a simple data schema
without writing a single line of code. The only thing left to do is to run your program and see DataObjects for .NET in
action.

Run the program and observe that the data view that you created will be displayed in the grid:

DataObjects for .NET 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can continue exploring DataObjects for .NET by returning to the Schema Designer, making changes, and seeing
how those changes are reflected in the grid. For more information, see Creating and Customizing the Schema using
the Schema Designer.

Congratulations, you've completed the DataObjects for .NET quick start guide and are now up and running with
DataObjects for .NET! For detailed tutorials, see DataObjects for .NET Tutorials and DataObjects for .NET Express
Tutorials.

DataObjects for .NET 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Top Tips
This topic lists tips and best practices that may be helpful when working with DataObjects for .NET. The following
tips were compiled from frequently asked user questions posted in the C1DataObjects newsgroup and forum.

Tip 1: Accessing the field values of the current row
To access the field values of the current row, get the current row from the CurrencyManager object (which can be
obtained via the BindingContext property) and then invoke the FromDataItem method to obtain the currently
selected row's corresponding C1DataRow object. If you need typed access you can pass a C1DataRow object to the
static Obj() method of the corresponding TableView row object from the DataLibrary.DataObjects assembly.

For example:

To write code in Visual Basic

VB

Imports C1.Data
Imports DataLibrary.DataObjects.MyDataSet

Private Sub EditButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles EditButton.Click

 Dim cm As CurrencyManager cm = _
 CType(BindingContext(C1DataTableSource1), CurrencyManager)

 If cm IsNot Nothing AndAlso cm.Count > 0 AndAlso cm.Position >= 0 Then
 Dim row As C1DataRow = C1DataRow.FromDataItem(cm.Current)

 ' untyped access
 row("UnitsInStock") = 1234

 ' typed access
 Dim product As ProductsRow = ProductsRow.Obj(row)

 product.UnitPrice += 4D
 cm.EndCurrentEdit()
 End If
End Sub

To write code in C#

C#

using C1.Data;
using DataLibrary.DataObjects.MyDataSet;

private void EditButton_Click(object sender, EventArgs e)
{
 CurrencyManager cm = (CurrencyManager)BindingContext[c1DataTableSource1];
 if (cm != null && cm.Count > 0 && cm.Position >= 0)
 {

DataObjects for .NET 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://our.componentone.com/groups/winforms/dataobjects-for-net/forum/

 C1DataRow row = C1DataRow.FromDataItem(cm.Current);

 // untyped access
 row["UnitsInStock"] = 1234;

 // typed access
 ProductsRow product = ProductsRow.Obj(row);
 product.UnitPrice += 4m;

 cm.EndCurrentEdit();
 }
}

Tip 2: Cloning a data row
You can use the autoincremented primary key to clone a data row. Suppose you have to add a copy of the currently
selected row to the same data table, for example when the user wants to add a new row based on the currently
selected data row. To do so, you should create a new row, then fill it out with data from the original data row except
for the primary key and the unique key fields.

For example:

To write code in Visual Basic

VB

Private Sub CloneRowButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles CloneRowButton.Click

 ' Get the currently selected row
 Dim CurrentRow As C1DataRow = C1DataRow.FromDataItem(_
 BindingContext(C1DataSet1, "Shippers").Current)

 ' Get data from the original row as an item array
 Dim Arr() As Object = CurrentRow.ItemArray

 ' Create a new data row
 Dim NewRow As C1DataRow = C1DataSet1.TableViews("Shippers").AddNew()

 ' Preserve autoincremented primary key
 Arr(0) = NewRow("ShipperID")

 ' Fill out the unique key fields
 Arr(1) = CompanyName_TextBox.Text

 ' Assign the item array
 NewRow.ItemArray = Arr

 ' End the edit on the new row
 NewRow.EndEdit()
End Sub

To write code in C#

DataObjects for .NET 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

private void CloneRowButton_Click(object sender, EventArgs e)
{
 // Get the currently selected row
 C1DataRow currentRow = C1DataRow.FromDataItem(
 BindingContext[C1DataSet1, "Shippers"].Current);

 // Get data from the original row as an item array
 object[] arr = currentRow.ItemArray;

 // Create a new data row
 C1DataRow newRow = C1DataSet1.TableViews["Shippers"].AddNew();

 // Preserve autoincremented primary key
 arr[0] = newRow("ShipperID");

 // Fill out the unique key fields
 arr[1] = CompanyName_TextBox.Text;

 // Assign the item array
 newRow.ItemArray = arr;

 // End the edit on the new row
 newRow.EndEdit();
}

Tip 3: Specify a date interval in the row filter condition
You may want to specify a date constant in the client-side filter condition or how to display the set of rows between
two given dates. The following code demonstrates one possible example of doing so:

To write code in Visual Basic

VB

Private Sub FilterButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles FilterButton.Click

 Dim date1 As DateTime = From_DateTimePicker.Value.Date
 Dim date2 As DateTime = To_DateTimePicker.Value.Date.AddDays(1)

 C1ExpressView1.RowFilter = String.Format(_
 "OrderDateTime >= #{0}-{1}-{2}# AND OrderDateTime < #{3}-{4}-{5}#",_
 date1.Year, date1.Month, date1.Day, _
 date2.Year, date2.Month, date2.Day)
End Sub

To write code in C#

C#

DataObjects for .NET 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

private void FilterButton_Click(object sender, EventArgs e)
{
 DateTime date1 = From_DateTimePicker.Value.Date;
 DateTime date2 = To_DateTimePicker.Value.Date.AddDays(1);

 C1ExpressView1.RowFilter = string.Format(
 "OrderDateTime >= #{0}-{1}-{2}# AND OrderDateTime < #{3}-{4}-{5}#",
 date1.Year, date1.Month, date1.Day,
 date2.Year, date2.Month, date2.Day);
}

Tip 4: Filter data on the server side if possible
When working with DataObjects for .NET you can filter data either on the client side (using the RowFilter property)
or on the server side. Filtering on the server minimizes the amount of data passed between the server and client and
improves performance.

There are two ways you can set the filter conditions:

You can pass filters to the C1DataSet.Fill() method. You would also have to set the FillOnRequest property to
False to avoid automatic filling the dataset at startup. For example:

To write code in Visual Basic

VB

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim filters As New FilterConditions()
 filters.Add(New FilterCondition(Nothing, "Suppliers", _
 "Country = 'France'"))
 filters.Add(New FilterCondition(Nothing, "Products", _
 "SupplierID IN (SELECT SupplierID From Suppliers WHERE " + _
 "Country = 'France')"))
 C1DataSet1.Fill(filters, False)
End Sub

To write code in C#

C#

private void Form1_Load(object sender, EventArgs e)
{
 FilterConditions filters = new FilterConditions();
 filters.Add(new FilterCondition(null, "Suppliers",
 "Country = 'France'"));
 filters.Add(new FilterCondition(null, "Products",
 "SupplierID IN (SELECT SupplierID From Suppliers WHERE " +
 "Country = 'France')"));
 C1DataSet1.Fill(filters, False);
}

Filters can be added in the BeforeFill event handler. For example:

DataObjects for .NET 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in Visual Basic

VB

Private Sub C1DataSet1_BeforeFill(ByVal sender As System.Object, _
 ByVal e As C1.Data.FillEventArgs) Handles C1DataSet1.BeforeFill

 e.Filter.Add(New FilterCondition(Nothing, "Suppliers", _
 "Country = 'France'"))
 e.Filter.Add(New FilterCondition(Nothing, "Products", _
 "SupplierID IN (SELECT SupplierID FROM Suppliers WHERE " + "Country =
'France'")))
End Sub

To write code in C#

C#

private void C1DataSet1_BeforeFill(object sender, C1.Data.FillEventArgs e)
{
 e.Filter.Add(new FilterCondition(null, "Suppliers",
 "Country = 'France'"));
 e.Filter.Add(new FilterCondition(null, "Products",
 "SupplierID IN (SELECT SupplierID FROM Suppliers WHERE " + "Country =
'France'")));
}

Tip 5: Share the same connection with C1DataObjects when
performing a batch update
If you want to execute some SQL statements that update a group of rows you can obtain the connection object from
DataObjects for .NET. It is also possible to start an SQL transaction using C1.Data.SchemaObjects.Connection and
perform all data manipulations as a single logical unit.

For example:

To write code in Visual Basic

VB

Imports C1.Data
Imports C1.Data.SchemaObjects
Imports System.Data.OleDb

Private Sub BatchUpdateButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim N As Int32 = 0
 Dim c As Connection = C1DataSet1.Schema.Connections(0)
 c.Open()
 c.BeginTransaction()
 Try
 Dim oc As OleDbConnection = CType(c.DbConnection, OleDbConnection)

DataObjects for .NET 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Dim ot As OleDbTransaction = CType(c.DbTransaction, OleDbTransaction)

 Dim cmd As OleDbCommand

 cmd = New OleDbCommand("UPDATE Products SET " + _
 "ReorderLevel = ReorderLevel + 5 WHERE UnitPrice < 5", oc, ot)
 N += cmd.ExecuteNonQuery()
 cmd.Dispose()

 cmd = New OleDbCommand("UPDATE Products SET ReorderLevel = " + _
 "ReorderLevel - 3 WHERE ReorderLevel > 40", oc, ot)
 N += cmd.ExecuteNonQuery()
 cmd.Dispose()

 cmd = New OleDbCommand("INSERT INTO Products (ProductName, " + _
 "Discontinued, UnitPrice) VALUES ('N product', FALSE, 135)", _
 oc, ot)
 N += cmd.ExecuteNonQuery()
 cmd.Dispose()

 c.CommitTransaction()
 Catch ex As Exception
 c.RollbackTransaction()
 End Try

 ' You shouldn't close the connection here. It is already
 ' closed within the CommitTransaction() method.
 '

 c.Close()

 C1DataSet1.Fill()
 MessageBox.Show(N.ToString() + " rows affected.")
End Sub

To write code in C#

C#

using C1.Data;
using C1.Data.SchemaObjects;
using System.Data.OleDb;

private void BatchUpdateButton_Click(object sender, EventArgs e)
{
 int n = 0;
 Connection c = C1DataSet1.Schema.Connections[0];
 c.Open();
 c.BeginTransaction();
 try
 {
 OleDbConnection oc = (OleDbConnection)c.DbConnection;

DataObjects for .NET 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

 OleDbTransaction ot = (OleDbTransaction)c.DbTransaction;

 OleDbCommand cmd;

 cmd = new OleDbCommand("UPDATE Products SET " +
 "ReorderLevel = ReorderLevel + 5 WHERE UnitPrice < 5", oc, ot);
 N += cmd.ExecuteNonQuery();
 cmd.Dispose();

 cmd = new OleDbCommand("UPDATE Products SET ReorderLevel = " +
 "ReorderLevel - 3 WHERE ReorderLevel > 40", oc, ot);
 N += cmd.ExecuteNonQuery();
 cmd.Dispose();

 cmd = new OleDbCommand("INSERT INTO Products (ProductName, " +
 "Discontinued, UnitPrice) VALUES ('N product', FALSE, 135)",
 oc, ot);
 N += cmd.ExecuteNonQuery();
 cmd.Dispose();

 c.CommitTransaction();
 }
 catch (Exception ex)
 {
 c.RollbackTransaction();
 }

 // You shouldn't close the connection here. It is already
 // closed within the CommitTransaction() method.
 //
 // c.Close();

 C1DataSet1.Fill();

 MessageBox.Show(N.ToString() + " rows affected.");
}

Tip 6: How to change the connection string on the fly
If you choose to, you can change the connection string on the fly. To do so, the connection string for the data schema
must first be specified in the app.config file.

For example, a connection string to the Northwind database might appear as follows:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="MyConnStr" value="Data Source=(local)\SQLExpress;
Initial Catalog=Northwind;Integrated Security=True" />
 </appSettings>
...
</configuration>

DataObjects for .NET 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

Then you would attach the following handler to the CreateSchema event:

To write code in Visual Basic

VB

'Add the following import statement to the top of the code:
Imports System.Configuration

' Add the C1SchemaDef_CreateSchema event handler:
Private Sub C1SchemaDef1_CreateSchema(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles C1SchemaDef1.CreateSchema
 Dim s As String = ConfigurationManager.AppSettings("MyConnStr")

 C1SchemaDef1.Schema.Connections(0).ConnectionString = s
End Sub

To write code in C#

C#

// Add the following import statement to the top of the code:
using System.Configuration;

// Add the C1SchemaDef_CreateSchema event handler:
private void C1SchemaDef1_CreateSchema(object sender, EventArgs e)
{
 string s = ConfigurationManager.AppSettings["MyConnStr"];
 C1SchemaDef1.Schema.Connections[0].ConnectionString = s;
}

DataObjects for .NET 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET (Enterprise Edition)
The DataObjects for .NET Enterprise Edition is a comprehensive data and business objects framework that can be
used in .NET applications of any range, scalability and architecture, from simple desktop applications to classic client-
server applications to 3-tier distributed applications and enterprise-wide business object libraries. In fact, it is in 3-tier
applications and enterprise-wide business where DataObjects for .NET Enterprise Edition is the most useful, the
most productivity enhancing and time saving.

DataObjects for .NET and ADO.NET
DataObjects for .NET is based on Microsoft ADO.NET technology and enhances it to empower and simplify database
application development. DataObjects for .NET has close connections with ADO.NET that programmers familiar with
ADO.NET can utilize:

DataObjects for .NET programmatic object model closely follows one of ADO.NET, so it will look very familiar
to those who are used to the ADO.NET object model. For example, C1DataSet is similar to ADO.NET
DataSet, C1DataTable to ADO.NET DataTable, and so on.
The relation with ADO.NET goes beyond object model similarity. In fact, DataObjects for .NET stores data in
ADO.NET DataSet and that internal storage is accessible via the StorageDataSet property. This enables a
powerful combination of DataObjects for .NET and ADO.NET in the same code. Your code can work with the
same data using either DataObjects for .NET or ADO.NET interface, whichever is most suitable for the task at
hand. This duality is very important, because it allows you to:

Do everything with your data that you can do with ADO.NET, including features that are not supported
in DataObjects for .NET (for example, DataSet.Merge).
Export/import your data from/to DataObjects for .NET in ADO.NET DataSet format.
Work with XML data in DataObjects for .NET and import/export data in self-describing XML to/from
other tools and programs.

See Working with ADO.NET Dataset for details on how to use this DataObjects for .NET-ADO.NET bridge.

Differences between ADO.NET and DataObjects for .NET
The following list explains the differences between ADO.NET and DataObjects for .NET:

DataObjects for .NET fully supports multi-table rowsets (composite tables) automatically enforcing data
relations without manual coding. For example, changing a CustomerID field will automatically change the
corresponding CustomerName field in the same row, although it is stored in a separate table.
With an innovative virtual mode technology, DataObjects for .NET allows you to use large datasets in .NET
Windows Forms applications, a feature that is not supported in Visual Studio and ADO.NET without
DataObjects for .NET.
DataObjects for .NET completely automates database updates. There is no need to use ADO.NET DataAdapter
or other special components. Database updates are performed without manual coding. DataObjects for .NET
can update the database even when multiple and interrelated changes have been made to multiple tables.
By setting a single property, UpdateLeavingRow, you can make DataObjects for .NET update the database
immediately after the user changes a row. This optional feature is commonly used in desktop and classic client-
server applications. Standard ADO.NET does not support this feature.
DataObjects for .NET supports an extensive set of events enabling full programmatic customization.
DataObjects for .NET Enterprise Edition uses the standard business object paradigm to allow you to develop
business logic components (data libraries) and reuse them in multiple client projects. It provides clear
separation of business and data logic from the presentation (GUI) layer.
DataObjects for .NET Enterprise Edition allows you to create a centralized and reusable repository of data
schema and business logic (data libraries) used in applications throughout the enterprise.

DataObjects for .NET 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Enterprise Edition completely automates the task of developing distributed 3-tier
Web-based applications. No special server-based code is necessary, and making your application distributed
becomes a simple matter of deployment configuration.

Schema Objects
A Schema is the basis and starting point of DataObjects for .NET development. It contains data structure information,
defining basic entities, such as tables and relations, with their properties. Normally, a schema is initially created by
importing a database structure using the Import Wizard in the Schema Designer, and then customized in the
Schema Designer to suit your business logic needs. A schema can also be imported from an ADO.NET schema. For
additional information, see Converting Schema from Other Sources.

A schema is stored in a C1SchemaDef component, in the form of an XML string in the .resx resource file. To create or
edit a schema, open the context menu of a C1SchemaDef component and select Schema Designer from the menu.

A DataObjects for .NET data library always contains a single schema, that is, a single C1SchemaDef component. An
application that uses DataObjects for .NET directly, without a data library (direct client) is allowed to have multiple
schemas, each stored in its own C1SchemaDef component.

In most cases, a schema is created at design time in the Schema Designer, and used at run time without modification.
However, all schema objects are programmatically accessible at run time through the schema object model, with the
Schema class being the root of that object model. Using this object model, it is also possible to modify the schema or
even define it from scratch at run time, using the CreateSchema event. This, however, is rarely needed, so you will not
need to use schema objects programmatically unless in special cases. Most of the time, you will only deal with schema
objects at design time, in the Schema Designer.

Schema objects, classes comprising the Schema object model, are structure-only, they do not contain actual data.
They are created when a C1SchemaDef component is initialized and immediately become accessible through its
Schema property, before any data is fetched. Moreover, they do not represent the actual data, they only represent the
structure. The actual data is fetched and managed by another component, C1DataSet. There can be multiple
C1DataSet components bound to a single schema.

A C1DataSet component holds a collection of C1DataTable objects, each one representing a set of rows existing in
this data set for a particular schema object. In fact, a C1DataSet has two collections of C1DataTable objects: Tables for
data contents of Table schema objects, and TableViews for data contents of TableView schema objects. The
SchemaTable property returns the schema object (either Table or TableView) defining the structure of this
C1DataTable.

DataObjects for .NET 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

Importing Database Structure
The DataObjects Schema Designer provides an Import Wizard that creates a schema based on the structure
information stored in a database. It creates simple tables based on database tables, and simple relations between
them based on foreign key constraints stored in the database. Tables are created with fields according to the field
structure of the database tables. Field properties, such as DataType, PrimaryKey and others are set according to the
database field properties. Later, you can customize table fields, change their properties, delete unnecessary fields,
change the fields order, and add new fields, not necessarily based on database table fields.

Importing the database structure also creates a database connection (in the Connections window of the Schema
Designer), that you can use later to connect to the database while editing the schema. For more information on
importing a database structure, see Creating a Schema with the Import Wizard.

After you have imported the database structure, you can modify the schema, add tables (simple and composite),
create relations, and so on. After import, the Schema Designer is connected to the database, so the Database Tables
window is filled with the list of all database tables with their fields; this is highlighted in the image below:

To connect to the database, select Connect to database in the Schema menu, specify the connection and optional
parameters in the Connect to database dialog box, and click OK.

DataObjects for .NET 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: It is not necessary to be connected to the database in order to work in the Schema Designer, although a
live connection has some advantages. For example, if the designer is connected to the database, the
DbTableName property of a table and the DbFieldName property of a field show the lists of available tables and
fields, respectively. Also, in connected mode, it is possible to create schema tables by a drag-and-drop
operation from the Schema graph window.

Converting Schema from Other Sources
The C1DataObjects Conversion Wizard allows you to import (migrate) schema information from an existing
ADO.NET dataset or from an XML schema file (XSD). You can convert an existing database project from ADO.NET to
DataObjects for .NET without recreating schema information from scratch.

To invoke the wizard, select Conversion Wizard in the C1SchemaDef Tasks menu of a C1SchemaDef component.

This opens the Conversion Wizard dialog box.

DataObjects for .NET 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

Here you can choose the source of the schema information to be imported. It can be an ADO.NET Dataset component
located in a form or another file that is currently open in the IDE, or it can be an XSD file containing ADO.NET dataset
structure in XML form. Necessary objects (tables, relations, and a data set) will be created automatically in the schema
based on the imported information. Once the schema is imported, you can open the Schema Designer to view and
edit the imported schema.

Additionally, the C1DataObjects Conversion Wizard can facilitate migrating a project from DataObjects for .NET
Express to DataObjects for .NET Enterprise. In this case, choose a DataObjects for .NET Express component as the
source for your schema. It can be either a standalone C1ExpressTable component or a C1ExpressConnection
component with C1ExpressTable components attached to it.

For additional information, see Importing Schema Information using the Conversion Wizard.

Database Structure Evolution and the Schema
After importing database structure to a schema, the database usually changes with time as the development process
progresses. As a result, the schema may be no longer in sync with the database structure. Such discrepancies cause
problems at run time and they are hard to keep track of manually. Special Schema Designer menu items and other
features can help you keep the schema in sync with the database.

The schema comparison/differences tool scans the schema and database structure and shows differences between
them in the Output window. To use this tool, complete the following steps:

1. Select Compare schema with database structure from the Schema menu. The Compare schema with
database structure window appears.

DataObjects for .NET 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Select the checkbox next to Compare tables and fields to include tables and fields in the comparison. You can
also check which types of objects to import from the database: tables, views, aliases.

3. Select the checkbox next to Compare relations to include relations in the comparison.
4. Select the database connection from the drop-down box next to Connection.
5. Click the Options button to select the warnings to be displayed in the Output window once the comparison

has been completed.

6. Click OK to close the Options window and click OK again in the Compare schema with database structure
window to begin the comparison. The results appear in the Output window.

DataObjects for .NET 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

Contents of the Output window can be copied to the clipboard using the window's context menu. The tool shows
only differences for objects and properties that can be imported from the database structure. In effect, the tool
compares two schemas: one is the existing schema, and the other is the schema that would result from the import of
the database structure if such import would be performed from scratch at the time of comparison. Only tables, fields
and relations belonging to the selected connection are processed; therefore, unbound (calculated) fields are ignored,
as are unbound tables, or tables and relations bound to other connections.

The additional import tool, Add absent database objects in the Schema menu, allows you to import additional fields
or whole tables and additional relations that could be added to the database after the schema was created from the
database structure. This tool does not change any properties of the objects that are already in the schema, so you can
safely use it to add new tables, fields and relations as they are added to the database. To use the Add absent
database objects tool, complete the following:

1. Select Add absent database objects from the Schema menu. The Add absent database objects window
appears.

DataObjects for .NET 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Select the checkbox next to Import tables and fields to import the ones not already in the schema. You can
also check which types of objects to import from the database: tables, views, aliases.

3. Select the checkbox next to Import relations to include relations not already in the schema.
4. Select the database connection from the drop-down box next to Connection and click Next to continue. The

next Add absent database objects window appears.

DataObjects for .NET 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Select the desired objects from the Available tables and fields window and use the arrows to move them to
the Selected tables and fields window. You can click the node next to the tables to view the list of fields in
each table.
Note: Clicking the Show only tables present in the schema checkbox displays only the tables already in the
schema in the Available tables and fields window.

6. Click Next and use the arrows to move the desired relations from the Available Relations window to the
Selected relations window.

7. Click Finish. The Schema Designer appears with the specified tables, views, and aliases.
Finally, there is a Retrieve Fields button in the simple table editor in the toolbar at the top of the Fields panel.
It performs two functions that can be selected in a pop-up menu at the right edge of the button: Retrieve all
fields (default) and Add absent fields.

The Retrieve all fields action deletes all existing fields and retrieves fields from database structure. There is a
confirmation dialog that warns you that this action will delete all existing fields with all their settings. The second
action, Add absent fields, does not change the existing fields or their properties in any way. It adds the fields that
exist in the database table but do not exist in the schema table. Usually those are fields that were added to the table
after the schema was created.

DataObjects for .NET 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

Database Connections
A Connection object defines a connection to a database. DataObjects for .NET supports database access through
OLE DB, native database access for SQL Server and Oracle, and also any other (custom) .NET data providers, see
Native and OLE DB Database Access.

Although, in most cases, a schema contains a single database connection, it is possible to have multiple connections
in a schema. To create a connection, click the Add button and choose a connection type or select Add from the
context menu in the Connections window of the Schema Designer.

You can also add connections using Import database structure or Connect to database in the Schema menu (see
Importing Database Structure for details).

Connections are stored in the Connections property of the Schema object. The list of available connections is shown in
the Connections window of the Schema Designer.

Each simple table has a Connection property associating it with a certain database connection. Together with
the DbTableName property, it determines the database table on which this table is based (if any, see Simple Tables for
details).

DataObjects for .NET uses Connection objects to perform database access operations, fetch and update on the
server, freeing developers from the tedious task of writing database access code. Database access is performed
automatically by DataObjects for .NET, and it can be customized with user code in appropriate business logic events,
see How the Data is Fetched and Updating the Database. A Connection object also serves as transaction context.
Performing database updates, DataObjects for .NET opens a separate transaction for each connection involved in the
operation. In the case of multiple connections, these transactions are managed together in a consistent way, They are
either committed or rolled back together, so the whole update operation is performed consistently, as a single,
possibly heterogeneous (spanning multiple databases) transaction.

Having multiple connections in a schema allows you to easily switch between different physical databases storing the
same logical data, without changing anything else. This is possible both at design and at run time. All that is needed is
to change the Connection property in DbTable objects. At run time, it can be done either in the CreateSchema event
or using the DynamicConnections run-time property.

Sometimes Connection objects must be changed at run time, to set a specific database location, user ID, password,
connection timeout, or other attributes of the ConnectionString. The ConnectionString contains all necessary
information to make a database connection. Changing it at run time allows you to adjust that information dynamically.
Changing ConnectionString and other connection properties can be done at run time using one of the two methods:
in the CreateSchema event or using the DynamicConnections property. In the CreateSchema event you can change
any part of the schema, including connections, but that is done only once for the whole application when the data
library is initialized. If you need to change ConnectionString or other connection properties several times or on a per-
data set basis, use the DynamicConnections property of C1DataSet.

You may also need to change the ConnectionString at run time for security reasons, because you do not want to
expose User ID and Password information to all clients of the data library. A frequently used technique is to clear the
ConnectionString in the Schema Designer before you deploy the data library and use the DynamicConnections
property to specify the ConnectionString at run time.

DataObjects for .NET 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

To edit a connection, double-click the connection object in the Connections window to open the Connection Editor.

Here you can edit the ConnectionString, either manually or in the standard Data Link Properties dialog box. Also in
the Connection Editor, you can specify SQL syntax rules, properties of the SqlDialectInfo object. These properties
determine various specifics of SQL syntax relevant to DataObjects for .NET that can vary between different
databases. Normally, these properties are set automatically to their appropriate values when you
specify ConnectionType or ConnectionString, but, occasionally, they may need manual adjustment, for example, when
using a third-party OLE DB provider or a custom .NET data provider.

Connections and Transactions at Run Time
In addition to changing the ConnectionString at run time, you can also set the database connection (and/or
transaction) to a pre-created IDbConnection (IDbTransaction) object. Fetching data and updating the database (in Fill
and Update methods), DataObjects for .NET creates a database connection and transaction for each schema
Connection object, if its DbConnection has not been set. If you need to use a pre-created database connection, set
the DbConnection property. To prevent DataObjects for .NET from creating its own connection, it must be set:

for Fill: in or before the BeforeFetch event
for Update: in or before the BeforeUpdate event

If you set the DbConnection to your own IDbConnection object, DataObjects for .NET will not close that database
connection automatically – you are responsible for closing it. That is usually done in AfterFetch and AfterUpdate
events.

By default, DataObjects for .NET opens a database transaction for each database connection before update.

If you want to use your own transaction object, set the DbTransaction property in or before the BeforeUpdate event.

If you set DbTransaction to your own IDbTransaction object, DataObjects for .NET will not close (commit or roll back)
that transaction automatically. You are responsible for committing it in case of success or rolling it back in case of
failure, which is usually done in the AfterUpdate event.

Supporting Distributed (COM+) Transactions
Distributed (COM+) transactions can span multiple databases and other transactional resources. They are supported
in .NET declaratively, using classes marked with a special [Transaction] attribute.

DataObjects for .NET 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

If you need to support distributed transactions, you will have to override the default DataObjects for .NET behavior:
opening and committing an ADO.NET database transaction to update the database.

Using ADO.NET (so called "manual") transactions is incompatible with distributed transaction support.

To disable ADO.NET transactions, override the virtual Update method in the RemoteDataService-derived class of your
data library. That method has a beginTransaction parameter set to True by default. Set BeginTransaction to False and
call a method in an object of a class with appropriate TransactionAttribute. In that method, perform the Update, for
example, calling the RemoteDataService-derived object's Base.Update() or calling a business method of that object.

Native and OLE DB Database Access
C1DataObjects supports several options for database connectivity, for example:

You can use OLE DB to connect to any database having an OLE DB provider, or you can use native .NET data
providers for SQL Server or Oracle, or you can use any other (custom) .NET data provider.
For native SQL Server access, System.Data.SqlClient classes are used. For native Oracle access, there are two
options: Oracle and MSOracle. The Oracle option uses the Oracle Data Provider for .NET (namespace
Oracle.DataAccess; you must install Oracle.DataAccess.dll). The MSOracle option uses Microsoft .NET
Framework Data Provider for Oracle available as an MSDN download (namespace System.Data.OracleClient;
you must install System.Data.OracleClient.dll).
For other (custom) .NET data providers, you need to install the data provider and specify necessary properties
in the CustomProviderInfo property.

The options in the ConnectionTypeEnum enumeration are: OleDb, SqlServer, Oracle, MSOracle, and Custom. The
corresponding classes, all derived from C1.SchemaObjects.Connection are: C1OleDbConnection,
C1SqlServerConnection, C1OracleConnection, C1MSOracleConnection, and C1CustomConnection. Creating a
Connection object in the Schema Designer, you can select one of the five ConnectionTypeEnum options in a combo
box. In DataObjects for .NET Express, the database access type is specified in the ConnectionType or
ConnectionType properties. The latter is used with stand-alone C1ExpressTable components that are not attached to a
C1ExpressConnection component.

At run time, you can retrieve the native IDbConnection and IDbTransaction objects from the DbConnection and
DbTransaction properties of a C1.SchemaObjects.Connection object. DbConnection contains a non-null object only
while the database connection is open. DbTransaction contains a non-null object only while the database connection
is open and is performing a transaction while updating the database. You can cast the values of DbConnection,
DbTransaction and event arguments representing IDbCommand to the actual type of the native database access
objects. For example, for a SQL Sever connection, you can cast DbConnection to SqlConnection, or
RowUpdateEventArgs.UpdateCommand to SqlCommand.

A Field object in the schema has a NativeDbType property. This property is used for database update, to specify the
type of command parameters containing field values that are written to the database. Sometimes it is essential to
specify the type for database update more exactly than it can be inferred from the .NET type of the field (from
Field.DataType). For example, DataType = String can be further specialized to be a Unicode or ASCII string. When
you create a schema importing it from database structure, NativeDbType is automatically set to the actual type of the
database field. In those rare cases when you need to change it, you can set the NativeDbType property to a specific
native type you need, or you can use NativeDbType = Any (-1) to indicate that inferring parameter type from
Field.DataType is good enough (or not needed at all, as, for example, in calculated fields). The type of the
NativeDbType is Integer. It contains the numeric value corresponding to one of the values of the enumerated type
describing all possible data types for the database access provider. These enumerations are:

for OleDb: System.Data.OleDb.OleDbType
for SqlServer: System.Data.SqlDbType
for Oracle: Oracle.DataAccess.Client.OracleDbType
for MSOracle: System.Data.OracleClient.OracleType
for other, custom .NET data providers: the enumeration type must be specified in the NativeTypeTypeName

DataObjects for .NET 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

property

Note that using native database access does not automatically mean your application will have better performance
comparing to using OLE DB. Native providers are better optimized, avoiding unnecessary overhead imposed by OLE
DB middleware. However, it depends on the relative weight this overhead has in the overall performance of your
application. For a very simple application that just uses IDbReader to read database values and does not fill any data
set, the performance boost can be very noticeable. But for filling a C1DataSet, the overhead from OLE DB is nearly
negligible, so eliminating it will hardly matter. However, using native database access in DataObjects for .NET can be
important. When you write code, you may need a native provider to improve performance or to perform operations
that are not supported by the OLE DB provider for .NET (such as ref cursors in Oracle, and so on). When you do it in
your code in conjunction with DataObjects for .NET, you will need DataObjects for .NET to give you native database
connections, not an OLE DB connection.

Using Other (Custom) .NET Data Providers
In addition to the built-in providers (OleDb, SqlServer, Oracle, MSOracle) you can use any other .NET data provider by
selecting the Custom option in the connection type combo box. For example, the CustomDataProvider sample in
the ComponentOne Samples directory uses Microsoft ODBC .NET Data Provider.

Setting ConnectionType = Custom (selecting Custom when you create a new Connection), you indicate that you will
use a .NET data provider DataObjects for .NET does not know about. There are two differences in using a custom
(generic) data provider comparing with using one of the four providers included in the ConnectionType list:

You cannot create a whole schema by importing database structure. But you can manually define tables one-
by-one and retrieve their field from the database structure, and, of course, you can manually create relations
and data sets.
You need to specify necessary information about the provider, such as its assembly name, several type names,
and so on, in CustomProviderInfo, telling DataObjects for .NET how to use the provider.

Note: For an example of using a custom .NET data provider, see the CustomDataProvider sample, which is
available installed with the Studio for WinForms samples.

Simple Tables
Simple tables are the basic, elementary data objects in a schema. We distinguish between simple and composite
tables, although both are Table objects and for the most part can be used interchangeably. Composite tables combine
multiple simple tables in a single Table object. A composite table row contains fields from different tables, see
Composite Tables for details.

The Table class is abstract, actual Table objects are either simple tables (DbTable) or composite (CompositeTable).

A simple table usually corresponds to a database table (or view), that is, if it has a non-empty DbTableName. In this
case, we say that the simple table is based on the database table. This is enough to satisfy most application needs,
because in addition to this, the composite table mechanism provides the ability to combine simple tables to form
complex objects. However, there is also an option to use SQL-based and unbound tables that are not based on a
single database table. A SQL-based table is based on a SQL statement or stored procedure, either by setting the
SelectCommandText property or by setting the SQL statement in code. An unbound table is filled with data entirely by
code. See Bound, SQL-Based and Unbound Tables for details.

At run time, each simple table has data in a collection of rows. However, this collection of rows is not usually exposed
to the user directly, but through another schema object, a TableView. One simple table can participate in many table
views, presenting the table's data to the user in different structure arrangements. This is one of the most powerful
features of DataObjects for .NET: structured data consistently maintained without manual coding. This also means
that a simple table does not necessarily include all rows of the underlying database table. The process of filling simple
tables with rows (fetching rows) is initiated by TableView objects, each table view making its contribution. See the

DataObjects for .NET 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

details in Structured Data Storage: Tables and Table Views.

Each table, both simple and composite, has the Fields collection. Table fields define the structure of a table row. Field
properties affect the way the field data is stored and manipulated, and how modifications are sent back to the
database. A table's Fields collection is not necessarily in one-to-one correspondence with the database fields, the
fields of the database table on which the table is based. The fields can have different order, some fields can be
deleted, and some fields can be added that are not based on a database field (unbound fields). See Table Fields for
more details.

Creating and Modifying Tables
Simple tables are usually created during database structure import (see Importing Database Structure). Any new
tables can be added to a schema later. If necessary, there can be more than one table based on a single database
table, although that is not the usual practice. Also, you can create tables that are not based on a database table, SQL-
based and unbound tables. See Bound, SQL-Based and Unbound Tables for more information.

To add a new simple table to an existing schema:

Using a drag-and–drop operation, place a table from the Database Tables window on the Tables window
creating a bound table based on the database table.

OR

Press the Add button or click the drop-down arrow next to the Add button and select Simple Table from the
context menu in the Tables window.

When a new table is added, the Table Editor appears:

DataObjects for .NET 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Table Editor has two panes: the upper pane shows table properties while the lower pane shows the properties of
table fields.

Set the Connection and DbTableName properties of the newly created table in the Table Editor. For a SQL-based
table, instead of setting DbTableName property, set the DataMode property to SqlBased and set the
SelectCommandText property.

When you set the DbTableName or SelectCommandText property, the Schema Designer retrieves table fields from
the database. You can also retrieve fields later, using the Retrieve Fields button on the Fields panel of the Table
Editor.

To modify properties and fields of an existing table, double-click the table node in the Tables window or right-click
the table node and select Open from the context menu. The Table Editor appears.

Using Table Properties
The Connection and DbTableName properties (or SelectCommandText for a SQL-based table) define the database
identity of a table. If both properties are set to a value, the table is considered bound to a database table and all
database operations are performed automatically by DataObjects for .NET.

SQL-based tables can be managed automatically by DataObjects for .NET if you create DataAdapter components for
them. There are also advanced options for SQL-based and unbound tables, where database access is performed with
custom SQL statements or entirely from code; for more information see Bound, SQL-Based and Unbound Tables.

The PrimaryKey read-only property returns the table primary key fields whose PrimaryKey property is set to True.
Primary key values must be unique in table rows; an attempt to set a duplicate primary key generates an exception.
Normally, every table must have a primary key, that is, at least one field with PrimaryKey property set to True.
Although tables without primary key are allowed (such tables usually have an empty DbTableName (see Bound, SQL-
Based and Unbound Tables), they have to be read-only, and they cannot be used in composite tables.

The ReadOnly, AllowAddNew and AllowDelete properties control table updatability.

ConstraintsFieldLevel and ConstraintsRecordLevel properties are collections of table constraints, ConstraintInfo
objects. Constraints are expressions (see DataObjects for .NET Expressions for more information).
ConstraintsRecordLevel contains record level constraints that are evaluated when the user finishes editing a row,

DataObjects for .NET 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

before the C1TableLogic BeforeEndEdit event. If one of the constraints is not satisfied, an exception is thrown. The
exception message is determined by ErrorDescription.Constraints with the Condition expression (if non-empty)
evaluating to False, are skipped and not tested. ConstraintsFieldLevel contains field level constraints, those that are
evaluated on every field change. Usually, a field level constraint belongs to a certain field, not to the table as a whole,
in which case it resides in Constraints. ConstraintsFieldLevel should contain only field level constraints that cannot be
associated with a particular field. Constraints in ConstraintsFieldLevel are evaluated each time any table field changes,
whereas constraints in Constraints are evaluated on the owner field change.

The IgnoreDeleteError, UpdateLocateMode, and UpdateRefreshMode properties control the process of updating table
rows, committing changes to the database (see Updating the Database for more information).

Table Business Logic Events
DataObjects for .NET allows developers to specify business logic in code on table level. This is the main power
feature of the DataObjects for .NET framework: specifying business logic where it belongs, on a data object (table)
level and its automatic propagation and enforcement wherever that object is used.

DataObjects for .NET executes table-level business logic code wherever the table is involved: in a composite table
including this table and in a table view based on this table.

You can also specify business logic on data set level. Such code will be executed only in a particular data set. Using
dataset-level business logic allows the user to enforce rules that are specific to a certain data set. For more
information, see Data Sets.

Developers write table-level business logic code in the events of a special C1TableLogic component. Only one
C1TableLogic component is allowed for each table. To create C1TableLogic components, right-click the C1SchemaDef
component and select CreateBusiness Logic Components from its context menu. The C1TableLogic components are
automatically added to your form. You can also add them manually from the Toolbox by double-clicking the
C1TableLogic component and setting their SchemaComponent and Table properties.

Once you have added the C1TableLogic components, you can attach event code by either selecting the components
on the designer surface, or by using the Business Logic Events tool window. Right-click the C1SchemaDef
component and select Business Logic Events from the context menu to open the tool window:

The Business Logic Events tool window shows the list of all tables and data sets. When you select a table in the tool

DataObjects for .NET 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

window, the table's business logic events appear in the Properties window (in Visual C#, when the Events radio button
is selected in the Properties window; in Visual Basic use the Method Name combo box in the code editor).

DataObjects for .NET also allows you to associate business logic code with table views instead of tables. This is done
to specify data set-specific (table view-specific) logic, rules that must be enforced in the context of a particular data
set and table view, but do not always apply to the underlying table. In this case, a C1DataSetLogic component is used,
for more information see Table View Business Logic Events.

The following is a brief list of business logic events available in DataObjects for .NET (note that the Before and After
prefixes pertaining to most events have been omitted and the prefix is only included if an event occurs only Before or
only After):

Event Description

AddNew Fired when a new (empty) row is added.

AfterChanges Fired when all changes initiated by a field change are done and handled by the business
logic code, see the FieldChange event.

BeginEdit Fired when the user starts editing a row (data-bound controls start editing a row
immediately after they position on it, even though no changes have been made yet).

CancelEdit Fired when the user cancels editing a row reverting the changes made to it.

Delete Fired when a row is deleted.

EndAddNew Fired when a newly added row becomes a regular row in the rowset. When a row is added, it
is added empty, its primary key is unknown. A row with unknown primary key is in special
transitory state, it is not a regular rowset row. Only after its primary key is set it becomes a
regular (added) row, which is signaled by this event.

EndEdit Fired when the user finishes editing a row (data-bound controls finish editing a row when
they leave that row, even if no changes have been made).

FieldChange Fired when a field value is set. Inside this event, your code can set other fields triggering
recursive FieldChange events, DataObjects for .NET handles this situation correctly. Only
after all changes are done and handled, the AfterChanges event is triggered.

FirstChange Fired when a first change is made to the row (a field value changed) after BeginEdit.

UpdateRow This event is not fired in a client application, unless it is a direct client, that is a 2-tier
application updating the database directly from the client, see Application Configurations. In
a 3-tier deployment, it is fired only on the server, when a modified row is committed to the
database. See also, Updating the Database.

Table Fields
Table fields determine the structure of a table row. In a bound table (see Bound, SQL-Based and Unbound Tables),
fields usually correspond to database fields of the database table. However, they do not have to be in exact one-to-
one correspondence with database fields. Fields order can be changed, some fields can be deleted from the table, and
new fields can be added. If necessary, multiple fields can represent a single database field. The database field
represented by a table field is determined by the DbFieldName property. This property can be empty, which means
that the field is not based on (not bound to) a database field. Such fields are called unbound, or calculated.

A field has a name that must be unique in the table. A field can be renamed by renaming the field node in the Fields
list. The name is used to identify the field as a property of the business object associated with the table, see Using
Typed Data Objects in Business Logic. It is also used as the name of the column exposed to the users, and as the
default display name (caption) of the column.

DataObjects for .NET 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

The DataType property determines the field .NET type, and NativeDbType – its native database or OLE DB type. Both
DataType and NativeDbType are set by Import Wizard when a table is first created in database structure import, see
Importing Database Structure. DataType is the field's most important characteristic, it affects all DataObjects for .NET
functions. Normally, Field.DataType should not be changed after importing structure from the database. Adding a
new field to a table, you must set its DataType property. NativeDbType is used only for updating values in the
database, and can be set to Any (-1), in which case its value is effectively ignored. When in doubt, use Any (-1) as the
default value for NativeDbType.

The following properties determine the field's additional storage characteristics:

Property Description

AllowDbNull Gets or sets a value indicating whether null or empty string values are allowed in
this field. If it is set to False, an attempt to assign null or empty string value to this
field generates an exception.

AutoIncrement Gets or sets a value indicating whether the field automatically receives an
incremented value for a new row added to the table.

AutoIncrementSeed Gets or sets the starting value for a field with AutoIncrement not None.

AutoIncrementStep Gets or sets the increment a field with AutoIncrement not None.

MaxLength Gets or sets the maximum length of a string field, in characters. If the length is
unlimited, the value is 0 (default).

Precision For numeric fields (NativeDbType is Numeric, Decimal, or DbTimeStamp), this
property sets or gets the maximum number of digits representing values.

Scale For numeric fields (NativeDbType is Numeric, Decimal, or DbTimeStamp), this
property sets or gets the scale of numeric values, that is, how many digits to the
right of the decimal point are used to represent values.

Unique Gets or sets a value indicating whether the values of this field in each row must be
unique. If it is set to True, an attempt to assign a duplicate value to this field
generates an exception.

The PrimaryKey property determines whether the field belongs to the table's primary key. The table's primary key, the
sequence of field names constituting the primary key, is returned by the PrimaryKey read-only property. Each
modifiable table must have primary key, that is, at least one field where the PrimaryKey property is set to True.
Primary key values must be unique in table rows; an attempt to set a duplicate primary key generates an exception.

Each field can have one or more calculation expressions associated with it in the Calculations property, a collection of
FieldCalculationInfo objects. Usually, calculation expressions are used in calculated (unbound) fields, although they can
be useful in bound fields as well. A field is called unbound if its DbFieldName property is empty. DataObjects for
.NET automatically computes calculated field values and automatically refreshes them when any of the arguments of
its calculation expression(s) changes. Calculation expressions can contain fields of the same table as well as of its
parent and child tables with respect to relations. Child fields are used with aggregation functions to perform grouping
and aggregation. See DataObjects for .NET Expressions for a description of DataObjects for .NET expression
language.

Each calculation (FieldCalculationInfo) contains Expression, which is the expression used to obtain field values, and
two additional properties: Condition and FireEvent. Condition is an optional Boolean expression determining the
calculation's applicability. If Condition evaluates to False, the calculation expression is not evaluated. If a field has
multiple calculations, DataObjects for .NET applies the first with the Condition expression evaluating to True. If none
is applicable, the field value is left unchanged. FireEvent is a Boolean property set to False by default. If it is set to
True, setting the value from calculation expression triggers the same sequence of events (BeforeFieldChange,
AfterFieldChange, AfterChanges) as if the value has been modified by the end user.

DataObjects for .NET 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

Field calculations are useful for bound fields as well as for calculated fields. In this case, they are usually qualified by
Condition expressions. Depending on the conditions, a field's value can be derived from a value stored in the
database, or it can be calculated. For instance, if field A is non-empty, field B always returns the same value as A, but if
A is empty, B can be set independently of A.

The following properties control field value modifications:

Property Description

ReadOnly Gets or sets a value indicating whether the field value can be changed by the end
user or from event code. If set to True, an attempt to change the field throws an
exception.

ReadOnlyUnlessNew Gets or sets a value indicating whether the field value can be changed after the
row has been added to the table (after EndAddNew event). If set to True, an
attempt to change the field throws an exception unless it is done in a newly added
row, before the EndAddNew event.

Constraints Returns the collection of field-level constraints, ConstraintInfo objects. Field-level
constraints are evaluated (tested) when the value of the field changes. For a
change to be successful, all constraint expressions (Expression) must evaluate to
True. If one of the constraints is not satisfied, an exception is thrown. The
exception message is determined by ErrorDescription. Constraints with Condition
expression (if non-empty) evaluating to False, are skipped, not tested. See also,
DataObjects for .NET Expressions for a description of DataObjects for .NET
expression language.

DefaultValue Gets or sets the default value, in string representation, for the field in a newly
created row.

The following properties control field behavior in updating the database (they only have effect for bound fields, that
is, if DbFieldName is not empty):

Property Description

DataSourceReadOnly Gets or sets the value indicating whether the field value in the database can be
changed. If this property is set to True, the field value will not be set in the
database update operation (as with UpdateSet = Never) and it cannot be modified
unless it is done in a newly added row, before the EndAddNew event (as with
ReadOnlyUnlessNew = True).

UpdateIgnore Gets or sets the value indicating whether the field value is sent to the database (to
the server) for update. If this property is set to True, the field value is not sent to
the server for update, even if it has been modified by the user. The default is
False.

UpdateLocate Gets or sets the value indicating whether the field value is used to locate the
database record that is going to be updated. If it is set to False, the field is not
used for locating the database record, regardless of the value of
UpdateLocateMode. If it is set to True (default), this is determined by the value of
the UpdateLocateMode property. See Updating the Database for details on
locating database record for update.

UpdateRefresh Gets or sets the value indicating whether the field value is refreshed, retrieved
from the database after updating the database record. If it is set to False, the field
value is not refreshed, regardless of the value of UpdateRefreshMode. If it is set to

DataObjects for .NET 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

True (default), this is determined by the value of the UpdateRefreshMode
property.

UpdateSet Gets or sets the value indicating whether the field value is set in the database
record. If it is set to Always, the value in the database is always modified, set to
the current field value. If it is set to Never, the value in the database is always left
unchanged. If it is set to IfChanged(default), the value in the database is set to the
current field value if the current field value is different from the original field value
as it was last fetched from the database (the original value can be retrieved using
Item (field, DataRowVersionEnum.Original)).

DataObjects for .NET can perform automatic conversion from DbNull to empty string when returning string field
values and back from empty string to DbNull when saving string field values. To enable this automatic conversion, set
ConvertNullToEmpty/ConvertEmptyToNull for individual fields, or set FieldDefaults:DataSetDef in a data set in the
schema (in DataObjects for .NET Express, FieldDefaults) to enable it by default for a whole data set.

Structured Data Storage: Tables and Table Views
One of the main advantages of DataObjects for .NET over other data frameworks is its ability to represent structured
data. For example, suppose we have tables Customers, Orders and Employees (as in the standard Northwind MS Access
sample database), and we have defined a composite table CustOrders (see Tutorial 1: Creating a Data Schema) that
combines all three tables in a single table according to the following diagram:

Customers Orders Employees

(The Orders – Employees many-to-one relation is defined by the join condition Orders.EmployeeID =
Employees.EmployeeID, where EmployeeID is the primary key of the Employees table.)

Suppose the user navigates to a CustOrders row (containing fields from all three tables), and changes the value of
Orders.EmployeeID. Then DataObjects for .NET, knowing the structure behind the composite table, changes the
employee name (fields Employees.FirstName and Employees.LastName) and other employee attributes according to
the changed EmployeeID value.

Or the user can change the value of Employees.FirstName or another Employees field in the simple Employees table. In
this case we expect that all CustOrders rows including this Employees rows will show the modified value in the
corresponding field.

Or let's take another example: two table views (TableView) showing the data of a single table (in different order, with
different filter conditions, different fields, and so on). Here also, once a table row is modified in one table view, the
corresponding row will be automatically changed in another.

In other words, DataObjects for .NET always maintains and enforces the structure, relations between tables,
composite tables and table views, exactly as you need it to be maintained. What mechanism is responsible for this,
how DataObjects for .NET does this? The answer to this question lies in the way DataObjects for .NET stores data.
DataObjects for .NET storage is organized according to the structure and role of schema objects, enabling
DataObjects for .NET to maintain the correct structure at all times.

The data is stored on the simple table level (except unbound fields). Each table has its own cache, rowset. Table views
do not store actual data, instead they store pointers to table rows. In the same way, composite table rows do not store
actual data, they also store pointers to simple table rows. This storage structure serves a dual purpose: to eliminate
data redundancy and thus conserve memory, and to ensure that the structure is preserved when the user modifies
data. Composite table rows and table view rows pointing to the same simple table row share the same data, since the
actual data is stored in one place, in a simple table row. When the shared data is modified through one of the
composite table rows or through one of the table view rows, all other rows pointing to the same simple table row are
notified of the change and display the modified data.

DataObjects for .NET 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET storage is illustrated in the following figure showing how it stores the simple table rows of
tables Customers, Orders, Details, and the rows of the CustOrders composite table:

In this figure, you can see that pointers to simple table rows exist only for two tables: Customers and Orders, there are
no pointers to Employee rows. This is because the Employees table is connected to its parent in the CustOrders
diagram, the Orders table, with a many-to-one relation. In this case, the Employees row is uniquely defined by the
Orders row, therefore we do not need a separate pointer for it.

Now you can see how DataObjects for .NET ensures that the correct data structure is maintained at all times
regardless of where, in which table view, a modification is made: Any data modification made in a table view ends up
in a simple table row. If the table view represents a simple table, this row is found using the single pointer that this
table view row contains. For more information, see Table Views. If the table view represents a composite table, the
table view uses one of its pointers to simple table rows associated with one-to-many relations, and, if necessary,
foreign key values, such as Orders.EmployeeID in the above example, to resolve many-to-one relations. Once the
simple table row is found, it is modified. Then DataObjects for .NET notifies all table views (both simple and
composite), whose rows point to the modified row, that the row has changed. When, in response to this notification, a
client requests the values of those table view rows, they return the changed value, because they always return the
current value of the simple table row, using their row pointers.

There is one exception to this storage scheme: unbound fields (also known as calculated) in a table view. These are
table view fields that do not correspond to any table field, they were specifically added to the table view by the
developer. For more information, see Table View Fields. A table view can have unbound fields, and a composite table
can have unbound fields of its own. Unbound composite table fields are those that do not correspond to any field of
constituent simple tables, they were added to the composite table by the developer. For more information, see
Composite Table Fields. Unbound field values do not belong to simple tables, so they cannot be stored in simple table
rows. DataObjects for .NET stores unbound field values in table view rows where they are defined.

How the Data is Fetched
Filling Data Sets with data (executing Fill), DataObjects for .NET performs fetch for every table view in that data set.
Simple tables themselves are not fetched, because all simple table rows may not be needed. DataObjects for .NET
exposes table views to the user, not simple tables, so it fetches only those rows that occur in the table views. You must
take this fact into account when designing the data set structure. Sometimes, it is necessary to ensure that all rows of
a certain simple table are present in the dataset. For example, if you want the end user to be able to select an

DataObjects for .NET 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

employee in an Orders row (see the example in Structured Data Storage: Tables and Table Views), you must have all
Employees rows available in the data set. To ensure that all simple table rows are fetched, make sure that the data set
includes a table view based on that simple table, add this table view to the data set if it is not already present, and do
not specify a filter condition for this table view calling the Fill method.

Sometimes it is necessary to control the order in which table views are fetched. Specifically, it can be necessary when
custom code is used in fetching and some parameters in this code depend on the fact that some other table view has
already been fetched. To specify fetch order, set FetchIndex (usually in the Schema Designer) orFetchIndex (only in
the BeforeFetch event).

How the Data is Modified
Structured storage also allows DataObjects for .NET to solve another very important problem that other data
frameworks fall short of solving in full: the problem of updateable views. Virtually all database applications, especially
their GUI front ends, encounter this problem in one way or another. In ADO.NET, as in most previous SQL-based
frameworks, it is solved by placing the responsibility for updating a multi-table data view (rowset) on the developer.
Unless a rowset (ADO.NET DataTable) is based on a single database table (which is rarely the case in GUI applications),
developers must write custom code to send modifications to the database. This is almost taken for granted, as if there
is no other solution to this problem causing a lot of tedious manual coding. In fact, the solution exists and has been
known for a long time to previous generations of application builder tools. Unfortunately, it has been abandoned if
not forgotten. DataObjects for .NET restores the data structure paradigm to its rightful place and with it comes the
solution to view updatability.

As we already know, imposing structure on rowsets (composite tables) originating from multiple database tables (as
opposed to structureless DataTable of ADO.NET) ensures data consistency and synchronization that would otherwise
require manual coding. The same structure helps to solve the update problem. In fact, using DataObjects for .NET,
you will rarely write any code related to database updates at all. In most cases, database updates will be performed
automatically by DataObjects for .NET in the exact way they are required by the data model. When your application
sends updates to the database (Update), DataObjects for .NET collects all modified simple table rows and sends
them to the server for update (commit).

Note that simple table modifications are sufficient for the update process. We do not need to be concerned with
where those modifications came from. The user might use a simple table view or a composite table view to modify a
row of a simple table, it does not matter. All that matters is that a simple table row has been modified (or inserted, or
deleted). Before the update, DataObjects for .NET has already resolved the problem that other tools must resolve
during Update: using the data structure, it has already determined which rows of which simple tables have been
modified by the end user changes. Therefore, all that remains is to send those simple table modifications to the
database, applying each of these modifications to the corresponding database table. Only simple table rows are
involved in this process. Complex objects, such as composite tables and table views are not involved in update.

Consider the Customer-Orders-Employees example of Structured Data Storage: Tables and Table Views, the user could
modify some rows of the CustOrders composite table (using a grid control showing the combined customer-order-
employee information), and also add and delete some rows. Since CustOrders is a composite table, it means that some
Customers rows could have been modified, as well as some Orders and some Employees rows. Additionally, other
modifications to these simple tables can be made in the same session via other table views. All these modifications are
basically modified rows of the simple tables. Therefore, DataObjects for .NET already knows what database table
rows must be modified, added or deleted to commit this transaction. It goes to the server and does just that, applies
the modifications to the database tables Customers, Orders and Employees.

For details on the process of committing changes to the database, including possible customization of the update
process with your business logic code, see Updating the Database.

Note that in addition to the batch update mode, standard in distributed applications, where database updates are
performed only when explicitly requested by a special method call (when the user presses a button, for example),
DataObjects for .NET also supports the classic automatic update mode. This mode, familiar to developers of classic
client-server and desktop applications, ensures that all changes made in the current row are committed to the
database when the end user leaves this row, moves to another row in a table. This mode is not supported in ADO.NET

DataObjects for .NET 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

and standard Windows Forms data binding. It is correct that this mode is unsuitable for distributed applications.
However, many existing designs depend on it, and it is very well suited for desktop applications. DataObjects for
.NET adds yet another enhancement to the .NET data framework by implementing the automatic update mode. By
default, all DataObjects for .NET data sources work in batch update mode. But if you use C1DataTableSource as
your data source, and set its UpdateLeavingRow property to True, it will perform update automatically when the end
user leaves a row after modifying it.

How to Access Table Data

Data Binding
As described in Schema Objects, fetched data is contained in a C1DataSet object. By using a C1DataSet component as
your data source, you can bind data-aware components such as a grid or a text box to the fetched data. The
C1DataSet component exposes table view rowsets. Data-aware controls can bind to any of these rowsets. A table view
represents a table, but there can be multiple table views representing the same table. Also, table views can represent
composite tables as well as simple tables. C1DataSet also supports master-detail hierarchy in data binding. See How
to Access Table View Data for details.

DataObjects for .NET also allows you to bind directly to a simple table rowset, bypassing table views. This can be
done at run time by setting the DataSource property of a data bound control to a C1DataTable object representing a
table rowset. To obtain this C1DataTable object, use the Tables collection property of the C1DataSet component.

This can also be done, both at run time and at design time, by using the C1DataView component. It can represent
either a table view, if its TableViewName property is set, or a simple table, if its TableName property is set.

Programmatic Access
To access a table rowset (both for simple and composite tables), obtain a C1DataTable object from a C1DataSet
component (using the Tables collection property), and use the Rows collection containing C1DataRow objects
representing table rows. To perform actions on table rows or table data as a whole, use the appropriate methods and
properties of the C1DataTable and C1DataRow classes. Their object model is similar to that of ADO.NET.

DataObjects for .NET also allows typed access to table and table view rows. For each table and table view,
DataObjects for .NET generates a class representing its row. For example, ProductsRow is an object (business object,
data object) where each field has a corresponding property (ProductsRow.UnitPrice, ProductsRow.UnitsInStock,
and so on) and each relation has a corresponding method (Products.GetOrder_DetailsRows, and so on) allowing you
to obtain child rows and the parent row. Using these classes, you can write your business logic code in a convenient,
type-safe way, and benefit from Visual Studio code completion features giving you the lists of properties and methods
to choose from. See Using Typed Data Objects in Business Logic, for details about these data object classes.

To use a data object class in your code, call the static Obj method implemented in every data object class. It obtains a
business object given a C1DataRow object as its argument. For example, the following code obtains a ProductsRow
business object from a C1DataRow:

To write code in Visual Basic

VB

Dim dataRow As C1.Data.C1DataRow

Dim product As DataLibrary.DataObjects.DataSet.ProductsRow
product = DataLibrary.DataObjecs.DataSet.ProductsRow.Obj(dataRow)

To write code in C#

DataObjects for .NET 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

C1.Data.C1DataRow dataRow;

DataLibrary.DataObjects.DataSet.ProductsRow product;
product = DataLibrary.DataObjects.DataSet.ProductsRow.Obj(dataRow)

Sometimes it may be necessary to obtain C1DataRow objects from the rows (items) received by bound controls from
DataObjects for .NET. For example, you may need to access the current row obtained from
CurrencyManager.Current as a C1DataRow. Row objects (also called data items) used in data binding are not
C1DataRow objects, but each of them refers to a single C1DataRow object, and you can use a static FromDataItem
method to obtain that C1DataRow object.

Bound, SQL-Based, and Unbound Tables
The most common case is a bound table (DataMode = Bound) where a table has non-empty Connection and
DbTableName properties. In this case, a table is based on a database table, so all database access operations can be
performed by DataObjects for .NET automatically. There is no need to write custom code fetching and updating the
table data (although it is possible to customize the default behavior in code).

In more complicated cases, there may be a need for more flexibility. For example, you may need to use a complex,
non-standard SQL statement to fetch table data, or to use a stored procedure. Normally, for a bound table, the SQL
statements fetching and updating data are generated by DataObjects for .NET. If that is not adequate, you can use a
SQL-based table (DataMode = SqlBased). A SQL-based table has non-empty Connection property and empty
DbTableName property. Instead of DbTableName it uses the SelectCommandText property where you can specify a
SQL statement or a stored procedure depending on the SelectCommandType property setting.

To define a SQL-based table, set the DataMode property to SqlBased, set the Connection property, leave the
DbTableName property empty, and specify the SelectCommandType and SelectCommandText properties.

Using a SQL-based table can be almost as easy as using a bound table, if you create a DataAdapter component for it.
A DataAdapter component can be created in a C1TableLogic component associated with the table by selecting Create
DataAdapter from its context menu. The DataAdapter component will then perform both fetch and update without
custom code (but you can customize the default fetch and update behavior in event code if needed).

Note: For an example of using a SQL-based table with DataAdapter, see the SQLBasedTablesEasy sample
which is installed with the Studio for WinForms samples.

Although SQL-based tables are almost as easy to use as bound tables, bound tables are always preferable when you
have a choice. Bound tables are more intimately related to database tables, so DataObjects for .NET can support
features that are impossible for SQL-based tables; for example:

Only bound tables can be combined to form a composite table. SQL-based tables cannot be used in a
composite table.
Only bound tables can be used in virtual mode (with large data sets), SQL-based tables cannot.
FilterCondition in Fill does not work with SQL-based tables without additional coding, because DataObjects
for .NET does not generate SQL statements in this case, so it cannot automatically modify the SQL statement
by adding the condition to its WHERE clause. You need to do it in code, in the AfterGenerateSql event.

If you want even more control over fetch and update process, you can use a SQL-based table without DataAdapter
component and even without setting the SelectCommandText property. In this case you perform fetch and update by
generating SQL statement(s) in code:

To fetch data for an SQL-based table, write code in the BeforeGenerateSql event setting the Sql event
argument to the SQL statement fetching data and set the Status argument of the event to Skip. Note that
since it resides in a C1DataSetLogic component, this code is attached to table views based on this table, rather

DataObjects for .NET 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

than to the table itself. This is in keeping with the general rule that data is fetched by table views, not by tables;
for more information, see How the Data is Fetched.
If the table is updatable, write code in the C1TableLogic BeforeUpdateRow event. In that code, you can specify
update, insert and delete commands, or perform the update in any desirable custom fashion.

Note: For an example of using SQL-based tables without DataAdapter, see the SQLBasedTables sample which
is installed with the Studio for WinForms samples.

You can also combine these options, using these custom SQL statements created in code with a SQL-based table with
DataAdapter, or, for that matter, event with a bound table. For example, you can fetch data without custom code,
using DbTableName or SelectCommandText properties, and update with custom code.

If you need even more flexibility than provided by SQL-based tables, for example, when working against a non-SQL
data source, you can use an unbound table. An unbound table is a table with both DbTableName and Connection
properties empty (set the DataMode property to Unbound). Fetching and updating data for an unbound table is done
in code, for example:

To fetch data for an unbound table, write code in the BeforeFetch event. In that code, create a reader object
implementing the System.Data.IDataReader interface (either use a standard .NET Framework implementation
such as OleDbReader or SqlDataReader, or, for custom data, create an UnboundDataReader object), fill the
reader with data, assign it to the Reader event argument and set the Status argument of the event to Skip.
Note that, as in SQL-based tables, this code is attached to table views based on this table, rather than to the
table itself, according to the general rule that data is fetched by table views, not by tables. For more
information, see How the Data is Fetched.
If the table is updatable, write code in the C1TableLogic BeforeUpdateRow event. In that code, perform the
necessary update programmatically and set the Status event argument to SkipCurrentRow, indicating that the
update has been done.

Note: For an example of how to use unbound tables, see the UnboundTables sample, which is installed with
the Studio for WinForms samples.

Simple Relations
A simple relation (class SimpleRelation) is an object establishing a parent-child relationship between two simple
tables. The concept of relationship is common in database modeling. It is reflected in a database structure, for
example, by foreign key relationships where the primary key of one table (parent) corresponds to a foreign key of
another table (child).

A simple relation relates the two tables by creating a correspondence between a field (or several fields) of the parent
table (parent fields) and a field (or several fields, the same number of fields as in parent) of the child table (child
fields). For example, in a Customers – Orders relation, the Customers table is the child and the Orders table is the
parent. They are related by the equality

Customers.CustomerID = Orders.CustomerID

where Customers.CustomerID is the parent field and Orders.CustomerID is the child field.

For each parent (Customers) row there can be multiple child (Orders) rows with the same value of the CustomerID
field. For each child (Orders) row there is only one parent (Customers) row with the same value of the CustomerID
field. This is why this is a one-to-many relation (one parent row to many child rows), which is represented by the
following notation:

Customers Orders

DataObjects for .NET 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

We can also define an Orders – Customers relation where Orders is the parent and Customers is the child. This will be a
many-to-one relation:

Orders Customers

In a many to one relation, there is only one child row for each parent row, and there can be many parent rows for a
child row.

Creating and Modifying a Simple Relation
When you import database structure to a schema, C1DataObjects Import Wizard automatically creates simple
relations for you based on foreign key information in the database. After the initial step of importing the database
structure, you can delete redundant relations, create new relations and modify the existing relations.

To create a new simple relation, press the Add button or select Add from the context menu in the Relations window,
which will create an empty relation and open it for editing in a new Relation Editor page.

The Relation Editor has two panes. The top pane contains the relation properties, the bottom pane contains Join
Conditions defining the relation (such as Customers.CustomerID = Orders.OrderID).

Set the relation's Name either by setting the Name property or by renaming the newly added node in the Relations
window.

Set the Parent property by selecting a simple table from the list of all simple tables available in the schema. Set the
Child property by selecting a simple table from the list of all simple tables. Note that if you select a composite table
for either Parent or Child, the relation will automatically become composite relations, which will be apparent by the
elimination of the bottom panel, Join Conditions, which are not applicable to composite relations.

When creating a simple relation, it is your responsibility to assign the correct value to the Cardinality property, that
determines whether this relation is one-to-one or one-to-many. DataObjects for .NET relies on and makes extensive
use of relation cardinality, and it cannot derive its value from other relation properties, unless for relations it creates
while importing structure from the database.

The recommended practice is to define all your simple relations as one-to-many (but make sure they are really one-
to-many, DataObjects for .NET cannot check this). For example, if you need a relation between Customers and
Orders, you may be uncertain as to which table to choose as parent and which as child. Both choices are possible, only
Cardinality value depends on the choice. We recommend to make the choice that leaves Cardinality at one-to-many.
So, in our example, Customers is the Parent, and Orders is the Child.

If you have a Customers – Orders relation, there is no need to define the inverse relation, Orders – Customers. In your
code, you can always navigate in both directions, from parent to child and from child to parent. When you use this
relation in a diagram (in Composite Tables or in Data Sets) to specify view relations, you can use it in direct or inverse
direction, as needed.

DataObjects for .NET 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

The last step in defining a simple relation is specifying its join conditions, equalities connecting parent fields with child
fields. For each parent/child field you need one join condition. To add a join condition, press the Add button or select
Add from the context menu in the Join Conditions pane.

Then, in the properties grid on the right, select the ParentField and ChildField for this join condition.

Simple Relation Properties
The following properties can be used when creating a simple relation between two simple tables:

Property Description

EnforceConstraints If this property is set to True (default), then this relation will not allow child records
without parent. For example, the Customers – Orders relation will not allow the
user to set Orders.CustomersID to a value that does not exist in the Customers
table.

DeleteCascadeRule This property specifies what happens to child rows when their parent row is
deleted. None means that child rows are left unchanged. As a result of deleting the
parent row, they become orphan rows, without parent. The Cascade value means
that child rows are deleted. Set this property to Cascade when child rows belong to
their parent, should not exist without it. There are also two less frequently used
values: SetNull meaning that child rows remain with related field(s) set to null, and
SetDefault meaning that child rows remain with related field(s) set to its default
value.

UpdateCascadeRule This property determines what happens to child fields when parent field values are
changed. If it is set to Cascade (default), the child fields are changed
correspondingly. If it is set to None, the child fields are left unchanged. If it is set to

DataObjects for .NET 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

SetNull, the child fields are set to null. If it is set to SetDefault, the child fields are
set to their default values.

UpdateCascadeServer Cascade update, equivalent to what happens if UpdateCascadeRule is set to
Cascade, can also be performed by the database itself. If this is the case,
DataObjects for .NET must know that and adjust the process of updating the
database. If this is not done, cascade update occurring in the database will conflict
with cascade update already performed by DataObjects for .NET
(if UpdateCascadeRule=Cascade). To prevent this conflict, if your database
performs cascade updates for this relation, set the UpdateCascadeServer property
to True. Note that there is no corresponding property for cascade delete, although
cascade delete can also be performed by the database. If both a simple relation
and the database perform cascade delete, make sure the IgnoreDeleteError
property is set to True (default value). That will prevent conflicts between cascade
deletes in DataObjects for .NET and in the database. The only possible conflict is
that DataObjects for .NET tries to delete database records in the child table
already deleted by the database as a result of deleting their parent record.
If IgnoreDeleteError is set to True, this error (trying to delete already deleted
record) will be ignored.

Composite Tables
A composite table is several simple tables bundled in one. A composite table row represents a row of each constituent
simple table, as shown in the following figure:

Composite table rows do not actually store the data shown on the figure, data belonging to the simple tables; they
store pointers to simple table rows instead. See Structured Data Storage: Tables and Table Views for explanation on
how data is stored in simple and composite tables.

Composite table support is one of the main power features of DataObjects for .NET. It allows you to define business
objects with data stored in multiple database tables, objects whose structure is determined by the inherent business
domain logic, not by the physical database structure that is often far from the logical structure, due to normalization
and other database-specific techniques. Composite tables bridge the gap between physical database structure and
logical structure that is needed in business logic and user interface design.

Composite tables represent business objects just as simple tables do. Developers can associate business logic code
with composite tables, as with simple tables, using the C1TableLogic component events, see Table Business Logic
Events. Each composite table has a class associated with it, with properties corresponding to composite table fields,
see Using Typed Data Objects in Business Logic.

A composite table is defined by a diagram with simple tables as nodes connected with arc – relations. For example,
the following is a diagram of the composite table shown in the figure above:

DataObjects for .NET 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

or, in brief notation:

Customers Orders Employees

Note: In practice, outer joins are not supported in DataObjects for .NET. One-to-many relations always
produce inner joins. This is because every composite table row must contain non-null values for all its primary
key fields, and that requires that for every one-to-many relation at least one child row exists for every parent
row.

Composite Table Diagram
Not every diagram defines a valid composite table. First, it must contain only bound tables, unbound and SQL-based
tables are not allowed, see Bound, SQL-Based and Unbound Tables. The diagram must also satisfy the following
conditions ensuring that it represents a plain table, a rowset:

It must be a tree, that is, a connected graph without loops: every two nodes are connected with an arc path,
and there are no cyclic paths in the graph.
One-to-many arcs must not branch. In formal terms, this means that for each group of nodes that are
connected with many-to-one arcs to each other (or for a single node if it does not have adjacent many-to-one
arcs), there can be only one (or none) outgoing one-to-many arc.

For example, the following diagram represents a valid composite table (one-to-many relations highlighted blue;
groups of nodes interconnected many-to-one filled with the same pattern):

The following three diagrams do not represent valid composite tables:

In the above image the diagram is not connected and consists of two independent parts.

DataObjects for .NET 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

The above image illustrates a one-to-many relations branching.

In the above image the diagram is not connected; there is no path from B to C and vice versa. To make this diagram a
correct composite table, invert one of the relations.

In the above image the diagram is not connected and contains a loop.

Creating and Modifying Composite Table Diagrams
To create a composite table, press the Add button or click the drop-down arrow next to the Add button and
selectComposite Table from the context menu in the Tables window.

The empty new composite table will open as a new Composite Table Editor page. The Composite Table Editor has
two tabs: Diagram and Properties.

DataObjects for .NET 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Diagram tab contains the diagram (graph) of constituent simple tables connected with relations. It also allows
you to set properties of the graph's nodes, table views (CompositeDefView objects), and of the graph's arcs, view
relations (CompositeDefRelation objects). The Properties tab consists of two panes: the upper pane showing the
composite table properties and the lower pane showing the composite table fields and their properties.

Immediately after creating a new composite table, it should be renamed by setting its Name property in the
Properties tab or by renaming the composite table node in the Tables window.

Setting up a composite table starts with adding some simple tables to its diagram. Tables can be added to the
diagram by clicking the Add tables button in the Diagram of the Composite Table Editor. The Add tables dialog box
appears.

DataObjects for .NET 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

Select tables from the list of Existing tables and use the arrows to move them to the list of Selected tables.

Table can also be added by dragging and dropping them from the Tables window onto the Diagram in the
Composite Table Editor. When you add a table view to the diagram, relevant relations connecting it to other table
views in the diagram are also added, unless suppressed by unchecking the "Create view relations" check box in the
Add tables dialog box or by unchecking the "Automatically create relations adding tables to diagrams" check box in
the Options dialog box (select Optionsin the Schema menu). Redundant relations can then be deleted by selecting a
relation arrow in the diagram and pressing the Delkey or by right-clicking it and selecting Remove from the context
menu.

You can also add tables to the diagram using the Table button on the top bar of the Diagram tab, but then you will
have to set the Table property manually, selecting the newly created table view (a CompositeDefView object) and
setting its Table property in the property grid below the diagram.

DataObjects for .NET 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

It is also possible to add relations to the diagram manually. Press the Relation button on the top bar of the Diagram
window and draw an arrow connecting parent and child tables using a drag-and-drop operation from parent to child.
The Schema Designer will try to find an appropriate relation connecting these two tables (inverting the relation, if
necessary). When the new view relation is created, select it and look at popup box or the value of the Relation
property in the property grid below the diagram. If this property is empty, it means that the Schema Designer could
not find an appropriate relation.

DataObjects for .NET 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

The objects shown on the diagram are CompositeDefView and CompositeDefRelation objects.

A table view (CompositeDefView object) represents a table, determined by its Table property, as a part of a composite
table, as well as properties of its own. CompositeDefView properties in a composite table diagram can be used to
override simple table properties. For example, you can set ReadOnly to True. This will make this table a read-only
part of the composite table, although the simple table itself may be modifiable. The following CompositeDefView
properties override Table properties: AllowAddNew, AllowDelete,and ReadOnly.

A composite table can contain multiple table views based on a single table. In other words, a simple table can occur
several times in a composite table diagram. Although it is not common, this is sometimes useful to represent relations
of a table with itself, what is called "self-joins" in SQL, as in Employee1.SupervisorID = Employee2.EmployeeID, where
Employee1 and Employee2 are both aliases for the same table Employee. This feature is fully supported in composite
tables, with a single restriction that if this table duplication occurs on the last level (the last table that is a child in a
one-to-many relation is duplicated somewhere else in the same diagram), then adding new records to the composite
table is not allowed, since it would lead to abnormal results.

A CompositeDefRelation object represents a relation, determined by its Relation property, as a part of a composite
table diagram, an arc in the graph. The CompositeDefRelation class is derived from ViewRelation. Only simple
relations can be used in a composite table diagram, its CompositeDefRelation objects cannot be based on composite
relations.

Note: General ViewRelation objects can be based on any relation. For more information, see View Relations.

A view relation, as an arc in a composite table diagram, can have direction opposite to the direction of the relation on
which it is based. For example, having a one-to-many relation Customers – Orders, we can create a many-to-one view
relation Orders – Customers, based on Customers – Orders, but in inverse order (direction). So, if the Relation object
Customers – Orders has Parent = Customers, Child = Orders, the view relation, if inverted, will have Parent = Orders,
Child = Customers. This inversion does not change the original Relation object. The usual practice is to define all
simple relations, Relation objects shown in the Relations window as one-to-many, and then apply them in diagrams,
create view relations based on them, in direct (one-to-many) or inverse (many-to-one) order. To invert a view relation,
right-click the relation in the diagram and select Invert from the context menu.

DataObjects for .NET 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

A CompositeDefRelation object has a number of properties in addition to the properties Relation, Parent and Child
that determine the relation it represents and in which direction, direct or inverse, it is applied. In addition to that, it
only has a read-only Cardinality property, returning OneToMany or ManyToOne according to the relation's Cardinality
and the direction (if inverse, Cardinality is inverted), and the OuterJoinInManyToOne property affecting the process of
generating SQL for data fetch. For more information, see How Composite Table Data is Fetched, Stored and Updated.

Composite Table Fields
After creating a composite table diagram and selecting simple tables and connecting them with relations, you must
create composite table fields. Composite table fields define the structure of a composite table row. A composite table
field is based either on a constituent simple table field, or on a calculated (unbound) field.

To define a composite table field based on a simple table field, use the Diagram tab of the Composite Table Editor.
Every field of every simple table in the diagram has a check box. Check this check box to include it in the composite
table field collection.

Checking the check box creates a CompositeTableField object referring to the simple table field via the TableViewField
property. Primary key fields are always checked, they must be present in the composite table to form its primary key,
so you cannot uncheck them. Child relation fields (fields that appear on the child side of a relation connecting simple
tables) are always unchecked, they are not allowed to be included in the composite table because they have no
independent meaning, and their values are always the same as the values of the corresponding parent keys.

The composite table field collection is shown in the Properties tab of the Composite Table Editor, in its bottom
panel (its top panel shows the CompositeTable properties).

In addition to fields based on simple table fields, a composite table can contain unbound (calculated) fields. A

DataObjects for .NET 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

composite table field is unbound if its TableViewField property value is empty. Unbound fields are usually calculated
either by Calculations (expressions) or in code. Unbound field values are stored in composite table rows, see
Structured Data Storage: Tables and Table Views. To create an unbound field, click the Add button or select Add from
the context menu in the Fields list.

A composite table field has a name that must be unique in the composite table. It has the same function as the name
of a simple table field; for more information, see Table Fields. A field can be renamed by renaming the field node in
the Fields list. Using this list and its button bar, you can add, delete and reorder composite table fields.

CompositeTableField properties are the same as the properties of a simple table field, although some properties are
not applicable in composite table, and thus are hidden. For an unbound (calculated) composite table field, its
properties have exactly the same meaning as simple table field properties, see Table Fields. For a bound composite
table field (one based on a simple table field), its properties have some special inheritance-like features:

Some properties inherit their value from the corresponding property of the simple table field (determined by
the value of the TableViewField property) and that value cannot be changed unless it is changed in the original
simple table field. Such properties are: DataType, NativeDbType, AutoIncrement, AutoIncrementSeed,
AutoIncrementStep, DefaultValue, MaxLength, Precision, Scale, and Unique.
Some properties can be changed, but their effective value at run time is determined by the conjunction of their
value and the value of the property of the base simple table field. Such properties are: ReadOnly,
ReadOnlyUnlessNew, and AllowDbNull.
The remaining properties can be specified in a composite table field independently of their value in the base
simple table field. Such properties are: CalculationCondition, CalculationExpression, Calculations, and
Constraints.

Every modifiable table in DataObjects for .NET must have a primary key, and composite tables are no exception. A
composite table's PrimaryKey is composed of bound composite table fields that belong to the primary key of their
simple table (have PrimaryKey = True), except child relation keys (fields that appear on the child side of a relation
connecting simple tables). This is the rule determining the value of the PrimaryKey property of a composite table field
and the value of CompositeTable.PrimaryKey.

Composite Table Properties and Business Logic Events
A CompositeTable object has the same properties as the Table object (see Table Properties), except some that are not
applicable to composite tables and thus hidden. There is also a AllowMultipleConnections property specific to
CompositeTable (see How Composite Table Data is Fetched, Stored and Updated).

Business logic code can be associated with a composite table as well as with a simple table, in the form of event
handlers of a C1TableLogic component (see Table Business Logic Events).

How Composite Table Data is Fetched, Stored, and Updated
As with simple tables, fetching data for composite tables originates from table views based on the composite table,
see How the Data is Fetched. The resulting composite table rowset is the union of rowsets fetched by table views
based on this composite table.

DataObjects for .NET 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: In practice, outer joins are not supported in DataObjects for .NET. One-to-many relations always
produce inner joins. This is because every composite table row must contain non-null values for all its primary
key fields, and that requires that for every one-to-many relation at least one child row exists for every parent
row.

Fetching composite table data, DataObjects for .NET generates a SQL statement joining all involved simple tables
with SQL joins. This is only possible if all constituent simple tables are bound tables sharing the same Connection. For
more information, see Bound, SQL-Based and Unbound Tables. By default, this is a necessary condition for a
composite table; it will throw an exception if this condition is not satisfied. However, by setting a special property
AllowMultipleConnections to True you can override this restriction. Then DataObjects for .NET will apply a nested
loop algorithm to fetch the composite table data from different database connections and/or from unbound data
sources. The result will be the same as if all the data were stored in the same database, with the same connection, but
performance may be much slower than with a single SQL statement.

The process of generating the SQL statement fetching data is automatic, but it can be affected by a few properties:

OuterJoinInManyToOne (default: True): By default, many-to-one relations in a composite table diagram
generate outer joins in the SQL statement. This ensures the standard interpretation of many-to-one links,
where the child table contains one row corresponding to the parent row, or none. If there is no corresponding
row, the child fields receive null values. However, some databases do not implement outer joins, or implement
them inadequately, with various limitations. In this case, and when outer joins are undesirable for other
reasons, you can set this property to False. DataObjects for .NET will use inner joins for this view relation in
the composite table diagram. Note that one-to-many relations always produce inner joins in the generated
SQL statement. This is because every composite table row must contain non-null values for all its primary key
fields, and that requires that for every one-to-many relation at least one child row exists for every parent row.
Alias (default: empty string): A generated SQL statement must use aliases for constituent simple tables, because
a table can occur more than once in a composite table diagram, so its name may be not unique in the
statement, in which case it needs aliasing. For more information, see Creating and Modifying Composite Table
Diagrams. By default, view table names are used as aliases, but if you want to change the default alias, you can
set it for a table view in the Alias property. This is rarely needed; this property is added only for completeness,
since all other names in the generated SQL statement can be controlled by developers using DbTableName
and DbFieldName.

If you want to see the generated SQL statement, set up a C1DataSetLogic component and attach a handler to its
AfterGenerateSql event. The generated SQL statement is passed as an argument to that event.

Once the data is fetched, it is stored as described in Structured Data Storage: Tables and Table Views. This structured
storage ensures that data is always kept in sync, with the schema structure preserved on all modifications, whether
modifications are made from a simple table or from a composite table including that simple table.

When updating data, committing changes to the database does not involve composite tables. As described in How
the Data is Modified, all changes end up in simple tables, so it is this simple table data that is sent to the server to
update the database.

How to Access Composite Table Data
Composite tables do not differ from simple tables in the way their data is accessed. See How to Access Table Data and
How to Access Table View Data for information on how to use data in data bound controls and programmatically
from code.

Composite Relations
A composite relation (class CompositeRelation) defines a parent-child relationship between two tables one of which is
a composite table. See Simple Relations about parent-child relationships between tables. If both parent and child are

DataObjects for .NET 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

simple tables, we use a simple relation to connect them. If at least one of them, or both, are composite tables, we use
a composite relation.

A composite relation is based on a simple relation connecting one of the parent's constituent tables to one of the
child's constituent tables, as in the following figure:

More exactly, it connects one of the parent's table views to one of the child's table views. The distinction between
simple tables and table views must be made because a composite table can have multiple table views
(CompositeDefView objects) based on the same table in its diagram. In this case, we need to know which of the table
views actually participates in the relation.

Creating a composite relation starts in exactly the same manner as creating a simple relation. When you set either the
relation's Parent or Child property to a composite table, the relation will become a composite relation.

When you set both Parent and Child of a composite relation, the Schema Designer looks for a simple relation
connecting a parent's table view with a child's table view. If one is found, and if it is the only one possible simple
relation, the SimpleRelation property is automatically set to this simple relation. If more than one simple relation is
possible, the SimpleRelation property will not be set automatically, you will need to open the property combo box
and select one of the applicable simple relations.

Once you select a SimpleRelation (or it is set automatically), the Schema Designer sets the properties
ParentTableView and ChildTableView to the parent's and child's table views connected by the simple relation. This,
however, is done only if the choice of such table views is unambiguous, that is, if both parent and child composite
tables have only one table view based on the corresponding table. If the choice is non-trivial, that is, there is more
than one table view to choose from, the properties ParentTableView/ ChildTableView are not set automatically; you
will need to choose a table view in the property combo box.

Data Sets
A C1DataSet is a self-contained data and code unit filled with data according to the schema. It is the data as it is
exposed to the user, which can be used both by data bound controls and programmatically. Any DataObjects for
.NET client works with a C1DataSet. A data set also serves as a transaction context; modifications made in separate
data sets belong to separate transactions. Modifications are not visible across data sets.

The structure of a data set is defined in the schema as a DataSetDef object. A schema can contain multiple data set
definitions.

To fill a C1DataSet with data, you can either explicitly call Fill from code or set FillOnRequest property to True (the
default value), making a data set fetch data at startup, when the data is requested.

When filling a data set with data, you must be aware that unless you specify filter conditions in code before calling Fill

DataObjects for .NET 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

or in BeforeFill event, each table view will fetch all existing table data unrestricted. To restrict fetch, you must specify
filter conditions for each table view separately. Restricting one table view does not automatically restrict any other.

All data fetched for a C1DataSet object are retrieved in one call to the server, a Fill call, unless in virtual mode where
data retrieval occurs in limited chunks of data, upon request, see Tutorial 4: Virtual Mode: Dealing with Large Datasets.
The user application can then make modifications to the data in a C1DataSet locally, and send modifications to the
data source (usually, a database) calling Update, or automatically, using a C1DataTableSource with UpdateLeavingRow
property set to True.

A data set is a collection of table views (TableView objects) optionally connected with view relations (ViewRelation
objects). Each table view represents a certain table, either simple or complex. There can be multiple table views
representing a single table in a data set. It is most common for a table view to represent a table without changing
anything, without modifying business logic and properties, and with table view fields exactly corresponding to the
table fields. In this case, creating a data set definition in the Schema Designer is a simple matter of selecting tables
that need to be represented by the data set (use the Add Tables button). However, in more advanced cases you can
use the ability of a table view to override and modify the table's business logic and properties, and customize table
view fields, see Table Views.

The set of table views you include in a data set determines what tables are filled with data in this data set. It is the
developer's responsibility that all tables that are used by business logic code of a data set are present in the data set,
otherwise an exception may occur when the code tries to access tables that have not been fetched. See How the Data
is Fetched for details.

Creating and Modifying a Data Set Definition
To create a data set, open the Schema Designer and select View | DataSets. In the DataSets window, press the Add

button or select Add from the context menu. The empty new data set will open as a new DataSet Editor page.

The DataSet Editor Diagram looks similar to the Diagram tab of the Composite Table Editor – it contains a diagram
(graph) of table views connected with relations. It also allows you to set the properties of the graph's nodes:
TableView and ViewRelation objects. Unlike the Composite Table Editor, it also allows you to set the properties of

DataObjects for .NET 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

table view fields (TableViewField objects).

Immediately after creating a new data set, you can rename it by renaming the DataSet node in the DataSets window.

The first action when setting up a data set is creating table views and adding them to the diagram. Table views can be
added to the diagram by clicking the Add tables button in the DataSet Editor Diagram. The Add tables dialog box
appears.

Select tables from the list of Existing tables and use the arrows to move them to the list of Selected tables.

Table views can also be added by dragging and dropping them from the Tables window onto the Diagram of the
DataSet Editor.

When you add a table view to the diagram, relevant relations connecting it to other table views in the diagram are
also added, unless suppressed by unchecking the "Create view relations" check box in the Add tables dialog box or
by unchecking the "Automatically create relations adding tables to diagrams" check box in the Options dialog box
(select Optionsin the Schema menu). Redundant relations can then be deleted by selecting a relation arrow in the
diagram and pressing the Delkey or by right-clicking the relationship and selecting Remove from the context menu.

You can also add tables using the Table button on the top bar of the Diagram. Simply click the Table button, then

DataObjects for .NET 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

click the diagram, and the table is added. In this case, you will have to set the Table property manually, selecting the
newly created table view and setting its Table property in the property grid below the diagram.

It is also possible to add relations to the diagram manually. Click the Relation button on the top bar of the Diagram
and draw an arrow connecting parent and child tables using drag-and-drop from parent to child. The Schema
Designer will try to find an appropriate relation connecting these two tables (inverting the relation, if necessary).
When the new view relation is created, select it and look at popup box or the value of the Relation property in the
property grid below the diagram. If this property is empty, it means that the Schema Designer could not find an
appropriate relation.

DataObjects for .NET 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

The objects shown on the diagram are TableView and ViewRelation objects. See Table Views and View Relations for
detailed descriptions. To set properties of any object on the diagram, including table views, table view fields and view
relations, select the object on the diagram and browse/set its properties in the property grid below the diagram. To
select a view relation, select the arrow representing the view relation. If it represents multiple view relations, you will
need to choose one of them from a context menu that pops up when you select the arrow. To select a table view field,
select an item in the list of fields shown inside a table view.

By default, when you add a table view, its Fields collection is filled with all fields of the corresponding table. More
exactly, since TableViewField and TableField are different objects, it means that the table view contains a
TableViewField representing each TableField of the corresponding table.

If you need to add a table view field (for example, a calculated, unbound field, see Table View Fields), or delete some
table view fields or re-arrange their order, right-click the table view and select Fields from the context menu. In the
Fields dialog box you can also set properties of table view fields, although that can be done in the diagram too, in the
property grid below the diagram.

DataObjects for .NET 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

If you want to restore the collection of table view fields to its initial state, as if the table view has just been added to
the diagram, right-click the table view and select Retrieve Fields from the context menu. This will create
TableViewField objects anew, one table view field for each table field.

Table Views
A TableView object represents a table in a data set. It can represent a simple or a composite table. The table is
determined by its Table property.

TableView also has properties of its own. Some TableView properties can be used to override table properties. For
example, you can set ReadOnly to True, which will make the table view read-only, although the table itself may be
modifiable. The following TableView properties override Table properties: AllowAddNew, AllowDelete, ReadOnly.

Other TableView properties work independently of or in addition to Table properties:

The PrimaryKey property is read-only. It shows the field name(s) constituting the primary key of the table on which the
table view is based. Multiple field names are separated with commas. A table view's primary key is the same as the
corresponding table's primary key. The only purpose of having a special PrimaryKey property in TableView is that
table view field names can differ from table field names, so the string value may not be the same. Note that primary
key table fields are always represented by table view fields, such table view fields are not allowed to be deleted. This
insures that each table view has proper primary key.

The FillSort property controls the order in which data rows are sorted after fetch. The order can also be specified at
run time, calling Fill method, by specifying FillSort in a FilterCondition. By default, fetched data is sorted by primary
key. If a different sort is required, set the FillSort property to the sort field name(s). To specify sort order
(ascending/descending), add "ASC" (ascending) or "DESC" (descending) after the field name. If no order is specified,
the order is "ASC" (ascending). Multiple field names are separated with commas.

Example: "CustomerID DESC, OrderID".

ConstraintsFieldLevel and ConstraintsRecordLevel are collections of table view constraints, ConstraintInfo objects.
Constraints are expressions, see DataObjects for .NET Expressions. These constraints are tested in addition to table
constraints when data is modified in this table view, see Table Properties. If you have a constraint that must always be
enforced for a given table, must be satisfied in all table views representing that table, put it in the table's constraint
collection. If, on the other hand, you have a constraint that is specific to a particular table view, then it belongs to the

DataObjects for .NET 66

Copyright © 2017 GrapeCity, inc. All rights reserved.

table view's constraint collection.

ConstraintsRecordLevel contains record level constraints that are evaluated when the user finishes editing a row,
before the C1DataSetLogic BeforeEndEdit event. If one of the constraints is not satisfied, an exception is thrown. The
exception message is determined by ErrorDescription. Constraints with Condition expression (if non-empty)
evaluating to False, are skipped, and not tested.

ConstraintsFieldLevel contains field level constraints that are evaluated on every field change made in this table view.
Usually, a field level constraint belongs to a certain field, not to the table view as a whole, in which case it resides in
Constraints. ConstraintsFieldLevel should contain only field level constraints that cannot be associated with a
particular field. Constraints in ConstraintsFieldLevel are evaluated each time any table view field changes, whereas
constraints in Constraints are evaluated on the owner field change.

The AutoEndAddNew property determines behavior of newly added rows. If it is set to True (default), setting the row's
primary key triggers adding the new row to the table. If it is set to False, the newly added row is considered
temporary, not belonging to the table, until the EndAddNew method is explicitly called.

The DataAccessMode property determines whether the table view functions in virtual mode, and specifies which of
the three possible virtual modes is used. DataObjects for .NET virtual mode allows you to use large datasets in .NET
Windows Forms applications, a feature that is not supported in Visual Studio and ADO.NET without DataObjects for
.NET. In virtual mode, data retrieval occurs in limited chunks of data, upon request, instead of pre-fetching all data at
once. See Tutorial 4 for more details.

The following options are available for the DataAccessMode:

The default DataAccessMode value, Static means that virtual mode is not used.
Data access mode Virtual means that data is fetched in chunks (called segments) of limited size (the size of
each segment is determined by the VirtualSegmentSize property, default: 400), and the number of segments
cached at the client at any given time is limited (this number is determined by the VirtualSegmentCount
property, default: 4). Mode Virtual works for rowsets of virtually unlimited size, for example, in Tutorial 4 we
demonstrate how it can be used to display 2.7 million rows in a grid.
Data access mode VirtualUnlimited is similar to Virtual in that data is fetched in segments, but the number of
segments in the cache is unlimited, the VirtualSegmentCount property value is ignored. Once a segment is
brought into cache, it remains there. This setting is appropriate when you want to enhance performance by
eliminating redundant roundtrips to the server, but it should not be used with very big rowsets if the user is
expected to fetch many segments into memory.
In VirtualAutomatic mode, data is fetched in segments, as in the previous two modes, and the number of
segments in the cache is unlimited as in VirtualUnlimited mode, and, in addition to that, fetch is continually
performed in background mode, asynchronously, until all data is fetched. This mode is appropriate for large
rowsets that are big enough to make it undesirable to fetch all data at startup time, but not too big, so they
still fit in client memory. This mode is additionally qualified by a Boolean VirtualConsolidateRows property. If it
is set to True (default), then DataObjects for .NET will rebuild the rowset when fetch is complete. While fetch
is incomplete, Rows contains only rows of the current segment. Once fetch is complete, Rows contains all
fetched rows, the whole rowset. In the other two virtual modes, Rows always contains only rows of the current
segment.

The following properties are performance tuning settings for virtual mode, must be changed only if default values are
unsatisfactory: VirtualAsyncThreshold, VirtualConsolidateRows, VirtualSegmentCount, VirtualSegmentSize, and
VirtualSyncThreshold; see Tutorial 4 for more information.

Table View Fields
Table view fields (TableViewField objects) define the structure of a table view row. A table view field is either based on
a table field (a field of the table on which this TableView is based, according to its Table property), or it is a
calculated (unbound) field.

By default, table view fields are in one-to-one correspondence with table fields. To customize the table view Fields

DataObjects for .NET 67

Copyright © 2017 GrapeCity, inc. All rights reserved.

collection, right-click a table view and select Fields from the context menu that appears; this will open the Fields
dialog box. In the Fields dialog box you can add new fields, including unbound (calculated) fields, you can also delete
fields and re-arrange their order (note that primary key fields can be deleted; primary key table view fields are always
present to ensure that the table view has proper primary key). The Fields dialog box also allows you to set properties
for table view fields. If you want to restore the collection of table view fields to its initial state, select the table view,
right-click a table view and select Retrieve Fields from the context menu.

In addition to fields based on table fields, a table view can contain unbound (calculated) fields. A table view field is
unbound if its TableField property value is empty. Unbound fields are usually calculated either by Calculations
(expressions) or in code. Unbound field values are stored in table view rows; for more information, see Structured Data
Storage: Tables and Table Views. To create an unbound field, click the Add button or select Add from the context
menu in the Fields list.

A table view field has a name that must be unique in the table view. It has the same function as the table field name
(for more information, see Table Fields). A field can be renamed by renaming the field node in the Fields list.

TableViewField properties are the same as the properties of a simple table field (see Table Fields), except some field
properties do not apply to table view fields; for example, properties controlling database update, such as
UpdateIgnore, UpdateSet, and so on do not apply to table view fields and are hidden. Table views do not participate
in updating the database (see How the Data is Modified). An unbound (calculated) table view field's properties have
exactly the same meaning as table field properties (see Table Fields). A bound table view field's (one based on a table
field) properties have some special inheritance-like features:

Some properties inherit their value from the corresponding property of the table field (determined by the value
of the TableField property) and that value cannot be changed unless it is changed in the original simple table
field. Such properties are: DataType, NativeDbType, AutoIncrement, AutoIncrementSeed, AutoIncrementStep,
DefaultValue, MaxLength, Precision, PrimaryKey, Scale, and Unique.
Some properties can be changed, but their effective value at run time is determined by the conjunction of their
value and the value of the property of the base table field. Such properties are: ReadOnly, ReadOnlyUnlessNew,
and AllowDbNull.
The remaining properties can be specified in a table view field independently of their value in the base table
field. Such properties are: CalculationCondition, CalculationExpression, Calculations, and Constraints.

Table View Business Logic Events
You can associate business logic code with table views using the C1DataSetLogic component. Use this component
when you need data set-specific (in other words, table view-specific) logic rules that must be enforced in the context
of a particular data set and table view, but do not always apply to the underlying table.

Only one C1DataSetLogic component is allowed for each data set. To create C1DataSetLogic components, use the
Create Business Logic Components menu item of the C1SchemaDef component, or add it manually from the
Toolbox and set its SchemaComponent and DataSetDef properties. Then you can attach event code either selecting
the components on the designer surface, or using the Business Logic Events tool window (select Business Logic
Events from the C1SchemaDef context menu to open the tool window). The Business Logic Events tool window
shows the list of all tables and data sets. When you select a data set in the tool window, the data set's business logic
events appear in the Properties window (in Visual C#, when the Events radio button is selected in the Properties
window; in Visual Basic use the Method Name combo box in the code editor).

See Table Business Logic Events for the list of event handlers that can be used to specify business logic.

View Relations
View relations (ViewRelation objects) are depicted in a data set diagram with arrows connecting nodes - table views.
View relations are optional; it is possible to have a data set without them. View relations play the following roles:

They define the master-detail (parent-child) hierarchy between table views. When you use a data set with view

DataObjects for .NET 68

Copyright © 2017 GrapeCity, inc. All rights reserved.

relations as the DataSource for data bound controls, you can bind one grid to a master (parent) table view and
another grid to a detail (child) table view. Then the detail grid will show the child rows related to the parent
row that is current in the master grid at the moment. See also, How to Access Table View Data.
They allow programmatic access to parent and child rows of a table view row, using methods GetParentRow
and GetChildRows. Note that even without view relations; it is possible to navigate from parent to child rows
and vice versa between tables, for table rows, using the same C1DataRow methods GetParentRow
/GetChildRows and relations between tables. For more information, see Simple Relations and Composite
Relations.

A view relation between table views is usually based on the relation (Relation object) between the two tables
represented by those two table views (except for custom view relations, see Custom View Relations). This relation can
be simple or composite (see Simple Relations and Composite Relations). It is determined by the ViewRelation.Relation
property. A view relation, as an arc in the data set diagram, can have direction opposite to the direction of the table
relation on which it is based. For example, having a one-to-many relation Customers – Orders, we can create a many-
to-one view relation Orders – Customers, based on Customers – Orders, but in inverse order (direction). So, if the
Relation object Customers – Orders has Parent = Customers, Child = Orders, the view relation, if inverted, will have
Parent = Orders, Child = Customers. This inversion does not change the original Relation object. Usual practice is to
define all simple relations, Relation objects shown in the Relations window as one-to-many, and then apply them in
diagrams, create view relations based on them, in direct (one-to-many) or inverse (many-to-one) order. To invert a
view relation, right-click the relation in the diagram and select Invert from the context menu that appears.

Custom View Relations
A custom view relation is not based on any simple relation between tables. It is used when you need a more
complicated algorithm than simple equality of table fields. In a custom view relation, the set of child and (optionally)
parent rows is defined in code in special events.

Note: For an example where a custom relation is used to represent a many-to-many relation that cannot be
based on a single simple relation between tables, see the CustomRelations sample, which is installed with the
Studio for WinForms samples.

A view relation is considered custom if its GetRowsEvent property is set to True. Then it uses GetChildRows event to
obtain child rows, and, if OneWay = False, it uses GetParentRow event to obtain parent row. If OneWay is set to True,
the relation is one-way, only child rows are defined, and the parent row is not accessible from a child row.

To create a custom relation, drag an arrow from parent to child table view in a data set diagram using the Relation
button on top of the data set editor. Select the arrow to set properties. Specify the Name property, set GetRowsEvent
to True (leave the Relation property empty). Use a C1DataSetLogic component attached to the data set to write code
in the events GetChildRows / GetParentRow specifying the algorithm for obtaining child rows and (optionally) the
parent row for this relation.

How to Access Table View Data
The DataObjects for .NET gateway to data is the C1DataSet component. Every DataObjects for .NET client uses one
or more C1DataSet components to bind or gain access to data. Setting up a C1DataSet component, you need to:

Attach it to the schema either by setting the SchemaDef property (if a C1SchemaDef component resides on the
same design surface, a case that is called direct client) or by setting its DataLibrary property (if the schema
resides in a data library, case called library client) and, optionally, setting the DataLibraryUrl property (if the
data library resides on a remote computer, a case called remote client). See Application Configurations for
detailed description of different configuration and deployment options and explanations of the terms direct
client, data library and remote client.
When the C1DataSet component is attached to a schema, set its DataSetDef property choosing a data set

DataObjects for .NET 69

Copyright © 2017 GrapeCity, inc. All rights reserved.

definition name in the combo box showing all data sets defined in the schema.

Data Binding
Using a C1DataSet component as your data source, you can bind data-aware components such as a grid or a text box
to the data. The C1DataSet component exposes table view rowsets. Data-aware controls can bind to any of these
rowsets. To bind to a table view rowset, set the DataSource property of the data-aware control to the C1DataSet
component and open the DataMember property combo box. It will show the selection of available table views. Select
the table view you wish to bind to.

DataObjects for .NET also supports master-detail (parent-child) data binding. Parent and child table views are related
by View Relations. You can bind one control to a master (parent) table view and another control to a detail (child)
table view. After doing this, the detail control will show the child rows related to the parent row that is current in the
master control at the moment. Parent-child hierarchy is shown in the DataMember property combo box as a tree of
view relations starting from topmost (master) table views. Topmost table views, roots of parent-child hierarchies, are
distinguished by the leading underscore in their names. The same table view also appears in the DataMember list
without an underscore, as a stand-alone table view. Select a stand-alone table view if you do not want this data-aware
control to participate in a parent-child hierarchy. Select a topmost master table view, starting from underscore, if you
want to bind it to a master (topmost parent) rowset. Select a node in a hierarchy tree, a view relation name, if you
want to bind it to a child in a parent-child hierarchy.

You can also bind data-aware controls at run time, setting their DataSource and DataMember properties, for
example:

To write code in Visual Basic

VB

ParentGrid1.DataMember = "_Customers"
ParentGrid1.DataSource = dataSet1
ChildGrid1.DataMember = "_Customers.Customers-Orders"
ChildGrid1.DataSource = DataSet1

To write code in C#

C#

parentGrid1.DataMember = "_Customers";
parentGrid1.DataSource = dataSet1;
childGrid1.DataMember = "_Customers.Customers-Orders";
childGrid1.DataSource = dataSet1;

Here Customers is the parent table view, Orders is the child table view, Customers-Orders is a view relation between
them.

Another run-time option is to bind directly to the table view's C1DataTable object, as in the following example:

To write code in Visual Basic

VB

Dim Dt As C1DataTable
Dt = C1DataSet1.TableViews("Customers")
DataGrid1.DataSource = Dt

To write code in C#

DataObjects for .NET 70

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

C1DataTable dt = c1DataSet1.TableViews["Customers"]
dataGrid1.DataSource = dt

If you need additional sorting and filtering, you can bind to a C1DataView component, both at design time and at run
time:

To write code in Visual Basic

VB

DataGrid1.DataSource = DataView1

To write code in C#

C#

dataGrid1.DataSource = dataView1;

C1DataView allows filtering and sorting the data using its RowFilter and Sort properties. The RowFilter property filters
data rows according to a Boolean expression. If you need a more advanced filtering algorithm that cannot be
specified as a simple expression you can use the GetRows event to filter data in code.

C1DataView can also be used to filter/sort the data set itself, using the IsDefault property. If IsDefault = False (default),
filtering/sorting is applied to the C1DataView component only, affects only controls bound to that C1DataView. If
IsDefault = True, filtering/sorting defined in the C1DataView is applied to the data set itself, affects all controls bound
to the data set in any way, not just those using the C1DataView as their DataSource. This filtering/sorting applies to
hierarchical master-detail binding as well as to simple binding.

Another design-time option for data binding is to bind to a C1DataTableSource that is attached to a certain table view
of a data set. Using a C1DataTableSource allows you to handle business logic events in your client application code, in
addition to the business logic specified in the data library (see Business Logic for details). Using C1DataTableSource is
mandatory if your client application works in virtual mode (see Tutorial 4: Virtual Mode: Dealing with Large Datasets
for details).

If you bind third-party (not ComponentOne or Microsoft) controls to DataObjects for .NET data sources, some of
them (very few) may work incorrectly with notifications, that is, with the IBindingList.ListChanged event. DataObjects
for .NET uses a slightly different notification scheme than ADO.NET does. DataObjects for .NET notifications are fully
.NET data binding-compliant and optimized for data bound controls. All ComponentOne bound controls and
Microsoft bound controls work properly with this notification scheme. In fact, all data bound controls should work
with DataObjects for .NET notifications without problems, but in the non-ideal world that can be broken. To prevent
this problem and allow using any bound controls, DataObjects for .NET provides a special NotificationModeFlags
property.

Programmatic Access
To access a table view rowset, obtain a C1DataTable object from a C1DataSet component (using the TableViews
collection property), and use the Rows collection containing C1DataRow objects representing table view rows. To
perform actions on table view rows or table view data as a whole, use appropriate methods and properties of the
C1DataTable and C1DataRow classes. Their object model is similar to that of ADO.NET.

DataObjects for .NET also allows typed access to table and table view rows. For each table and table view,
DataObjects for .NET generates a class representing its row. For example, ProductsRow is an object (business object,
data object) where each field has a corresponding property (ProductsRow.UnitPrice, ProductsRow.UnitsInStock,
and so on) and each relation has a corresponding method (Products.GetOrder_DetailsRows, and so on) allowing you
to obtain child rows and the parent row). Using these classes, you can write your business logic code in a convenient,

DataObjects for .NET 71

Copyright © 2017 GrapeCity, inc. All rights reserved.

type-safe way, and benefit from Visual Studio code completion features giving you the lists of properties and methods
to choose from. See Using Typed Data Objects in Business Logic, for details about data object classes.

To use a data object class in your code, call the static Obj method implemented in every data object class. It obtains a
business object given a C1DataRow object as its argument. For example, the following code obtains a ProductsRow
business object from a C1DataRow:

To write code in Visual Basic

VB

Dim dataRow As C1.Data.C1DataRow
Dim product As DataLibrary.DataObjects.DataSet.ProductsRow
product = DataLibrary.DataObjecs.DataSet.ProductsRow.Obj(dataRow)

To write code in C#

C#

C1.Data.C1DataRow dataRow;
DataLibrary.DataObjects.DataSet.ProductsRow product;
product = DataLibrary.DataObjects.DataSet.ProductsRow.Obj(dataRow);

Business Logic
DataObjects for .NET uses the standard business object paradigm to allow you to develop business logic
components (data libraries) and reuse them in multiple client projects. This provides clear separation of business and
data logic from the presentation (GUI) layer. See Application Configurations for the detailed description of the data
library concept. Developers write business logic code in the events of special C1TableLogic and C1DataSetLogic
components in a data library.

DataObjects for .NET enables unprecedented code reuse power and flexibility by allowing you to specify business
logic on all levels: from the most general level of simple tables for rules that must be enforced for tables regardless of
the context where they are used, to more specific levels of composite tables, then data sets, and finally the most
specific level of a concrete rowset instance. For more information, see How Business Logic Works on Different Levels.

When writing business logic code, you can use Using Typed Data Objects automatically generated by DataObjects
for .NET. In this way, you can write code in a convenient, type-safe way, and benefit from Visual Studio code
completion features giving you the lists of properties and methods to choose from.

In addition to business logic events, DataObjects for .NET allows you to define business methods in your data library,
see Business Methods. Business methods are called by the client and executed on the server. They can fill data sets
with data, update the database and perform any other required operations.

How Business Logic Works on Different Levels
The same business logic events, such as AfterFieldChange or BeforeDelete, can be handled on different levels:

Level Description

Simple
table level

Events of a C1TableLogic component (see Table Business Logic Events). They are triggered in
any context, wherever the table is involved: in a composite table including this table, and in a
table view based on this table. For example, if you write code converting CustomerID value to
upper case in table_Customers_BeforeFieldChange, it will work for the Customers table itself,
and for a CustomersOrders composite table that includes Customers, and for any table view

DataObjects for .NET 72

Copyright © 2017 GrapeCity, inc. All rights reserved.

based on such tables. In other words, the business rule will be automatically enforced
everywhere it should be, in any possible context where the Customers table is used.

Composite
table level

Events of a C1TableLogic component representing a composite table. They are triggered in
any data set where the composite table is used. They are not triggered for constituent simple
tables when they are used outside of this composite table context. For example, if you write
some code in a CustomersOrders composite table event, it will be executed when the user
works with CustomersOrders, but not when they work with the Customers table stand-alone.

Table view
level

Events of a C1DataSetLogic component (see Table View Business Logic Events). They are
active in a particular data set. If there are multiple C1DataSet objects with the same schema
definition (DataSetDef; see Schema Objects), they are active in any such object. This business
logic level represents data set-specific (in other words, table view-specific) rules that must be
enforced in the context of a particular data set and table view, but do not always apply to the
underlying table.

Rowset
level

Events of a C1DataTableSource control. This level is different from all the rest in that it
belongs to a particular client application, as opposed to a data library. All other logic levels
are enforced by DataObjects for .NET in any application that uses their data library. Rowset
level logic is enforced only in the application where this code is written.

Consider for example, a CustomersOrders composite table, including a simple Customers table, and a data set
MyOrders having MyOrdersView table view based on the CustomersOrders table. Imagine a form in a client application
with a C1DataSet dataSet1 connected to MyCustomersView, a C1DataTableSource C1DataTableSource1 connected to
dataSet1, and a grid bound to C1DataTableSource1. Imagine that we have business logic event code
BeforeFieldChange specified on all levels. When the end user modifies the CustomerAddress field in the grid (the
field belongs to the Customers table inside the CustomersOrders composite table), the order in which the events are
triggered will be from the most specific to the most general:

C1DataTableSource1_BeforeFieldChange (rowset level) →
dataset_ MyOrders_BeforeFieldChange (table view level) →
table_CustomersOrders_BeforeFieldChange (composite table level) →
table_Customers_BeforeFieldChange (simple table level)

For the corresponding "after" event, AfterFieldChange, the order will be the inverse, from the most general to the
most specific:

table_Customers_AfterFieldChange (simple table level) →
table_CustomersOrders_AfterFieldChange (composite table level) →
dataset_ MyOrders_AfterFieldChange (table view level) →
C1DataTableSource1_AfterFieldChange (rowset level)

Business Logic Events
These sections describe particular DataObjects for .NET business logic events in detail.

Each event is fired by DataObjects for .NET at appropriate time defined below. Firing an event, DataObjects for
.NET uses the inheritance chain of levels described in How Business Logic Works on Different Levels. For example,
when we say that "the BeforeFieldChange fires", it means that the event is fired on all levels where it is handled. It may
be in a table view, in a composite table, in a simple table, and so on, whatever applies and contains a handler code.

Events on Editing Row

DataObjects for .NET 73

Copyright © 2017 GrapeCity, inc. All rights reserved.

Edit Mode
The DataObjects for .NET concept of edit mode is exactly the same as in ADO.NET. A row is in edit mode after a
BeginEdit method call. Calling EndEdit ends the edit mode state. Edit mode is intended for making successive changes
to a row without validating the whole row. A single change does not have to satisfy validation conditions. Row
validation occurs when the row exits edit mode, on EndEdit. Place such validation code in the BeforeEndEdit event.

Edit mode is used by bound controls: when a row becomes current, it is automatically placed in edit mode (BeginEdit
is called implicitly). When the user moves to another row, the row exits edit mode (EndEdit is called implicitly). Bound
controls maintain a single row in edit mode at any given time, it is the row corresponding to the current row position
of System.Windows.Forms.CurrencyManager. Programmatic calls to BeginEdit / EndEdit allow multiple rows in edit
mode simultaneously.

While a row is in edit mode, changes made to its fields since the moment it entered edit mode can be canceled
(reversed) by calling CancelEdit. It can also be done through some bound controls, a grid, for example. The row
remains in edit mode after CancelEdit, only field changes are canceled.

Events in Edit Mode Transitions
When a bound control or user code calls BeginEdit, DataObjects for .NET fires the BeforeBeginEdit. This event can be
used to disallow transition to edit mode by throwing an exception, if necessary, although this is not a recommended
design pattern. Note that transition to edit mode does not yet mean that the row is being changed. If you want to
block changes to a row, the proper place to do it is in the BeforeFirstChange event, if you need to block the whole
row, or in BeforeFieldChange, if you want to block a particular field.

After a row has entered edit mode, the AfterBeginEdit event is fired.

Before a row leaves edit mode, the BeforeEndEdit event is called. This event is the most important among the edit
mode transition events, because it is the point where data validation code resides in most cases. If you have data
validation rules dependent on multiple fields, program these rules in the BeforeEndEdit event. If validation rules are
not satisfied, to signal validation failure, throw an exception. That will prevent row from leaving edit mode. Note that
in many cases you can use Constraints, expressions specified as table or table view properties, instead of writing
validation code in the BeforeEndEdit event. Record-level constraints are tested before the BeforeEndEdit event.

After a row has successfully left edit mode, the AfterEndEdit event is fired.

When the user cancels changes in edit mode (CancelEdit is called or a bound control cancels changes), DataObjects
for .NET first fires the BeforeCancelEdit edit. Throwing an exception in that event disallows canceling changes. After
successfully canceling, reversing the changes, DataObjects for .NET fires the AfterCancelEdit event.

Edit mode by itself does not mean that the row is being changed; it only signifies a special state in which changes to
row fields do not trigger row validation. When the row is actually changed first time after entering edit mode, the
BeforeFirstChange event fires. By throwing an exception in that event, you can disallow changes to the row. After the
first change has been successfully performed, the AfterFirstChange event fires. You can use that event, for example, to
show some user interface clues indicating that the row has been changed (canceling them in AfterCancelEdit and
AfterEndEdit, if necessary). After the AfterFirstChange event has been fired for the first time, successive changes to row
fields do not fire the BeforeFirstChange/ AfterFirstChange events.

Events on Modifying Row
The sequence of events invoked when the end user or user code modifies a field is as follows:

1. Field-level constraints are tested. If a constraint is not satisfied (does not evaluate to True), an exception is
thrown and the change aborted. In a constraint expression, the field being modified returns the new
(proposed) value, although the value has not yet been assigned to the field. If you need the old value of the
field in an expression, use a special function: BeforeChange(field) (see DataObjects for .NET Expressions).

DataObjects for .NET 74

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. The BeforeFieldChange event fires. This event allows you to specify validation logic that cannot be specified in
the form of constraint expressions. Throwing an exception in this event aborts the change. When this event is
fired, the field value is not yet modified. The new (proposed) values are available in the NewValue argument of
the event.

3. The new value is assigned to the field.
4. Any calculated fields (Calculation expression) dependent on the modified field acquire their new values

immediately after the new value is assigned to the field (before the AfterFieldChange event). In fact,
DataObjects for .NET does not perform any special processing in order to update calculated fields after
changing the value. It simply marks the calculation results that depend on the changed value, internally, as out-
of-date. Whenever a calculated value is requested, in code, or by a bound control, for display, the calculation
expression is re-evaluated to obtain the up-to-date value. Note that bound controls are not notified of the
change until the whole process of handling the field modification is completed. Only after all necessary
changes are done, bound controls will be notified of all changes resulting from the field modification, including
the calculated expressions that have gone out-of-date. At that point, the bound control will request the new
values, so the calculation expressions will be re-evaluated. If, for some reason, you need to force re-evaluation
of calculated expressions before that, it can be done calling the Refresh method for a single row or Refresh for
a whole rowset.

5. The AfterFieldChange event fires. This event allows you, among other possible actions, to modify other
fields/rows/tables depending on this field, for example, update some counters. The new value is already
assigned to the field, and the old field value is also available in this event, in its OldValue argument. This can be
useful, for example, in updating counters, where you may need to add the new value and subtract the old one.

6. At this point, after the AfterFieldChange event is handled, the process of changing a field value is finished.
However, that does not mean that DataObjects for .NET has finished the processing and relinquished control
to the user. The business logic code that handled the events could make other changes to row fields in the
process, or it could change other rows or other tables. When this handling is done, DataObjects for .NET
collects all changed rows, all changes resulting from the field modification, and fires the AfterChanges event for
each such row. If the business logic code did not change any fields in rows other than the row where the
original field change occurred, then AfterChanges will fire for that row only. If, however, other changes resulted
from the field modification, AfterChanges will fire for all changed rows. The AfterChanges event is designed
specifically to ensure that this is the "last change", so the developers can put code that relies on the "finality" of
changes there. For instance, this event is the best place to put your code calculating some calculated field
values (supposedly, for calculations that cannot be specified as simple calculation expressions).

7. The CurrentRowChanged event fires with ChangeType set to RowChangedTypeEnum.FieldsChanged. Strictly
speaking, this event is not a part of business logic, because it is fired in client components, such as C1DataSet,
not in data library components. It is used in the client application for GUI purposes, in scenarios like, for
example, synchronizing detail data with the master row on every change occurring in the master row.

8. Finally, DataObjects for .NET notifies bound controls of all changes that occurred during the processing of
field modification, so they can update their display with new data. Notifying bound controls does not occur
immediately when you change a field in your business logic code. It is postponed until the end, because a field
modification can cause other changes (see above), so it is better, in more senses than one, to notify of all
changes at once, when they are final.

Events on Adding Row
Before adding a new row, DataObjects for .NET fires the BeforeAddNew event. When this event fires, the new row is
not yet created. Throwing an exception in this event aborts the process of creating a new row and adding it to the
table.

Once a new row has been created and filled with default values (see the field DefaultValue property), DataObjects for
.NET fires the AfterAddNew event. That event can be used to fill default values of the fields according to some rules
that cannot be specified as simple values of the DefaultValue property. It can also be used to specify the primary key
values, see Keys Assigned by Client: New Row Detached and Attached State.

When a new row is created, it is empty, filled with default values, its primary key undefined. A row with an undefined

DataObjects for .NET 75

Copyright © 2017 GrapeCity, inc. All rights reserved.

primary key is in a special transitory state called detached. For more details, see Keys Assigned by Client: New Row
Detached and Attached State. A row becomes a full-fledged table row (for example, it can be sent for updating the
database) only after its primary key is set. There are two main scenarios in setting the new row primary key:

The key may be set immediately after the row is created, using the AutoIncrement field property, or in the
AfterAddNew event. See Adding Rows and Primary Keys for detailed explanation and examples. In this case,
the end user sees the row as a normal row with a primary key from the very beginning.
The key may be left empty until the user sets it manually or it is set programmatically at the user's request, see
Adding Rows and Primary Keys.

In both cases, the point in time when the row becomes a "regular", full-fledged row with a defined primary key value
(becomes attached) is an event that is potentially important to the business logic. Before attaching a row,
DataObjects for .NET fires the BeforeEndAddNew event. Throwing an exception in this event aborts the process of
attaching the row (and aborts EndEdit, if the row is being attached as a result of an EndEdit call). After the row has
been successfully attached, DataObjects for .NET fires the AfterEndAddNew event.

To inquire about the state of a newly added row, use the RowState property. For a detached newly added row the
state is Detached. For an attached newly added row the state is Added.

Events on Deleting Row
Before deleting a row, DataObjects for .NET fires the BeforeDelete event. Throwing an exception in this event aborts
deleting the row.

After a row has been successfully deleted, DataObjects for .NET fires the AfterDelete event.

Events on Updating Database
All business logic events described in the previous sections are client-side events; they are fired on the client. The
update events listed in this section are server-side events, that is to say, they are fired on the server. You do not need
to write a different program to support this client-server division. Your business logic acts as a whole, you do not need
to divide it, it all resides in your data library. The same data library is used both on the client and on the server.
DataObjects for .NET manages the distinction between client and server and their interaction automatically,
transparently to the developer. However, you must be aware that the database update process, and hence the update
business logic events, take place on the server, not on the client. Because the data existing on the server is different
from that existing on the client, only changed rows and rows related to them exist on the server, see Update in 2-Tier
and 3-Tier Configurations. For more details about DataObjects for .NET data libraries, their client and server use, see
Application Configurations.

Note that this distinction between client and server does not apply to a direct client application (see Application
Configurations), that is a 2-tier application updating the database directly from the client, an application where
C1SchemaDef and C1DataSet components reside on the same design surface. In this case, the client and the server
are one and the same application.

Update events are special also in the sense that controlling the order of actions using the ExecutionMode property, as
described in Action Order and Execution Mode, is not available for update events. Update events are triggered
without an action context stack. They are always handled in the default execution mode ExecuteImmediately.

Business logic inheritance levels apply to update events in the same manner as to other DataObjects for .NET
business logic events. You can handle update events on any suitable level: on a simple table level, composite table
level, table view level, and so on. For more information, see How Business Logic Works on Different Levels.

Before updating the database, DataObjects for .NET fires the BeforeUpdate event. When the database update is
finished, it fires the AfterUpdate event. The AfterUpdate event is fired after both successful and unsuccessful updates.

When updating database rows, DataObjects for .NET fires the BeforeUpdateRow and AfterUpdateRow for each row
that it changes in the database.

DataObjects for .NET 76

Copyright © 2017 GrapeCity, inc. All rights reserved.

See Updating the Database for detailed explanation of the update process and of the role of the events in it.

Business Methods
In addition to business logic events, DataObjects for .NET allows you to define business methods in your data library.
These are methods added by the programmer to the RemoteDataService-derived class in the data library.

They can be called from the client (both in 2-tier and 3-tier configuration) using the RemoteDataService property. In a
3-tier configuration, business methods are executed on the server. They can fill data sets with data, update the
database and perform any other required operations. In business methods, you can use either the default or pre-
created connections and/or transactions. C1DataSet objects can be passed to business method as parameters.

In a 3-tier configuration, a data set passed as a parameter is serialized on the client (C1DataSet implements
ISerializable) and deserialized on the server. If a business method returns a data set, it is serialized on the server and
deserialized on the client.

In many cases, business methods are not needed, if standard DataObjects for .NET Fill and Update methods are
enough for performing database operations.

Also, even if you feel that Fill and Update methods do not satisfy all application needs, you can consider customizing
them without defining additional business methods. Fill and Update can be customized with appropriate business
logic events, and also you can define your own, completely customized Fill and Update by overriding virtual methods
Fill / Update in the RemoteDataService-derived class in the data library.

Note: For an example showing how to use business methods to fill data sets and update the database, see the
CustomFillUpdate sample, which is installed with the Studio for WinForms samples.

If your custom database processing is not covered by standard or customized Fill and Update methods, then you can
implement it with business methods in the RemoteDataService-derived class in the data library.

If you fill a data set in a business method and need to pass it back to the client, you can simply return the C1DataSet
object from the method.

To update the database in business methods, use the C1DataSet. GetChanges and Merge methods.

GetChanges creates a C1DataSet containing only modified simple table rows, so they can be passed to the business
method on the server for updating the database. To refresh the original data set on the client after update, return
refreshed (retrieved from the database after update) rows from the business method and apply the Merge method.

Using Typed Data Objects
For each table and table view, DataObjects for .NET generates a class (data object class) representing its row. For
example, ProductsRow is an object (business object, data object) where each field has a corresponding property
(ProductsRow.UnitPrice, ProductsRow.UnitsInStock, and so on) and each relation has a corresponding method
(Products.GetOrder_DetailsRows, and so on) allowing you to obtain child rows and the parent row). Using these
classes, you can write your business logic code in a convenient, type-safe way, and benefit from Visual Studio code
completion features giving you the lists of properties and methods to choose from.

To use a data object class in your code, call the static Obj method implemented in every data object class. It obtains a
business object given a C1DataRow object as its argument. For example, the following code obtains a ProductsRow
business object from a C1DataRow:

To write code in Visual Basic

VB

Dim dataRow As C1.Data.C1DataRow
Dim product As DataLibrary.DataObjects.DataSet.ProductsRow

DataObjects for .NET 77

Copyright © 2017 GrapeCity, inc. All rights reserved.

product = DataLibrary.DataObjects.DataSet.ProductsRow.Obj(dataRow)

To write code in C#

C#

C1.Data.C1DataRow dataRow;
DataLibrary.DataObjects.DataSet.ProductsRow product;
product = DataLibrary.DataObjects.DataSet.ProductsRow.Obj(dataRow)

For a complete example see the WorkingWithData sample, which is installed with the Studio for WinForms
samples.

Data object classes are hosted in the data library. They are automatically regenerated by DataObjects for .NET at
design time every time you save a schema in the Schema Designer. They are hosted in a special assembly (called data
objects assembly)

<data_library_project_name>.DataObjects.dll

Data object classes belong to the namespace

namespace <data_library_namespace>.DataObjects

where <data_library_namespace> is the namespace containing the C1SchemaDef component in the data library.

Since there is a data object class for each table and for each table view, a naming collision can occur for data object
classes if a table view has the same name as the table on which it is based. Although all naming collisions are
automatically resolved by adding "_table" and "_tableView" suffixes to the names, it is better to avoid such collisions
because they result in ungainly class names. To avoid naming collisions between table and table view classes, use the
DataObjectsAssemblyFlags property. Setting DataObjectsAssemblyFlags.DataSetNamespaces flag in that property (it
is set by default for new projects) creates a separate namespace for each data set, and table view classes belong to
that namespace. For example, Northwind.DataObjects.CustOrders.EmployeesRow for table view Employees in data
set CustOrders. Table classes still belong to the root namespace: Northwind.DataObjects.EmployeesRow for table
Employees.

A data library project contains a reference to its data objects assembly. When you create a new data library project
using the C1DataObjects Project Wizard, the wizard adds a reference in the data object assembly to your data
library project References. The data library assembly created by the wizard (initially empty) resides in the obj sub-
directory of your project directory.

By default, Schema Designer regenerates the data objects assembly every time you save a schema. If you do not
want this to happen (for example, if you do not need the data object assembly in your application), uncheck the
"Recreate DataObjects DLL on saving schema in Schema Designer" check box in the Schema|Options dialog box of
the Schema Designer. If you leave it checked, you can optionally specify the location of the data objects assembly
and version information in that assembly. Note that if you change the data objects assembly location, you have to
change the reference to that assembly in your project accordingly.

Data object classes can only be used with data libraries; they cannot be used in "direct client applications" that do not
use data libraries; for more information, see Application Configurations.

A data object class is generated for each table in the schema (both for simple and composite tables) and for each
table view in every data set in the schema.

A data object class (for example, OrdersRow) contains the following members:

<field_name> – a property for each table/table view field. Example: OrdersRow.ShipAddress.
Is_<field_name>Null() – a Boolean method without parameters returning True if the value of the field is Null.
Set_<field_name>Null() – a method without parameters setting the field value to Null.
Get_<parent_name>Row – a method without parameters returning the single parent row (or null) with regard
to a relation in which this table/table view is the child. For inverse (many-to-one) relations, it returns the single

DataObjects for .NET 78

Copyright © 2017 GrapeCity, inc. All rights reserved.

child row.
Get_<parent_name>Rows – a method without parameters returning the array of child rows with regard to a
relation in which this table/table view is the parent. For inverse (many-to-one) relations, it returns the array of
parent rows.

Using the DataObjectsAssemblyFlags property, setting the DataObjectsAssemblyFlags.StaticNameFields flag (it is set
by default for new projects), adds more members to the data object classes. Those are static members returning
constant names: field, table, table view and relation names, so that they can be used instead of constant strings in
code thus making it compile-time safe (errors detected at compile time), for example:

Northwind.DataObjects.EmployeesRow.FieldNameEmployeeID (field name returning "EmployeeID" for field
EmployeeID of table Employees)
Northwind.DataObjects.EmployeesRow.TableName (table name returning "Employees", for table Employees)
Northwind.DataObjects.EmployeesRow.RelationNameEmployees__Orders (relation name returning "Employees
- Orders", for simple relation "Employees - Orders")
Northwind.DataObjects.CustOrders.EmployeesRow.TableViewName (table view name returning "Employees",
for table view Employees in data set CustOrders)
Northwind.DataObjects.CustOrders.EmployeesRow.FieldNameEmployeeID (field name returning "EmployeeID"
for field EmployeeID of table Employees)
Northwind.DataObjects.CustOrders.CustOrdersRow.RelationNameCO__ODP (relation name returning "CO -
ODP", for view relation "CO - ODP" between table views CustOrders and OrderDetailsProducts in data set
CustOrders)

Action Order and Execution Mode
When handling an event in business logic code, you can perform an action that triggers another business logic event,
that in turn is handled and triggers yet another event, and so on. For example, handling a field change event, you can
set another field, or perform any other possible action. In most data frameworks, such actions are either blocked or
can only be handled in a straightforward way creating uncontrolled recursion. Uncontrolled event triggering leads to
complicated situations often creating unintended effects and side effects. Every database developer can recall
situations where a harmless code intended to, say, commit a record once certain fields are entered by the end user,
either does not work or produces unexpected and often disastrous results.

DataObjects for .NET solves this problem by allowing the developer to exercise full control over the order of actions
performed by business logic code. Various actions, including method calls and field value assignments, can be
specified to take place either immediately or after DataObjects for .NET has completed performing previous actions
that are already in the queue, and completed handling the events that are being handled.

When the end user initiates an action leading to a business logic event (for example, sets a field value, or deletes a
row), DataObjects for .NET starts executing it by creating an action context stack. The initial state of this stack is one
level with the requested action contained in it. If no actions have been requested by the business logic code while this
action was handled, the stack is destroyed. If, however, an action (that itself can trigger a business logic event), is
requested while handling this action, the requested action can be processed by DataObjects for .NET in two different
ways:

Immediate (default): DataObjects for .NET adds a new level to the action context stack and starts handling
this new action. The original action handling is waiting until the new action is handled. This is the
"straightforward", recursive event handling mentioned above.
Deferred: Alternatively, DataObjects for .NET can add the requested action to the action queue, to be
processed after all actions already in the queue are finished. In this case, DataObjects for .NET does not do
anything with the requested action, it just adds it to the queue and immediately returns, continues to handle
the event. The requested action will be processed before DataObjects for .NET relinquishes control, "in due
course", when the event code has finished executing and all the actions that got to the queue earlier have been
processed.

DataObjects for .NET 79

Copyright © 2017 GrapeCity, inc. All rights reserved.

To control the action order, use the ExecutionMode property. Its two possible values, Immediate (default) and
Deferred, specify the two modes described above.

ExecutionMode is a read-only property. You never need to set execution mode permanently. You only need to set it
for the duration of a certain fragment of code, after which it must be restored to its previous value. Since changing
execution mode can inadvertently break your code, we strongly recommend using try-finally blocks to ensure that
previous execution mode is always restored.

To set execution mode, call the PushExecutionMode method, passing it the new mode as a parameter. To restore the
previous execution mode, call PopExecutionMode.

For example, the following code (taken from Adding Rows and Primary Keys) sets the primary key field in a newly
added row immediately after the row has been created.

To write code in Visual Basic

VB

Private Sub table_Customers_AfterAddNew(ByVal sender As Object, ByVal e As
C1.Data.RowChangeEventArgs) Handles TableLogic1.AfterAddNew
 e.DataTable.DataSet.PushExecutionMode _
 (C1.Data.ExecutionModeEnum.Deferred)
 'The following field value assignment and a method call
 'will actually execute only after all other actions handling
 'the row addition will be finished
 e.Row("CustomerID") = TextBox1.Text
 e.Row.EndEdit()
 e.DataTable.DataSet.PopExecutionMode()
End Sub

To write code in C#

C#

private void table_Customers_AfterAddNew(object sender, C1.Data.RowChangeEventArgs e)
{
 e.DataTable.DataSet.PushExecutionMode(ExecutionModeEnum.Deferred);
 // The following field value assignment and a method call
 // will actually execute only after all other actions handling
 // the row addition will be finished
 e.Row["CustomerID"] = textBox1.Text;
 e.Row.EndEdit();
 e.DataTable.DataSet.PopExecutionMode();
}

Although this code would probably work without changing execution mode, doing so would be unsafe, since it would
trigger EndEdit before AddNew is completely finished (for example, a grid or another bound control could be not yet
notified at that time that a row has been added).

What we really want in cases like this ("after this, do that") is to emulate end user actions, as if the end user typed the
key value after adding a new row, which is essentially what DataObjects for .NET is doing in the Deferred execution
mode.

Application Configurations
Encapsulating business logic in a data library, DataObjects for .NET makes it possible to use business objects,

DataObjects for .NET 80

Copyright © 2017 GrapeCity, inc. All rights reserved.

developed once, in a variety of application deployment scenarios. In particular, DataObjects for .NET completely
automates the task of developing distributed 3-tier applications, with no special server-based code necessary.
DataObjects for .NET is the only tool for .NET that allows developers to create applications in an easy, uniform way,
so that they can be deployed in either 2-tier or 3-tier configurations without changing the application code. In
essence, creating fully scalable Web-based distributed applications becomes a matter of point-and-click, as easy as
creating a simple desktop application used to be in Visual Basic.

Direct Client
Direct client is the simplest configuration where all application components, with the exception of the database server,
reside on a single machine and in a single project. It is distinguished from other configurations in that it does not use
a data library. Business logic code (components C1SchemaDef, C1TableLogic, C1DataSetLogic) resides in the same
project, on the same design surface with the components using the data (C1DataSet components, C1DataView and
C1DataTableSource, data-bound GUI controls). There is no separation between the server and the client parts – they
are one and the same application.

In a direct client application, a C1DataSet component resides on the same design surface with the C1SchemaDef
component hosting the schema. A C1DataSet component must be attached directly to the C1SchemaDef component
by setting its C1SchemaDef property (whereas in other configurations, a C1DataSet is attached to the data library
instead, by setting its DataLibrary property). Data-bound GUI controls, such as grids, are attached to a C1DataSet
either directly or indirectly (through C1DataView or C1DataTableSource), see How to Access Table View Data and How
to Access Table Data.

Direct client configuration is recommended for desktop applications and small 2-tier client-server applications that do
not merit encapsulating business logic code in a separate project (data library). Developing a direct client application
is very similar to traditional database application development using data controls to connect to the database and
bound controls to display the data. It must be understood that a direct client application cannot be easily transformed
to a data library; it will need to be re-created (although it may be a simple matter of copy/paste). So, if you have

DataObjects for .NET 81

Copyright © 2017 GrapeCity, inc. All rights reserved.

scalability in mind, it may be worth considering a data library from the start.

Data Library
DataObjects for .NET enables developers to define business objects in a separate assembly, data library, so it can be
used by multiple applications. Although this is not mandatory, a special team of "data-oriented" developers can be
assigned to the task of creating business object projects (data libraries) and another team of "GUI-oriented"
developers to creating client applications using data libraries.

A data library project contains the following:

A schema stored in a C1SchemaDef component, one such component per data library project, see Schema
Objects.
Business logic code, handling the events of business logic components, C1TableLogic and C1DataSetLogic; for
more information, see Business Logic.

A data library can be used in any project by simply referencing the library in the project and using a DataObjects for
.NET C1DataSet component to connect to the library. All database access and business logic code is encapsulated in
the library, so it can be created and maintained independently of client applications.

Creating a Data Library Project
Data library projects are created using the C1DataObjects Data Project Wizard. Select File | New Project in the
Visual Studio menu, and in the New Project dialog box, under Project types, choose either Visual Basic or Visual C#,
according to your language preference and select ComponentOne Data Library in the right pane.

The main file of the resulting data library project is a component class hosting the schema and business logic. The
schema is stored in the C1SchemaDef component. To edit the schema, use the Schema Designer; for more
information, see Schema Objects. To open the designer, select Schema Designer from the C1SchemaDef
component's context menu.

To attach business logic code to a schema object (table or table view) use business logic components. Business logic
components (components C1TableLogic and C1DataSetLogic) have events in which you can write code responding to
various occurrences in data objects. Business logic components reside on the same design surface (component class)
with the C1SchemaDef component (in large projects, it is also possible to distribute business logic code over multiple
files). Only one business logic component is allowed for each schema object: a single (or none) C1TableLogic
component for each table and a single (or none) C1DataSetLogic component for each data set in the schema.

To create business logic components, right-click the C1SchemaDef component and select Create Business Logic
Componentsfrom the context menu that appears. This will create a business logic component for each table and each

DataObjects for .NET 82

Copyright © 2017 GrapeCity, inc. All rights reserved.

data set in the schema. Alternatively, you can create business logic components manually, from the Toolbox, but in
that case you need to set their properties: SchemaComponent = schemaDef to connect them to the schema
component, as well as Table and DataSetDef to specify which schema object each of them represents.

In large data library projects, it may be desirable to use multiple source code files to write business logic code. It can
be done using a special C1SchemaRef component. A C1SchemaRef component's only purpose is to represent the
C1SchemaDef component holding the library's schema when it resides in a different file in the project. Add a new
component class file to the project, put a C1SchemaRef component on the design surface and connect it to the
C1SchemaDef component selecting its name in the SchemaDef property combo box. Note that working with multiple
files using C1SchemaRef, the file with the C1SchemaDef component must be open. Once a C1SchemaRef component
is set up, you can add business logic components, C1TableLogic and C1DataSetLogic to the component class file,
dropping them from the Toolbox. For each business logic component, set its SchemaComponent property to the
C1SchemaDef component and select the table (Table) or the data set (DataSetDef) represented by the business logic
component.

You can attach event code to business logic components either by selecting the components on the designer surface,
or using the Business Logic Events tool window (select Business Logic Events from the C1SchemaDef or
C1SchemaRef context menu to open the tool window). The Business Logic Events tool window shows the list of all
tables and data sets. When you select a table in the tool window, the table's business logic events appear in the
Properties window (in Visual C#, when the Events radio button is selected in the Properties window; in Visual Basic use
the Method Name combo box in the code editor).

Using a Data Library
To use a data library in a client application:

Compile the data library project to produce the data library assembly.
Add a reference to the data library assembly to the client application project's References.
To bind to the data on a client application form, create a C1DataSet component on the form and type the data
library name (without the .dll extension) in the DataLibraryUrl property. After that, the list of all data set
definitions in the schema becomes available for selection in the DataSetDef property.
Bind data-aware GUI controls to the C1DataSet either directly or indirectly (through C1DataView or
C1DataTableSource), see How to Access Table View Data and How to Access Table Data.

2-Tier Application
If you set up a client application exactly as described in Using a Data Library, it will work as a 2-tier application. Note
that to make it 3-tier, only one additional step is necessary: setting the DataLibraryUrl property. For more information,
see 3-Tier Application.

In a 2-tier application deployment configuration, a client application and the data library reside on the same machine,
and there are no other computers involved except possibly a database server.

DataObjects for .NET 83

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DataSet components belonging to the client application interact with the data library. They request data from the
data library on Fill and send modified data to the data library on Update. Responding to these requests, the data
library sends data requests to the database server, which can reside on the same or on different computer, according
to the ConnectionString specified in the schema.

The client application fires business logic events in the data library. For example, when the end user modifies a field
value in a grid, the C1DataSet component (to which the grid is bound with its DataSource/DataMember properties)
calls the data library, and the BeforeFieldChange event is fired, handled by business logic code inside the data library.

3-Tier Application
In contrast with standard ADO.NET and other frameworks, you can turn a DataObjects for .NET application into a
distributed 3-tier application without additional coding. With DataObjects for .NET, it is a simple matter of
deployment. DataObjects for .NET uses the following mechanism to enable 3-tier configuration:

You use the same data library assembly in both 2-tier and 3-tier configurations. The only difference is that when your
application wants to use the data library assembly in a 3-tier configuration, it signals this intent by setting the
DataLibraryUrl property to a server location, a URL where the same data library assembly is installed and ready for
invocation on a remote server. For example:

dataSet1.DataLibraryURL: http://www.mycompany.com/mydatalibrary/ThreeTierServer.soap

Your client machine already has the data library assembly, since it is used by your client application, included in its
project's References. This is the data library your client application talks to.

DataObjects for .NET 84

Copyright © 2017 GrapeCity, inc. All rights reserved.

When your application requests data (Fill), the request first goes to the client data library. Knowing the URL, the client
data library invokes the data library on the server (server data library) passing it the request for data. Note that both
client and server run the same version of the data library assembly that is ensured by Microsoft. NET remoting
support. The server data library retrieves data and sends it to the client, where the client data library receives it and
exposes it to the client application.

When your application updates the database, sends modified data to the database, the client data library takes the
modified data, packages it and sends to the server data library for update. The server data library reconstructs the
data set on its end, so that business logic code can work properly, see Update in 2-Tier and 3-Tier Configurations, and
updates the database. Then it sends the refreshed data retrieved from the database back to the client.

So, the process involves two running instances of a data library: one on the client and one on the server. Developing a
data library, you do not have to be concerned with interaction between these two instances. You do not need to write
two different programs for the server and for the client, because the server and the client use the same assembly built
from the same data library project. DataObjects for .NET handles the interaction automatically and transparently for
the developer.

If you need to know, in data library event code, which instance is currently running, the client or the server one, this
information can be obtained from the RunsAt property.

Most business logic events are handled on the client, by the client data library instance. For example, when the end
user modifies a field value in a grid, the C1DataSet component (to which the grid is bound with its
DataSource/DataMember properties) calls the client data library, and the BeforeFieldChange event is fired and
handled by business logic code inside the client data library. However, update business logic events, BeforeUpdate,
BeforeUpdateRow, AfterUpdateRow and AfterUpdate are handled by the server data library, see Update in 2-Tier and
3-Tier Configurations.

Configuring the Data Library on the Server
To deploy your application as a 3-tier distributed application, you need to make your data library on the server available for invocation by clients, to
publish it at the DataLibraryUrl location. You can use any remote invocation mechanism supported by .NET Remoting. The most popular one is the Web
service, where the published assembly is placed under IIS (Internet Information Server) control and made available by creating an IIS virtual directory. In
this case, remoting uses an HTTP channel and the SOAP protocol. Deploying your data library under IIS, you use a configuration file. A configuration file
web.configfor IIS deployment can look, for example, as follows:

<configuration>

DataObjects for .NET 85

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <system.runtime.remoting>
 <application>
 <service>
 <wellknown mode="Singleton" type="Northwind.RemoteService, Northwind" objectUri="ThreeTierServer.soap" />
 </service>
 </application>
 </system.runtime.remoting>
</configuration>

Northwind is the name of your data library assembly.

Northwind.RemoteService is the full name of a class in your data library derived from C1.Data.RemoteDataService. The C1DataObjects Data Project
Wizard generates this class automatically. This class is necessary for DataObjects for .NET remoting support. By default, it is empty, just derives from
C1.Data.RemoteDataService. If necessary, it can be used for configuring DataObjects for .NET remoting on the client, see below.

ThreeTierServer.soap is the URI (arbitrary string) used to form the DataLibraryUrl string, for example,
http://www.mycompany.com/mydatalibrary/ThreeTierServer.soap, where mydatalibrary is the IIS virtual directory containing the data library assembly

Although IIS deployment is the most common, it is by no means the only option. You can host the server instance of your data library in any server host
available for remote invocation via .NET Remoting. For example, Tutorial 3 shows how to host it in a Windows application running on the server. Instead
of HTPP channels used by Web services, Tutorial 3 uses a TCP/IP channel. The flexibility of DataObjects for .NET remoting mechanism is based on the
fact that there is nothing DataObjects for .NET-specific in hosting and configuring a data library on the server; it is all based on the standard .NET
Remoting. Use whatever server deployment option and configuration you find necessary, as long as it exposes an object derived from
C1.Data.RemoteDataService (Northwind.RemoteService in the example above) as a well-known object type in Singleton mode (see .NET Remoting
documentation for a detailed description of well-known objects and activation modes). To register an object type, you can call the
RemotingConfiguration.RegisterWellKnownServiceType method (namespace System.Runtime.Remoting), or use a configuration file (in IIS deployment
configuration file is the only option).

Normally, DataObjects for .NET remoting does not need configuring on the client. However, if you use a custom remoting configuration on the server
that requires configuring the client, you can do that using the ConfigureClient method of the C1.Data.RemoteDataService class. As noted above, in order
to allow 3-tier deployment, your data assembly needs to derive a class from RemoteDataService. You can override the virtual ConfigureClient method in
that class. The method is called once for the client data library, to give you an opportunity to execute whatever code you need to configure remoting on
the client. Another RemoteDataService method that can be used for configuring client is ConfigureProxyObject that is called every time the client
creates a proxy object for calling the server. Overriding the ConfigureProxyObject virtual method you can configure remoting on a per-call basis, for
every proxy object created, if that is necessary.

Security Considerations

Authentication in IIS Deployment
By default, DataObjects for .NET client uses HTTP channels for its communications with the server. HTTP channels
have built-in authentication and authorization support in .NET remoting. If you deploy your server data library in IIS,
you can rely on IIS and .NET remoting security support. You can configure your server data library in IIS for whatever
authentication methods you prefer, including Integrated Windows Authentication (recommended), Basic
authentication, anonymous access, and so on. You can also use Secure Sockets Layer (SSL) to encrypt all messages by
using the "https://" protocol in your DataLibraryUrl. Summarizing, you do not need to write special code for security
authorization if you use default configuration, which is deploying server data library in IIS. There is only one
programmatic feature you may need in this case; this is how to specify user credentials (domain, username, password):

By default, the DataObjects for .NET remoting channel uses the default user credentials (domain, username,
password) when it calls the server. Sometimes you may need to make calls on behalf of a specific user. For example,
you may use an authentication scheme on the server that is different from one used on the client, and your client
application may ask the user for credentials to pass to the server. In this case you will need to tell DataObjects for
.NET to use these credentials communicating with the server. This can be done using the Credentials property of a
C1DataSet object, for example:

To write code in Visual Basic

VB

Dim Credentials As New System.Net.NetworkCredential("myusername", "mypassword",
"mydomain")
C1DataSet1.Credentials = Credentials

To write code in C#

DataObjects for .NET 86

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

System.Net.NetworkCredential credentials = new
System.Net.NetworkCredential("myusername", "mypassword", "mydomain");
c1DataSet1.Credentials = credentials

If the Credentials property is set, every call from the C1DataSet component to the server, filling the component with
data or sending its updates to the database, will use the supplied credentials.

Authentication with Custom Channels

If you have special security needs, such as a custom authorization mechanism or a custom transport encryption, you
can customize the channels as described in Configuring the Data Library on the Server. You can use all the power and
flexibility of .NET Remoting to add your own security support and other features to the remoting channel. If you use
custom channels, take into account that only HTTP channels have built-in authorization support in .NET remoting,
TCP/IP channels do not have such support out of the box.

Database Access Authorization and Connection Strings
Another aspect of application security with DataObjects for .NET is database access authorization. Security
information, such as username and password for database access is included in ConnectionString in the schema, and
the schema is included in the client application. There are two options of securing this information:

You can use Windows Integrated Security, in which case security information is not stored in the connection
string, current user credentials are used for database access authorization.
If you have to specify username and password in the connection string, do not store them in ConnectionString
at design time. Use the User name and Password edit boxes in the Schema Designer to send credentials to
the database at design time. At run time, add User ID and Password attributes to the ConnectionString in
code, in the CreateSchema event that is fired before any database access is performed on the server.

You may also need to change the ConnectionString on the server for purposes other than security. For example, you
can route calls to different database servers. You can do that in the same way, using the CreateSchema event on the
server to set the ConnectionString property of Connection objects in your schema. This method changes
ConnectionString permanently, for all calls from all users.

If you need to set ConnectionString on a per-call basis, you can do it overriding virtual methods in the
RemoteDataService-derived class implemented in your data library, see Configuring the Data Library on the Server.
Override virtual methods GetData and Update, which are the methods that are called by the client, to set up
connections for the duration of a call. The RemoteDataService class has a Connections property holding a
ConnectionCollection which is empty by default. If you add a Connection object to this collection and set its Name to
the name of a schema connection, that Connection object will be used instead of the schema connection. Since a new
RemoteDataService object is created for each call, this connection substitution works on a per-call basis.

Virtual Mode � Dealing with Large Datasets
With an innovative virtual mode technology, DataObjects for .NET allows you to use large datasets, unlimited in size,
in .NET WinForms applications. This feature is not supported in Visual Studio and ADO.NET without DataObjects for
.NET.

Understanding Large Data Sets
Visual Studio and its underlying data engine, ADO.NET support only one mode: disconnected access to data. An
ADO.NET data set is always pre-fetched in its entirety from the server to the client. Since it is often not practical to

DataObjects for .NET 87

Copyright © 2017 GrapeCity, inc. All rights reserved.

pre-fetch large data sets over the wire, this creates two serious problems:

Even distributed Web applications often include large data sets, such as, for example, a list of available
products and other data originated in database tables with thousands records and more. It is very inefficient
and in many cases impossible to transfer such data from server to the client in its entirety. This forces
developers to produce makeshift solutions (such as asking the user to enter a few initial letters of the product
name before showing the list of products) severely reducing the quality of end user experience, application
performance and scalability.
The absence of large data set support makes it effectively impossible to develop classic client-server and
desktop database applications in Visual Studio without DataObjects for .NET. A popular belief is that you only
need large data sets if you have not designed your application correctly. This is a misconception. The real
problem is the lack of tools supporting the right data access modes. Another popular misconception is that
disconnected model (also referred to, somewhat loosely, as "Web application", "3-tier application", and so on)
necessarily means pre-fetching all the data from the server to the client at once, that any other approach is
necessarily the old "live connection per user" that is not scalable.

DataObjects for .NET fills this gap, offering a solution to the problem of large data sets. It gives you the tool to
achieve the best of both worlds, to have data access that is both disconnected (no live connection is maintained on
the server for particular users) and therefore scalable, and at the same time, unlimited in data size.

To use a large data set in DataObjects for .NET is as easy as to set a property, DataAccessMode (you also need to
use C1DataTableSource as your data source if you need to bind GUI controls in virtual mode, see Using
C1DataTableSource and Bound Controls).

Table Views in Virtual Mode
One or more table views in a schema can be specified to function in virtual mode by setting their DataAccessMode
property to Virtual, VirtualUnlimited, or VirtualAutomatic. We will call them virtual table views. For now, we will
consider only Virtual mode. The other two, VirtualUnlimited and VirtualAutomatic, are variations that will be
discussed a little later, in Asynchronous Fetch Modes.

A virtual rowset can contain an unlimited number of rows. For example, Tutorial 4 demonstrates a rowset containing
2.7 million rows that is available on the client with limited memory consumption and startup time of about three
seconds.

When data is fetched from the database, a virtual table view fetches only an initial chunk (segment) of data. It can
fetch other data segments from the server later, on its own accord, transparently to the user. Segment fetch is
triggered by the end user repositioning to a row close to the end of the current segment, see When a Virtual Table
View Fetches Data Segments.

At any given time, a virtual table view contains and exposes to the user a single contiguous segment of data, the
current segment. The size of a data segment is specified by the VirtualSegmentSize property (default: 400 rows). The
data exposed to the user in the C1DataTable object and in GUI controls bound to the virtual table view, is exactly the
current segment, other segments (that may be fetched from the server, see When a Virtual Table View Fetches Data
Segments) are kept internally and not exposed.

A virtual table view also maintains a segment cache containing a limited number of segments (controlled by the
VirtualSegmentCount property, default: 4). The cache is inaccessible to the user. It is used internally for optimization,
to avoid roundtrips to the server when possible.

Although a virtual table view exposes only one segment of data at a time, it automatically and transparently maintains
continuity. So, for example, if the end user presses thePageDown key in a bound grid, or uses the MoveNext method
to go beyond the current segment bounds, DataObjects for .NET will automatically adjust the current segment,
fetching data from the server, if necessary, so the user will not notice the segment change. Fetching data and
changing the current segment is done automatically, so the user perceives it as a continuous large rowset. Moreover,
DataObjects for .NET uses a background asynchronous fetch technique to make fetching data from the server as
much imperceptible to the user as possible, see When a Virtual Table View Fetches Data Segments.

DataObjects for .NET 88

Copyright © 2017 GrapeCity, inc. All rights reserved.

If you navigate through a virtual table view using a bound grid, or programmatically using MoveNext and other
methods of C1DataTableSource, the virtual rowset appears as a large continuous rowset. But it contains only one
segment at a time on the client, so, if you use the C1DataTable object to access its data, you will see only limited
number of rows.

Virtual mode table views fully support data modification. Modified rows are always visible, always kept in the current
segment, and always accessible through the C1DataTable object (until Update, AcceptChanges or RejectChanges) –
even if they were originally fetched in other segments.

When a Virtual Table View Fetches Data Segments
This section describes optimization techniques used in DataObjects for .NET to make fetching data from the server
transparent and largely imperceptible to the user. It has no effect on the formal functionality, so you can skip it if you
are not interested in this description.

When the end user navigates through the current segment, they usually position on rows belonging to the current
segment. In fact, it is impossible to position on any other row, except by using a C1DataTableSource that has special
methods for navigating the whole virtual rowset, or by using the scrollbar of a bound grid control to position to the
end or the beginning of the rowset, if it is not covered by the current segment.

When the user positions on a row that is out of bounds of the current segment (this can be done only with
C1DataTableSource or with a bound grid going to the end of the rowset), DataObjects for .NET looks for the
required segment in the cache and, if not found, fetches it from the server. After that, the new segment becomes
current.

In order to optimize segment fetch performance, DataObjects for .NET also performs a "preemptive" asynchronous
fetch when the user positions to a row that is inside the current segment but "dangerously" close to its boundary (the
closeness threshold determined by the VirtualSyncThreshold and VirtualAsyncThreshold properties):

If it is "very close" to the current segment boundary (determined by the VirtualSyncThreshold property),
DataObjects for .NET fetches the required segment (one that has the current row in the middle rather than
near the end) immediately, suspending all other activities (synchronously). When the segment is fetched, it
becomes current.
If it is "not so close" (determined by the VirtualAsyncThreshold property), DataObjects for .NET starts the
fetch process in a separate thread, so it is performed in the background, without interrupting other activities
(asynchronously). When the segment is fetched, it is placed in the cache, but not made current. The segment is
prepared in case it will be needed when the user moves closer to the current segment boundary.
These techniques provide for the following transparency and optimization behaviors:
Database fetch and segmentation are transparent to the user. The rowset is presented to the user in its
entirety, appears to contain all rows regardless of whether they belong to the current segment or not. Any part
of it, including the end of the rowset and any given row specified by a primary key value (see
C1DataTableSource Seek) is available to the user.
Database fetches are optimized with a heuristic "preemptive" background fetch technique. If the end user
navigates through the rowset slowly enough to allow the optimization to work, segment changes occur
without delays, as if the data were already on the client. A jump to a specified position in the rowset (for
example, using the C1DataTableSource Seek method) occurs with a delay necessary to fetch the data from the
server, but that delay only occurs if the specified position is far enough from any cached segment.

Virtual Mode in Distributed 3-Tier Applications
DataObjects for .NET fully supports virtual mode in distributed 3-tier applications. See Application Configurations for
the description of DataObjects for .NET support of distributed 3-tier applications. To create a 3-tier application in
DataObjects for .NET you do not need to write any additional code. It is just a matter of changing a property and
deploying your data library on a server. Likewise, you do not need any special adjustments or coding to make virtual
mode work in a 3-tier application. DataObjects for .NET virtual mode is always 3-tier-ready.

DataObjects for .NET 89

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET does not maintain a live database connection on the server for the lifetime of a virtual table
view on a client. The server uses the connection only to serve client requests for data, at which point it fetched a
limited amount of rows (a segment), sends the data to the client and forgets all about this client request, disposes of
the query result and closes the database connection (due to OLE DB connection pool optimization, the connection
may remain open for some time to allow its effective reuse in subsequent requests). So, DataObjects for .NET uses a
stateless, scalable server technology, the same as ADO.NET, both in regular mode (DataAccessMode = Static) and in
virtual mode.

Combining its innovative virtual mode and 3-tier technologies, DataObjects for .NET makes creating sophisticated,
fully scalable Web-based distributed 3-tier applications a matter of point-and-click, as easy as creating a simple
desktop application always used to be in Visual Basic. In fact, the developer of an application can be totally unaware
of all these concepts and work as in classic client-server (or even desktop) environment. DataObjects for .NET makes
it possible to take such application and turn it into a distributed one by a simple change of a few property settings.
This is the real scalability of an application development framework.

Without full understanding of the trade-off between scalability and large data sets, a skeptic, when critiquing
DataObjects for .NET virtual mode, can say: "OK, but that is yesterday's technology. For this type of virtual mode you
need a permanent live database connection on the server for each user, so it is necessarily unscalable, it is classic
client-server (2-tier) as opposed to the latest and greatest disconnected mode, which is distributed, Web-based, 3-tier,
and so on and so forth". This argument is wrong and is a common misconception. These are two entirely different
things:

a. One can have a live connection on the server for each user, as in classic client-server (non-scalable, bad) as
opposed to a stateless server that connects on demand, as in ADO.NET (scalable, good), and

b. One can have all data fetched at once, as in ADO.NET (bad) as opposed to data fetched on demand, as in
virtual mode (good).

So, ADO.NET is good in (a) and bad in (b). Some people wrongly assume that being good in (a) necessarily means
being bad in (b). That is a misconception, and DataObjects for .NET virtual mode proves it. There is one qualification,
though: If you consider arbitrary SQL, then yes, you cannot be good in (a) and (b) simultaneously since you need a live
connection. But that is only for complex SQL statements, with GROUP BY, subqueries and other advanced features
that are rarely if ever used in GUI front-ends. DataObjects for .NET virtual mode does not support full SQL (it does
not support SQL-based and unbound tables, see Bound, SQL-Based and Unbound Tables). It supports only common
cases (bound tables). This restriction together with sophisticated caching and optimization techniques allow it to be
good both in (a) and in (b).

Using C1DataTableSource and Bound Controls
In order to access a virtual table view data, both programmatically and via data binding, you need to use a
C1DataTableSource. This component serves two goals:

It allows you to handle business logic events in your client application code, in addition to the business logic
specified in the data library, see Business Logic for details.

AND

It enables virtual mode in bound controls.

A C1DataTableSource is attached to a data set by setting its DataSet property and to a table view in that data set by
setting its TableView property. Thus attached to a table view, a C1DataTableSource can be used as a DataSource for
bound controls.

If you use another data source for your bound controls (if you bind them directly to the C1DataSet or to a
C1DataView), then virtual mode will not work properly, DataObjects for .NET will not fetch segments on row
repositioning, so the only data available will be the first fetched segment. Binding your controls to a
C1DataTableSource attached to a virtual table view enables virtual mode in the bound controls.

DataObjects for .NET 90

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DataTableSource also provides methods and properties for programmatic access to a virtual table view allowing
navigation of the entire virtual rowset:

Member Description

MoveFirst Positions to the first row.

MoveLast Positions to the first row.

MoveNext Positions to the next row after current.

MovePrevious Positions to the previous row before current.

Seek Positions to a row specified by its primary key value.

CurrentRow Returns the current row C1DataRow object.

You can bind any data-aware GUI controls to a C1DataTableSource, but there is one important consideration: In multi-
record data-bound controls, such as grids, special functionality is required to make the scrollbar behave correctly in
virtual mode. The True DBGrid for .NET control included in ComponentOne Studio Enterprise includes this
functionality and fully supports DataObjects for .NET virtual mode. Therefore, if you need a grid control in virtual
mode, we strongly recommend using the True DBGrid for .NET control. You do not need to purchase it separately,
since it is provided together with DataObjects for .NET in ComponentOne Studio Enterprise.

Other grid controls, such as the standard Microsoft DataGrid control, work with DataObjects for .NET virtual mode
too, but with one restriction: if you go to the end of the rowset using the scrollbar, the grid will show the end of the
current segment, not the real end of the virtual rowset. Other than that, DataObjects for .NET virtual mode works
with any bound controls without restrictions. For instance, if you position to the last row of the segment (or close to
the last row), DataObjects for .NET will fetch more rows and the grid will show them. So, if this peculiarity in scrollbar
behavior does not concern you, you can use the standard DataGrid and third-party grid controls with DataObjects
for .NET virtual mode.

Asynchronous Fetch Modes
DataAccessMode = Virtual is recommended for especially large table views that not only take too much time to fetch,
but also would consume too much client memory if fetched entirely to the client. In many cases the situation is
somewhat different: the rowset is too large to be pre-fetched to the client at startup, that would take too much time,
but it is small enough so all rows can be gradually brought to the client and stored there. For such situations,
DataObjects for .NET supports two more virtual modes: VirtualUnlimited and VirtualAutomatic (DataAccessMode =
VirtualAutomatic is more common, it is usually more suitable than VirtualUnlimited).

Data access mode Virtual means that data is fetched in chunks (called segments) of limited size (the size of each
segment is determined by the VirtualSegmentSize property, default: 400), and the number of segments cached at the
client at any given time is limited (this number is determined by the VirtualSegmentCount property, default: 4). Mode
Virtual works for rowsets of virtually unlimited size, for example, in Tutorial 4 we demonstrate how it can be used to
display 2.7 million rows in a grid.

Data access mode VirtualUnlimited is similar to Virtual in that data is fetched in segments, but the number of
segments in the cache is unlimited, the VirtualSegmentCount property value is ignored. Once a segment is brought
into the cache, it remains there. This setting is appropriate when you want to enhance performance by eliminating
redundant roundtrips to the server, but it should not be used with very big rowsets if the user is expected to fetch too
many segments into memory.

In VirtualAutomatic mode, data is fetched in segments, as in the previous two modes, and the number of segments in
the cache is unlimited as in VirtualUnlimited mode, and, in addition to that, fetch is continually performed in
background mode, asynchronously, until all data is fetched. This mode is appropriate for large rowsets that are big
enough to make it undesirable to fetch all data at startup time, but not too big, so they still fit in client memory. This
mode is additionally qualified by a Boolean VirtualConsolidateRows property. If it is set to True (default), then

DataObjects for .NET 91

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET will rebuild the rowset when fetch is complete. While fetch is incomplete, Rows contains only
rows of the current segment. Once fetch is complete, Rows contains all fetched rows, the whole rowset. In the other
two virtual modes, Rows always contains only rows of the current segment.

The VirtualAutomatic mode is similar to the asynchronous fetch feature of ADO, the OLE DB-based data access
framework used in Visual Studio 6. ADO.NET does not support asynchronous fetch, so DataObjects for .NET
VirtualAutomatic mode is useful for developers that need this feature in .NET environment. Moreover, the
DataObjects for .NET VirtualAutomatic mode is superior to the ADO asynchronous mode in one important aspect:
the whole rowset up to the last row becomes accessible to the user immediately. The user does not have to wait until
the fetch is complete to access the last row or any other row of the rowset. If, for example, the user positions to the
last row while fetch is in progress, DataObjects for .NET will immediately fetch the last segment and display it to the
user, without waiting for the background fetch to reach the end of the rowset.

Sorting Data in Virtual Mode
DataObjects for .NET supports sorting data in virtual mode, specified either at design (TableView.FillSort) or at run
time (FillSort). However, sorting data in virtual mode will only have good performance if corresponding index exists in
the database. An index is usually necessary for the database SQL optimizer to produce an efficient execution plan for a
statement with ORDER BY.

In the Schema Designer, sort order is specified for a virtual mode table view by setting its FillSort property. If you
specify TableView.FillSort for a table view in virtual mode, that sort order must form a unique key (there is no such
requirement for table views in static mode). If FillSort does not represent a unique key, a run-time exception will occur
when two different row with equal key values are fetched. You can always ensure uniqueness of a sort order by adding
primary key fields in the end.

If no TableView.FillSort is specified for a table view in the schema, primary key order is used as the default sort.

It is also possible to specify sort order for a table view at run time. To change sort order of a table view at run time,
call C1DataSet.Fill with a filter condition and a list of table view names containing the name of the table view in
question. Specify FilterCondition.FillSort for the table view in one of the filter conditions. This FillSort string will
override TableView.FillSort specified in the schema. This FillSort string must satisfy the same uniqueness requirement
as TableView.FillSort specified in the schema. This FillSort string must satisfy the same uniqueness requirement
asFillSort. In DataObjects for .NET Express, use FillSort property to specify sort order. To change sort at run time, set
FillSort and call Fill.

Virtual Mode Restrictions
The following topics explain the necessary requirements and functionality restrictions in virtual mode.

Necessary Requirements for Virtual Mode
The following requirements must be satisfied for a table view to function properly in virtual mode:

Only bound tables are allowed. Unbound and SQL-based tables cannot be used in virtual mode. See Bound,
SQL-Based and Unbound Tables.
The table must have a primary key, see Table Properties.
An appropriate index must exist in the database for the specified sort order. More exactly, this is not a
necessary condition, but virtual mode can have very poor performance if the index does not exist. An index is
usually necessary for the database SQL optimizer to produce an efficient execution plan.
The database must have sufficiently advanced query optimization capacity to interpret SQL statements issued
by DataObjects for .NET in the optimal way, the way they intended to be interpreted. Microsoft SQL Server
and Oracle satisfy this requirement, whereas Microsoft Access, being a low-end desktop database does not
qualify. DataObjects for .NET virtual mode works correctly with Microsoft Access, but queries fetching data

DataObjects for .NET 92

Copyright © 2017 GrapeCity, inc. All rights reserved.

may take a long time to execute on the server. SQL statements generated by DataObjects for .NET in virtual
mode look approximately like this:
SELECT TOP 400 FROM T WHERE K1=? AND K2>? ...ORDER BY K1, K2,…
where K1, K2 – primary keys. You can see the actual generated SQL statements in the AfterGenerateSql event.
The database must support the TOP n keyword in SQL limiting the resultset to the first n rows. An exception to
this is Oracle, which does not support TOP n, but works with DataObjects for .NET virtual mode, because
DataObjects for .NET uses a different construct with Oracle: the hint /*+ FIRST_ROWS */. To distinguish Oracle
from other databases, the Syntax enumerated property is used, available in the Connection Editor in the
Schema Designer.
Primary key types must be ordered and comparable, that is, the > comparison operation must be applicable to
them. All common SQL data types satisfy this requirement.
If you use filter conditions with virtual table views, the conditions added to the WHERE clause of the generated
SQL statement should not break query optimization. Basically, it means that if you restrict the sort order key
values by filter conditions, try to restrict only an initial segment of the sort order key sequence. Avoid situations
where a key is restricted and one of its predecessors in the sort order key sequence is not. This is not a
mandatory requirement. Virtual mode will work correctly regardless of filter conditions. However, with very
large rowsets, filter conditions breaking optimization can significantly affect performance.

Functionality Restrictions in Virtual Mode
Some DataObjects for .NET features change their behavior or are unavailable in virtual mode:

The C1DataTable object of a virtual table view does not contain all rows of the virtual rowset. It contains only
the rows of the current segment. To access all virtual rowset rows, use the C1DataTableSource methods and
properties, see Using C1DataTableSource and Bound Controls.
View relations having a virtual table view as the parent or a child do not return all child (parent) rows, they
return only rows belonging to the current segment. This is simply because not all rows are fetched to the client.
Binding GUI controls to a virtual table view, you have to use a C1DataTableSource as their data source; see
Using C1DataTableSource and Bound Controls for more information.
If you need a grid control bound to a virtual table view, use the True DBGrid control included in
ComponentOne Studio Enterprise, see Using C1DataTableSource and Bound Controls.
Scrollbar position in a grid bound to a virtual table view does not represent row number in the whole rowset, it
represents row number in the current segment. This also causes the scrollbar thumb jumping from near the
end to the middle of the scrollbar area when current segment changes. However, the scrollbar functions
properly when clicked and dragged, including dragging to the end and the beginning of the rowset.

Virtual Mode Performance Tuning
The TableView schema object has several properties controlling performance parameters in virtual mode. In most
cases, they can be left at their default values. However, you may want to try tuning them if you feel a need to improve
performance.

Property Description

VirtualSegmentSize Number of rows fetched from the database and exposed to the user as a
segment of the rowset. Default: 400. This is the minimum segment size.
DataObjects for .NET can fetch more rows in a segment if necessary.
That can happen if a grid with large number of rows is bound to the table
view. With a bound grid, DataObjects for .NET always maintains the
state where the first and last rows visible in the grid are on the "safe"
distance from the ends of the current segment, the "safe distance"
defined by the VirtualSyncThreshold property. Therefore, the segment

DataObjects for .NET 93

Copyright © 2017 GrapeCity, inc. All rights reserved.

size is always greater than the number of visible rows in the grid plus
twice the threshold value.

VirtualSegmentCount Maximum number of segments in the cache (only for DataAccessMode =
Virtual).

VirtualSyncThreshold Percent value from 0 to 100 (default: 12%). Determines the distance
(number of rows) to the end of a segment that is considered a "danger
zone", in the sense that the current segment must be changed to another
segment (taken from the cache or fetched from the database) when the
user positions on a row inside that zone. By default, it is 12% of 400 = 48
rows. See When a Virtual Table View Fetches Data Segments for details.

VirtualAsyncThreshold Percent value from 0 to 100 (default: 30%). Determines the distance
(number of rows) to the end of a segment that is considered a
"preemptive fetch zone", in the sense that a new segment must be
fetched from the database (if not found in the cache) when the user
positions on a row inside that zone. By default, it is 30% of 400 = 120
rows. See When a Virtual Table View Fetches Data Segments for details.

Updating the Database
Transparency of database updates is one of the main power features of DataObjects for .NET. DataObjects for .NET
solves the problem of updateable views and performs database updates automatically. For more information, see How
the Data is Modified. Developers do not have to write server-side code updating the database. DataObjects for .NET
can achieve this because it stores data internally preserving the original database structure, so it always knows what
modifications must be applied to every database table. For more information see Structured Data Storage: Tables and
Table Views and How the Data is Modified.

Although you can rely on DataObjects for .NET to perform database updates and do not have to write code, it is
important to understand how the process of updating the database works. It may require customization for special
application needs, and it is often necessary to specify business logic code resolving potential conflicts when different
users concurrently modify the same data.

Before updating the database, DataObjects for .NET collects all modified simple table rows and sends them to the
server for update (commit). Note that simple table modifications are sufficient for the update process. Composite
tables and table views do not participate in update. Every data modification made by the end user ends up in a
specific simple table, modifying a certain simple table row. Knowing the data structure, DataObjects for .NET tracks
all modifications to their destination simple table rows, so in the end only simple table rows must be sent to the server
for update. For more information, see Structured Data Storage: Tables and Table Views and How the Data is Modified.

For instance, considering the Customer-Orders-Employees example in Structured Data Storage: Tables and Table
Views, the user could modify some rows of the CustOrders composite table (for example, using a grid control showing
the combined customer-order-employee information), and also add and delete some rows. Since CustOrders is a
composite table, it means that some Customers rows could have been modified, as well as some Orders and some
Employees rows. Also, other modifications to these simple tables can be made in the same session as well, via other
table views. All these modifications are just modified rows of the simple tables. Therefore, DataObjects for .NET
already knows what database table rows must be modified, added or deleted to commit this transaction. It goes to
the server and does just that, applies the modifications to the database tables Customers, Orders and, Employees. The
rest of this chapter will be devoted to the process of applying modifications to database tables.

When the Database is Updated
By default, DataObjects for .NET works in batch update mode, standard in distributed applications (this is the only

DataObjects for .NET 94

Copyright © 2017 GrapeCity, inc. All rights reserved.

update mode available in ADO.NET). Database update is performed on explicit command from the user or application
code, a special method call, when the user presses a button, for example. This method is Update. Between Update
calls, data modifications done by the end user are cached on the client, in the C1DataSet object. The end user can
freely navigate between data rows, modifying them. Multiple rows can be in a modified state at the same time. Batch
update mode is the only update mode supported by ADO.NET and the standard .NET Windows Forms framework.

DataObjects for .NET also supports the classic automatic update mode. This mode, common in classic client-server
and desktop applications, ensures that all changes made in the current row are committed to the database when the
end user leaves this row and moves to another row in a table. This mode is not supported in ADO.NET and standard
WinForms data binding. DataObjects for .NET adds yet another enhancement to the .NET data framework by
implementing the automatic update mode. If you use C1DataTableSource as your data source, and set its
UpdateLeavingRow property to True, it will perform update automatically when the end user leaves a row after
modifying it.

Update in 2-Tier and 3-Tier Configurations
When Update is issued on the client, DataObjects for .NET first collects all modified simple table rows. Further
processing depends on whether it is a 2-tier or a 3-tier configuration (see Application Configurations):

In a 2-tier client (classic client-server configuration, that we also call a direct client), the client itself performs
database updates. It generates SQL statements updating the database and sends them to the database server
for execution. If you need to customize the update process, your business logic code can handle the
C1TableLogic BeforeUpdate /C1TableLogic AfterUpdate events. These events fire for each modified row. The
C1DataRow object passed to the event handler is a modified data row of the same client data set.
In a 3-tier configuration (distributed application), there are two identical instances of your data library
participating in the process: one on the client and one on the server, see Application Configurations for details.
An update request on the client sends the modified rows to the server. On the server, the server instance of
your data library (having the same business logic code) takes over. It reconstructs a data set from the modified
rows and then performs the update: generates SQL statements updating the database and sends them to the
database server for execution. If you need to customize the update process, your business logic code can
handle the C1TableLogic BeforeUpdate/C1TableLogic AfterUpdate events. These events fire for each modified
row. The C1DataRow object passed to the event handler is a modified row received from the client. It belongs
to a C1DataSet reconstructed on the server (we call it the server data set). The server data set does not include
all rows that were originally fetched to the client. It only includes modified rows and those related to them
through relations. Other than that, the structure of this data set is identical to the client data set. The server
data set exists for the duration of serving the update request.

Update Process on the Server
Both in 2-tier and in 3-tier configurations, each update request is executed as a database transaction, that is, either all
changes are successfully committed to the database or no changes are committed to the database. If a schema
contains multiple database connections, a separate transaction is used for each database connection, all the
transactions committed or rolled back together when all updates are done.

For each modified simple table, DataObjects for .NET applies updates in a certain order: it processes added rows
first, then deleted rows, followed by modified rows. So, it first inserts rows that must be added, and then deletes rows
that must be deleted, before modifying rows that must be changed. For each row involved, DataObjects for .NET
applies the update by executing a generated SQL statement (in case of a bound table), see Generated SQL
Statements. This cycle repeats for each simple table whose rows must be updated.

After a successful update, the updated and added rows are retrieved from the database to refresh the data according
to the latest database state. This is necessary because the database can change the data, set default values, and so on.
The process of refreshing rows after update can be customized with properties and events as well as the update
process; for more information, see Generated SQL Statements and Changing Data as a Result of Update (Refresh).

DataObjects for .NET 95

Copyright © 2017 GrapeCity, inc. All rights reserved.

Generated SQL Statements
When updating a row of a bound table, that is, a simple table with non-empty Connection and DbTableName
properties, DataObjects for .NET generates and executes a SQL statement. Generated SQL statements are described
in the following sections for each of the three possible cases: inserting, deleting and modifying rows. SQL statements
are not generated for unbound and SQL-based tables, see Updating SQL-based and Unbound Tables.

The update process consists of three phases:

locating the record in the database,
changing (updating) the record, and
refreshing the row, that is, retrieving the changed record from the database, as it could be changed by
database own logic (triggers, and so on).

Row DELETE has only locate and change phases, no refresh. Row INSERT has only change and refresh phases, no locate.
Row UPDATE has all three phases: locate, change, and refresh. The locate and change phases are performed in one SQL
statement, locate being the condition in its WHERE clause, change – the action clause (INSERT/DELETE/UPDATE). The
refresh phase is performed by a separate SQL SELECT statement finding a single record by its primary key value.

Generated SQL statements contain parameters specifying values used to locate the record in the database and values
to assign to record fields. Parameter values are determined by the original and current values in the C1DataRow
object:

Parameters used to locate the record are assigned the original field values, that is, the values as they have been
fetched from the database before the user could modify them:

row["field_name", DataRowVersionEnum.Original]

Parameters used to set values of record fields are assigned the current values of the row:

row["field_name", DataRowVersionEnum.Current]

The generated parameterized SQL statement is used to set up and execute an IDbCommand object (for OLE DB: .NET
Framework class System.Data.OleDb.OleDbCommand, for native SQL Server connection: System.Data.SqlClient, and so
on). If necessary, this IDbCommand object can be customized in event code, see Events in Updating a Row.

Executing generated SQL statements is the default processing. It can be customized or substituted altogether with
custom code using the BeforeUpdateRow, AfterUpdateRow events, see Events in Updating a Row.

Deleted Row
To delete a row from the database, DataObjects for .NET generates and executes the following SQL statement:

DELETE FROM table_name WHERE field1 = ? AND field2 = ? AND …

Parameter values are set to original row values: row["field_name", DataRowVersionEnum.Original].

If the original value of a field is Null, the condition is field IS NULLinstead of field = ?.

The collection of fields used to locate the record in the WHERE clause depends on the table property
UpdateLocateMode and field properties UpdateIgnore and UpdateLocate:

Unbound fields (with empty DbFieldName), fields with UpdateIgnore = True and fields with UpdateLocate =
False are not included regardless of the UpdateLocateMode value.
If UpdateLocateMode = PrimaryKey, only primary key fields (those with PrimaryKey = True) are included.
If UpdateLocateMode = AllFields, all fields are included provided they are not excluded by conditions above.
If UpdateLocateMode = PrimaryKeyAndChangedFields (default), the locate fields include primary keys and
fields whose values have changed, row["field_name", DataRowVersionEnum.Current] is not equal to

DataObjects for .NET 96

Copyright © 2017 GrapeCity, inc. All rights reserved.

row["field_name", DataRowVersionEnum.Original].

Locating the record for delete can fail (no record found), due to changes made to the database by other users
between the time the record was fetched and the time it is deleted. This is usually called optimistic concurrency; see
Handling Concurrency Conflicts for more information. Including more fields in the WHERE clause (manipulating the
UpdateLocateMode and UpdateLocate properties) makes the concurrency check stricter: changes made by other users
to one of this field can fail the delete. Excluding fields from the WHERE clause makes the check less strict, allowing
more concurrency, more tolerant to changes made by other users.

If no record has been found for delete, it may mean that the row has been already deleted. Since this does not
necessarily represent an error condition (for example, the row could be deleted as a result of cascade delete), a special
property IgnoreDeleteError allows you to suppress the error in this case. To check the "row deleted" condition
DataObjects for .NET tries to locate the database row with the original primary key value (as in UpdateLocateMode =
PrimaryKey). If such a row cannot be located, it means the row has been deleted. Handling this situation depends on
the table property IgnoreDeleteError. If IgnoreDeleteError = True (default), this error is ignored, it does not generate
an update error. If IgnoreDeleteError = False, this error generates an update error.

Added Row
To add a row to the database, DataObjects for .NET generates and executes the following SQL statement:

INSERT INTO table_name (field1, field2, …) VALUES (?, ?, …)

Parameter values are set to the current row values: row["field_name"].

The collection of fields used to set the values in the newly added record depends on the field properties
UpdateIgnore and UpdateSet and DataSourceReadOnly:

Unbound fields (with empty DbFieldName), fields with UpdateIgnore = True and fields with
DataSourceReadOnly = True are not included regardless of the UpdateSet value.
If UpdateSet = Always, the field is included provided the other properties do not preclude it.
If UpdateSet = Never, the field is not included.
If UpdateSet = IfChanged (default), the field is included if its value has been set by the user.

After a new row has been successfully created, DataObjects for .NET generates and executes another SQL statement,
to retrieve the new row from the database:

SELECT selectField1, selectField2, … FROM table_name WHERE keyField1 = ? AND keyField2
= ? AND …

This refresh phase is needed because some field values could be assigned by the database itself, such as
autoincrement fields, and so on.

The refresh phase is controlled by the table property UpdateRefreshMode:

If UpdateRefreshMode = Always, the refresh phase always takes place, and its failure generates an error.
If UpdateRefreshMode = Never, the refresh phase is skipped.
If UpdateRefreshMode = IfPossible (default), the refresh phase takes place, but its possible failure does not
generate an error.

Fields selectField1, selectField2, … are those whose values are retrieved from the new database row. The retrieved
values, if different from the row values sent for update, substitute the row values and the client receives them back in
the refreshed row.

A bound field (with non-empty DbFieldName) is included in selectField1, selectField2, …if its UpdateRefresh property
is set to True.

Fields keyField1, keyField2, … used to locate the record in the WHERE clause, are the primary key fields of the table.

DataObjects for .NET 97

Copyright © 2017 GrapeCity, inc. All rights reserved.

Parameter values are set to the current row values of primary keys: row["field_name"].

Modified Row
To modify a database row, DataObjects for .NET generates and executes the following SQL statement:

UPDATE table_name SET (setField1 = ?, setField1 = ?, …) WHERE whereField1 = ? AND
wherefield2 = ? AND …

The collection of fields used to set the values in the database row, setField1, setField2, … depends on the field
properties UpdateIgnore and UpdateSet and DataSourceReadOnly:

Unbound fields (with empty DbFieldName), fields with UpdateIgnore = True and fields with
DataSourceReadOnly = True are not included regardless of the UpdateSet value.
If UpdateSet = Always, the field is included provided the other properties do not preclude it.
If UpdateSet = Never, the field is not included.
If UpdateSet = IfChanged (default), the field is included if its value has been changed by the user,
row["field_name", DataRowVersionEnum.Current] is not equal to row["field_name",
DataRowVersionEnum.Original].

Parameters used to set values are assigned the current row values: row["field_name"].

The collection of fields used to locate the record for update in the WHERE clause, whereField1, whereField2, …
depends on the table property UpdateLocateMode and field properties UpdateIgnore and UpdateLocate:

Unbound fields (with empty DbFieldName), fields with UpdateIgnore = True and fields with UpdateLocate =
False are not included regardless of the UpdateLocateMode value.
If UpdateLocateMode = PrimaryKey, only primary key fields (those with PrimaryKey = True) are included.
If UpdateLocateMode = AllFields, all fields are included provided they are not excluded by conditions above.
If UpdateLocateMode = PrimaryKeyAndChangedFields (default), the locate fields include primary keys and
fields whose values have changed, row["field_name", DataRowVersionEnum.Current] is not equal to
row["field_name", DataRowVersionEnum.Original].

Parameter used to locate the record are set to original row values: row["field_name", DataRowVersionEnum.Original].

If the original value of a field is Null, the condition is field IS NULLinstead of field = ?.

Locating the record for update can fail (no record found), due to changes made to the database by other users
between the time the record was fetched and the time it is updated. This is usually called optimistic concurrency, see
Handling Concurrency Conflicts for more information. Including more fields in the WHERE clause (manipulating the
UpdateLocateMode and UpdateLocate properties) makes the concurrency check stricter: changes made by other users
to one of this field can fail the update. Excluding fields from the WHERE clause makes the check less strict, allowing
more concurrency, more tolerant to changes made by other users.

After the database row has been successfully modified, DataObjects for .NET generates and executes another SQL
statement, to retrieve the modified row from the database:

SELECT selectField1, selectField2, … FROM table_name WHERE keyField1 = ? AND keyField2
= ? AND …

This refresh phase is needed because some field values could be changed by the database itself, using triggers, and so
on.

The refresh phase is controlled by the table property UpdateRefreshMode:

If UpdateRefreshMode = Always, the refresh phase always takes place, and its failure generates an error.
If UpdateRefreshMode = Never, the refresh phase is skipped.

DataObjects for .NET 98

Copyright © 2017 GrapeCity, inc. All rights reserved.

If UpdateRefreshMode = IfPossible (default), the refresh phase takes place, but its possible failure does not
generate an error.

Fields selectField1, selectField2, … are those whose values are retrieved from the new database row. The retrieved
values, if different from the row values sent for update, substitute the row values and the client receives them back in
the refreshed row.

A bound field (with non-empty DbFieldName) is included in selectField1, selectField2, …if its UpdateRefresh property
is set to True.

Fields keyField1, keyField2, … used to locate the record in the WHERE clause, are the primary key fields of the table.

Parameter values are set to the current (row["field_name"]) or to the original (row["field_name",
DataRowVersionEnum.Original]) values of primary keys, depending on whether a primary key field's value has been
set by the UPDATE SQL statement. If it has not been set in UPDATE, the original value is used. If it has been set, the
current value is used.

Events in Updating a Row
After an IDCommand is set up with the generated SQL statement, DataObjects for .NET fires the
C1TableLogic.BeforeUpdateRow event. Using this event, you can customize the command; for example, change the
parameter substitution, if necessary. This event is also used to implement updates in SQL-based and unbound tables,
see Updating SQL-based and Unbound Tables. In this event procedure, you can set the Status argument specifying
how to proceed after the event is handled. The default value, Continue means the command is to be executed. If you
want to take full control over update and cancel the default processing (command execution), do whatever is
necessary to update the row in your event handler procedure and set the Status argument to SkipCurrentRow. There
are also ErrorsOccurred and SkipAllRemainingRows options used to handle update failures. Another event argument,
Row contains the C1DataRow being updated. It can be used to extract the current and original values of each field, if
you need them to perform a custom update operation. After update, you can modify the field values in this row to
customize data refresh after update, see Changing Data as a Result of Update (Refresh).

If not skipped by setting the Status argument of the BeforeUpdateRow event, the update itself takes place, the
command containing the INSERT, DELETE or UPDATE SQL statement is executed. After that, except for deleted rows,
the SELECT command is executed to refresh the data with the latest database values, see Changing Data as a Result of
Update (Refresh).

After executing generated commands, DataObjects for .NET fires the C1TableLogic.AfterUpdateRow event. This
event can be used, for example, for customizing data refresh after update, by setting the values in its Row argument.

Changing Data as a Result of Update (Refresh)
After a successful update, the updated and added rows are retrieved from the database. This is necessary because the
database can change the data, for example, set default values, and because the data could be modified by other users,
if such concurrency is allowed by the UpdateLocateMode and UpdateLocate properties, see Generated SQL
Statements.

Retrieving the current data from the database is called the refresh phase of the update process, see Generated SQL
Statements. The retrieved values, if different from the row values sent for update, substitute the row values in the
originally sent row, and the client receives them back in the refreshed row.

The process of refreshing rows after update can be customized using the UpdateRefreshMode and UpdateRefresh
properties. It can also be customized in the AfterUpdateRow event. Setting values in the Row argument of the event,
you can specify the values returned to the client in the refreshed row. The Row values can also be changed in the
BeforeUpdateRow event, but then they are also used in updating the database row, whereas setting values in
AfterUpdateRow only affects the values returned to the client. In addition to BeforeUpdateRow/AfterUpdateRow
events, you can use the AfterUpdate event to programmatically change the refreshed rows. That event is fired once
after all rows are updated.

DataObjects for .NET 99

Copyright © 2017 GrapeCity, inc. All rights reserved.

For bound tables (with non-empty Connection and DbTableName properties), the refresh occurs automatically, using
a generated SQL statement, see Generated SQL Statements. For an SQL-based table with attached DataAdapter
component, the refresh is also done automatically, by the DataAdapter component. For SQL-based without
DataAdapter component and for unbound tables, the refresh must be done in code, if necessary, in the
AfterUpdateRow event (or in BeforeUpdateRow, see above) by setting the row values in the Row argument. For
details, see Bound, SQL-Based and Unbound tables.

Updating SQL-Based and Unbound Tables
For bound tables (with non-empty Connection and DbTableName properties), and for SQL-based tables (with non-
empty Connection and SelectCommandText properties) with DataAdapter component, the update process is
automatic, although it can be customized with properties and events.

For SQL-based without DataAdapter component and for unbound tables, using events is required to provide update
functionality, see Bound, SQL-Based and Unbound Tables.

Updating SQL-Based Tables
An SQL-based table is a table with DataMode=SqlBased and non-empty Connection property, see Bound, SQL-Based
and Unbound Tables. A SQL-based table can have a DataAdapter component associated with it, via the DataAdapter
property of the C1TableLogic component (in DataObjects for .NET Express, DataAdapter is a property of
C1ExpressTable).

For an SQL-based table with DataAdapter, the update is performed automatically by the DataAdapter component. For
an SQL-based table without DataAdapter component, or if DataAdapter does not contain UpdateCommand,
InsertCommand, or DeleteCommand, the update is performed in code.

To allow updating the database from an SQL-based table without DataAdapter, write code in the
C1TableLogic.BeforeUpdateRow event. According to the state (added/deleted/modified) of the row passed to the
event in the Row argument, create one of the three commands (SQL statements in the form of an IDbCommand
object), for insert, delete or update correspondingly, and assign the created command object to the corresponding
argument: InsertCommand, DeleteCommandor, UpdateCommand.

Optionally, if you need to refresh the updated row from the database, you can create a SELECT command retrieving
the updated row and assign it to the SelectCommand argument. For more information, see Changing Data as a Result
of Update (Refresh).

Note also, that if the table is read-only or just does not need update functionality, there is no need for update code in
any case.

Updating Unbound Tables
An unbound table is a table with DataMode = Unbound. In this case the Connection, DbTableName and
SelectCommandText properties are empty. An unbound table has its data fetched and updated entirely in code. It can
be used to represent a custom non-SQL data source, see Bound, SQL-Based and Unbound Tables.

To allow updating of the data source from an unbound table, write code in the C1TableLogic.BeforeUpdateRow event.
In that code, perform the necessary update programmatically, doing whatever actions the custom data source
requires, and set the Status event argument to SkipCurrentRow, indicating that the update has been done.

Optionally, if you need to refresh the updated row from the data source (see Changing Data as a Result of Update
(Refresh)), retrieve the field values that you need from your data source and assign them to the fields of the Row
argument passed to the event.

Note also, that an unbound table can be read-only or it can be modifiable without update functionality, in which case
there is no need for any update code.

DataObjects for .NET 100

Copyright © 2017 GrapeCity, inc. All rights reserved.

Controlling the Update Process
Before any processing of modified rows starts on the server, it fires the BeforeUpdate event. This event is fired on the
server, in the same manner as the BeforeUpdateRow/AfterUpdateRow events, but, unlike them, it is fired only once. Its
DataSet argument contains the data set passed to the server for update. By modifying this data set, developers can
customize the update process and control the set of rows and field values that undergo the database update. The
C1DataSetLogic component whose event is fired corresponds to the client-side C1DataSet component that originated
the update.

After the BeforeUpdate event, DataObjects for .NET starts scanning all modified rows in a certain order and applying
the changes to the database. For more information, see Update Process on the Server. Before processing each row, it
fires first the C1DataSetLogic.BeforeUpdateRow event, then the C1TableLogic.BeforeUpdateRow event. The
C1DataSetLogic component whose event is fired corresponds to the client-side C1DataSet component that originated
the update. The C1TableLogic component represents the simple table containing the row in question.

Using C1TableLogic.BeforeUpdateRow is more common than using C1DataSetLogic.BeforeUpdateRow. A
C1TableLogic component represents business logic pertaining to a certain table regardless of the data set where it is
used. However, if you need some specific logic depending on the data set context, use the
C1DataSetLogic.BeforeUpdateRow event. This, of course, applies to the C1DataSetLogic.AfterUpdateRow event as
well.

Both BeforeUpdateRow events have Status argument. Setting it to Skip allows you to cancel further processing for the
current row.

After processing the row as described in Generated SQL Statements, DataObjects for .NET fires the
C1TableLogic.AfterUpdateRow event and C1DataSetLogic.AfterUpdateRow event, in this order. For more information,
see Generated SQL Statements. The values in its Row argument are the values that are later passed back to the client
as the current database values in the process of refreshing the rows after update, see Changing Data as a Result of
Update (Refresh). Changing the values in the AfterUpdateRow event allows developers to control the refreshed values,
if necessary.

Finally, when all rows are processed, the AfterUpdate event is fired. Among other possible uses, it allows you to
control the whole data set (via its DataSet argument) sent back to the client for refreshing updated rows, see
Changing Data as a Result of Update (Refresh).

All these events, BeforeUpdate / AfterUpdate and BeforeUpdateRow / AfterUpdateRow are server-side events. They
fire on the server only. See Application Configurations for the description of DataObjects for .NET client and server.
However, this does not apply to a direct client situation, where a 2-tier application updates the database directly from
the client, an application where C1SchemaDef and C1DataSet components reside on the same design surface. In this
case, the client and the server are one and the same application.

Handling Errors in Update
There can be two different kinds of errors during update:

Concurrency Conflicts
Updating a row can fail because another user has changed the same row between the time the row was fetched and
the time it is updated. Different applications handle this situation differently, and it does not always represent an error
condition. See Handling Concurrency Conflicts for details.

Program and Physical Errors
An update can fail due to a program error, for example, an incorrect DbTableName property setting, or to a physical

DataObjects for .NET 101

Copyright © 2017 GrapeCity, inc. All rights reserved.

error, such as failed database connection. In this case, the Update method execution is aborted, the database
transaction is rolled back, and an exception is thrown. Before throwing an exception, the AfterUpdate event is fired,
giving the developer an opportunity to clean-up whatever resources could be allocated in the BeforeUpdate event.
After that, the exception is passed to the client. On the client, it first fires the UpdateError event, the exception is
passed to it as the Error argument. In that event, the developer has an opportunity to handle this situation without
throwing an exception, by setting the Status argument to Continue or Skip. If the Status argument is left at the default
value ErrorsOccurred, then the exception is thrown, aborting the Update method execution. That exception can then
be handled the usual way. See Handling Update Errors on the Client for details.

Handling Concurrency Conflicts
Updating a row can fail because another user has changed the same row between the time the row was fetched and
the time it is updated. Allowing concurrent changes to rows with "first tried – first succeeded" policy is usually called
optimistic concurrency. When updating a row, your application must be sure that it is actually updating the same row
as it had originally fetched from the database. In different application scenarios, the notion of "the same row" can be
different. In some cases, you may need all the fields in the row in the database to remain intact from the moment the
row was fetched till the moment it is updated. In other cases, it is enough that an ID, a primary key field remains
intact, and all other fields can be allowed to be freely modified by various users on the "first tried – first succeeded"
basis. To set this concurrency control policy, use the UpdateLocateMode and UpdateLocate properties. They control
the collection of fields used in the WHERE clause of the action SQL statements to locate the record for update. A row
passes the concurrency check if the WHERE clause finds a row in the database for update. Including more fields in the
WHERE clause (manipulating the UpdateLocateMode and UpdateLocate properties) makes the concurrency check
more strict: changes made by other users to one of these fields fail the update. Excluding fields from the WHERE
clause makes the check less strict, making it more tolerant to changes made by other users.

When a concurrency conflict occurs, it fires the C1TableLogic.AfterUpdateRow event with its SqlStatus argument set to
ConcurrencyConflicts. At this point, developers have an opportunity to reconcile this conflict directly on the server.
Business logic does not always allow you to reconcile conflicts on the server, because this must be done without user
interface and without asking for user choices. Still, if that is possible from the business point of view, it is usually
preferable. To reconcile a conflict in the AfterUpdateRow event, do whatever needs to be done to update the row
(remember that default update by the generated SQL statement has not been done because of the conflict), change
the field values in the Row argument to reflect possible changes to the fields due to conflict resolution, and set the
SqlStatus argument to Succeeded.

When the C1TableLogic.AfterUpdateRow fires on a conflicting row, its Status argument is set to Continue. This means
that the conflict will not be regarded as an exceptional situation, a fatal failure, that DataObjects for .NET will
continue processing other modified rows after that. However, if you need to abort processing at this point, you can do
so by setting the Status argument to SkipAllRemainingRows or to ErrorsOccurred. The latter also has the additional
effect of raising an exception on the client.

Conflicts that are not resolved on the server are passed to the client and have to be reconciled there, see Handling
Update Errors on the Client. Concurrency conflicts do not raise an exception on the client, but fire the UpdateError
event. Rows that caused conflicts can be found in the C1DataSet using the properties and methods RowError,
HasErrors, HasErrors and GetErrors.

Note that this distinction between client and server is not applicable to a direct client application (see Application
Configurations for the description of DataObjects for .NET client and server), that is a 2-tier application updating the
database directly from the client, an application where C1SchemaDef and C1DataSet components reside on the same
design surface. In this case, the client and the server are one and the same application so you can reconcile conflicts in
the AfterUpdateRow event with user interface, see Handling Update Errors on the Client.

Handling Update Errors on the Client
When an error condition of any kind occurs on the server during an update, the UpdateError event fires. If the error is
a fatal failure, the Error argument of the UpdateError event contains the exception object describing the failure. For

DataObjects for .NET 102

Copyright © 2017 GrapeCity, inc. All rights reserved.

more information on a program or physical error, see Handling Errors in Update. If this is a concurrency conflict that
could not be reconciled on the server and so was passed to the client, the Error argument is set to null (Nothing in
Visual Basic). In case of a concurrency conflict, the rows that failed update can be found in the C1DataSet using the
properties and methods RowError, HasErrors, HasErrors and GetErrors.

When writing code in the UpdateError event, developers can handle errors and reconcile concurrency conflicts. If you
consider the error conditions resolved and want to make a new attempt to update the database, set the Status
argument to Continue. That will repeat the Update method call. If there will still be errors, the UpdateError event will
fire again, and this loop will continue until the update succeeds or until you exit the UpdateError event with Status =
Skip or Status = ErrorOccurred. If Status is set to Skip, the update loop ends without exception, in effect, the Update
call is ignored. If Status is set to ErrorsOccurred, an exception is thrown.

In the case of a fatal error (non-empty Error argument), the usual reaction is to set Status to ErrorOccured (throw an
exception), or to Skip (ignore the Update call).

In the case of a concurrency conflict (empty Error argument), the recommended practice is to present the user with a
special dialog(s) offering to reconcile the conflicts, for example, to choose between the values in the data set and the
values in the database (to retrieve the current database values, use a separate C1DataSet object with the same
schema). After reconciling the conflicts, repeat the update attempt by setting the Status argument to Continue.
Alternatively, you can set Status to Skip before reconciling conflicts, and then repeat Update programmatically.

Features and Techniques
This chapter demonstrates how you can use DataObjects for .NET to solve common problems that arise when
developing database applications. It also describes various techniques used in DataObjects for .NET.

DataObjects for .NET Expressions
DataObjects for .NET uses expressions to specify constraints and field calculations. DataObjects for .NET expression
language is based on the ADO.NET expression language; for more information see the reference entry for the
System.Data.DataColumn.Expression property in .NET Framework Reference documentation. For your convenience,
the expression language reference is partly reproduced below.

Expression variables are fields of tables and table views, see Schema Objects. In an expression belonging to a table or
table view, you can use fields from the same table (or table view) and from its parents and children with regard to
relations, if they are included in the same data set.

In addition to operators and functions defined in the ADO.NET expression language, DataObjects for .NET
expressions support the following functions:

Function Description

Current Syntax: Current(field). Example: Current(OrderDate). Returns the value of the field
in a row as it was before editing of the row started (BeginEdit was called). It is the
same value as returned by C1DataRow["field_name",
DataRowVersionEnum.Current]. If the row is not in edit mode, this function
returns the same value as the field without a function. For a row in edit mode, the
field without a function returns C1DataRow["field_name",
DataRowVersionEnum.Proposed].

Original Syntax: Original(field). Example: Original(OrderDate). Returns the value of the
field in a row as it was when the row was fetched from the database. It is the
same value as returned by C1DataRow["field_name",
DataRowVersionEnum.Original].

BeforeChange Syntax: BeforeChange(field). Example: BeforeChange(OrderDate). When the value

DataObjects for .NET 103

Copyright © 2017 GrapeCity, inc. All rights reserved.

of a field is being changed (including in events BeforeFieldChange and
AfterFieldChange), the field variable returns the new value even if the new value
has not yet been assigned to the field (for example, in the BeforeFieldChange
event). If you need the field value as it was before the change, use this function.
While the field value is being changed (including in events BeforeFieldChange
and AfterFieldChange), this function returns the value before change. If the field
value is not being changed when the function is evaluated, it returns the same
value as the field variable without a function.

ADO.NET Expression Language Reference
DataObjects for .NET expression language is based on the ADO.NET expression language. For a more detailed
description of the ADO.NET expression language, see the reference entry for the System.Data.DataColumn.Expression
property in .NET Framework Reference documentation.

Escaping Special Characters and Reserved Words
Variable (field) names must be enclosed in square brackets if they include blanks or any of the following special
characters, or coincide (ignoring case) with a reserved word.

Special characters: \n (newline) \t (tab) \r (carriage return) ~ () # \ / = > < + - * % & | ^ ' " []

Reserved words: CHILD, PARENT, CURRENT, ORIGINAL, BEFORECHANGE, IN, LIKE, AND, OR, NOT, CONVERT, LEN,
ISNULL, IIF, SUBSTRING.

Examples of escaped field name: [Order Date], [CustomerID#]

If a field name contains closing bracket, it must be escaped with \. For example, field name Customer[Name] is written
as [Customer[Name\]].

Constant Values
Strings are enclosed in single quotes. Dates are enclosed in pound signs.

Fore example:

Discount = 0.11

CustomerName = 'ALFKI'

OrderDate = #12/31/2001#

Operators
Comparison operators: <, >, <=, >=, <>, =, IN, LIKE (both wildcards * and % can be used in LIKE)

Boolean operators: AND, OR, NOT

Arithmetic operators: +, -, *, /, % (modulus).

String operator: + (concatenation)

Parent/Child Fields
A parent field is prepended with "Parent(relation_name).". For example, Parent(Customers – Orders).CustomerName

DataObjects for .NET 104

Copyright © 2017 GrapeCity, inc. All rights reserved.

used in the Orders table references the CustomerName field of the Customers table. If there is only one relation
connecting the tables (or table views), the relation name can be omitted. Example: Parent.CustomerName

A child field is prepended with "Child(relation_name).". For example, Child(Customers – Orders).OrderDate used in the
Customers table references the OrderDate field of the Orders table. If there is only one relation connecting the tables
(or table views), the relation name can be omitted. Example: Child.OrderDate

Aggregation Functions
Aggregation is usually performed in a parent table over a child table, as a function applied to a child field. Example:
Sum(Child(Orders – OrderDetails).Quantity). Used in the Orders table, this expression calculates the sum of the
Quantity fields of the OrderDetail table rows related to the Orders row.

Supported aggregation functions: Sum, Avg (average), Min (minimum), Max (maximum), Count, StDev (statistical
standard deviation), Var (statistical variance).

Field Value Qualifying Functions
Current(field), Original(field), BeforeChange(field).

These functions are supported by the DataObjects for .NET expressions in addition to the functions supported by the
ADO.NET expression language. They apply to field variables and allow functions to obtain original field values and
values before change, see DataObjects for .NET Expressions.

Other Functions
Other functions include:

Function Description

Convert(value,
type)

Converts a value to the specified type. Example: Convert(Quantity,
'System.Int32')

Len(string) Returns the length of a string. Example: Len(CompanyName)

IsNull(value,
replacement_value)

Returns value if it is not Null and replacement_value if value is Null.
Example: IsNull(OrderDate, #1/31/2001#) returns #1/31/2001# if Orderdate
is Null.

IIF(condition,
true_value,
false_value)

Returns true_value if condition is True, and false_value if condition is False.
Example: IIF(A < B, A, B) returns the minimum of A and B.

Substring(string,
start_position,
length)

Returns a substring of specified length starting at start_position. Example:
Substring(CompanyName, 1, 5) returns first five characters of the
CompanyName value.

Adding Rows and Primary Keys
Adding new rows often, if not always, presents a serious problem with poor help from standard data frameworks,
including ADO.NET. Specifically, the problem of primary key values in the newly added rows. Primary keys, such as,
ProductID, OrderID, and so on, are often assigned by a centralized procedure on the server or by the database itself
(as AutoIncrement), so they are unknown until the new row is actually added to the database. That creates a lot of

DataObjects for .NET 105

Copyright © 2017 GrapeCity, inc. All rights reserved.

problems for GUI front ends that are commonly solved by restricting functionality, forcing early database updates and
other objectionable techniques.

In this section, you will see how DataObjects for .NET solves this problem. We distinguish two different cases, two
practical mechanisms of assigning primary keys to new rows. Primary key values can be assigned by the client
application or by the server (or the database itself).

Keys Assigned by Client: New Row Detached and Attached
State
This is the simplest case, where a key value is assigned directly by the client application, in essence, by the end user.
For example, in the Northwind sample database, the key of the Customers table, CustomerID, is a string abbreviation
of the customer name: "ALFKI", "ANTON", and so on, assigned by the user. In this case, there is no "unknown key"
problem. However, there is still a problem of transitional state in newly added rows:

Each table row in DataObjects for .NET must have a definite and unique primary key value. A row with an undefined
primary key is in a special transitory state called detached. Such a row cannot be used for any purpose except setting
its field values. For example, detached rows cannot be used in updating the database. When a new row is added to a
table, for example, in a bound grid, or programmatically, with AddNew, it is initially in detached state. To change its
state to attached, that is, a fully functional row that can be sent for update, you need to set its primary key field(s) and
call the EndEdit method (explicitly or implicitly, see next about AutoEndAddNew).

If setting the primary key is the responsibility of the end user, you do not have to worry about the transition from
detached to attached state, DataObjects for .NET does it for you. Its default behavior supports assigning primary key
values by the end user. Table views have a special property, AutoEndAddNew. If it is set to True, DataObjects for
.NET automatically calls EndEdit when the row's primary key is set for the first time. If the primary key consists of
multiple fields, EndEdit will be called when all the key fields receive definite values.

Sometimes, you may need programmatic control over setting primary keys for new rows. For example, you may need
to set primary key automatically when a new row is added. This can be done in your business logic code, in the
AfterAddNew event, for example:

To write code in Visual Basic

Visual Basic

Private Sub table_Customers_AfterAddNew(ByVal sender As Object, ByVal e As
C1.Data.RowChangeEventArgs) Handles TableLogic1.AfterAddNew
 e.DataTable.DataSet.PushExecutionMode _
 (C1.Data.ExecutionModeEnum.Deferred)
 e.Row("CustomerID") = TextBox1.Text
 e.Row.EndEdit()
 e.DataTable.DataSet.PopExecutionMode()
End Sub

To write code in C#

C#

private void table_Customers_AfterAddNew(object sender, C1.Data.RowChangeEventArgs e)
{
 DataTable.DataSet.PushExecutionMode(ExecutionModeEnum.Deferred);
 e.Row["CustomerID"] = textBox1.Text;
 e.Row.EndEdit();
 e.DataTable.DataSet.PopExecutionMode();

DataObjects for .NET 106

Copyright © 2017 GrapeCity, inc. All rights reserved.

}

Execution mode Deferred is used here instead of default mode Immediate, because we need the setting of the primary
key and the EndEdit call to execute after all actions related to adding a new row are completed (including notifying
bound controls that a row has been added, and so on; it is not safe to perform actions like EndEdit while other
actions, such as AddNew have not yet been completed), see Action Order and Execution Mode.

Keys Assigned by Server or Database
It is common to allocate new primary key values on the application server or in the database itself (autoincrement
keys, triggers, and so on). In this case, the real primary key values as they will appear in the database are not known
until the new rows are actually inserted into the database. This is the "unknown key" problem. DataObjects for .NET
solves this problem by allowing you to work with temporary key values until the rows are sent to the database for
update.

Before an update, you can use arbitrary temporary values for primary keys. The only requirement is that those
temporary values must be unique, not intersecting with real (after update) primary key values. For example, the
temporary values can be made negative to ensure their uniqueness. This is done automatically by DataObjects for
.NET if you use property setting AutoIncrement = ClientAndServer.

When the rows are created on the client, they acquire temporary primary key values (become attached), as described
in Keys Assigned by Client: New Row Detached and Attached State. Rows with temporary primary key values can be
used on the client without restrictions, including adding child rows related to them, and so on.

During database update, when the new rows are actually inserted into the database, DataObjects for .NET obtains
final primary key values and substitutes the temporary values on the client with the final values. This client primary key
value refresh can be done automatically by DataObjects for .NET if you use property setting AutoIncrement =
ClientAndServer, as described in Key Assigned Automatically by Database, or it can be performed programmatically,
as shown in Programmatic Key Assignment.

Key Assigned Automatically by Database
Let's first consider the case where the new primary key value is created automatically by the database upon executing
an INSERT command. It can be an autoincrement database field, or a database trigger setting the field on INSERT.

For integer primary keys with autoincrement functionality in the database, DataObjects for .NET provides a property
setting, AutoIncrement = ServerAndClient that makes the whole process fully automatic. In this case,
AutoIncrementSeed = -1 and AutoIncrementStep = -1, which makes temporary key values on the client negative to
guarantee their uniqueness. When a row is added to the database, DataObjects for .NET uses the database capacity
to retrieve the actual key value after the row is added. See IdentityColumnLastValueSelect property for explanation on
how to find out if the database supports this functionality. Having retrieved the actual primary key value, DataObjects
for .NET sends it back to the server as the replacement for the temporary value.

Some databases do not support automatic identity assignment (autoincrement) to database fields on adding new
rows, but they support special objects (usually called sequence or generator) for generating unique identity values
that are used to set identity key values in INSERT. Such databases are, for example, Oracle (object: sequence) and
Interbase (object: generator). To ensure automatic identity value update on adding new rows for such databases, set
the IdentityColumnLastValueSelect property to the SQL command retrieving identity value, set the field's
AutoIncrementSequenceName property to the corresponding sequence (generator) object name, and set the field's
IdentityColumnRetrieveMode to BeforeInsertCommand. DataObjects for .NET will obtain a new identity value, use
it when inserting the new row, and refresh the identity row on the client. This is the recommended way of dealing with
autoincrement keys in Oracle and in Interbase. You also have an option of creating a trigger on INSERT and setting
the autoincrement key value in the trigger. This is not necessary unless you need this trigger for other purposes or
already have such trigger in the database. If you do define a trigger, use IdentityColumnRetrieveMode =
AfterInsertCommand with IdentityColumnLastValueSelect and AutoIncrementSequenceName to refresh the

DataObjects for .NET 107

Copyright © 2017 GrapeCity, inc. All rights reserved.

autoincremented value on the client.

If your database does not support the functionality of retrieving autoincremented (identity) value required by
IdentityColumnLastValueSelect, you can still use AutoIncrement = ServerAndClient, but you need to retrieve the key
value after row insert using the AfterUpdateRow event, or perform the whole row insert operation including key value
retrieval in the BeforeUpdateRow event. For example, the following code using AfterUpdateRow event can be used to
retrieve the actual key value after insert from a database that does not support IdentityColumnLastValueSelect:

To write code in Visual Basic

Visual Basic

Private Sub table_Orders_AfterUpdateRow(ByVal sender As Object, ByVal e As
C1.Data.RowUpdateEventArgs) Handles table_Orders.AfterUpdateRow
 Dim connection As C1.Data.Connection
 Dim command As System.Data.OleDb.OleDbCommand
 Dim reader As System.Data.OleDb.OleDbDataReader
 connection = SchemaDef1.Schema.Connections("Connect")
 command = New System.Data.OleDb.OleDbCommand(_
 "SELECT TOP 1 OrderID FROM Orders ORDER BY OrderID DESC", _
 CType(connection.DbConnection, System.Data.OleDb.OleDbConnection))
 command.Transaction = CType(connection.DbTransaction, _
 System.Data.OleDb.OleDbTransaction)
 reader = command.ExecuteReader()
 reader.Read()
 e.Row("OrderID") = reader("OrderID")
 reader.Close()
End Sub

To write code in C#

C#

private void table_Orders_AfterUpdateRow(object sender, C1.Data.RowUpdateEventArgs e)
{
 C1.Data.Connection connection = schemaDef1.Schema.Connections["Connect"]);
 OleDbCommand command = new System.Data.OleDb.OleDbCommand (
 "SELECT TOP 1 OrderID FROM Orders ORDER BY OrderID DESC",
(OleDbConnection)connection.DbConnection);
 command.Transaction = (System.Data.OleDb.OleDbTransaction)
 connection.DbTransaction;
 System.Data.OleDb.OleDbDataReader reader = command.ExecuteReader();
 reader.Read();
 e.Row["OrderID"] = reader["OrderID"];
 reader.Close();
}

Programmatic Key Assignment
If the new primary key value is created programmatically, according to a certain rule, on the server, then it is done in
the BeforeUpdateRow event. First, a new primary key value is allocated or calculated in code (maybe using a stored
procedure or other mechanisms) and assigned to the corresponding field(s) in the Row argument. Thus the temporary
key value originally present in Row is substituted with the final, real value. When DataObjects for .NET inserts the row

DataObjects for .NET 108

Copyright © 2017 GrapeCity, inc. All rights reserved.

into the database after the event, it uses the new value. When it then sends the row back to the server for refresh (see
Changing Data as a Result of Update (Refresh)), the new value is sent to the client. Having received the new value, the
client substitutes the temporary value with the real one.

To write code in Visual Basic

Visual Basic

Private Sub table_Orders_BeforeUpdateRow(ByVal sender As Object, ByVal e As
C1.Data.RowUpdateEventArgs) Handles table_Orders.BeforeUpdateRow
 e.Row["OrderID"] = AllocateNewRowID();
End Sub

To write code in C#

C#

private void table_Orders_BeforeUpdateRow(object sender, C1.Data.RowUpdateEventArgs
e)
{
 e.Row["OrderID"] = AllocateNewRowID();
}

Working with ADO.NET Dataset
A C1DataSet component stores its data in an ADO.NET DataSet and that internal storage is accessible via the
StorageDataSet property. This enables a powerful combination of DataObjects for .NET and ADO.NET in the same
code, see DataObjects for .NET and ADO.NET.

You can see an example of these techniques used in code in the ADOStorage sample in the ComponentOne Samples
directory. The sample project has extensive explanatory comments in the code.

This functionality allows you to access and modify the ADO.NET data set storing table data. You can use both
DataObjects for .NET and ADO.NET to access the same data. Essentially, you have two views to the same data. The
first view is a DataObjects for .NET data set (C1DataSet), and the second is the corresponding ADO.NET data set
(StorageDataSet). If you change data in one of them and then switch to the other, it will automatically reflect the
changed data.

When you fill or modify a C1DataSet, DataObjects for .NET stores table data internally in an ADO.NET data set. You
can access this data set at any time through the StorageDataSet property. This ADO.NET data set contains only simple
table rows. For each simple table, you will find a table with the same name in the underlying ADO.NET data set (you
can also access data tables with StorageDataTable and individual columns with StorageDataColumn). Table views are
not stored in this ADO.NET data set, because they do not contain data as such, their rows only contain pointers to
table rows; for more information, see Structured Data Storage: Tables and Table Views.

Using the StorageDataSet property, you can work directly with the ADO.NET data set or export data from a C1DataSet
to an ADO.NET data set or to XML. So, the conversion from C1DataSet to ADO.NET DataSet is easy, just use the
StorageDataSet property.

Conversion from an ADO.NET data set to C1DataSet is also possible, but it can require additional work, because we
also need to set up table view rows, which are not stored in the ADO.NET data set. By "conversion process" process
we mean modifying the underlying ADO.NET data set, StorageDataSet.

You can modify StorageDataSet using any means available in ADO.NET, and then "synchronize" it with the C1DataSet,
that is, set up table view rows pointing to the table rows. The conversion, that is, modification/synchronization process
has two stages:

First, you modify StorageDataSet (fill simple tables with data or modify their data as you need), and second, you fill

DataObjects for .NET 109

Copyright © 2017 GrapeCity, inc. All rights reserved.

table views with rows that point to table rows.

Changing data in the ADO.NET data tables comprising StorageDataSet is only allowed on the first stage of this
process. When the first stage ends, tables are filled with data. You must exercise caution not to modify ADO.NET table
data directly except on the first stage of the modification/synchronization process (but of course you can modify it at
any time through the regular DataObjects for .NET programmatic object model). DataObjects for .NET does not
enforce this – it is developer's responsibility. Violating this restriction will not be detected by DataObjects for .NET
and can have unpredictable consequences.

At the beginning of the second stage, all table views are cleared so you can fill them with rows (pointing to table
rows). To fill a table view, use the C1DataSet.SetTableViewRows method. If you do not call
C1DataSet.SetTableViewRows for a table view, it will be called automatically at the end of the second stage, with
default parameters. So, if your table view contains all possible table rows, without restrictions (filters), you do not need
to do anything with it on the second stage. But in many cases, such as when you used filter conditions filling
C1DataSet, you need to control the collection of table rows that belong to table views. This is done using the
C1DataSet.SetTableViewRows method for each such table view. You have two options: either to enumerate the rows
manually (for instance, scanning the existent table rows, finding the ones that must belong to the table view, or to call
GetDefaultTableViewRows that provides the full list of all existing table rows so you can filter them and then pass the
filtered list to C1DataSet.SetTableViewRows.

The complete modification/synchronization process looks like this:

// start
c1DataSet1.StorageChangeBegin()
// fill or modify tables (modify data in StorageDataSet)
...first stage...
// first stage complete, tables filled, table views are
// undefined at this point
c1DataSet1.StorageChanged(true)
// fill table views with rows pointing to tables
// (calling SetTableViewRows())
...second stage...
// process complete, both tables and table views filled
c1DataSet1.StorageChangeEnd()

Note: For a complete example see the ADOStorage sample, which is installed with the Studio for WinForms
samples.

DataObjects for .NET Enterprise Edition Design-Time
Support
DataObjects for .NET provides customized context menus, smart tags, and a designer that offers rich design-time
support and simplifies working with the object model. The following sections describe how to use DataObjects for
.NET's design-time environment to configure the DataObjects for .NET components.

Tasks Menus
A smart tag represents a short-cut tasks menu that provides the most commonly used properties in each component.
You can invoke each component's tasks menu by clicking on the smart tag () in the upper-right corner of the
component.

Properties Window
You can also easily configure DataObjects for .NET at design time using the Properties window in Visual Studio. You
can access the Properties window by right-clicking the control and selecting Properties.

DataObjects for .NET 110

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1SchemaDef Tasks and Context Menus
You can access the C1SchemaDef Tasks menu by clicking the smart tag in the upper-right corner of the
C1SchemaDef component.

You can access the C1SchemaDef context menu by right-clicking the C1SchemaDef component.

About DataObjects
Clicking About displays the DataObjects for .NET's About dialog box, which is helpful in finding the build number of
the component.

Schema Designer
Clicking Schema Designer opens the DataObjects Schema Designer. A Schema is the basis and starting point of
DataObjects for .NET development. It contains data structure information, defining basic entities, such as tables and
relations, with their properties. Normally, a schema is initially created by importing a database structure using the
Import Wizard in the Schema Designer, and then customized in the Schema Designer to suit your business logic
needs.

Create Business Logic Components
Clicking Business Logic Components creates a business logic component for each table and each data set in the
schema. Every schema object can be represented by a special business logic component. Business logic components

DataObjects for .NET 111

Copyright © 2017 GrapeCity, inc. All rights reserved.

(components C1.Data.C1TableLogic and C1.Data.C1DataSetLogic) have events where you can write code responding
to various occurrences in data objects.

Business Logic Events
Clicking Business Logic Events displays the Business Logic Events dialog box. The Business Logic Events tool
window shows the list of all tables and data sets. When you select a table in the tool window, the table's business
logic events appear in the Properties window (in Visual C#, when the Events radio button is selected in the Properties
window; in Visual Basic use the Method Name combo box in the code editor).

Conversion Wizard
Clicking Conversion Wizard brings up the C1DataObjects Conversion Wizard which allows you to import schema
information. See Importing Schema Information using the Conversion Wizard for more information.

C1DataSet Tasks and Context Menus
You can access the C1DataSet Tasks menu by clicking the smart tag in the upper-right corner of the C1DataSet
component.

You can access the C1DataSet context menu by right-clicking the C1DataSet component.

About DataObjects
Clicking About displays the DataObjects for .NET's About dialog box, which is helpful in finding the build number of
the component.

Save Export XML Schema
Clicking Save Export XML Schema opens the Save schema to a file dialog box which you can use to export data
from a C1DataSet to XML. See Exporting Data from a C1DataSet to XML for more information.

C1DataView Tasks and Context Menus
You can access the C1DataView Tasks menu by clicking the smart tag in the upper-right corner of the C1DataView
component.

You can access the C1DataView context menu by right-clicking the C1DataView component.

About DataObjects
Clicking About displays the DataObjects for .NET's About dialog box, which is helpful in finding the build number of
the component.

DataObjects for .NET 112

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1SchemaRef Tasks and Context Menus
You can access the C1SchemaRef Tasks menu by clicking the smart tag in the upper-right corner of the
C1SchemaRef component.

You can access the C1SchemaRef context menu by right-clicking the C1SchemaRef component.

About DataObjects
Clicking About displays the DataObjects for .NET's About dialog box, which is helpful in finding the build number of
the component.

Business Logic Events
Clicking Business Logic Events displays the Business Logic Events dialog box. The Business Logic Events tool
window shows the list of all tables and data sets. When you select a table in the tool window, the table's business
logic events appear in the Properties window (in Visual C#, when the Events radio button is selected in the Properties
window; in Visual Basic use the Method Name combo box in the code editor).

C1TableLogic Tasks and Context Menus
You can access the C1TableLogic Tasks menu by clicking the smart tag in the upper-right corner of the C1TableLogic
component.

You can access the C1TableLogic context menu by right-clicking the C1TableLogic component.

DataObjects for .NET 113

Copyright © 2017 GrapeCity, inc. All rights reserved.

About DataObjects
Clicking About displays the DataObjects for .NET's About dialog box, which is helpful in finding the build number of
the component.

Create DataAdapter
Clicking Create DataAdapter creates a DataAdapter in a C1TableLogic component associated with the table. The
DataAdapter component will then perform both fetch and update without custom code (but you can customize the
default fetch and update behavior in event code if needed).

C1DataTableSource Tasks and Context Menus
You can access the C1DataTableSource Tasks menu by clicking the smart tag in the upper-right corner of the
C1DataTableSource component.

You can access the C1DataTableSource context menu by right-clicking the C1DataTableSource component.

About DataObjects
Clicking About displays the DataObjects for .NET's About dialog box, which is helpful in finding the build number of

DataObjects for .NET 114

Copyright © 2017 GrapeCity, inc. All rights reserved.

the component.

DataObjects for .NET Tutorials
The following tutorials demonstrate a variety of DataObjects concepts and features, including working with schemas,
business logic, application configurations, and using large datasets.

Note: If you are running the pre-built tutorial projects included in DataObjects for .NET installation, please be
aware that the projects have the sample database location hard coded in the connection string. If you have the
Northwind database (standard MS Access sample database included in Visual Studio) installed in a different
location, you can change the connection string or copy the C1NWind.mdb file to the required location.

Tutorial 1: Creating a Data Schema
In this tutorial, you'll learn the basics of working with DataObjects for .NET, including how to:

Import a database structure so it becomes a data schema, the basis of all DataObjects for .NET activities.
Create composite tables, to better shape and represent data to meet the needs of your users.
Specify business logic in the form of calculation expressions and constraints. Note that in this tutorial, you'll
specify business logic using calculated expressions and constraints. More business logic features will be
introduced in other tutorials.
Create data set definitions (DataSetDef) consisting of TableView objects exposing data to the user.
Bind graphic user interface (GUI) controls to a DataObjects for .NET data source.

In this tutorial you'll use two different data bound grid controls, TrueDBGrid for .NET and Microsoft DataGridView,
to demonstrate that DataObjects for .NET can serve as a data source to any data-bound GUI controls adhering to
.NET databinding specifications. All other tutorials will use only ComponentOne grid controlsas they are most closely
integrated with DataObjects for .NET. Most DataObjects for .NET features, all features that rely only on standard
.NET data binding, will work with any third-party data-bound control. However, some DataObjects for .NET features
that are extensions of standard .NET data binding, most notably, Virtual Mode (see Tutorial 4: Virtual Mode: Dealing
with Large Datasets), require that you use ComponentOne data bound controls.

The first step in using DataObjects for .NET is creating a data schema. A schema is created using the DataObjects
Schema Designer. Unlike in standard ADO.NET, a schema and associated business logic can be created once and
then reused throughout your projects. Normally, you create a new schema by importing a database structure using
the schema designer's Import Wizard. Alternatively, you can import an existing ADO.NET schema. See Converting
Schema from Other Sources for more information.

To set up the project and create a schema:
1. Create a new Windows Application project.
2. Place the following components on the form as shown in the image below.

Number of
Components Names Namespace

1 C1SchemaDef C1SchemaDef1 C1.Data.C1SchemaDef

2 C1DataSet C1DataSet1
C1DataSet2

C1.Data.C1DataSet

2 C1TrueDBGrid C1TrueDBGrid1
C1TrueDBGrid2

C1.Win.C1TrueDBGrid.C1TrueDBGrid

DataObjects for .NET 115

Copyright © 2017 GrapeCity, inc. All rights reserved.

1 Label Label1 System.Windows.Forms.Label

1 DataGridView DataGridView1 System.Windows.Forms.DataGridView

2 command Buttons Button1
Button2

System.Windows.Forms.Button

3. Set the Text property of Button1 to "Commit Changes" and the Text property of Button2 to "Products and
Orders".

4. Select the C1SchemaDef1 control, use the smart tags to expand the C1SchemaDef Tasks menu and select
Schema Designer.

The Schema Designer opens, and the Import Wizard appears.

Note: Select Schema | Import database structure in the Schema Designer to open the Import Wizard
if it does not automatically appear.

DataObjects for .NET 116

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. In the Import Wizard dialog, click the ellipsis button to the right of the connection string. The standard
OLE DB Data Link Properties dialog box opens.

6. Select the provider, the database and other necessary connection properties in that dialog box. In this tutorial,
the standard MS Access Northwind sample database (C1NWind.mdb) is used.

1. Click the Provider tab, if necessary, and select Microsoft Jet 4.0 OLE DB Provider.
2. Click the Connection tab and then click the ellipsis button under Select or enter a database name.
3. Locate the C1NWind.mdb database, installed by default in the Common folder in the ComponentOne

Samples directory, and click Open.
4. Click OK to close the DataLink Properties dialog box. The connection string is imported.

7. Click Next. In this window, you can select the tables to import into the schema.

8. Click the button to select all available tables and then click Finish. The Import Wizard creates the
schema and closes.

DataObjects for .NET 117

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the Schema Designer, the Tables window contains the list of all simple tables created by the Import
Wizard based on the database tables. The Relations window contains inter-table relations created by the
Import Wizard based on the relationships existing in the database.

9. Double-click the Categories table in the Tables window and select the CategoryID field from the Fields list in
the lower panel of the Table Editor.

10. Set its DataSourceReadOnly property to True. Note that modifying table properties is only necessary when you
use Microsoft Access as your database, since the MS Access OLE DB provider does not consider Autoincrement
fields (row identity fields; their values are automatically assigned and maintained by the database) as read-only.

DataObjects for .NET 118

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: Switch between the Design and Preview data views of the tables using the tabs at the bottom of
the editor window or by using the Shift and F5 keys; press F5 to move from Design to Preview data view
or press Shift+F5 to move from Preview data to Design view.

11. Double-click the Products table in the Tables window and select the UnitPrice field from the Fields list in the
lower panel of the Table Editor.

12. Click the ellipsis button next to the Constraints property to open the Constraints Editor.

13. Click the Add button . A constraint is added to the list, and its properties appear in the right pane of the
Constraints Editor. Note that a field can have multiple constraints.

1. Type the following expression in the Expression property:
UnitPrice > 0

2. Add the following string in the ErrorDescription property:
UnitPrice must be a positive number

DataObjects for .NET 119

Copyright © 2017 GrapeCity, inc. All rights reserved.

14. Click Close. The constraint expression for the UnitPrice field of the Products table is specified, and now we will
create several composite tables.

To create composite tables:
1. In the Schema Designer, right-click the Tables window and select Add | Composite Table from the context

menu.

2. In the newly added node, change the default name from CompositeTable to "CustOrders".

The Composite Table Editor opens when a new composite table is created. The editor has two tabs: Diagram

DataObjects for .NET 120

Copyright © 2017 GrapeCity, inc. All rights reserved.

and Properties. Using the Diagram tab, you can specify which simple tables are used in the composite table
and how they are related.

3. Click the Add tables button at the top of the editor. The Add Tables dialog box opens.

1. Select Customers,OrdersandEmployees in the Existing tables window and click the button to
move them to the Selected tables window.

2. Click OK. A diagram is created and consists of three tables connected by two relations. Note that it may
be necessary to expand your Diagram display pane to see the tables.

4. The relation between Orders and Employees must be inverted, because we need an employee record (child
record) to be uniquely determined by an order record (parent record); currently Employees is the parent and
Orders is the child. Right-click the Orders – Employees relation on the diagram, and select Invert from the
context menu. This makes Orders the parent and Employees the child.

DataObjects for .NET 121

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Rename the relation correspondingly: with the relation selected, set its Name property to Orders – Employees in
the property grid below the diagram.
The structure of the composite table CustOrders shown on the diagram can be represented in the following
notation:
Customers →(1-∞) Orders →(∞-1) Employees

Here →(1-∞) is a one-to-many relation, and →(∞-1) is a many-to-one relation. Relation cardinality, either
OneToMany or ManyToOne, can be seen on the diagram (the infinity symbol designates the many part) and in
the property grid when the relation arrow is selected.

According to relation cardinality, each row of the CustOrders composite table consists of a Customers row, an
Orders row (one of the child rows of the Customers row) and an Employees row (the single child row uniquely
determined by the Orders row).

6. To create the fields in our new CustOrders composite table, select fields in the constituent tables in the
diagram:

1. Select the Customers table and check the checkboxes for the following fields: Address, City, Country,
CustomerID, PostalCode, and Region.

2. Select the Orders table and check the checkboxes for all fields except CustomerID. The CustomerID is
used in the Customers – Orders relation to connect an order record to a customer record; it has no other
purpose, and CustomerID is already selected in the Customers table.

3. Select the Employees table and check the checkboxes for the following fields: FirstName and
LastName. EmployeeID is not included for the same reason the CustomerID field was not included in the
Orders table.

Note: To view all fields and their properties, select the Properties tab in the Composite Table Editor.
Each field that was checked appears in the lower panel.

DataObjects for .NET 122

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. In the same way we created the CustOrders table, create another composite table, OrderDetailsProducts, by
combining the simple tables Order Details and Products.

8. Right-click the relation between Products and Order Details and select Invert.
9. Set the relation's Name property to Order Details – Products in the property grid below the diagram.

10. Select the Order Details table and check the checkboxes for all fields except UnitPrice.
11. Select the Products table and check the checkboxes for ProductName and UnitPrice.

The resulting OrderDetailsProducts composite table has the following structure:

Order Details →(∞-1) Products

A row of the OrderDetailsProducts composite table consists of an Order Details row and a Products row (the
single child row uniquely determined by the Order Details row).

12. Add a new calculated field, ExtendedPrice, to the OrderDetailsProducts composite table:
1. Select the Properties tab of the Composite Table Editor.
2. Right-click the Fields list and select Add from the context menu. A new CompositeTableField is added to

the list.
3. Change the default name to ExtendedPrice.

DataObjects for .NET 123

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. With the ExtendedPrice field selected, enter the following value in the CalculationExpression property:
Quantity * UnitPrice * (1 - Discount)

5. Set the DataType property to Decimal.

Note: Calculated fields can be added to simple tables as well as to composite tables. See Table Fields for
details.

13. We are going to create a composite relation between the CustOrders and OrderDetailsProducts composite
tables. Right-click anywhere in the Relations window and select Add from the context menu. The Relation
Editor appears.

14. Rename the relation CO – ODP, short for CustOrders – OrderDetailsProducts.
15. Click the drop-down arrow next to the Parent property and select CustOrders from the list of all available

tables.
16. Click the drop-down arrow next to the Child property and select OrderDetailsProducts from the list of all

available tables.

When you select a composite table in the Parent or Child property, the Relation Editor changes. The
JoinConditions panel disappears, and the set of properties changes, all due to the fact that the relation is now
a composite relation not a simple relation. A composite relation, or a relation between two tables, one of which
is a composite table, is based on a simple relation that connects two tables, one belonging to the parent
composite table and the other belonging to the child composite table.

To create data sets:
1. In the Schema Designer, select View | DataSets so the DataSets window is visible.
2. Right-click anywhere in the DataSets window and select Add in the context menu.
3. Change the default name to CustOrders.
4. In the DataSet Editor, click the Add tables button. The Add Tables dialog box opens.

1. Select CustOrders,OrderDetailsProducts andEmployees in the Existing tables window and click the

 button to move them to the Selected tables window. Note that CustOrders

DataObjects for .NET 124

Copyright © 2017 GrapeCity, inc. All rights reserved.

andOrderDetailsProducts are composite tables. Employees is a simple table.
2. Click OK. A diagram is created and consists of three tables; CustOrders and OrderDetailsProducts are

connected by a relation. Note that it may be necessary to expand your Diagram display pane to see the
tables.

5. Right-click the Employees table and choose Fields from the context menu. The Fields Editor appears.

6. Select a field and use the Move up and Move down arrow buttons to re-arrange the field order.
7. Click Close.
8. To demonstrate how multiple data sets can exist in a schema, create one more data set with two composite

tables. First, create the composite tables:
1. Add a new composite table and name it CustOrdersDetails:

Click the Add tables button and add the following tables: Customers, Orders, Order
Details,Products and Categories.
Invert the relation between Products and Order Details and rename it Order Details – Products.
Invert the relation between Categories and Productsand rename it to Products - Categories.
Select the Customers table and check the checkboxes for the following fields: Address, City,
CompanyName, Country, CustomerID, PostalCode and Region.
Select the Orders table and check the checkboxes for all fields except CustomerID.
Select the Order Details table and check the checkboxes for the following fields: Discount,
ProductID and Quantity.
Select the Products table and check the checkboxes for the following fields: CategoryID,
ProductName and UnitPrice.
Select the Categories table and check the checkboxes for the following fields: CategoryName.
The resulting CustOrdersDetails composite table has the following structure:
Customers →(1-∞) Orders →(1-∞) Order Details →(∞-1) Products →(∞-1) Categories

A row of the CustOrdersDetails composite table consists of a Customers row, an Orders row (one
of the child rows of the Customers row), an Order Details row (one of the child rows of the Orders
row), a Products row (the single child row uniquely determined by the Order Details row) and a
Categories row (the single child row uniquely determined by the Products row).

2. Add a second composite table and name it ProductsOrderDetailsCust:
Click the Add tables button and add the following tables: Customers, Orders, Order Details,
Products and Categories.

DataObjects for .NET 125

Copyright © 2017 GrapeCity, inc. All rights reserved.

Invert the relation between Categories and Productsand rename it to Products - Categories.
Invert the relation between Orders and Order Detailsand rename it to Order Details - Orders.
Invert the relation between Customers and Ordersand rename it to Orders - Customers.
Select the Products table and check the checkboxes for the following fields: CategoryID,
ProductID, ProductName, UnitsInStock and UnitsOnOrder.
Select the Categories table and check the checkboxes for the following fields: CategoryName.
Select the Order Details table and check the checkboxes for the following fields: OrderID and
Quantity.
Select the Orders table and check the checkboxes for the following fields: CustomerID.
Select the Customers table and check the checkboxes for the following fields: CompanyName.

The resulting ProductsOrderDetailsCust composite table has the following structure:

Products →(1-∞) Order Details →(∞-1) Orders →(∞-1) Customers;
Products →(∞-1) Categories

Note the branching at the Products node. It has two children: Order Details connected with a
one-to-many relation and Categories connected with a many-to-one relation. In general,
branching in composite table diagrams is allowed, but only for many-to-one relations. One-to-
many relations are not allowed to branch in a composite table, because a composite table should
not form a branched tree; it must contain a set of rows having identical structure.

A row of the ProductsOrderDetailsCust composite table consists of a Products row, a Categories
row (the single child row uniquely determined by the Products row), an Order Details row (one of
the child rows of the Products row), an Orders row (the single child row uniquely determined by
the Order Details row) and the Customers row (the single child row uniquely determined by the
Orders row).

9. Finally, create a DataSet, ProductsOrders, including two composite tables, CustOrdersDetails and
ProductsOrderDetailsCust:

1. Right-click anywhere in the DataSets window and select Add in the context menu.
2. Change the default name to ProductsOrders.
3. In the DataSet Editor, click the Add tables button. The Add Tables dialog box opens.
4. Select CustOrdersDetails andProductsOrderDetailsCust in the Existing tables window and click the

 button to move them to the Selected tables window.
5. Click OK. A diagram is created and consists of two tables. Note that it may be necessary to expand your

Diagram display pane to see the tables.
10. The schema is ready. Select File | Save As, enter Schema1 in the File name text box and click Save. This

schema will be used in other tutorial projects.
11. Close Schema Designer and click Yes if asked whether you want to save changes. The schema is saved in the

C1SchemaDef1 component (in the form resource file).
12. In your project, set the SchemaDef property of C1DataSet1 and C1DataSet2 to SchemaDef1. This connects

the data set components to the schema.
13. Choose the data set exposed by each of the two components:

1. Set the DataSetDef property of C1DataSet1 to CustOrders.
2. Set the DataSetDef property of C1DataSet2 to ProductsOrders.

14. A client application usually needs some subset of data fetched to a data set, so we need some means of
restricting, or filtering, data as it is retrieved from the database. This can be done by using FilterConditions. In
this tutorial, we will restrict product data to only those products that have CategoryID = 1 (beverages) in
C1DataSet2, the ProductsOrders data set, using the BeforeFill event. C1DataSet1, the CustOrders data set, will
remain unrestricted. Add the following code to create the C1DataSet2_BeforeFill event handler to restrict
product data:

To write code in Visual Basic

Visual Basic

DataObjects for .NET 126

Copyright © 2017 GrapeCity, inc. All rights reserved.

Private Sub C1DataSet2_BeforeFill(ByVal sender As Object, ByVal e As
C1.Data.FillEventArgs) Handles C1DataSet2.BeforeFill
 Dim dataSetDef As C1.Data.SchemaObjects.DataSetDef
 dataSetDef = e.DataSet.Schema.DataSetDefs("ProductsOrders")
 e.Filter.Add(New C1.Data.FilterCondition(dataSetDef.TableViews_
 ("ProductsOrderDetailsCust"), "[CategoryID] = 1"))
 e.Filter.Add(New C1.Data.FilterCondition(dataSetDef.TableViews _
 ("CustOrdersDetails"), "[CategoryID] = 1"))
End Sub

To write code in C#

C#

private void c1DataSet2_BeforeFill(object sender, C1.Data.FillEventArgs e)
{
 C1.Data.SchemaObjects.DataSetDef dataSetDef =
e.DataSet.Schema.DataSetDefs["ProductsOrders"];
 e.Filter.Add(new C1.Data.FilterCondition(dataSetDef.TableViews
 ["ProductsOrderDetailsCust"], "[CategoryID] = 1"));
 e.Filter.Add(new C1.Data.FilterCondition(dataSetDef.TableViews
 ["CustOrdersDetails"], "[CategoryID] = 1"));
}

To bind GUI controls to a DataObjects for .NET data source:
1. Open the C1TrueDBGrid Tasks menu for C1TrueDBGrid1 and select C1DataSet1 under Choose DataSource.

2. Set the Caption property to Customers.
3. Open the C1TrueDBGrid Tasks menu for C1TrueDBGrid2 and select C1DataSet1 under Choose DataSource.
4. Set the Caption property to Orders.
5. Set the DataSource property of DataGridView1 to C1DataSet1.

DataObjects for .NET 127

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Set the Text property of Label1 to Employees.
7. Set the DataMember property for each grid as follows and click Yes to replace the existing column layout:

C1TrueDBGrid1.DataMember = _CustOrders
C1TrueDBGrid2.DataMember = _CustOrders.CO - ODP
DataGridView1.DataMember = Employees

Note: Data members exposed by a C1DataSet data source represent the TableView objects of the data
set. Those that have child table views, or relations, can be used in a master-detail hierarchy. They are
represented by two data members, one with a leading underscore, the other without it. The data member
without a leading underscore is used to connect to the table view as to an isolated data source, without
master-detail hierarchy. The data member with a leading underscore is used to connect to it as to the
root node, or master, of a master-detail hierarchy. Dependent nodes, or details, are represented by
relation names, such as _CustOrders.CO – ODP.

8. In order to be able to send data modifications to the database, double-click Button1 to create the
Button1_Click event and add the following code to the event:

To write code in Visual Basic

Visual Basic

C1DataSet1.Update()

To write code in C#

C#

c1DataSet1.Update();

9. The second data set, ProductsOrders, will be shown in a separate form. Select Project | Add Windows Form,
choose Windows Form in the Add New Item dialog box and click Add. Form2 is added to the project.

10. Add two DataGridView components, DataGridView1 and DataGridView2, and two Label controls, Label1 and
Label2 to the form.

11. Set the the Text properties for Label1 and Label2 to Products and Orders, respectively.
The form will appear similar to the following:

12. Add the following method to the Form2 code:

To write code in Visual Basic

DataObjects for .NET 128

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Friend Sub SetDataSet(ByVal dataSet As C1.Data.C1DataSet)
 DataGridView1.DataMember = "ProductsOrderDetailsCust"
 DataGridView1.DataSource = dataSet
 DataGridView2.DataMember = "CustOrdersDetails"
 DataGridView2.DataSource = dataSet
End Sub

To write code in C#

C#

internal void SetDataSet (C1.Data.C1DataSet dataSet)
{
 dataGridView1.DataMember = "ProductsOrderDetailsCust";
 dataGridView1.DataSource = dataSet;
 dataGridView2.DataMember = "CustOrdersDetails";
 dataGridView2.DataSource = dataSet;
}

13. Go back to Form1 and add the following code to the Button2_Click event. This will activate Form2.

To write code in Visual Basic

Visual Basic

Dim form2 As Form2
form2 = New Form2()
form2.SetDataSet(C1DataSet2)
form2.ShowDialog(Me)

To write code in C#

C#

Form2 form2 = new Form2();
form2.SetDataSet(c1DataSet2);
form2.ShowDialog(this);

Run the program and observe the following:
The two C1TrueDBGrid controls on the left show rows of composite tables CustOrders and
OrderDetailsProducts combining data from multiple database tables. Note that this was achieved without
creating database views or writing complex SQL statements with joins. It demonstrates how DataObjects for
.NET is used to facilitate database application development, playing the role of a data modeling and query
building tool. The most compelling benefits of the DataObjects for .NET's structured data model become
apparent when you try modifying data. DataObjects for .NET does not merely present data as independent
simple tables of rows. It maintains the specified structure automatically when you modify data – the task
universally required in database applications and one that other data frameworks, including ADO.NET, fall short
of supporting.

DataObjects for .NET 129

Copyright © 2017 GrapeCity, inc. All rights reserved.

To observe how DataObjects for .NET maintains underlying structure on data modifications, try changing the
EmployeeID field in the first row of C1TrueDBGrid1, the Customers grid, from 6 to 1. The FirstName and
LastName fields, dependent on EmployeeID, change correspondingly. Now go to DataGridView1, the
Employees grid, and change the LastName of the employee with EmployeeID=1. All rows of the Customers
grid that have EmployeeID = 1 reflect this change, showing the new LastName value. Alternatively, you can
change the LastName or FirstName field in the Customers grid and see the change reflected in the Employees
grid. Whatever the changes, DataObjects for .NET recognizes them so you can rely on proper structure being
maintained for your data at all times.
DataObjects for .NET supports master-detail hierarchy, as you can see in the Customers and Orders grids.
The Orders grid shows the orders of the customer currently selected in the Customers grid. DataObjects for
.NET also supports sorting: click a column header of a grid, and the data will be sorted by that column.
In the Orders grid, you can see the ExtendedPrice column, which is a calculated field we defined in the schema.
Try entering a negative number in the UnitPrice column of the Orders grid. Negative numbers are not allowed
in accordance with the constraint we defined for the UnitPrice field of the Products table.
Click Button2, the Products and Orders button. Form2 opens with two grids showing the two composite
tables defined in the second data set of our schema, ProductsOrders.

DataObjects for .NET 130

Copyright © 2017 GrapeCity, inc. All rights reserved.

Try entering a negative number in the UnitPrice column of the DataGridView2, or Orders grid, in Form2.
Negative numbers are not allowed here as they are not allowed in Form1, because of the same constraint
defined in the UnitPrice field of the Products table. This demonstrates a very important and powerful feature
of DataObjects for .NET: business logic defined on table level is enforced in all composite tables and in all
data sets where this table is used. You define business logic where it belongs, and do it only once, the rest is
DataObjects for .NET's responsibility.

Tutorial 2: Defining Business Logic
In this tutorial, you will learn how to:

Create a data library that can be used in multiple projects.
Define business logic for your data objects that is enforced by DataObjects for .NET wherever these objects are
used.

In the previous tutorial, we defined and used data objects in the same project. This is not how DataObjects for .NET is
supposed to be used. A better way to use DataObjects for .NET is to define your business objects (data objects) in a
separate assembly, data library, so it can be used by multiple applications. Although this is not mandatory, your
enterprise can assign a special team of "data-oriented" developers to the task of creating business object projects (data
libraries) and another team of "GUI-oriented" developers to creating client applications using data libraries. This is how
DataObjects for .NET enables you to benefit from the right design and development technology. However,
DataObjects for .NET fits equally well into smaller development projects, where business objects and client
applications are developed by the same team. The main architectural benefit of using DataObjects for .NET is in clear
separation between business logic and presentation layer (GUI). Encapsulating your data model and logic in a
centralized place (data library) that can be reused by multiple clients makes your applications robust, scalable and fun
to develop. This is not to mention numerous tools and enhancements DataObjects for .NET adds to your data access
toolbox, including such a powerful and extremely important one as virtual mode (cached access to large recordsets),
see Tutorial 4: Virtual Mode: Dealing with Large Datasets.

A data library is an assembly (DLL) containing DataObjects for .NET schema and business logic components and code
that defines your data objects. These data objects can then be used in any project by simply referencing the library in
the project and using a DataObjects for .NET C1DataSet component to connect to the library. All database access and
business logic code is encapsulated in the library, so it can be created and maintained independently of client
applications.

1. Create a new Data Library project:
1. Select File | New Project in the Visual Studio menu, and in the New Project dialog box under Project

types, choose either Visual Basic or Visual C#, according to your language preference. Note that one of
these options may be located under Other Languages.

2. Select ComponentOne Data Library from the list of Templates in the right pane.

3. Enter Northwind in the Name text box, specify a location and click OK.
The Northwind data library project is created for you. The main file of the resulting data library project is
DataClass.vb (.cs), a component class where you will host the schema and business logic. Note that in

DataObjects for .NET 131

Copyright © 2017 GrapeCity, inc. All rights reserved.

large projects, it is also possible to distribute business logic code over multiple files. A C1SchemaDef
component is automatically added to DataClass.

2. Select the SchemaDef1 component and set the DataObjectsAssemblyFlags property to None in the
Properties window. By doing this, we avoid creating a separate namespace for each dataset definition in the
automatically generated dataobjects assembly.

3. Right-click SchemaDef1 and choose Schema Designer from the context menu.

The Schema Designer opens and the Import Wizard appears.
4. We will use the schema created in Tutorial 1: Creating a Data Schema, so click Cancel to close the Import

Wizard.
5. Select File | Open in the Schema Designer menu and open the schema file that was saved in Tutorial 1:

Creating a Data Schema. The schema appears in the designer.
6. Close the Schema Designer and click Yes to save the changes.
7. Compile the data library project by selecting Build | Build Solution.

To define business logic:

With the schema now in place, we can specify business logic. You already saw some elements of business logic, namely
constraint expressions and calculation expressions, in Tutorial 1: Creating a Data Schema. Expressions are an easy and
straightforward way of defining business logic. However, when expressions are not enough, some code must be written.
In this tutorial, we will show how to write business logic code.

Every schema object can be represented by a special business logic component. Business logic components
(components C1.Data.C1TableLogic and C1.Data.C1DataSetLogic) have events where you can write code responding to
various occurrences in data objects.

1. Right-click the C1SchemaDef component and select Create Business Logic Components from the context

DataObjects for .NET 132

Copyright © 2017 GrapeCity, inc. All rights reserved.

menu. This creates a business logic component for each table and each data set in the schema. We only need
three of them, so delete all but the following three components: table_Customers, table_Order_Details, and
dataset_ProductsOrders.

Alternatively, you can create the three business logic components manually from the Visual Studio Toolbox by
adding two C1TableLogic components and one C1DataSetLogic component. Then you must set each of their
properties: set SchemaComponent to SchemaDef1, C1TableLogic1.Table to Customers, C1TableLogic2.Table
to Order Details and C1DataSetLogic1.DataSetDef to ProductsOrders.

2. Add the following code to create an event handler table_Customers_BeforeFieldChange and convert the
proposed CustomerID value to upper case:

To write code in Visual Basic

Visual Basic

Private Sub table_Customers_BeforeFieldChange(ByVal sender As Object, ByVal e As
C1.Data.FieldChangeEventArgs) Handles table_Customers.BeforeFieldChange
 If e.Field.Name = "CustomerID" Then
 e.NewValue = CStr(e.NewValue).ToUpper()
 End If
End Sub

To write code in C#

C#

private void table_Customers_BeforeFieldChange(object sender,
C1.Data.FieldChangeEventArgs e)
{
 if (e.Field.Name == "CustomerID")
 e.NewValue = ((string)e.NewValue).ToUpper();
}

This code will be executed each time the value of a field in the Customers table is about to change. As with all
other DataObjects for .NET business logic events, it is triggered at any attempt to change a field of any object,
be it a table view or a composite table, that would change a Customers table field. So the logic we put here will
be enforced in any object in any context where the Customers table is involved.

3. Add the following code to create an event handler table_Order_Details_BeforeFieldChange:

To write code in Visual Basic

Visual Basic

Private Sub table_Order_Details_BeforeFieldChange(ByVal sender As Object, ByVal e
As C1.Data.FieldChangeEventArgs) Handles table_Order_Details.BeforeFieldChange
 If e.Field.Name = "Quantity" Then
 If (CShort(e.NewValue) < 1) Then
 e.NewValue = CShort(1)
 End If

DataObjects for .NET 133

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ElseIf e.Field.Name = "Discount" Then
 If CSng(e.NewValue) < 0 Or CSng(e.NewValue) > 1 Then
 Throw New ApplicationException("Discount must be between 0 and 1")
 End If
End If
End Sub

To write code in C#

C#

private void table_Order_Details_BeforeFieldChange(object sender,
C1.Data.FieldChangeEventArgs e)
{
 if (e.Field.Name == "Quantity")
 {
 if ((short)e.NewValue < 1)
 e.NewValue = (short)1;
 }
 else if (e.Field.Name == "Discount")
 {
 if ((float)e.NewValue < 0 || (float)e.NewValue > 1)
 throw new ApplicationException("Discount must be between 0 and 1");
 }
}

The code for Quantity turns a negative value to 1 before it is assigned to the Quantity field of the Order Details
table.
The code for Discount tests a constraint 0 < Discount < 1 and shows a message if it is not satisfied. It is
executed before changing the Discount value.

4. Add the following code to create an event handler table_Order_Details_AfterFieldChange:

To write code in Visual Basic

Visual Basic

Private Sub table_Order_Details_AfterFieldChange(ByVal sender As Object, ByVal e
As C1.Data.FieldChangeEventArgs) Handles table_Order_Details.AfterFieldChange
 If e.Field.Name = "Quantity" Then
 Dim orderDetail As Order_DetailsRow, product As ProductsRow
 Dim oldValue, unitsOrdered As Short
 orderDetail = Order_DetailsRow.Obj(e.Row)
 product = orderDetail.GetProductsRow()
 If Not (product Is Nothing) Then
 If e.OldValue Is Convert.DBNull Then
 oldValue = CShort(0)
 Else
 oldValue = CShort(e.OldValue)
 End If
 unitsOrdered = CShort(CShort(e.NewValue) - CShort(oldValue))
 End If
 product.UnitsInStock = CShort(product.UnitsInStock - unitsOrdered)
 If product.UnitsInStock < 0 Then
 product.UnitsInStock = 0

DataObjects for .NET 134

Copyright © 2017 GrapeCity, inc. All rights reserved.

 End If
 product.UnitsOnOrder = product.UnitsOnOrder + unitsOrdered
 End If
End Sub

To write code in C#

C#

private void table_Order_Details_AfterFieldChange(object sender,
C1.Data.FieldChangeEventArgs e)
{
 if (e.Field.Name == "Quantity")
 {
 Order_DetailsRow orderDetail = Order_DetailsRow.Obj(e.Row);
 ProductsRow product = orderDetail.GetProductsRow();
 if (product != null)
 {
 short unitsOrdered = (short)((short)e.NewValue -
 (e.OldValue == Convert.DBNull ? (short)0 :
 (short)e.OldValue));
 product.UnitsInStock = (short)(product.UnitsInStock - unitsOrdered);
 if (product.UnitsInStock < 0)
 product.UnitsInStock = 0;
 product.UnitsOnOrder += unitsOrdered;
 }
 }
}

This code executes after the value of the Quantity field in the Order Details table has changed. It makes
necessary changes in the corresponding Products row.

Click here for an explanation of some important features in this code.

There are two data object classes generated by DataObjects for .NET in this code: Order_DetailsRow and
ProductsRow. Class Order_DetailsRow represents an Order Details row, and ProductsRow represents a
Products row. Such classes are automatically generated and maintained for each table and table view in the
schema. For example, ProductsRow is an object (business object, data object) where each field has a
corresponding property (ProductsRow.UnitPrice, ProductsRow.UnitsInStock, and so on), and each relation has
a corresponding method (Products.GetOrder_DetailsRows, and so on), allowing you to obtain child rows and
the parent row.

Using these classes, you can write business logic code in a convenient, type-safe way, and benefit from Visual
Studio code-completion features giving you the lists of properties and methods to choose from.

The data object classes belong to the Northwind.DataObjects namespace (substitute your data library name
instead of Northwind, if different). They are hosted in the assembly Northwind.DataObjects.dll. This data
objects assembly is generated by DataObjects for .NET each time you change the schema and save it in the
C1SchemaDef component. A reference to this assembly is added to your data library project References.

DataObjects for .NET 135

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Create an event handler dataset_ProductsOrders_AfterEndAddNew and enter the following code:

To write code in Visual Basic

Visual Basic

Private Sub dataset_ProductsOrders_AfterEndAddNew(ByVal sender As Object, ByVal e
As C1.Data.RowChangeEventArgs) Handles dataset_ProductsOrders.AfterEndAddNew
 If e.DataTable.SchemaTable.Name = "CustOrdersDetails" Then
 Dim order As CustOrdersDetailsRow_tableView
 order = CustOrdersDetailsRow_tableView.Obj(e.Row)
 If order.IsShipNameNull() Then order.ShipName = order.CompanyName
 If order.IsShipAddressNull() Then order.ShipAddress = order.Address
 If order.IsShipCityNull() Then order.ShipCity = order.City
 If order.IsShipRegionNull() Then order.ShipRegion = order.Region
 If order.IsShipPostalCodeNull() Then order.ShipPostalCode =
order.PostalCode
 If order.IsShipCountryNull() Then order.ShipCountry = order.Country
 End If
End Sub

To write code in C#

C#

private void dataset_ProductsOrders_AfterAddNew(object sender,
C1.Data.RowChangeEventArgs e)
{
 if (e.DataTable.SchemaTable.Name == "CustOrdersDetails")
 {
 CustOrdersDetailsRow_tableView order =
CustOrdersDetailsRow_tableView.Obj(e.Row);
 if (order.IsShipNameNull())
 order.ShipName = order.CompanyName;
 if (order.IsShipAddressNull())
 order.ShipAddress = order.Address;
 if (order.IsShipCityNull())

DataObjects for .NET 136

Copyright © 2017 GrapeCity, inc. All rights reserved.

 order.ShipCity = order.City;
 if (order.IsShipRegionNull())
 order.ShipRegion = order.Region;
 if (order.IsShipPostalCodeNull())
 order.ShipPostalCode = order.PostalCode;
 if (order.IsShipCountryNull())
 order.ShipCountry = order.Country;
 }
}

This code executes after a new row has been added to the CustOrdersDetails table view, and all primary key
fields have been specified, so the row is no longer a "temporary new row", meaning the primary key is yet
undefined. This code fills shipping attributes given known values of billing attributes. Apart from another
example of using data object classes in business logic code, this code shows yet another important DataObjects
for .NET feature, specifically:
You can specify business logic on the table level, as shown in the previous examples, and then it will be executed
wherever this table is involved. But you can also specify business logic on the dataset level, in other words, on
the table view level, as in this example. Such code will be executed only in this dataset. Using dataset-level
business logic, you can enforce rules that are specific to a certain data set.

Click here for a list of business logic events.

This tutorial demonstrates only a limited number of business logic events. Here is a brief list of business logic
events available in DataObjects for .NET (we omit prefixes Before and After pertaining to most events, retaining
the prefix only if an event occurs only Before or only After):

Event Description

AddNew Fired when a new (empty) row is added.

AfterChanges Fired when all changes initiated by a field change are
done and handled by the business logic code, see the
FieldChange event.

BeginEdit Fired when the user starts editing a row (data-bound
controls start editing a row immediately after they
position on it, even though no changes have been made
yet).

CancelEdit Fired when the user cancels editing a row reverting the
changes made to it.

Delete Fired when a row is deleted.

EndAddNew Fired when a newly added row becomes a regular row in
the rowset. When a row is added, it is added empty, its
primary key is unknown. A row with unknown primary
key is in special transitory state, it is not a regular rowset
row. Only after its primary key is set it becomes a regular
(added) row, which is signaled by this event.

EndEdit Fired when the user finishes editing a row (data-bound
controls finish editing a row when they leave that row,
even if no changes have been made).

FieldChange Fired when a field value is set. Inside this event, your
code can set other fields triggering recursive

DataObjects for .NET 137

Copyright © 2017 GrapeCity, inc. All rights reserved.

FieldChange events, DataObjects for .NET handles this
situation correctly. Only after all changes are done and
handled, AfterChanges event is triggered.

FirstChange Fired when a first change is made to the row (a field
value changed) after BeginEdit.

UpdateRow This event is not fired in a client application, unless it is a
direct client, that is a 2-tier application updating the
database directly from client, see Tutorial 3: Creating
Distributed 3-Tier Applications. In a 3-tier deployment, it
is fired only on the server, when a modified row is
committed to the database.

6. Compile the Northwind project. Now the data library can be used in a client application.
7. Create a new Windows Application project.
8. Select Project | Add Reference:

1. In the Add Reference dialog box, click the Browse tab.
2. Locate and select Northwind.dll and click OK. The Northwind.dll assembly is added to your client

project. The Northwind DLL should be located in the bin folder in the Northwind project directory.

9. Place the following components on the form as shown in the figure:
Number of Components Name Namespace

1 C1DataSet C1DataSet1 C1.Data.C1DataSet

2 C1TrueDBGrid C1TrueDBGrid1
C1TrueDBGrid2

C1.Win.C1TrueDBGrid.C1TrueDBGrid

1 command Button Button1 System.Windows.Forms.Button

DataObjects for .NET 138

Copyright © 2017 GrapeCity, inc. All rights reserved.

10. Set the Button1.Text property to Commit Changes.
11. Select the C1DataSet1 component and set the following properties:

1. Enter Northwind in the DataLibrary property
2. Select ProductsOrdersfrom the drop-down list of the DataSetDef property.

These settings connect C1DataSet1 to the ProductsOrders data set of the data library. Now we can use
the C1DataSet1 component as a data source for data-bound GUI component grids.

12. Open the C1TrueDBGrid Tasks menu for each C1TrueDBGrid and select C1DataSet1 under Choose
DataSource.

13. Set the DataMember properties of C1TrueDBGrid1 and C1TrueDBGrid2 to CustOrdersDetails and
ProductOrderDetailsCust, respectively. Click Yes to replace the existing column layout.

14. Double-click Button1 to create the Button1_Click event. In order to be able to send data modifications to the
database, add the following code to the Button1_Click event:

To write code in Visual Basic

Visual Basic

C1DataSet1.Update()

DataObjects for .NET 139

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

c1DataSet1.Update();

15. As in Tutorial 1: Creating a Data Schema, add the following code to create the c1DataSet1_BeforeFill event
handler to restrict (filter) the data set:

To write code in Visual Basic

Visual Basic

Private Sub C1DataSet1_BeforeFill(ByVal sender As Object, ByVal e As
C1.Data.FillEventArgs) Handles C1DataSet1.BeforeFill
 Dim dataSetDef As C1.Data.SchemaObjects.DataSetDef
dataSetDef = e.DataSet.Schema.DataSetDefs("ProductsOrders")
 e.Filter.Add(New
C1.Data.FilterCondition(dataSetDef.TableViews("ProductsOrderDetailsCust"), "
[CategoryID] = 1"))
 e.Filter.Add(New
C1.Data.FilterCondition(dataSetDef.TableViews("CustOrdersDetails"), "[CategoryID]
= 1"))
End Sub

To write code in C#

C#

private void c1DataSet1_BeforeFill(object sender, C1.Data.FillEventArgs e)
{
 C1.Data.SchemaObjects.DataSetDef dataSetDef =
e.DataSet.Schema.DataSetDefs["ProductsOrders"];
 e.Filter.Add(new C1.Data.FilterCondition(dataSetDef.TableViews
 ["ProductsOrderDetailsCust"], "[CategoryID] = 1"));
 e.Filter.Add(new C1.Data.FilterCondition(dataSetDef.TableViews
 ["CustOrdersDetails"], "[CategoryID] = 1"));
}

Run the program and observe the following:
The two grids show data according to the schema defined in the data library. So, when developing a client
application, provided that you already have a data library, all you have to do is connect to it as to a data source.
No data-oriented code or business logic code is necessary in a client GUI application. This provides a clear
separation between your data and business logic and your GUI (presentation) code. You can also reuse the
business logic-providing data libraries in multiple GUI front-end applications without having to modify or even
know the centralized business logic code.

DataObjects for .NET 140

Copyright © 2017 GrapeCity, inc. All rights reserved.

Try entering a negative number in the Quantity column in both grids. You will see that the business logic code
ensuring that the entered Quantity value is positive works in both table views, CustOrdersDetails and
ProductOrderDetailsCust, containing the Order Details table.
Change the Quantity value in the two grids and you will see that the business rule changing
Products.UnitsInStock when the Quantity value changes is enforced under any circumstances where the
Products table is involved, which in this case is in two different table views, CustOrdersDetails and
ProductOrderDetailsCust. First find a row in the top and bottom grid containing the same ProductID; you can
do this easily by sorting both grids by ProductID. Then change the Quantity value in both rows. The
UnitsOnOrder column changes as well.

Tutorial 3: Creating Distributed 3-Tier Applications
Although Visual Studio makes great strides towards facilitating development of distributed applications, it falls short of completely
automating it. You still need to add many items to your application to make it a distributed, Web application. You need to create Web
services, write server-side code to retrieve and update data on the server, and so on. DataObjects for .NET fills this gap, making it
incredibly easy to create distributed applications.

No additional steps are required to use a DataObjects for .NET data library in a distributed, Web environment. You develop your data
and business logic code, as shown in Tutorial 2: Defining Business Logic, in exactly the same way, regardless of whether you use it in a
classic two-tier client-server environment (as we did in Tutorial 2: Defining Business Logic), or in a Web distributed environment. It
becomes simply a matter of deployment. In this tutorial we will do exactly this, use the Northwind data library as it was built in Tutorial
2: Defining Business Logic, in a distributed environment.

In a distributed scenario, you have your data library assembly deployed on the server and on the client. Deploying it on the client, you
can use the .NET assembly download facilities, so you will not need a special client installation procedure; the data library and other
parts of your application will be automatically downloaded from the server and, if necessary, automatically upgraded. DataObjects for
.NET manages the data library code, so that necessary parts of your business logic code execute on the server and other parts execute
on the client. All this is done transparently to the developer, so your business logic code must be concerned with its proper task,
business logic, and does not need to organize client-server interaction or even be aware of it.

In short, DataObjects for .NET makes developing distributed, Web applications very simple. You just create an application as you
always do, regardless of whether it is distributed, and DataObjects for .NET makes it distributed for you and manages all server-client
interaction according to the actual deployment environment.

Server-side DataObjects for .NET data libraries work according to the Web services architecture; the server is stateless, and they do
not maintain live database connections per user. So the distributed application support in DataObjects for .NET is as effective and
scalable as with manually written server-side code. The only difference is that, of course, DataObjects for .NET does it for you.

An additional advantage of the DataObjects for .NET distributed model is that you can use any of the multiple deployment scenarios
and options supported by .NET Remoting. You can deploy your data library on the server as a Web service, an IIS application, or you
can create your own server hosting the data library assembly.

DataObjects for .NET 141

Copyright © 2017 GrapeCity, inc. All rights reserved.

In this tutorial, we have chosen the option of hosting the data library in a special host application (server), instead of hosting it in IIS
(Microsoft Internet Information Server), to make the tutorial independent of IIS. Using DataObjects for .NET over the Web as a Web
service is even easier than the process demonstrated in this tutorial. All you need to do is publish your data library as an IIS application,
creating a virtual directory hosting your data library assembly.

1. Create a new Windows Application project and name it ThreeTierServer.
2. Select Project | Add Reference and select System.Runtime.Remoting in the Add Reference window to add a reference to the

System.Runtime.Remoting.dll, the .NET Framework assembly responsible for .NET remoting, to the project.

3. Select Project | Add Reference and browse to locate the compiled Northwind.dll assembly, built in Tutorial 2: Defining
Business Logic. This adds a reference to the assembly to the project.

4. Add the following statement at the top of the form in Code view to import the System.Runtime.Remothing.Channels
namespace:

To write code in Visual Basic

Visual Basic

Imports System.Runtime.Remoting.Channels

To write code in C#

C#

using System.Runtime.Remoting.Channels;

5. Add the following code to the Form_Load event:

To write code in Visual Basic

Visual Basic

Dim serverProv As BinaryServerFormatterSinkProvider
serverProv = New BinaryServerFormatterSinkProvider
serverProv.TypeFilterLevel = System.Runtime.Serialization.Formatters.TypeFilterLevel.Full
Dim clientProv As BinaryClientFormatterSinkProvider = New BinaryClientFormatterSinkProvider
Dim props As IDictionary = New Hashtable
props("port") = 8000
Dim chan As System.Runtime.Remoting.Channels.Tcp.TcpChannel = New System.Runtime.Remoting._
 Channels.Tcp.TcpChannel(props, clientProv,
serverProv)

DataObjects for .NET 142

Copyright © 2017 GrapeCity, inc. All rights reserved.

ChannelServices.RegisterChannel(chan, False)
System.Runtime.Remoting.RemotingConfiguration.RegisterWellKnownServiceType(Type.GetType_
 ("Northwind.RemoteService, Northwind"),
"ThreeTierServer.soap", _

System.Runtime.Remoting.WellKnownObjectMode.Singleton)

To write code in C#

C#

BinaryServerFormatterSinkProvider serverProv;
serverProv = new BinaryServerFormatterSinkProvider();
serverProv.TypeFilterLevel = System.Runtime.Serialization.Formatters.TypeFilterLevel.Full;
BinaryClientFormatterSinkProvider clientProv = new BinaryClientFormatterSinkProvider();
IDictionary props = new Hashtable();
props["port"] = 8000;
System.Runtime.Remoting.Channels.Tcp.TcpChannel chan = new
System.Runtime.Remoting.Channels._
 Tcp.TcpChannel(props, clientProv, serverProv);
ChannelServices.RegisterChannel(chan, false);
System.Runtime.Remoting.RemotingConfiguration.RegisterWellKnownServiceType(Type.GetType("_
 Northwind.RemoteService, Northwind"),
"ThreeTierServer.soap", System._
 Runtime.Remoting.WellKnownObjectMode.Singleton);

Here ThreeTierServer.soap is the name we have chosen to identify this data library in its clients, the URI (Unified Resource
Identifier). You can choose any unique identifier you like, provided you use the same ID in the client in the DataLibraryUrl
property that specifies the connection.
This code registers DataObjects for .NET remoting service with .NET remoting framework. In this tutorial, we use TCP/IP
channel, not the more popular HTTP channel that you would normally use in a Web application, because we want the tutorial to
work on machines with no Web server running.
Instead of this code, you can use a configuration file for remoting registration. If you are deploying your data library in IIS, a
configuration file is the only option. A configuration file, web.configfor IIS deployment, may look like the following example:
<configuration>
 <system.runtime.remoting>
 <application> <service>
 <wellknown mode="Singleton"
 type="Northwind.RemoteService, Northwind" objectUri="ThreeTierServer.soap" />
 </service>
 </application>
 </system.runtime.remoting>
</configuration>

Now that our Northwind data library is deployed on a server, we can use it in a client application. This client application can
reside on the same machine, or it can be thousands of miles away, it is just a matter of setting a single property in the client
application specifying the connection URL. A client application for distributed use is created in exactly the same way as a regular
client application; in fact, it is a regular client application, such as the one in Tutorial 2: Defining Business Logic. The only
difference is that we set the connection property, DataLibraryUrl.

6. Copy the client project from Tutorial 2: Defining Business Logic. This will serve as our client application.
7. Open the form and select the C1DataSet1 component.
8. Set C1DataSet1.DataLibraryUrl = tcp://localhost:8000/ThreeTierServer.soap. This connects it to the server.

Run the Server Application, Then Run the Client Application and Observe the
Following:
Run the ThreeTierServer application first and make sure it is running while the client application is running.

The client application behaves exactly as the application we built in Tutorial 2: Defining Business Logic. This is DataObjects for .NET's
transparent distributed application development at work; with no code changes we have deployed our application in a distributed
environment. All database access code is executed on the server, and business logic is executed on the client without a single line of

DataObjects for .NET 143

Copyright © 2017 GrapeCity, inc. All rights reserved.

code added for that purpose to the client application. The server can be anywhere on the Internet, it is just a matter of changing the
URL from localhost to an Internet address, for example, to c1DataSet1.DataLibraryUrl =
http://www.mycompany.com/ThreeTierServer.soap.

Tutorial 4: Virtual Mode: Dealing with Large Datasets
Visual Studio and its underlying data engine, ADO.NET, support only one mode: disconnected access to data. An
ADO.NET data set is always pre-fetched in its entirety from the server to the client. Pre-fetching large data sets over
the wire creates two serious problems:

Even distributed Web applications often include large data sets, such as a list of available products and other
data originated in database tables with thousands of records or more. It is very inefficient and in many cases
impossible to transfer such data from the server to the client in its entirety. This forces developers to produce
makeshift solutions, such as asking the user to enter a few initial letters of the product name before showing
the list of products, severely reducing the quality of end-user experience, application performance and
scalability.
The absence of large data set support makes it impossible to develop classic client-server and desktop
database applications in Visual Studio (without DataObjects for .NET). This is a serious drawback since many
developers need to develop such applications. These applications traditionally require access to large data sets.
A popular belief that you only need large data sets if you have not designed your application correctly is a
misconception due to the lack of tools supporting the right data access modes. Another popular
misconception is that the disconnected model, also loosely referred to as Web application, 3-tier application,
and so on, necessarily means pre-fetching all the data from the server to the client at once and that any other
approach is the old live connection per user approach that is not scalable.

DataObjects for .NET fills this gap, offering a solution to the problem of large data sets. It proves the misconceptions
mentioned above wrong. It gives you the tool to achieve the best of both worlds: to have data access that is both
disconnected, or no live connection is maintained on the server for particular users, and is therefore scalable, and at
the same time, unlimited in data size.

To use a large data set in DataObjects for .NET is as easy as setting the DataAccessMode property to Virtual Mode.

Perhaps you are skeptical and think that it might work in a demo but never in the real world with huge tables, and so
on. Well, how about a table of 2.7 million rows? This is what is shown in this tutorial, and you will see this data
appearing in a TrueDBGrid with no delay, and it can be scrolled without noticeable delays.

Although it is not demonstrated in this tutorial, you can use virtual data access mode in distributed Web-based
applications as well, simply by setting the DataAccessMode property to Virtual. See Tutorial 3: Creating Distributed 3-
Tier Applications for more information.

We will begin by creating a new Windows Application project. In this tutorial we will create two forms.

To create Form1:
1. Place the following components on the first form as shown in the figure.

Number of
Components Name Namespace

1 C1SchemaDef C1SchemaDef1 C1.Data.C1SchemaDef

1 C1DataSet C1DataSet1 C1.Data.C1DataSet

2
C1DataTableSource

C1DataTableSource1
C1DataTableSource2

C1.Data.C1DataTableSource

2 C1TrueDBGrid C1TrueDBGrid1
C1TrueDBGrid2

C1.Win.C1TrueDBGrid.C1TrueDBGrid

DataObjects for .NET 144

Copyright © 2017 GrapeCity, inc. All rights reserved.

2 Label Label1
Label2

System.Windows.Forms.Label

1 command Button Button1 System.Windows.Forms.Button

2. Set the Text property of each label to Fetching data.
3. Set the Text property of Button1 to Huge Table.
4. Select the C1SchemaDef1 control, use the smart tags to expand the C1SchemaDef Tasks menu and select

Schema Designer.

The Schema Designer opens, and the Import Wizard appears, but you can click Cancel to close the wizard.
5. Select File | Open in the Schema Designer menu and open the schema file that was saved in Tutorial 1:

Creating a Data Schema. The schema appears in the designer
6. To enable virtual mode, we must set the DataAccessMode property for the table view objects that we need to

be accessed "virtually". "Virtual", as opposed to "static", means data is fetched in increments, on demand, as
opposed to fetching everything at once:

1. In the View menu, make sure that DataSets is checked.
2. Double-click the ProductsOrders dataset in the DataSets window to open it.

DataObjects for .NET 145

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. In the DataSet Editor, click the title bar of the ProductsOrderDetailsCust table view and set the
DataAccessMode property to VirtualAutomatic in the Properties panel.

4. Click the title bar of the CustOrdersDetails table view and set the DataAccessMode property to
VirtualAutomatic.
DataAccessMode = VirtualAutomatic means that the fetch is performed in increments, or segments,
asynchronously in background mode while the application becomes available to the user and interactive
immediately after the first segment is fetched. The user has interactive access not just to the data
already fetched in background, but to the whole table, including its physical end, so the user sees data
in its entirety, as if all data were transferred to the client, although the background fetch may not yet be
complete. To enable this transparency, DataObjects for .NET performs the fetch on demand, when the
user requests data not yet fetched from the server, in addition to the background fetch.

DataAccessMode = VirtualAutomatic is appropriate for large tables that are big enough to make it
undesirable to fetch all data at startup time (doing so would incur a long delay before the application
becomes interactive), but not too big, so they can still fit in client memory. Later in this tutorial we will
also use DataAccessMode = Virtual, which is intended for very large tables, so large that they do not fit
in memory.

DataObjects for .NET 146

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Close the Schema Designer and click Yes to save the schema.
7. Set the C1DataSet1's SchemaDef property to C1SchemaDef1 and the DataSetDef property to ProductsOrders

in the property pane.

8. Set the DataSet property for C1DataTableSource1 and C1DataTableSource2 to C1DataSet1.

9. Set the TableView property of C1DataTableSource1 to ProductsOrderDetailsCust and set the TableView
property of C1DataTableSource2 to CustOrdersDetails.

10. Bind the C1TrueDBGrid components to the C1DataTableSource components:
1. Set C1TrueDBGrid1's DataSource to C1DataTableSource1.

DataObjects for .NET 147

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Set C1TrueDBGrid2's DataSource to C1DataTableSource2.

Note that we bind the grids to C1DataTableSource components rather than directly to a C1DataSet
component. This is essential for virtual mode; it works only if you use C1DataTableSource as your data source.

11. Add the following code to create a C1DataTableSource1_AsyncFetchComplete event handler:

To write code in Visual Basic

Visual Basic

Private Sub C1DataTableSource1_AsyncFetchComplete(ByVal sender As Object, ByVal
e As System.EventArgs) Handles C1DataTableSource1.AsyncFetchComplete
 Label1.Text = "Fetch complete. Record count: " +
C1DataTableSource1.DataTable.Rows.Count.ToString()
End Sub

To write code in C#

C#

private void c1DataTableSource1_AsyncFetchComplete(object sender,
System.EventArgs e)
{
 label1.Text = "Fetch complete. Record count: " +
c1DataTableSource1.DataTable.Rows.Count.ToString();
}

12. Add the following code to create a C1DataTableSource2_AsyncFetchComplete event handler:

To write code in Visual Basic

Visual Basic

Private Sub C1DataTableSource2_AsyncFetchComplete(ByVal sender As Object, ByVal
e As System.EventArgs) Handles C1DataTableSource2.AsyncFetchComplete
 Label2.Text = "Fetch complete. Record count: " +
C1DataTableSource2.DataTable.Rows.Count.ToString()

DataObjects for .NET 148

Copyright © 2017 GrapeCity, inc. All rights reserved.

End Sub

To write code in C#

C#

private void c1DataTableSource2_AsyncFetchComplete(object sender,
System.EventArgs e)
{
 label2.Text = "Fetch complete. Record count: " +
c1DataTableSource2.DataTable.Rows.Count.ToString();
}

This completes the Form1 set up, where we used DataAccessMode = VirtualAutomatic.

Now let's add a second form to the project where we show a very large table with 2.7 million rows. For such huge data
amounts we must use DataAccessMode = Virtual.

In this part of the tutorial we need a SQL Server connection. Up until now a Microsoft Access sample database was
enough. MS Access, being a desktop database, does not provide sufficient query optimization, so it cannot be
effectively used in DataObjects for .NET virtual mode. We will use the SQL Server sample Northwind database
included in the standard SQL Server installation.

Note: If you are running the pre-built tutorial projects included in DataObjects for .NET installation, you will
need to change the connection string in this tutorial to point to your SQL Server instance.

Obviously, we do not want to physically fill 2.7 million rows in your SQL Server database, so we will simulate a huge
table by creating a composite table with self-joins, repeating the same tables, Order Details and Products, several
times to create the desired effect:

Order Details →(∞-1) Products →(1-∞) Order Details →(∞-1) Products →(1-∞) Order
Details

To create Form2:
1. Select Project | Add Windows Form. The Add New Item dialog box appears.

1. Choose Windows Form from the Templates pane.
2. Name the form Form2 and click Add.

2. Place the following components on the form as shown in the figure.
Number of
Components Name Namespace

1 C1SchemaDef c1SchemaDef1 C1.Data.C1SchemaDef

1 C1DataSet c1DataSet1 C1.Data.C1DataSet

1
C1DataTableSource

C1DataTableSource1 C1.Data.C1DataTableSource

1 C1TrueDBGrid c1TrueDBGrid1 C1.Win.C1TrueDBGrid.C1TrueDBGrid

DataObjects for .NET 149

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. As in other tutorials, we start with the schema created in Tutorial 1: Creating a Data Schema. Select the
C1SchemaDef1 control, click the smart tag to open the C1SchemaDef Tasks menu, and select Schema
Designer.

The Schema Designer opens, and the Import Wizard appears, but you can click Cancel to close the wizard.
4. Select File | Open in the Schema Designer menu and open the schema file that was saved in Tutorial 1:

Creating a Data Schema. The schema will appear in the designer.
5. Right-click the Tables window and select Add | Composite table from the context menu.

DataObjects for .NET 150

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. In the newly added node, change the default name CompositeTable to HugeTable.
7. Select the Diagram tab in the Composite Table Editor and drag-and-drop the following tables from the

Tables window to the Composite Table Editor, arranging them as in the image below:
Order Details – drag and drop this table three times.
Products – drag and drop this table two times.

8. In the resulting diagram, delete the following redundant relations by selecting the relation and pressing the
Delete key (or right-click the relation and select Remove from the context menu):

Products – Order Details_2
Products_1 – Order Details

9. Invert the first (Products – Order Details) and third (Products_1 – Order Details_1) relations by selecting the
relation and choosing Invert from the context menu, so that the resulting diagram becomes:

Order Details →(∞-1) Products →(1-∞) Order Details →(∞-1) Products →(1-∞) Order
Details

DataObjects for .NET 151

Copyright © 2017 GrapeCity, inc. All rights reserved.

10. Define composite table fields by checking the check boxes for the following fields:
Table Field

Order Details OrderID
ProductID

Products ProductName

Order Details_1 OrderID

Products_1 ProductName

Order Details_2 OrderID

11. If necessary, select View | DataSets and then right-click the DataSets window and select Add in the context
menu

12. For the newly created data set node, change the default name DataSet to TheHugeOne.
13. Drag the HugeTable node from the Tables window and drop it in the DataSet Editor. This creates a data set

consisting of a single table, HugeTable.
14. Set the DataAccessMode property of the HugeTable table view to Virtual.

DataObjects for .NET 152

Copyright © 2017 GrapeCity, inc. All rights reserved.

15. Now we must change the database connection from MS Access to SQL Server in order to use the SQL Server
sample Northwind database included in the standard SQL Server installation.

1. If necessary, select View | Connections and then double-click the existing Connection node in the
Connections window. The Connection Editor opens.

2. Click the ellipsis button to the right of the Connection string to open the standard OLE DB Data Link
Properties dialog box.

3. Click the Provider tab and select Microsoft OLE DB Provider for SQL Server.
4. Click the Connection tab and select your SQL Server server name; enter your login information, if

necessary; and select the Northwind database.
5. Click OK to close the Data Link Properties dialog box.
6. Close the Schema Designer and click Yes to save the schema.

16. Set the C1DataSet1's SchemaDef property to c1SchemaDef1 and the DataSetDef property to TheHugeOne in
the Properties window.

17. Set the C1DataTableSource's DataSet property to C1DataSet1 and the TableView property to HugeTable.

DataObjects for .NET 153

Copyright © 2017 GrapeCity, inc. All rights reserved.

18. Set the C1TrueDBGrid1's DataSource to C1DataTableSource1 to bind the grid to the C1DataTableSource.

Note that we bind the grid to the C1DataTableSource components rather than directly to the C1DataSet
component. This is essential for virtual mode; it works only if you use C1DataTableSource as your data source.

19. To activate Form2, switch to Form1 and double-click Button1 to switch to code view and add the
Button1_Click event. Add the following code to the Button1_Click event in Form1:

To write code in Visual Basic

Visual Basic

Dim form2 As Form2
form2 = New Form2()
form2.ShowDialog(Me)

To write code in C#

C#

Form2 form2 = new Form2();
form2.ShowDialog(this);

DataObjects for .NET 154

Copyright © 2017 GrapeCity, inc. All rights reserved.

Run the program and observe the following:
The first form demonstrates DataAccessMode =VirtualAutomatic, where DataObjects for .NET continues to
fetch data in the background while the user can interact with the grid as though the data were fetched
completely to the client. The labels below the grids show the status of the background fetch: they show
"Fetching data…" until the fetch is complete. While the label still shows "Fetching data…", try going to the last
row by dragging the scrollbar thumb to the bottom. After a brief delay you will see the last row
(CustomerID="WOLZA", OrderID=11044). This is the actual last row of the table, and DataObjects for .NET
positions to the end of the table (as well as to any other desired position) correctly, although the background
fetch is still in progress and has not yet reached the last row. Unlike asynchronous fetch features in other tools,
DataObjects for .NET implements it transparently to the user; the user does not need to be aware that
background fetch is incomplete.
When DataObjects for .NET finishes fetching all rows in the background, it automatically switches to the
regular in-memory mode, so the scrollbar is now exactly positioned according to the current row number.
While the fetch is in progress, the scrollbar position is approximate, because the total row count and absolute
row numbers are not yet known.
Next press the "Huge table" button and enjoy the view of a 2.7 million rows table!
Try scrolling forward fast by continuously pressing the PageDown key in quick succession. You will notice that
after a few keystrokes it pauses for a brief moment. This occurs when DataObjects for .NET refreshes its cache,
fetching a new portion of data from the server. Now try scrolling forward a bit slower, taking a short pause
after each time you press PageDown. You will notice that if you do it this way, the delays disappear; the grid
reacts immediately to every keystroke. This is a result of one of the optimization techniques employed by
DataObjects for .NET: if necessary, it fetches additional segments of data during periods of inactivity. Since
users rarely scroll through data without at least taking a look, in most cases, this technique creates the
impression of continuous smooth scrolling without pauses and delays.
Try going to the last row by dragging the scrollbar thumb to the bottom. After a brief delay you will see the
last row (OrderID=11077, ProductID= 77,…). DataObjects for .NET only paused for a brief moment, which is
necessary to fetch the segment of rows in the end of the table; it did not fetch the whole enormous number of
rows as other tools do when last record is requested.

DataObjects for .NET 155

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Express Edition
DataObjects Express Edition makes it exceptionally easy to work with data in .NET applications. It shields developers
from the complexities of ADO.NET, makes data bound forms as easy to build as it used to be in previous versions of
Microsoft Visual Studio. However, DataObjects for .NET Express is not just about ease of use; it also adds many
power features absent in standard ADO.NET:

DataObjects for .NET Express fully supports multi-table rowsets (composite tables) automatically enforcing
data relations without manual coding. For example, changing a CustomerID field will automatically change the
corresponding CustomerName field in the same row, although it is stored in a separate table.
With an innovative virtual mode technology, DataObjects for .NET Express allows you to use large datasets
in .NET Windows Forms applications, the feature that is not supported in Visual Studio and ADO.NET without
DataObjects for .NET.
DataObjects for .NET Express completely automates database updates. There is no need to use ADO.NET
DataAdapter or other special components. Database updates are performed without manual coding.
DataObjects for .NET Express can update the database even when multiple and interrelated changes have
been made to multiple tables.
Setting a single property, UpdateLeavingRow, you can make DataObjects for .NET Express update the
database immediately after the user changes a row. This optional feature is commonly used in desktop and
classic client-server applications. Standard ADO.NET does not support this feature.
DataObjects for .NET Express supports an extensive set of events enabling full programmatic customization.
DataObjects for .NET Express is a special edition of DataObjects. The Express Edition is geared toward ease
of use and optimized for desktop and client-server applications. The main goal of Express Edition is to provide
a data framework for .NET that is very easy to use, highly intuitive and requires minimal effort to master. If you
need even more power, consider using DataObjects Enterprise Edition supporting additional power features:
DataObjects for .NET Enterprise Edition uses the standard business object paradigm to allow you to
develop business logic components (data libraries) and reuse them in multiple client projects. It provides clear
separation of business and data logic from the presentation (GUI) layer.
C1DataObjects Enterprise Edition allows you to create a centralized and reusable repository of data schema
and business logic (data libraries) used in applications throughout the enterprise.
C1DataObjects Enterprise Edition completely automates the task of developing distributed 3-tier Web-
based applications. No special server-based code is necessary, and making your application distributed
becomes a simple matter of deployment configuration.

DataObjects for .NET Express and C1DataObjects Enterprise Edition are not mutually-exclusive, they can even be
used together in the same application. They have common runtime core functionality and object model. The
difference is primarily in design time: developers use a special Schema Designer in DataObjects for .NET whereas
DataObjects for .NET Express is a suite of three simple components with built-in design-time support.

C1ExpressTable: Working with Simple and Composite
Tables
C1ExpressTable is the main component of DataObjects for .NET Express. It defines a table, a rowset. Data-aware
controls, such as ComponentOne, Microsoft or third-party grid controls, can bind to a C1ExpressTable component as
their DataSource. A C1ExpressTable component can be used either as a standalone data control or attached to a
C1ExpressConnection component. In the latter case, all C1ExpressTable components attached to a
C1ExpressConnection share the same database connection and form a data set, see C1ExpressConnection: Combining
Tables into Data Sets.

Connecting to Database and Working with Data

DataObjects for .NET 156

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can connect to a database and begin setting properties for your table.

1. Connect to a database:
A standalone C1ExpressTable component is connected to a database by setting its ConnectionString
property.
A C1ExpressTable component attached to a C1ExpressConnection (its ConnectionComponent property
set) does not need a separate database connection; it uses one of C1ExpressConnection.

2. After connecting to a database, set the DbTableName property choosing a database table from a combo box
or creating Composite Tables.
It is recommended to use the DbTableName property to bind a C1ExpressTable to a database table, but you
can also use the SelectCommandText property to specify a SQL statement or a stored procedure (the latter if
the SelectCommandType property is set to StoredProcedure). Using SelectCommandText is almost as simple as
using DbTableName, but you also need to create a DataAdapter component for this C1ExpressTable if you
need it to be modifiable, have update functionality (select Create DataAdapter from the context menu).
Also, SQL-based C1ExpressTable components (those that use SelectCommandText instead of DbTableName)
cannot be used in composite tables and in virtual mode, and their FillFilter property is ignored.

3. The last step is defining fields using the Fields Editor that opens when you press the button for the Fields
property. For simple tables, DataObjects for .NET Express retrieves the fields collection from the database
table. For a composite table, you must add fields from underlying database tables to your composite table
using the Fields Editor. You can customize the Fields collection deleting and rearranging the fields, adding
calculated fields and setting various field properties.

Once a C1ExpressTable component is bound to a database table(s), it can be used as a data source in data-aware GUI
controls. Just select the component in the DataSource property combo box of a data-aware control. Note, that if you
need master-detail data binding, you must use a C1ExpressConnection component as your DataSource and select
appropriate DataMember values. The string representing a DataObjects for .NET Express table in DataMember is
determined by the TableName property.

The FillOnRequest property (belonging to a C1ExpressConnection component) determines whether C1ExpressTable
components are filled with data automatically at start-up (when data-bound controls request data from it). Setting
FillOnRequest to False, you can fill them with data later, programmatically, calling the Fill method
(C1ExpressTable.C1ExpressConnection.Fill).

Unless you specify a filter condition in the FillFilter property, C1ExpressTable will fetch all existing table data
unrestricted. To restrict fetch, specify a SQL filter condition in the FillFilter property. In this condition, use field names
in brackets, for example,

C1ExpressTable1.FillFilter = "[CategoryID] = 1"

Setting the FillSort property you can specify the order of fetched rows, for example,

C1ExpressTable1.FillSort = "OrderID,CustomerID"

By default, rows are sorted by primary key.

By default, DataObjects for .NET Express works in disconnected mode, just like standard ADO.NET: data is pre-
fetched from the database in its entirety. In this mode, you cannot bring large datasets, with hundreds of thousands of
records and more, to the client. However, DataObjects for .NET Express also supports so called virtual mode, where
data size is unlimited. With its innovative virtual mode technology, DataObjects for .NET (both editions) allows you to
use large datasets, unlimited in size, in .NET WinForms applications. This feature is not supported in Visual Studio .NET
and ADO.NET without DataObjects for .NET. See Tutorial 4: Virtual Mode: Dealing with Large Datasetsfor an example
of a rowset containing 2.7 million rows that is available on the client with limited memory consumption and startup
time of about three seconds. See Tutorial 4: Virtual Mode: Dealing with Large Datasets in DataObjects for .NET
documentation for details on virtual mode. In DataObjects for .NET Express, virtual mode is enabled by setting the
DataAccessMode property of a C1ExpressTable component.

The AllowAddNew, AllowDelete, and ReadOnly properties determine whether the user can modify table data. By
default, user modifications are cached on the client and not sent back to the database. The database is updated,

DataObjects for .NET 157

Copyright © 2017 GrapeCity, inc. All rights reserved.

modifications written to the database, when the Update method is called from code. DataObjects for .NET Express
also supports an automatic update mode. In this mode, a modified row is automatically updated to the database when
the end user leaves that row, when another row becomes current. To enable automatic update mode, set the
UpdateLeavingRow property to True.

Using Composite Tables
In many cases, simple database tables are not enough; you need a rowset combining data from several database
tables. For example, you may need CustomerID and CustomerName fields where CustomerID belongs to a database
table Orders and CustomerName belongs to a database table Customers. It is customary to use SQL statements for this
purpose. However, direct use of multi-table SQL statements causes many problems, the data cannot be easily
updated, the resulting rowset does not preserve the structure and relations used to obtain it, and so on, not to
mention inherent complexities of using SQL.

DataObjects for .NET Express automates this task, as many others. You can create a composite table, specifying
database tables it consists of and joins between those tables. Fetching and updating data, DataObjects for .NET
Express automatically generates necessary SQL statements, transparently to the developer. Working with data,
DataObjects for .NET Express maintains the structure specified in composite table definitions. For example, changing
CustomerID will automatically change the related field CustomerName, without any manual coding.

A C1ExpressTable component represents either a simple database table or a composite table. To specify a composite
table, select Composite in the DbTableName property combo box or select Composite Table Editor from the context
menu.

In the Composite Table Editor, add database tables constituting the composite table. Constituent database tables
form a hierarchical structure (a tree). Filling a composite table with data can be represented as performing nested
loops over this hierarchy. Each node, a constituent database table, is attached to its parent either by 1-M (one-to-
many) or M-1 relation. A one-to many relation represents a child table with independent key, as in Customers à(1-M)
Orders. A many-to-one relation represents a main table and a lookup table, as in Orders à(M-1) Customers. The
difference is that in 1-M relation there are many child rows for a single parent row, whereas in an M-1 relation there
only one child row for each parent row. The constituent table hierarchy satisfies a "non-branching" restriction: only
one 1-M-child is allowed for each parent (M-1-relations are not restricted and can branch). Each node of the
hierarchy, each constituent database table, except the first one, must be joined to its parent with one or more joins –
equalities between a parent and a child field. An example of composite table structure is as follows:
Orders à (1-M) OrderDetails à (M-1) Products à (M-1) Categories

Corresponding SQL statement automatically generated by DataObjects for .NET Express (simplified):

SELECT * FROM ((Orders INNER JOIN OrderDetails ON Orders.OrderID =
OrderDetails.OrderID) INNER JOIN Products ON (OrderDetails.ProductID =
Products.ProductID))
INNER JOIN Categories ON (Products.CategoryID = Categories.CategoryID)

By default, M-1 joins in a composite table define a referential integrity (foreign key) constraint. So, for example, in a
composite table CustomersOrders it is not allowed to enter CustomerID that is not present in the Customers table. If
you want to change this behavior, define a relation in the C1ExpressConnection component with the same joins as
used in the composite table and uncheck the Enforce constraints check box. See Defining Relations for more details.

Defining Fields
For simple tables, DataObjects for .NET Express retrieves the fields collection from the database table. For a
composite table, you must select fields from underlying database tables and add them to your composite table using
the Fields Editor. You can customize the Fields collection deleting and rearranging the fields, adding calculated fields
and setting various field properties.

A field has a Name that must be unique in the table. A field can be renamed by renaming the field node in the Fields

DataObjects for .NET 158

Copyright © 2017 GrapeCity, inc. All rights reserved.

list. The name is used to identify the field as the name of the column exposed to the users, and as the default display
name (caption) of the column.

The DataType property determines the field .NET type, and NativeDbType – its native database or OLE DB type.
NativeDbType is used only for updating values in the database, and can be set to Any (-1), in which case its value is
effectively ignored. When in doubt, useAny (-1) as the default value forNativeDbType.

DB Fields and Calculated Fields
A DB field represents a database table field as determined by its DbFieldName property.

A calculated field is not based on a database field. Its value is determined by one or more calculations
(FieldCalculationInfo objects) or assigned in code. Each calculation (FieldCalculationInfo) contains an Expression, which
is the expression used to obtain field values (see DataObjects for .NET Expressions for a description of DataObjects
for .NET expression language), and two additional properties: Condition and FireEvent. Condition is an optional
Boolean expression determining calculation's applicability. If Condition evaluates to False, the calculation expression is
skipped, not evaluated. If a field has multiple calculations, DataObjects for .NET Express applies the first with
Condition expression evaluating to True. If none is applicable, the field value is left unchanged. FireEvent is a Boolean
property set to False by default. If it is set to True, setting the value from calculation expression triggers the same
sequence of events (BeforeFieldChange, AfterFieldChange, and AfterChanges) as if the value has been modified by the
end user. Field calculations are useful for DB fields as well as for calculated fields. In this case, they are usually
qualified by Condition expressions. Depending on the conditions, a field's value can be derived from a value stored in
the database, or it can be calculated. For instance, if field A is non-empty, field B always returns the same value as A,
but if A is empty, B can be set independently of A.

Field Properties
The Field properties include the following:

Property Description

AllowDbNull Gets or sets a value indicating whether null or empty string values are allowed in
this field. If it is set to False, an attempt to assign null or empty string value to
this field generates an exception.

AutoIncrement Gets or sets a value indicating whether the field automatically receives an
incremented value for a new row added to the table.

AutoIncrementSeed Gets or sets the starting value for a field with AutoIncrement other than None.

AutoIncrementStep Gets or sets the increment a field with AutoIncrement other than None.

Constraints Returns the collection of constraints, ConstraintInfo objects. Constraints are
evaluated (tested) when the value of the field changes. For a change to be
successful, all constraint expressions (Expression) must evaluate to True. If one of
the constraints is not satisfied, an exception is thrown. The exception message is
determined by ErrorDescription. Constraints with Condition expression (if non-
empty) evaluating to False, are skipped, not tested. See also, DataObjects for
.NET Expressions for a description of DataObjects for .NET expression language.

DataSourceReadOnly Gets or sets the value indicating whether the field value in the database can be
changed. If this property is set to True, the field value will not be set updating the
database. It also cannot be modified unless it is done in a newly added row,
before the BeforeEndAddNew event (as with ReadOnlyUnlessNew = True).

DefaultValue Gets or sets the default value, in string representation, for the field in a newly

DataObjects for .NET 159

Copyright © 2017 GrapeCity, inc. All rights reserved.

created row.

MaxLength Gets or sets the maximum length of a string field, in characters. If the length is
unlimited, the value is 0 (default).

PrimaryKey Determines whether the field belongs to the table's primary key. It is determined
automatically by DataObjects for .NET Express based on the database table
structure.

Precision For numeric fields (DataType is Numeric, Decimal, or DbTimeStamp), this
property sets or gets the maximum number of digits representing values.

ReadOnly Gets or sets a value indicating whether the field value can be changed by the end
user or from event code. If set to True, an attempt to change the field throws an
exception.

ReadOnlyUnlessNew Gets or sets a value indicating whether the field value can be changed after the
row has been added to the table (after AfterEndAddNew event). If set to True, an
attempt to change the field throws an exception unless it is done in a newly
added row, before the BeforeEndAddNew event.

Scale For numeric fields (DataType is Numeric, Decimal, or DbTimeStamp), this
property sets or gets the scale of numeric values, that is, how many digits to the
right of the decimal point are used to represent values.

Unique Gets or sets a value indicating whether the values of this field in each row must
be unique. If it is set to True, an attempt to assign a duplicate value to this field
generates an exception.

Programmatic Access to Data
To access data in code, use properties and methods of the C1.Data.C1DataTable object returned by the DataTable
property. As with all programmatic classes in DataObjects for .NET Express, C1DataTable object model is based on
the ADO.NET DataTable object model, so you will find its methods and properties familiar if you already know
ADO.NET.

Here is a brief syntax description for most common programmatic tasks in accessing data in code (in Visual Basic,
replace indexing brackets "[index]" with parentheses "(index)"):

C1ExpressTable.DataTable.Rows.Count – number of rows in the table.
C1ExpressTable.DataTable.AddNew() – adds a new row to the table.
C1ExpressTable.DataTable.Rows[index].Delete() – deletes a row from the table.
C1ExpressTable.DataTable.Rows[index] – a data row, a C1DataRow object.

To get/set field value in a row, (C1DataRow object), use row[field_name] or row[field_index], or, with full access path,
C1ExpressTable.DataTable.Rows[row_index] [field_index].

C1DataRow.GetChildRow(s) – gets child rows with respect to a master-detail relation.
C1DataRow.GetParentRow(s) – gets parent rows with respect to a master-detail relation.
C1DataRow.Modified – returns true, if the row has been modified.
C1DataRow.RowState – returns one of the DataRowState enumeration values: Unchanged, Modified, Added,
Deleted, or Detached.
C1DataRow.BeginEdit/EndEdit/CancelEdit – start/end/rollback edit mode for a row.

Customizing Data Logic with Events

DataObjects for .NET 160

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1ExpressTable component supports a rich set of events allowing you to customize data behavior in code.
Following is a brief list of C1ExpressTable events (we omit prefixes Before and After pertaining to most events, retain
the prefix only if an event occurs only Before or only After). For a full description of C1ExpressTable events
see corresponding reference sections and Business Logic Events.

Event Description

AddNew Fired when a new (empty) row is added.

AfterChanges Fired when all changes initiated by a field change are done and handled in code,
see the FieldChange event.

BeginEdit Fired when the user starts editing a row (data-bound controls start editing a row
immediately after they position on it, even though no changes have been made
yet).

CancelEdit Fired when the user cancels editing a row reverting the changes made to it.

CurrentRowChanged Fired when there are changes in the current row, whatever their cause, resulting
from field change, current row change or complete data refresh.
The CurrentRowChanged event is useful in scenarios such as synchronizing detail
data with the master row on every change occurring in the master row.

Delete Fired when a row is deleted.

EndAddNew Fired when a newly added row becomes a regular row in the rowset. When a row
is added, it is added empty; its primary key is unknown. A row with unknown
primary key is in special transitory state, it is not a regular rowset row. Only after
its primary key is set it becomes a regular (added) row, which is signaled by this
event.

EndEdit Fired when the user finishes editing a row (data-bound controls finish editing a
row when they leave that row, even if no changes have been made).

Error Fired when an exception (error condition) occurs. Gives the programmer an
opportunity to handle exceptions (so normal execution can be resumed), show
custom error messages and customize/localize error message texts.

FieldChange Fired when a field value is set. Inside this event, your code can set other fields
triggering recursive FieldChange events, DataObjects for .NET Express handles
this situation correctly. Only after all changes are done and handled,
AfterChanges event is triggered.

Fill BeforeFill and AfterFill events are fired both in C1ExpressTable (for each table)
and in C1ExpressConnection (once for all tables attached to it) before and after
data is fetched from the database.

FirstChange Fired when a first change is made to the row (a field value changed) after
BeginEdit.

GenerateSQL Fired before/after executing an SQL command to fetch data from the database.
Can be used to customize the SQL SELECT statement used in that command.

PositionChanged Fired when a new row becomes current. Current row is the row on which the end
user is currently positioned (controlled by a CurrencyManager, see the
System.Windows.Forms.CurrencyManager class in the .NET Framework
documentation for more information).

UpdateError Fired when an error occurs in database update, allowing to resolve the error

DataObjects for .NET 161

Copyright © 2017 GrapeCity, inc. All rights reserved.

condition. This event is fired both in C1ExpressTable and C1ExpressConnection
components. For details on the database update process and how it can be
customized with event code, including reconciling multi-user concurrency
conflicts, see Updating the Database in DataObjects for .NET documentation.

UpdateRow Fired when a modified row is committed (updated) to the database. This event is
fired in a C1ExpressConnection component. For details on the database update
process and how it can be customized with event code, see Updating the
Database in DataObjects for .NET documentation.

Update Fired before/after all modified rows are committed (updated) to the database. This
event is fired in a C1ExpressConnection component.

C1ExpressConnection: Combining Tables into Data Sets
A C1ExpressConnection component is used when it is necessary to combine several tables into a single data set.
C1ExpressTable components are attached to a C1ExpressConnection component by setting
their ConnectionComponent property. These tables share a common database connection and a common row cache
(data set). They can share the same data, for instance, if two C1ExpressTable components represent the same
database table, or if one of them is a composite table including a database table that is also used in the other. In this
case, if they share the same connection, changing data in one of them will be reflected in all others that include the
affected rows. Updating modified data to the database is done for all tables sharing the connection as a whole, in one
transaction. This is why the Update method belongs to the C1ExpressConnection component.

Conversely, two or more standalone C1ExpressTable components, not attached to a common C1ExpressConnection,
use separate database connections and have completely independent copies of data (row cache).

Defining Relations
C1ExpressConnection component is also used for defining relations between tables. To open the Relations editor,
select Edit Relations from the context menu or press the Relations property button.

To create a relation, select parent and child tables in corresponding combo boxes (if one or both of them are
composite tables, you also need to select a constituent simple table in the "use fields of" combo box below). Then add
one or more joins – equalities between a parent field and a child field.

Relations are used for two purposes master-detail relations and referential integrity (foreign key constraints).

Master-Detail Relations
When master-detail relations are defined between tables in a C1ExpressConnection component, they can be used to
build data-bound master-detail forms and to navigate parent/child rows programmatically (with
GetChildRow(s)/GetParentRow(s) methods). To create a master-detail relation, check the Master-detail check box in
Relations editor.

Having a master-detail relation, you can bind two data-aware controls, one to the master and the other to the detail,
and the detail control will follow the master, will be automatically populated with child rows of the parent row on
which the master is currently positioned. In presence of master-detail relations, the DataMember combo box of a
data-aware control shows tables participating in the master-detail hierarchy preceding with underscore, whereas the
same tables regarded as standalone (not restricted by master-detail relations) are shown without underscore. For
example, if you have a "Customers – Orders" relation, this is how you can bind a master and a detail grid:

To write code in Visual Basic

DataObjects for .NET 162

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

ParentGrid1.DataMember = "_Customers"
ParentGrid1.DataSource = C1ExpressConnection1
ChildGrid1.DataMember = "_Customers.Customers-Orders"
ChildGrid1.DataSource = C1ExpressConnection1

To write code in C#

C#

parentGrid1.DataMember = "_Customers";
parentGrid1.DataSource = C1ExpressConnection1;
childGrid1.DataMember = "_Customers.Customers-Orders";
childGrid1.DataSource = C1ExpressConnection1;

Tip: If you want to add related rows to the master and detail tables at once in a C1ExpressConnection, use a
connection type other than OleDb. For native SQL Server connectivity select SQLServer for the connection type.
For native Oracle access use either Oracle or MSOracle connection type.

Enforcing Referential Integrity (Foreign Key) Constraints
For instance, in the Orders table or in a composite table CustomersOrders we would like to disallow assigning a value
to CustomerID that is not present in the Customers table. To create a referential integrity constraint relation, check the
Enforce constraints check box. A relation can be a master-detail relation and a referential integrity constraint
simultaneously.

By default, M-1 joins in a composite table define a referential integrity constraint. So, for example, in a composite
table CustomersOrders it is not allowed to enter CustomerID that is not present in the Customers table. If you want to
change this behavior, define a relation with the same joins as used in the composite table and uncheck the Enforce
constraints check box.

Relation Properties
Relation properties include the following:

Property Description

GetRowsEvent This property is False by default. If set to True, the relation becomes custom. That means
that it is not based on joins, equalities between table fields, but child rows are obtained
by code in the GetChildRows event. It is used when you need a more complicated
algorithm than simple equality of table fields. For example, see the CustomRelations
sample in the Samples directory, where a custom relation is used to represent a many-
to-many relation that cannot be based on a single simple relation between tables.

DeleteCascadeRule This property specifies what happens to child rows when their parent row is deleted.
None (default) means that child rows are left unchanged. As a result of deleting the
parent row, they become orphan rows, without parent. The Cascade value means that
child rows are deleted. Set this property to Cascade when child rows belong to their
parent, should not exist without it. There are also two less frequently used values: SetNull
meaning that child rows remain with related field(s) set to Null, and SetDefault meaning
that child rows remain with related field(s) set to its default value.

UpdateCascadeRule This property determines what happens to child fields when parent field values are

DataObjects for .NET 163

Copyright © 2017 GrapeCity, inc. All rights reserved.

changed. If it is set to Cascade (default), the child fields are changed correspondingly. If it
is set to None, the child fields are left unchanged. If it is set to SetNull, the child fields
are set to Null. If it is set to SetDefault, the child fields are set to their default values.

C1ExpressView: Filtering, Sorting and Working with Tables
in Other Forms
C1ExpressView is a component that can serve as a data source for data-aware controls, along with C1ExpressTable
and C1ExpressConnection. It provides a view of a C1ExpressTable. This view can include only rows satisfying certain
filter conditions, if such conditions are specified. This view can also sort the rows in a certain order. All these views are
independent from one another, so you can show the same data filtered and sorted according to different conditions.
Also, each C1ExpressView, being an independent data source, maintains its own current row, so you can use several
views with a single C1ExpressTable if you need several representations with independent current row.

C1ExpressView also serves to allow binding of data-aware controls in one form to C1ExpressTable components
residing in another form, see Working with Tables in Other Forms.

To attach a C1ExpressView to a C1ExpressTable component, set the ExpressTable property (or ExpressTableName if
you need to attach it to a C1ExpressTable residing in another form).

To sort C1ExpressView rows, set the Sort property to the sort field name. To sort by multiple fields use coma as the
delimiter:

To filter C1ExpressView rows, restrict the C1ExpressView rowset to only those rows that satisfy a certain condition, set
the RowFilter property to a filter expression. For example,

To write code in Visual Basic

Visual Basic

C1ExpressView.RowFilter = "City = 'London'"

To write code in C#

C#

c1ExpressView.RowFilter = "City = 'London'";

See DataObjects for .NET Expressions for a description of DataObjects for .NET expression language.

C1ExpressView also allows to filter by row state, showing, for example, only added rows, or only modified rows, or
deleted rows (note that this is the only way to access deleted rows), or original rows (original rows are the rows with
their respective field values as they were fetched from the database, before any user modifications made to them). To
filter rows by row state, use the RowFilter property which can have one of the following values (default: Current):

Value Description

Added New rows.

CurrentRows Current rows including unchanged, new, and modified rows.

Deleted Deleted rows.

ModifiedCurrent Current rows excluding new and unchanged rows.

ModifiedOriginal Original rows excluding deleted and unchanged rows.

OriginalRows Original rows including deleted and unchanged rows.

DataObjects for .NET 164

Copyright © 2017 GrapeCity, inc. All rights reserved.

Unchanged Unchanged rows.

Working with Tables in Other Forms
Using C1ExpressView you can bind data-aware controls to the data of a C1ExpressTable residing in a different form.
To attach a C1ExpressView component to a C1ExpressTable component from a different form, open the form
containing the C1ExpressTable component and select the component name in the ExpressTableName combo box. The
ExpressTableName combo box contains all C1ExpressTable components in the forms currently open in the
environment. Having selected an ExpressTableName value, you will see that the ExpressTable property has changed
correspondingly. After that, you can bind data-aware controls to the C1ExpressView component.

DataObjects for .NET Express Design-Time Support
DataObjects for .NET Express provides customized context menus, smart tags, and a designer that offers rich
design-time support and simplifies working with the object model. The following sections describe how to use
DataObjects for .NET Express' design-time environment to configure the DataObjects for .NET Express
components.

Tasks Menus
A smart tag represents a short-cut tasks menu that provides the most commonly used properties in each component.
You can invoke each component's tasks menu by clicking on the smart tag () in the upper-right corner of the
component.

Properties Window
You can also easily configure DataObjects for .NET Express at design time using the Properties window in Visual
Studio. You can access the Properties window by right-clicking the control and selecting Properties.

C1ExpressTable Tasks and Context Menus
You can access the C1ExpressTable Tasks menu by clicking the smart tag in the upper-right corner of the
C1ExpressTable component.

You can access the C1ExpressTable context menu by right-clicking the C1ExpressTable component.

DataObjects for .NET 165

Copyright © 2017 GrapeCity, inc. All rights reserved.

About DataExpress
Clicking About displays the DataObjects for .NET Express' About dialog box, which is helpful in finding the build
number of the component.

Composite Table Editor
Clicking Composite Table Editor opens the Composite Table Editor dialog box which allows you to specify a
composite table. In the Composite Table Editor, you can add database tables constituting the composite table.

Edit Fields
Clicking Edit Fields opens the Fields editor where you can add and delete fields.

Retrieve Fields
Clicking Retrieve Fields will retrieve table fields from the database. If you want to restore the collection of table view
fields to its initial state, select the table view, and select Retrieve Fields from the context menu.

Create DataAdapter
Clicking Create DataAdapter creates a DataAdapter in a C1ExpressTable component associated with the table. The
DataAdapter component will then perform both fetch and update without custom code (but you can customize the
default fetch and update behavior in event code if needed).

C1ExpressConnection Tasks and Context Menus
You can access the C1ExpressConnection Tasks menu by clicking the smart tag in the upper-right corner of the
C1ExpressConnection component.

DataObjects for .NET 166

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can access the C1ExpressConnection context menu by right-clicking the C1ExpressConnection component.

About DataExpress
Clicking About displays the DataObjects for .NET Express' About dialog box, which is helpful in finding the build
number of the component.

Edit Relations
Clicking Edit Relations opens the Relations editor where you can define relations between tables. To create a
relation, select parent and child tables in corresponding combo boxes (if one or both of them are composite tables,
you also need to select a constituent simple table in the "use fields of" combo box below). Then add one or more joins
– equalities between a parent field and a child field.

Save Export XML Schema
Clicking Save Export XML Schema opens the Save schema to a file dialog box which you can use to export data
from a C1ExpressConnection to XML. See Exporting Data from a C1DataSet to XML for more information.

C1ExpressView Tasks and Context Menus
You can access the C1ExpressView Tasks menu by clicking the smart tag in the upper-right corner of the
C1ExpressView component.

You can access the C1ExpressView context menu by right-clicking the C1ExpressView component.

DataObjects for .NET 167

Copyright © 2017 GrapeCity, inc. All rights reserved.

About DataObects
Clicking About displays the DataObjects for .NET Express' About dialog box, which is helpful in finding the build
number of the component.

Notes for Users of DataObjects for .NET Enterprise Edition
If you are familiar with DataObjects Enterprise Edition, it may be helpful to understand the relationship between
DataObjects for .NET and DataObjects for .NET Express.

DataObjects for .NET Express is a simplified version of DataObjects for .NET. It makes working with data very
simple and straightforward and it is easier to master than C1DataObject Enterprise Edition. DataObjects for .NET
Express is intended for small to medium projects where full power of DataObjects for .NET is not required.

DataObjects for .NET Express resides in a separate assembly, C1.Data.Express.2.dll that uses the DataObjects for
.NET assembly C1.Data.2.dll. DataObjects for .NET Express added three components to DataObjects for .NET:
C1ExpressTable, C1ExpressConnection, and C1ExpressView.

DataObjects for .NET Express always works in direct client mode (see Direct Client for more information), it does not
support 3-tier configuration and data libraries.

DataObjects for .NET Express does not use the Schema Designer and does not require creating C1DataSet
components on user forms. A C1DataSet object and a corresponding schema is generated automatically for each
C1ExpressConnection component and can be accessed through its DataSet property:

For a C1ExpressConnection component with attached C1ExpressTable components:

To write code in Visual Basic

Visual Basic

C1ExpressConnection.DataSet.Schema

To write code in C#

C#

c1ExpressConnection.DataSet.Schema;

For a standalone C1ExpressConnection component:

To write code in Visual Basic

Visual Basic

C1ExpressTable.ExpressConnection.DataSet.Schema

DataObjects for .NET 168

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

c1ExpressTable.ExpressConnection.DataSet.Schema;

DataObjects for .NET Express Tutorials
If you are running the pre-built tutorial projects included in DataObjects for .NET Express installation, please be
aware that the projects have the sample database location hardcoded in the connection string.

If you have the Northwind database (standard MS Access sample database included in Visual Studio) installed in a
different location, you can either change the connection string in tutorial projects or copy the C1NWind.mdb file to
the required location.

Tutorial 1: Binding to a Simple Table
In this tutorial, you will see how easy it is to bind to simple database table data using DataObjects for .NET Express
Edition. Complete the following steps:

1. Create a new .NET 2.0 Windows Application project.1. Place the following components on the form as shown in
the figure.
Number of
Components Name Namespace

1 C1ExpressTable C1ExpressTable1 C1.Data.Express.C1ExpressTable

1 DataGridView DataGridView1 System.Windows.Forms.DataGridView

1 Label Label1 System.Windows.Forms.Label

1 CheckBox CheckBox1 System.Windows.Forms.CheckBox

1 command Button Button1 System.Windows.Forms.Button

In this tutorial we intentionally use Microsoft DataGridView, not a ComponentOne grid control. It is meant to

DataObjects for .NET 169

Copyright © 2017 GrapeCity, inc. All rights reserved.

show that DataObjects for .NET Express can serve as a data source to any data-bound GUI controls adhering
to .NET data binding specification. For all other tutorials will use True DBGrid. Naturally, we recommend
C1TrueDBGrid and other presentation controls, both because they are the best and because they are most
closely integrated with DataObjects for .NET Express. Most DataObjects for .NET Express features, all
features that rely only on standard .NET data binding, will work with any third-party data-bound control.
However, one important feature, Virtual Mode, requires that you use a ComponentOne data bound grid (if you
need a grid at all).

2. Set the Text properties of the CheckBox and Button to the following:
CheckBox1.Text = UpdateLeavingRow
Label1.Text = Row count:
Button1.Text = Update

3. Select the C1ExpressTable1 component.
4. Click the drop-down arrow next to the ConnectionString property in the Properties window and select <New

Connection…>. The Add Connection dialog box opens.
5. Select the provider, the database and other necessary connection properties in that dialog box. In this tutorial,

we use the standard MS Access Northwind sample database (C1NWind.mdb).
1. Click the Change button, if necessary, and select Microsoft Access Database File. The .NET

Framework Data Provider for OLE DB is selected under Data provider.
2. Under Database file name, browse to locate the C1NWind.mdb. The database is installed in the

Common folder of the ComponentOne Samples directory.
3. Click OK to close the Add Connection dialog box.

6. Click the drop-down arrow next to the DbTableName property and select Customers from the database table
list. Click Yes to retrieve the fields.

7. Select the DataGridView1 control, click the drop-down arrow next to the DataSource property in the
Properties window and. select C1ExpressTable1. This binds the grid to the C1ExpressTable, and the
Customers fields appear in the grid.

Run the program and observe the following:

The grid shows the Customers data. Creating a basic data-bound form with C1Express has been as easy as
setting two properties in a single C1ExpressTable component and setting the DataSource property of a data-
bound control.

Close the program and return to the design time environment. Next you'll access DataObjects for .NET Express data

DataObjects for .NET 170

Copyright © 2017 GrapeCity, inc. All rights reserved.

programmatically in code.

Continue by completing the following steps:
1. Create an event handler, C1ExpressTable1_AfterFill, and enter the following code:

To write code in Visual Basic

Visual Basic

Label1.Text = "Row count: " + c1ExpressTable1.DataTable.Rows.Count.ToString()

To write code in C#

C#

label1.Text = "Row count: " + c1ExpressTable1.DataTable.Rows.Count.ToString();

The AfterFill event occurs after the table is filled with data. The code shows the number of rows in the table in a
label control.

2. Create an event handler, Button1_Click, and enter the following code:

To write code in Visual Basic

Visual Basic

C1ExpressTable1.ExpressConnection.Update()

To write code in C#

C#

c1ExpressTable1.ExpressConnection.Update();

This code sends changes made by the end user to the database.
3. Create an event handler, CheckBox1_CheckStateChanged, and enter the following code:

To write code in Visual Basic

Visual Basic

C1ExpressTable1.UpdateLeavingRow = checkBox1.Checked

To write code in C#

C#

c1ExpressTable1.UpdateLeavingRow = checkBox1.Checked;

This code toggles the UpdateLeavingRow property value when the check box is checked or unchecked.

Run the program and observe the following:

DataObjects for .NET 171

Copyright © 2017 GrapeCity, inc. All rights reserved.

The label now details the number of rows in the table.
If the check box is unchecked, changes made to data in the grid are not saved in the database unless you press
the Update button, at which point the changes are saved. You can observe this by closing and re-opening the
program.
If the check box is checked, changes are automatically saved in the database when you modify a row and leave
it for another row either with the keyboard or with the mouse.

Tutorial 2: Creating a Composite Table
In this tutorial, you will learn how to work with composite tables in DataObjects for .NET Express. Complete the
following steps:

1. Create a new .NET 2.0 Windows Application project.
2. Place the following components on the form and arrange them as shown in the image below:

Number of Components Name Namespace

1 C1ExpressTable C1ExpressTable1 C1.Data.Express.C1ExpressTable

1 C1TrueDBGrid C1TrueDBGrid1 C1.Win.C1TrueDBGrid.C1TrueDBGrid

DataObjects for .NET 172

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Select the C1ExpressTable1 component.
4. Click the drop-down arrow next to the ConnectionString property in the Properties window and select <New

Connection…>. The Add Connection dialog box opens.
5. Select the provider, the database and other necessary connection properties in that dialog box. In this tutorial,

we use the standard MS Access Northwind sample database (C1NWind.mdb)
1. Click the Change button, if necessary, and select Microsoft Access Database File. The .NET

Framework Data Provider for OLE DB is selected under Data provider.
2. Under Database file name, browse to locate the C1NWind.mdb. The database is installed in the

Common folder of the ComponentOne Samples directory
3. Click OK to close the Add Connection dialog box.

6. Select Composite Table Editor from the C1ExpressTable Tasks menu.

Alternatively, you can click the drop-down arrow next to the DbTableName property and select <Composite…
> from the database table list. The Composite Table Editor appears.

DataObjects for .NET 173

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. In the Composite Table Editor, click the Add table button . In the Add table dialog box, select the
Orders table and click OK.

8. Open the Add table dialog box again and select Order Details. Notice that the 1-M relation radio button is
selected.

9. Click OK. Notice that the Order Details table has been added to the composite table attached to its parent

with a 1-M, or one-to-many relation .

10. Click the Add join button and select OrderID in the Parent field and OrderID in the Child field. Then click
OK to close the Add new join dialog box.

The following join connects the Order Details table to its parent Orders:

Orders.OrderID = Order Details.OrderID
11. Click the Add table button again and select Products.
12. Select the using many-to-one (M-1) relation radio button and click OK. Notice that the Products table has

been added to the composite table attached to its parent with an M-1, or many-to-one relation .

13. Click the Add join button and select ProductID in the Parent field and ProductID in the Child field. Then
click OK to close the Add new join dialog box.

DataObjects for .NET 174

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following join connects the Products table to its parent Orders:

Order Details.ProductID = Products.ProductID
The overall table structure looks like this:

Orders (1->M) Order Details (M->1) Products
14. Click OK to close the Composite Table Editor.

15. Select Edit Fields from the C1ExpressTable Tasks menu. Alternatively, you can click the ellipsis button next to
the Fields property in the Properties window.

The Fields editor appears. Only two fields appear in the editor: OrderID and ProductID. These are primary key
fields of the constituent DB tables; they are always present in the composite table fields. Other fields must be

DataObjects for .NET 175

Copyright © 2017 GrapeCity, inc. All rights reserved.

explicitly added in the Fields editor.

16. Add the following fields using the Add DB field button : Orders.OrderDate, Products.ProductName,
Order Details.Quantity.

17. Rearrange the order of fields to your liking using the Move up and Move down buttons and click OK to close
the Fields editor.

18. Select the C1TrueDBGrid control, open the C1TrueDBGrid Tasks window, and set the Data Source to
C1ExpressTable1. This binds the grid to the C1ExpressTable, and the composite table fields appear in the

DataObjects for .NET 176

Copyright © 2017 GrapeCity, inc. All rights reserved.

grid.

Run the program and observe the following:

The grid shows the composite table rows containing fields from all three constituent DB tables.
Change a value in the ProductID column and observe that the corresponding value of the ProductName column
changes accordingly. DataObjects for .NET Express not only populates composite tables automatically
(generating SQL statements behind the scenes), but unlike other data frameworks, including ADO.NET, it
remains "structure-aware", preserves the structure of the composite table throughout end user modifications.

DataObjects for .NET 177

Copyright © 2017 GrapeCity, inc. All rights reserved.

Tutorial 3: C1ExpressConnection and Master-Detail
Relations
In this tutorial, you will see how to combine multiple tables into a data set, how to specify master-detail relations and
to build a master-detail data-bound form. Complete the following steps:

1. Create a new .NET 2.0 Windows Application project.
2. Place the following components on the form as shown in the figure.

Number of
Components Name Namespace

2 C1ExpressTable C1ExpressTable1
C1ExpressTable2

C1.Data.Express.C1ExpressTable

1
C1ExpressConnection

C1ExpressConnection1 C1.Data.Express.C1ExpressConnection

2 C1TrueDBGrid C1TrueDBGrid1
C1TrueDBGrid2

C1.Win.C1TrueDBGrid.C1TrueDBGrid

3. Click the drop-down arrow next to the ConnectionString property in the Properties window and select <New
Connection…>. The Add Connection dialog box opens.

4. Select the provider, the database and other necessary connection properties in that dialog box. In this tutorial,
we use the standard MS Access Northwind sample database (C1NWind.mdb).

1. Click the Change button, if necessary, and select Microsoft Access Database File. The .NET
Framework Data Provider for OLE DB is selected under Data provider.

2. Under Database file name, browse to locate the C1NWind.mdb. The database is installed in the
Common folder in the ComponentOne Samples directory.

3. Click OK to close the Add Connection dialog box.
5. Select C1ExpressTable1 and set the ConnectionComponent property to C1ExpressConnection1 in the

DataObjects for .NET 178

Copyright © 2017 GrapeCity, inc. All rights reserved.

Properties window.
6. Set C1ExpressTable1's DbTableName property to Customers and click Yes when asked to retrieve fields.

C1ExpressTable1 now represents the Customers database table.
7. Select C1ExpressTable2 and set the ConnectionComponent property to C1ExpressConnection1 in the

Properties window.
8. Set C1ExpressTable2's DbTableName property to Orders and click Yes when asked to retrieve fields.

C1ExpressTable2 now represents the Orders database table.
9. Select C1ExpressConnection1 and open its Relations editor by clicking Edit Relations under

C1ExpressConnection Tasks.

10. In the Relations editor, click the Add button to create a new relation.
11. Select Customers as the parent table and Orders as the child table in the Parent and Child drop-down lists.

12. Press the Add join button to open the Add new join dialog box.
13. Select CustomerID in both the Parent and Child field drop-down lists and click OK.

DataObjects for .NET 179

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following join connects the Orders table to its parent table Customers:
Customers.CustomerID = Orders.CustomerID

14. Click OK to close the Relations editor.
15. Select C1TrueDBGrid1 and set its DataSource property to C1ExpressConnection1 in the Properties window.
16. Set the DataMember property to _Customers to bind the first grid to the master (parent) table, Customers.

Click Yes to replace the existing column layout. Note that the Customers table appears twice in the
DataMember drop-down list, once with a leading underscore and once without it.

The instance without a leading underscore represents a standalone Customers table that is not a part of
master-detail hierarchy. The instance with a leading underscore represents the same Customers table as the
root of a master-detail hierarchy. It is also indicated by the presence of the + sign, expanding it you will see the
Customers – Orders relation representing the child (detail) node of the hierarchy.

17. Select the C1TrueDBGrid2and set its DataSource property to C1ExpressConection1 in the Properties
window.

18. Set the DataMember property to _Customers, Customer – Orders. This binds the second grid to the detail
(child) table, Orders. Click Yes to replace the existing column layout.

DataObjects for .NET 180

Copyright © 2017 GrapeCity, inc. All rights reserved.

Run the program and observe the following:

The two grids show Customers – Orders data in a master-detail hierarchy. When you select a row in the Customers
grid, the Orders grid is populated with order information for the selected customer.

Save your project, note that Tutorial 4 uses the project created in this Tutorial.

Tutorial 4: Using C1ExpressView Component
In this tutorial, you will see how to use the C1ExpressView component to filter and sort table data and how to bind
data-aware controls to table data that is defined in a different form. Complete the following steps:

1. Add a command button to Form1 in the project built in Tutorial 3: C1ExpressConnection and Master-Detail

DataObjects for .NET 181

Copyright © 2017 GrapeCity, inc. All rights reserved.

Relations.

2. Set the Text property of Button1 to Show Form2.
3. Add the following code to the Button1_Click event:

To write code in Visual Basic

Visual Basic

Dim form As New Form2()
form.ShowDialog()

To write code in C#

C#

Form2 form = new Form2();
form.ShowDialog();

4. Add a new form, Form2 to the project and place the following components on the form:
Number of Components Name Namespace

1 C1ExpressView C1ExpressView1 C1.Data.Express.C1ExpressView

1 C1TrueDBGrid C1TrueDBGrid1 C1.Win.C1TrueDBGrid.C1TrueDBGrid

5. Select the C1ExpressView1 component, and in the Properties window click the drop-down arrow next to the
ExpressTableName property.

6. Make sure that Form1 is open in the Visual Studio design time environment and select
Form1.C1ExpressTable1. The ExpressTableName property shows the list of C1ExpressTable controls in the
forms that are currently open.

7. Enter the following values for C1ExpressView1 properties:
Property Value

RowFilter City = 'London'

Sort ContactName

DataObjects for .NET 182

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Select the C1TrueDBGrid1 control and open the C1TrueDBGrid Tasks menu.
9. Click the Choose Data Source drop-down arrow and select C1ExpressView1. This binds the grid to the

C1ExpressView component.

Run the program and observe the following:
When you press the Show Form2 button, the form appears with the grid filled with filtered and sorted data from the
Customers table: it includes only customers from London and is sorted by ContactName.

DataObjects for .NET 183

Copyright © 2017 GrapeCity, inc. All rights reserved.

Notice that setting Sort is only one (programmatic) of the two possible ways to sort table data; the end user can also
sort it interactively in the grid clicking on a column header.

Tutorial 5: Customizing Data Behavior with Events
In this tutorial, you will learn how to use C1ExpressTable events to customize data behavior in code.

Create a new .NET 2.0 Windows Application project.
1. Place the following components on the form as shown in the image below:

Number of Components Name Namespace

1 C1ExpressTable C1ExpressTable1 C1.Data.Express.C1ExpressTable

1 C1TrueDBGrid C1TrueDBGrid1 C1.Win.C1TrueDBGrid.C1TrueDBGrid

2. Select the C1ExpressTable1 component.
3. Click the drop-down arrow next to the ConnectionString property in the Properties window and select <New

Connection…>. The Add Connection dialog box opens.
4. Select the provider, the database and other necessary connection properties in that dialog box. In this tutorial,

we use the standard MS Access Northwind sample database (C1NWind.mdb).
1. Click the Change button, if necessary, and select Microsoft Access Database File. The .NET

Framework Data Provider for OLE DB is selected under Data provider.
2. Under Database file name, browse to locate the C1NWind.mdb. The database is installed in the

Common folder of the ComponentOne Samples directory.
3. Click OK to close the Add Connection dialog box.

5. Click the drop-down arrow next to the DbTableName property and select Order Details from the database
table list. Click Yes to retrieve the fields.

6. Select the C1TrueDBGrid1and set its DataSource property to C1ExpressTable1 in the Properties window.

DataObjects for .NET 184

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Add the following event handlers, C1ExpressTable1_BeforeFieldChange and
C1ExpressTable1_BeforeEndEdit, and their code for C1ExpressTable1:

To write code in Visual Basic

Visual Basic

Private Sub C1ExpressTable1_BeforeFieldChange _
(ByVal sender As Object, ByVal e As C1.Data.FieldChangeEventArgs) Handles _
C1ExpressTable1.BeforeFieldChange
If e.Field.Name = "Quantity" Then
 If e.NewValue < 1 Then
 e.NewValue = 1
 End If
ElseIf e.Field.Name = "Discount" Then
 If e.NewValue < 0 Or e.NewValue > 1 Then
 Throw New ApplicationException("Discount must be between 0 and 1")
 End If
End If
End Sub

Private Sub C1ExpressTable1_BeforeEndEdit _
(ByVal sender As Object, ByVal e As C1.Data.RowChangeEventArgs) Handles _
C1ExpressTable1.BeforeEndEdit
If e.Row("Quantity") * e.Row("UnitPrice") > 100000 Then
 Throw New ApplicationException("Too expensive")
End If
End Sub

To write code in C#

C#

private void c1ExpressTable1_BeforeFieldChange
(object sender, C1.Data.FieldChangeEventArgs e)
{
if (e.Field.Name == "Quantity")

DataObjects for .NET 185

Copyright © 2017 GrapeCity, inc. All rights reserved.

{
if ((short)e.NewValue < 1)
e.NewValue = (short)1;
}
else if (e.Field.Name == "Discount")
{
if ((float)e.NewValue < 0 || (float)e.NewValue > 1)
throw new ApplicationException("Discount must be between 0 and 1");
}
}

private void c1ExpressTable1_BeforeEndEdit
(object sender, C1.Data.RowChangeEventArgs e)
{
if ((short)e.Row["Quantity"] * (decimal)e.Row["UnitPrice"] > 100000)
throw new ApplicationException("Too expensive");
}

Run the program and observe the following:

Type 0 in Quantity column and press Enter. The value will be silently changed to 1, as specified in the
C1ExpressTable1_BeforeFieldChange code.

Type 2 in Discount column and press Enter. This will result in an error message "Discount must be between 0

DataObjects for .NET 186

Copyright © 2017 GrapeCity, inc. All rights reserved.

and 1", as specified in the C1ExpressTable1_BeforeFieldChange code.

Type 200 in Quantity column and 1000 in UnitPrice column, then try to leave the row (for example, click
another row in the grid). This results in an error message "Too expensive", as specified in the
C1ExpressTable1_BeforeEndEdit code. BeforeEndEdit is not fired immediately when you change a field
value; it is fired when you finish editing a whole row. This is why the error message appears when you leave the
row as opposed to the error message in BeforeFieldChange above that is fired immediately before a field
value is changed.

DataObjects for .NET 187

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos,
which may make use of other development tools included with the ComponentOne Studio.

The samples illustrate various features of DataObjects for .NET. However, the samples do not cover all DataObjects
for .NET features, only those that are not sufficiently represented in DataObjects for .NET Tutorials.

All samples use the standard Microsoft Access sample database Northwind, C1NWind.mdb.

Note: Please be aware that the sample projects have the database location (to the installation directory) hard
coded in the connection string.

If you have the Northwind database installed in a different location, you can change the connection strings, or copy
the C1NWind.mdb file to the required location.

Please refer to the pre-installed product samples through the following path:

Documents\ComponentOne Samples\WinForms

The following table lists available Visual Basic and C# samples:

Sample Description

ADOStorage Enables you to work with the same data using DataObjects for .NET
and ADO.NET, interchangeably. This functionality is very important in
DataObjects for .NET, because it allows you to:

Do everything with your data that you can do with ADO.NET,
including things that are not supported in DataObjects for .NET
(for example, DataSet.Merge).
Export/import your data from/to DataObjects for .NET in
ADO.NET DataSet format. This sample uses the C1DataSet and
C1SchemaDef controls.

ADOStorage(DX) Demonstrates data interchange between DataObjects for .NET Express
and ADO.NET. This sample uses the C1ExpressTable and
C1ExpressConnection controls.

AutoincrementMasterDetail Demonstrates Field.AutoIncrement=ClientAndServer in a master-
detail situation. This sample uses the C1DataSet and C1SchemaDef
controls.

Calculations Shows how to use DataObjects for .NET expression in calculation fields.
This sample uses the C1DataSet and C1DataTableSource controls.

Constraints Shows how to use DataObjects for .NET expression constraints. This
sample uses the C1DataSet and C1TrueDBGrid controls.

CrystalReportsIntegration Shows how to create a report using DataObjects for .NET data with
Crystal Reports. Other reporting tools can be used in a similar fashion.
This sample uses the C1DataSet and C1SchemaDef controls.

CrystalReportsIntegration(DX) Shows how to create a report using DataObjects for .NET Express data
with Crystal Reports. Other reporting tools can be used in a similar
fashion. This sample uses the C1ExpressTable and C1ExpressConnection
controls.

DataObjects for .NET 188

Copyright © 2017 GrapeCity, inc. All rights reserved.

CustomDataProvider Demonstrate a usage of DataObjects for .NET with an arbitrary .NET
data provider. This sample uses the C1DataSet and C1SchemaDef
controls.

CustomFillUpdate This sample demonstrates:

Adding custom business methods to a data library.
Passing C1DataSet as a parameter between client and server,
different processes/machines.
Some ways to customize Fill and Update process (about other
Update customization options, see Updating the Database for
more information).
Managing connections and transactions on the server, including
using pre-created connections/transactions and using distributed
COM+ transactions (spanning multiple databases). This sample
uses the C1DataSet control.

CustomRelations Shows how to create a custom relation, the one with behavior managed
by a custom code. This sample uses the C1DataSet and C1SchemaDef
and C1DataSetLogic controls.

CustomRelations(DX) This sample shows how to create relations in code, specifying the list of
child rows dynamically at run time. This sample uses the C1ExpressTable
and C1ExpressConnection controls.

DataLibraryInheritance (C#
only)

Shows how to inherit a data library from another data library. This
sample uses the C1DataSet control.

DefaultDataView Demonstrates the use of IsDefault property and GetRows event. This
sample uses the C1DataSet and C1SchemaDef, and C1DataView
controls.

DefaultDataView(DX) This sample demonstrates the use of IsDefault property and GetRows
event. This sample uses the C1ExpressTable, C1ExpressConnection, and
C1ExpressView controls.

DynamicConnections Demonstrates how to set ConnectionString and other Connection
properties for a data set at run time. This sample uses the C1DataSet
and C1SchemaDef controls.

DynamicExpress(DX) This sample demonstrates how to set ConnectionString, DbTableName,
and other properties at run time in DataObjects for .NET Express. This
sample uses the C1ExpressTable and C1ExpressConnection controls.

Programmatic This sample demonstrates creating DataObjects for .NET schema
objects at run time. This sample uses the C1TrueDBGrid control.

Relations Demonstrates master detail hierarchies based on various kinds of
relations. This sample uses the C1DataSet and C1TrueDBGrid controls.

ResolvingConcurrencyConflicts Shows how to resolve concurrency conflicts in database update. This
sample uses the C1DataSet, C1DataView, and C1TrueDBGrid controls.

ResyncFromDatabase This sample shows how to synchronize rows with the current state of the
database. This sample uses the C1DataSet and C1SchemaDef controls.

SQLBasedTables This sample shows how to specify custom SQL statements for filling and

DataObjects for .NET 189

Copyright © 2017 GrapeCity, inc. All rights reserved.

updating DataObjects for .NET tables. This sample uses the C1DataSet
and C1TrueDBGrid controls.

SQLBasedTablesEasy Demonstrates how to create a table based on a SQL SELECT statement
or a stored procedure. This sample uses the C1DataSet C1SchemaDef,
and C1TableLogic controls.

SQLBasedTablesEasy(DX) Demonstrates how to create a table based on a SQL SELECT statement
or a stored procedure. This sample uses the C1ExpressTable control.

UnboundTables This sample shows various techniques that can be useful in creating
unbound tables. This sample uses the C1DataSet and C1TrueDBGrid
controls.

UsingDataView This sample demonstrates filtering and sorting features of the
C1DataView component. This sample uses the C1DataSet,
C1SchemaDef, and C1DataView controls.

VirtualSort This sample shows how to specify sort order in virtual mode table views
and change it at run time. This sample uses the C1DataSet,
C1SchemaDef, C1DataTableSource, and C1DataView controls.

WorkingWithData Shows how to access DataObjects for .NET data programmatically. This
sample uses the C1DataSet control.

DataObjects for .NET 190

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataObjects for .NET Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio, and know how to use bound
controls in general. By following the topics outlined in the task-based help, you will be able to create projects
demonstrating a variety of DataObjects for .NET features and get a good sense of what DataObjects for .NET can
do.

Each task-based help topic also assumes that you have created a new .NET 2.0 project.

Avoiding a Memory Leak
It is possible you may experience a memory leak when using DataObjects for .NET and True DBGrid for WinForms.
You may lose information, or the memory usage of your program may increase.

In order to avoid this problem, try adding the following code to your project:

To write code in Visual Basic

Visual Basic

Dim f As MyForm = New MyForm
Try
 f.ShowDialog
Finally
 CType(f, IDisposable).Dispose()
End Try
f = Nothing

OR

Using f As New MyForm
 f.ShowDialog
End Using

To write code in C#

C#

using (MyForm f = new MyForm());
{
 f.ShowDialog();
}

OR

MyForm f = new MyForm();
using (f)
{
 f.ShowDialog();
}
f = null;

Tip: To avoid memory leaks try to avoid unnecessary memory allocation – for example avoid recreating an

DataObjects for .NET 191

Copyright © 2017 GrapeCity, inc. All rights reserved.

editing child form every time a user edits a row.

Changing the Connection String
In code, clear the DataSource property and reassign the ConnectionString property. In this example, we will change
the connection string to the Northwind sample database and bind DataGrid to a C1ExpressTable control. Add the
following code to your project (changing the connection string to add the full directory where the Nwind database is
installed):

To write code in Visual Basic

Visual Basic

DataGrid1.DataSource = Nothing

C1ExpressTable1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
C1NWind.mdb"

C1ExpressTable1.DbTableName = "Customers"
C1ExpressTable1.ExpressConnection.Fill()
DataGrid1.DataSource = C1ExpressTable1

To write code in C#

C#

DataGrid1.DataSource = null;

C1ExpressTable1.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=
C1NWind.mdb";

C1ExpressTable1.DbTableName = "Customers";
C1ExpressTable1.ExpressConnection.Fill();
DataGrid1.DataSource = C1ExpressTable1;

Creating a Composite Table Programmatically
The following code is an example of how to create a composite table at run time in code. See Composite Tables and
Using Composite Tables for additional information. Note that you might need change to the connection string to add
the full directory where the Nwind database is installed.

To write code in Visual Basic

Visual Basic

'Connection string
 Private connectionString As String = "Provider=Microsoft.Jet.OLEDB.4.0;" + _
 "Data Source=C:\Users\<User Name>\Documents\ComponentOne
Samples\Common\C1NWind.mdb;" + _
 "Persist Security Info=False"

Private Sub btnFillCategoriesProducts_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnFillCategoriesProducts.Click

DataObjects for .NET 192

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Dim schemaDef As C1.Data.C1SchemaDef
 Dim connection As C1.Data.SchemaObjects.C1OleDbConnection
 Dim dbTableCategories As C1.Data.SchemaObjects.DbTable
 Dim dbTableProducts As C1.Data.SchemaObjects.DbTable
 Dim simpleRelation As C1.Data.SchemaObjects.SimpleRelation
 Dim joinCondition As C1.Data.SchemaObjects.JoinCondition
 Dim compositeTable As C1.Data.SchemaObjects.CompositeTable
 Dim tableViewCategories As C1.Data.SchemaObjects.TableView
 Dim tableViewProducts As C1.Data.SchemaObjects.TableView
 Dim viewRelation As C1.Data.SchemaObjects.ViewRelation
 Dim dataSetDef As C1.Data.SchemaObjects.DataSetDef
 Dim tableView As C1.Data.SchemaObjects.TableView
 Dim dataSet As C1.Data.C1DataSet

 'Create Schema (C1SchemaDef) object
 schemaDef = New C1.Data.C1SchemaDef()

 'Create a connection
 connection = New C1.Data.SchemaObjects.C1OleDbConnection(schemaDef.Schema)
 connection.ConnectionString = connectionString
 connection.Name = "Connection"

 'Create simple table Categories
 dbTableCategories = New C1.Data.SchemaObjects.DbTable(schemaDef.Schema)
 dbTableCategories.DbTableName = "Categories"
 dbTableCategories.Name = dbTableCategories.DbTableName
 dbTableCategories.Connection = connection
 CreateCategoriesFields(dbTableCategories)

 'Create simple table Products
 dbTableProducts = New C1.Data.SchemaObjects.DbTable(schemaDef.Schema)
 dbTableProducts.DbTableName = "Products"
 dbTableProducts.Name = dbTableProducts.DbTableName
 dbTableProducts.Connection = connection
 CreateProductsFields(dbTableProducts)

 'Establish a simple relation
 simpleRelation = New C1.Data.SchemaObjects.SimpleRelation(dbTableCategories,
dbTableProducts)
 simpleRelation.Name = "Categories - Products"
 joinCondition = New C1.Data.SchemaObjects.JoinCondition(simpleRelation.Joins)
 joinCondition.ParentField = dbTableCategories.Fields("CategoryID")
 joinCondition.ChildField = dbTableProducts.Fields("CategoryID")

 'Create a composite table
 compositeTable = New C1.Data.SchemaObjects.CompositeTable(schemaDef.Schema)
 compositeTable.Name = "CategoriesProducts"

 'Create TableView for Categories table
 tableViewCategories = New
C1.Data.SchemaObjects.CompositeDefView(compositeTable.CompositeTableDef,

DataObjects for .NET 193

Copyright © 2017 GrapeCity, inc. All rights reserved.

dbTableCategories)
 tableViewCategories.Name = "Categories"
 tableViewCategories.RetrieveFields()

 'Create TableView for Products table
 tableViewProducts = New
C1.Data.SchemaObjects.CompositeDefView(compositeTable.CompositeTableDef,
dbTableProducts)
 tableViewProducts.Name = "Products"
 tableViewProducts.RetrieveFields()

 'Create ViewRelation between the TableViews
 viewRelation = New
C1.Data.SchemaObjects.CompositeDefRelation(compositeTable.CompositeTableDef,
simpleRelation)
 viewRelation.Name = simpleRelation.Name
 viewRelation.Parent = tableViewProducts
 viewRelation.Child = tableViewCategories

 'Create fields in the composite table (ProductID field is already here)
 AddCompositeField("ProductID", compositeTable, tableViewProducts,
dbTableProducts)
 AddCompositeField("CategoryID", compositeTable, tableViewProducts,
dbTableProducts)
 AddCompositeField("ProductName", compositeTable, tableViewProducts,
dbTableProducts)
 AddCompositeField("CategoryName", compositeTable, tableViewCategories,
dbTableCategories)
 AddCompositeField("Discontinued", compositeTable, tableViewProducts,
dbTableProducts)
 AddCompositeField("UnitPrice", compositeTable, tableViewProducts,
dbTableProducts)
 AddCompositeField("QuantityPerUnit", compositeTable, tableViewProducts,
dbTableProducts)

 'Create DataSetDef object
 dataSetDef = New C1.Data.SchemaObjects.DataSetDef(schemaDef.Schema)
 dataSetDef.Name = "DataSet"

 'Create TableView for the whole composite table
 tableView = New C1.Data.SchemaObjects.TableView(dataSetDef, compositeTable)
 tableView.Name = "CategoriesProducts"
 tableView.RetrieveFields()

 'Create C1DataSet to bind to
 dataSet = New C1.Data.C1DataSet()
 dataSet.SchemaDef = schemaDef
 dataSet.DataSetDef = "DataSet"
 dataSet.Fill(True)

 'Unbind the grid from current data source

DataObjects for .NET 194

Copyright © 2017 GrapeCity, inc. All rights reserved.

 gridBound.DataMember = ""
 gridBound.DataSource = Nothing
 gridBound.ClearFields()

 'Bind to CategoriesProducts composite table
 gridBound.DataMember = "CategoriesProducts"
 gridBound.DataSource = dataSet

 'Adjust columns width and format
 SetColumnsWidth(gridBound, New Int32() {60, 63, 155, 85, 73, 62, 110})
 gridBound.Columns("UnitPrice").NumberFormat = "Currency"
 End Sub

To write code in C#

C#

// Connection string
private readonly string connectionString = @"Provider=Microsoft.Jet.OLEDB.4.0;"+
@"Data Source=C1NWind.mdb;" + @"Persist Security Info=False";

private void btnFillCategoriesProducts_Click(object sender, System.EventArgs e)
{
 C1SchemaDef schemaDef;
 C1OleDbConnection connection;
 DbTable dbTableCategories;
 DbTable dbTableProducts;
 SimpleRelation simpleRelation;
 JoinCondition joinCondition;
 CompositeTable compositeTable;
 TableView tableViewCategories;
 TableView tableViewProducts;
 ViewRelation viewRelation;
 DataSetDef dataSetDef;
 TableView tableView;
 C1DataSet dataSet;

 // Create Schema (C1SchemaDef) object
 schemaDef = new C1SchemaDef();

 // Create a connection
 connection = new C1OleDbConnection(schemaDef.Schema);
 connection.ConnectionString = connectionString;
 connection.Name = "Connection";

 // Create simple table Categories
 dbTableCategories = new DbTable(schemaDef.Schema);
 dbTableCategories.DbTableName = "Categories";
 dbTableCategories.Name = dbTableCategories.DbTableName;
 dbTableCategories.Connection = connection;
 CreateCategoriesFields(dbTableCategories);

DataObjects for .NET 195

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // Create simple table Products
 dbTableProducts = new DbTable(schemaDef.Schema);
 dbTableProducts.DbTableName = "Products";
 dbTableProducts.Name = dbTableProducts.DbTableName;
 dbTableProducts.Connection = connection;
 CreateProductsFields(dbTableProducts);

 // Establish a simple relation
 simpleRelation = new SimpleRelation(dbTableCategories, dbTableProducts);
 simpleRelation.Name = "Categories - Products";
 joinCondition = new JoinCondition(simpleRelation.Joins);
 joinCondition.ParentField = dbTableCategories.Fields["CategoryID"];
 joinCondition.ChildField = dbTableProducts.Fields["CategoryID"];

 // Create a composite table
 compositeTable = new CompositeTable(schemaDef.Schema);
 compositeTable.Name = "CategoriesProducts";

 // Create TableView for Categories table
 tableViewCategories = new CompositeDefView(compositeTable.CompositeTableDef,
dbTableCategories);
 tableViewCategories.Name = "Categories";
 tableViewCategories.RetrieveFields();

 // Create TableView for Products table
 tableViewProducts = new CompositeDefView(compositeTable.CompositeTableDef,
dbTableProducts);
 tableViewProducts.Name = "Products";
 tableViewProducts.RetrieveFields();

 // Create ViewRelation between the TableViews
 viewRelation = new CompositeDefRelation(compositeTable.CompositeTableDef,
simpleRelation);
 viewRelation.Name = simpleRelation.Name;
 viewRelation.Parent = tableViewProducts;
 viewRelation.Child = tableViewCategories;

 // Create fields in the composite table (ProductID field is already here)
 AddCompositeField("ProductID", compositeTable, tableViewProducts,
dbTableProducts);
 AddCompositeField("CategoryID", compositeTable, tableViewProducts,
dbTableProducts);
 AddCompositeField("ProductName", compositeTable, tableViewProducts,
dbTableProducts);
 AddCompositeField("CategoryName", compositeTable, tableViewCategories,
dbTableCategories);
 AddCompositeField("Discontinued", compositeTable, tableViewProducts,
dbTableProducts);
 AddCompositeField("UnitPrice", compositeTable, tableViewProducts,
dbTableProducts);
 AddCompositeField("QuantityPerUnit", compositeTable, tableViewProducts,

DataObjects for .NET 196

Copyright © 2017 GrapeCity, inc. All rights reserved.

dbTableProducts);

 // Create DataSetDef object
 dataSetDef = new DataSetDef(schemaDef.Schema);
 dataSetDef.Name = "DataSet";

 // Create TableView for the whole composite table
 tableView = new TableView(dataSetDef, compositeTable);
 tableView.Name = "CategoriesProducts";
 tableView.RetrieveFields();

 // Create C1DataSet to bind to
 dataSet = new C1DataSet();
 dataSet.SchemaDef = schemaDef;
 dataSet.DataSetDef = "DataSet";
 dataSet.Fill(true);

 // Unbind the grid from current data source
 gridBound.DataMember = "";
 gridBound.DataSource = null;
 gridBound.ClearFields();

 // Bind to CategoriesProducts composite table
 gridBound.DataMember = "CategoriesProducts";
 gridBound.DataSource = dataSet;

 // Adjust columns width and format
 SetColumnsWidth(gridBound, new int[] {60, 63, 155, 85, 73, 62, 110});
 gridBound.Columns["UnitPrice"].NumberFormat = "Currency";
}

Note: Sample Project Available For a complete sample detailing how to create a composite table
programmatically, see the Programmatic sample available from the ComponentOne HelpCentral Sample page.

Exporting Data from a C1DataSet to XML
To export data from a C1DataSet to an .xml file, complete the following steps:

1. Select the C1DataSet component and use the smart tags to open the C1DataSet Tasks menu.

Alternatively, you can right-click the C1DataSet component and select Save Export XML Schema.
2. Select Save Export XML Schema.
3. Enter a file name for the .xml file and click Save.

Importing Schema Information using the Conversion
Wizard

DataObjects for .NET 197

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/Samples.aspx

This topic explains how to import schema information using the C1DataObjects Conversion Wizard. Complete the
following steps:

1. Begin by opening the C1SchemaDef Tasks menu and selecting Conversion Wizard.

This opens the Conversion Wizard dialog box.

2. Select the source of the schema information to be imported. The following schema sources are available:
Source Description

Import from ADO.NET
DataSet

Imports schema from an ADO.NET DataSet. This dataset
must be located in a form open in the IDE.

Import from ADO.NET
schema file

Imports schema from an ADO.NET schema file (.XSD).

Import from
DataObjects for .NET
Express

Imports schema from DataObjects for .NET Express
components (C1ExpressTable, C1ExpressConnection).

Check the Clear existing schema box if you want to delete the existing schema, and click Next to continue.

Note: There must be a Connection object in the schema for bound tables.

3. Select the existing dataset, schema file or component with the schema information:

DataObjects for .NET 198

Copyright © 2017 GrapeCity, inc. All rights reserved.

If importing from an ADO.NET DataSet, choose an ADO.NET DataSet from the list of dataset
components.

If importing from an ADO.NET schema file, click the ellipsis button under Select an XSD file containing
an ADO.NET DataSet schema to specify the schema file.

If importing from DataObjects for .NET Express components, choose a C1ExpressConnection or
C1ExpressTable component from the list of components.

Note: You can import a schema from a C1ExpressConnection or from a standalone
C1ExpressTable component not connected to a C1ExpressConnection.

4. Define the connection and tables to be used.

Note: The Connection section of the Conversion Wizard is the same if you are importing from an
ADO.NET DataSet or schema file. If importing from an ADO.NET DataSet or schema file, follow the
steps below.

1. In the first drop-down box, specify whether the Connection is based on: a new connection string, an
existing ADO.NET connection or an existing schema connection.

DataObjects for .NET 199

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. If you select New connection string, specify the Connection type in the next drop-down box
and click the ellipsis button next to Connection string to enter the database connection.

2. If you select Existing ADO.NET connection, specify the ADO.NET Connection in the next drop-
down box. The connection string is automatically added to the Connection string box.

3. If you select Existing schema connection, select a Schema Connection from the next drop-
down box. The connection string is automatically added to the Connection string box.

2. Click Next to continue.
3. Select tables from the list of Available tables in the database, and click the arrows to move the tables

to the Create schema tables box.

DataObjects for .NET 200

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: If you are importing from DataObjects for .NET Express components, select Import
connection from the selected C1DataExpress component or choose one of the other existing
connections from the Connection drop-down box.

DataObjects for .NET 201

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Click Finish. The final window in the wizard shows the schema objects that have been created. Expand the
nodes to see all objects.

6. Click Close and open Schema Designer to complete the wizard.

Using the C1SchemaRef Control
To use the C1SchemaRef component to represent a C1SchemaDef component, complete the following steps:

1. Add a C1SchemaDef control to your form and create a data schema.
2. Add a new component class file to your project by selecting the Project menu and clicking Add New Item,

Component Class.

3. Enter a name for the class in the Name text box and click Add.

DataObjects for .NET 202

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Double-click the C1SchemaRef component in the Toolbox to add it to the design surface of the component
class file.

5. In the Visual Studio Properties window, set the SchemaDef property of the C1SchemaRef to the C1SchemaDef
you created in step 1.

Note: When working with multiple files using C1SchemaRef, the file containing the C1SchemaDef
component must be open.

6. Add any desired business logic components such as C1TableLogic and C1DataSetLogic to the component class
file.

7. For each business logic component, set its SchemaComponent property to the C1SchemaRef component
added in step 4.

8. If a C1TableLogic component was added, choose a table from the Table property drop-down box in the Visual
Studio properties window. If a C1DataSetLogic component was added, select a data set from the DataSetDef
property drop-down box.

9. In the initialization section of your code, call Add to add a C1SchemaRef component to the list of C1SchemaRef
components associated with the C1SchemaDef component.

Creating a Schema with the Import Wizard
To use the Import Wizard to create a schema based on the structured information stored in a specified database,
complete the following steps:

1. Add a C1SchemaDef control to your form.
2. Select the C1SchemaDef component and click the smart tag to open the C1SchemaDef Tasks menu.

3. Select Schema Designer. The Import Wizard appears.

DataObjects for .NET 203

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. TheImport Wizard guidesyou through the steps of connecting to a database. You can either use an
existingconnection or create a new one.

To use an existing database connection, select it from the Connection string drop-down list.
To create a new connection:

1. Select “Use new connection string” from the Connection drop-down list and check the “Save
connection in schema” check box.

2. Click the ellipsis button underConnection string. The standard OLE DB Data Link Properties window
appears.

3. Click the Provider tab and select the data to connect to.

DataObjects for .NET 204

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Click the Connection tab and select a database. Enter a user name and password, if necessary.

DataObjects for .NET 205

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Click the Test Connection button to make sure that you have successfully connected to the database or
server and click OK to return to the Import Wizard. The new string appears in the ConnectionString
property box.

Note: Using OLE DB is only one option. DataObjects for .NET supports other .NET data providers
as well, see Database Connections. The information you must specify depends on the Provider you
choose.

5. Enter any information necessary to connect to the specified database in the remaining fields and click Next:
Field Description

Connection
type

Choose from Custom, MSOracle, OLE DB, Oracle, SQL Server

User name Username used to connect to the database

Password Password to connect to the database

Connection
timeout

Timeout, in seconds

Import
objects

Types of objects to import from the database: tables, views, aliases, or
any combination of the these

6. Select objects for import from the list of Available tables (also, views and aliases, if included) in the database
structure. Click the arrows to move the tables to the Create schema tables box. There is also a check box that
determines whether available foreign key information is used to create relations. If it is unchecked, no relations
will be created.

DataObjects for .NET 206

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Click Finish to completethe Import Wizard and open the ComponentOne DataObjects Schema Designer.

Creating and Customizing the Schema using the Schema
Designer

DataObjects for .NET 207

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following topic explains how the Schema Designer can be used to create your schema.

1. To open the Schema Designer, select the C1SchemaDef component and use the smart tag to open the
C1SchemaDef Tasks menu.

2. Select Schema Designer. The Schema Designer appears.

Note: If you have not imported a database structure, you must use the Import Wizard to do so before
using the Schema Designer.

3. Use the View menu to open each window and begin customizing the schema. Select any of the following
windows:
Window Description

Schema graph Tables and relations are represented in a graphical form in the center
Schema – Simple Tables window. You can rearrange tables through a
drag-and-drop operation.

DataObjects for .NET 208

Copyright © 2017 GrapeCity, inc. All rights reserved.

Tables The Tables window contains the list of all simple and composite table
objects created by the Import Wizard based on the database tables.
Double-clicking a table opens the Table Editor, where tables can be
added and their properties specified.

For more information on creating and customizing tables, see Simple
Tables or Composite Tables.

DataSets The DataSets window allows you to create and customize data set
definitions. Double-clicking a data set opens the DataSet Editor,
where table views can be added and their properties specified.

For more information, see Data Sets.

Relations The Relations window contains inter-table relations created by the
Import Wizard based on the relationships existing in the database.
Double-clicking one of the relations opens the Relations Editor,

DataObjects for .NET 209

Copyright © 2017 GrapeCity, inc. All rights reserved.

where its properties can be specified.

For more information, see Simple Relations.

Connections The Connections window allows you to define a connection(s) to a
database(s). Double-clicking a connection opens the Connection
Editor, where it can be edited and its properties can be specified.

For more information, see Database Connections.

Database tables The Database Tables window contains a list of all the tables within
the connected database. Change the database connection by clicking
the Connect to database button and selecting a connection or
creating a new one.

Information The Information window provides information on the item currently
selected within the Schema Designer. For example, if the Products –
Order Details relation is selected, the Information window shows the
relation and states the relation type, SimpleRelation.

Output Select Verify schema from the Schema menu, and any errors in the
schema are displayed in the Output window. Select Compare Schema

DataObjects for .NET 210

Copyright © 2017 GrapeCity, inc. All rights reserved.

with database structure from the Schema menu to scan the schema
and database structure. Any differences between them appear in the
Output window. Use the drop-down arrow to switch between the
Verification and Database structure/Schema differences views.

For more information, see Database Structure Evolution and the
Schema.

Viewing the SQL Statement Generated when a TableView is
Sorted
When a TableView is sorted, the generated SQL statement is available in the AfterGenerateSql event of the
C1DataSetLogic component. To configure this component, follow these steps:

1. Add a C1DataSetLogic component to your project in the same location as the C1SchemaDef component
(usually within a data library project).

2. Select C1DataSetLogic1 and set its SchemaComponent property to the C1SchemaDef component.
3. Set C1DataSetLogic1's DataSetDef property to the desired data set.
4. Create an event handler for the AfterGenerateSql event.
5. Set a new breakpoint there:

1. In the Debug menu, select New Breakpoint | Break at Function.
2. Enter C1DataSetLogic1_AfterGenerateSql in the Function text box and click OK.

6. Run the project and expand e{C1.Data.GenerateSqlEventArgs}.

The e.Sql argument contains the generated SQL statement.

DataObjects for .NET 211

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	DataObjects for .NET Overview
	Help with WinForms Edition

	Key Features
	DataObjects for .NET Quick Start
	Step 1 of 4: Setting up the Form and Importing a Database Structure
	Step 2 of 4: Creating a Data Schema using the Schema Designer
	Step 3 of 4: Binding the Data Source to a Grid
	Step 4 of 4: Running the Program

	DataObjects for .NET Top Tips
	DataObjects for .NET (Enterprise Edition)
	DataObjects for .NET and ADO.NET
	Schema Objects
	Importing Database Structure
	Converting Schema from Other Sources
	Database Structure Evolution and the Schema
	Database Connections
	Connections and Transactions at Run Time
	Supporting Distributed (COM+) Transactions
	Native and OLE DB Database Access
	Using Other (Custom) .NET Data Providers

	Simple Tables
	Creating and Modifying Tables
	Using Table Properties
	Table Business Logic Events
	Table Fields
	Structured Data Storage: Tables and Table Views
	How the Data is Fetched
	How the Data is Modified
	How to Access Table Data
	Bound, SQL-Based, and Unbound Tables

	Simple Relations
	Creating and Modifying a Simple Relation
	Simple Relation Properties

	Composite Tables
	Composite Table Diagram
	Creating and Modifying Composite Table Diagrams
	Composite Table Fields
	Composite Table Properties and Business Logic Events
	How Composite Table Data is Fetched, Stored, and Updated
	How to Access Composite Table Data

	Composite Relations
	Data Sets
	Creating and Modifying a Data Set Definition

	Table Views
	Table View Fields
	Table View Business Logic Events

	View Relations
	Custom View Relations

	How to Access Table View Data
	Data Binding
	Programmatic Access

	Business Logic
	How Business Logic Works on Different Levels
	Business Logic Events
	Events on Editing Row
	Events on Modifying Row
	Events on Adding Row
	Events on Deleting Row
	Events on Updating Database

	Business Methods
	Using Typed Data Objects
	Action Order and Execution Mode

	Application Configurations
	Direct Client
	Data Library
	Creating a Data Library Project
	Using a Data Library

	2-Tier Application
	3-Tier Application
	Configuring the Data Library on the Server
	Security Considerations

	Virtual Mode – Dealing with Large Datasets
	Understanding Large Data Sets
	Table Views in Virtual Mode
	When a Virtual Table View Fetches Data Segments
	Virtual Mode in Distributed 3-Tier Applications
	Using C1DataTableSource and Bound Controls
	Asynchronous Fetch Modes
	Sorting Data in Virtual Mode
	Virtual Mode Restrictions
	Necessary Requirements for Virtual Mode
	Functionality Restrictions in Virtual Mode

	Virtual Mode Performance Tuning

	Updating the Database
	When the Database is Updated
	Update in 2-Tier and 3-Tier Configurations
	Update Process on the Server
	Generated SQL Statements
	Deleted Row
	Added Row
	Modified Row

	Events in Updating a Row
	Changing Data as a Result of Update (Refresh)
	Updating SQL-Based and Unbound Tables
	Updating SQL-Based Tables
	Updating Unbound Tables

	Controlling the Update Process
	Handling Errors in Update
	Handling Concurrency Conflicts
	Handling Update Errors on the Client

	Features and Techniques
	DataObjects for .NET Expressions
	ADO.NET Expression Language Reference
	Escaping Special Characters and Reserved Words
	Constant Values
	Operators
	Parent/Child Fields
	Aggregation Functions
	Field Value Qualifying Functions
	Other Functions

	Adding Rows and Primary Keys
	Keys Assigned by Client: New Row Detached and Attached State
	Keys Assigned by Server or Database
	Key Assigned Automatically by Database
	Programmatic Key Assignment

	Working with ADO.NET Dataset

	DataObjects for .NET Enterprise Edition Design-Time Support
	C1SchemaDef Tasks and Context Menus
	C1DataSet Tasks and Context Menus
	C1DataView Tasks and Context Menus
	C1SchemaRef Tasks and Context Menus
	C1TableLogic Tasks and Context Menus
	C1DataTableSource Tasks and Context Menus

	DataObjects for .NET Tutorials
	Tutorial 1: Creating a Data Schema
	Tutorial 2: Defining Business Logic
	Tutorial 3: Creating Distributed 3-Tier Applications
	Tutorial 4: Virtual Mode: Dealing with Large Datasets

	DataObjects for .NET Express Edition
	C1ExpressTable: Working with Simple and Composite Tables
	Connecting to Database and Working with Data
	Using Composite Tables
	Defining Fields
	DB Fields and Calculated Fields
	Field Properties

	Programmatic Access to Data
	Customizing Data Logic with Events

	C1ExpressConnection: Combining Tables into Data Sets
	Defining Relations
	Master-Detail Relations
	Enforcing Referential Integrity (Foreign Key) Constraints
	Relation Properties

	C1ExpressView: Filtering, Sorting and Working with Tables in Other Forms
	Working with Tables in Other Forms

	DataObjects for .NET Express Design-Time Support
	C1ExpressTable Tasks and Context Menus
	C1ExpressConnection Tasks and Context Menus
	C1ExpressView Tasks and Context Menus

	Notes for Users of DataObjects for .NET Enterprise Edition
	DataObjects for .NET Express Tutorials
	Tutorial 1: Binding to a Simple Table
	Tutorial 2: Creating a Composite Table
	Tutorial 3: C1ExpressConnection and Master-Detail Relations
	Tutorial 4: Using C1ExpressView Component
	Tutorial 5: Customizing Data Behavior with Events

	DataObjects for .NET Samples
	DataObjects for .NET Task-Based Help
	Avoiding a Memory Leak
	Changing the Connection String
	Creating a Composite Table Programmatically
	Exporting Data from a C1DataSet to XML
	Importing Schema Information using the Conversion Wizard
	Using the C1SchemaRef Control
	Creating a Schema with the Import Wizard
	Creating and Customizing the Schema using the Schema Designer
	Viewing the SQL Statement Generated when a TableView is Sorted

