

ComponentOne

FlexPivot for WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
FlexPivot for WinForms Overview 3

What is FlexPivot 3

Introduction to FlexPivot 4-5

Key Features 6

FlexPivot Architecture 7

FlexPivotPage 7-8

FlexPivotPanel 8-10

FlexPivotGrid 10

FlexPivotChart 10-11

FlexPivotPrintDocument 11

Adding Data to FlexPivot Application 12

Design Time Support through Smart Tag 13

FlexPivotPanel Smart Tag 13-14

FlexPivotPage Smart Tag 14-15

FlexPivotChart Smart Tag 15-16

FlexPivotGrid Smart Tag 16

Quick Start: FlexPivot for WinForms 17

Using FlexPivot Controls with C1DataEngine 17

Step 1: Setting up the Application 17-18

Step 2: Connecting FlexPivotPage Control with DataEngine 18

Step 3: Creating Different Views at Runtime 18-22

Updating Data 22-23

Using FlexPivot Controls with Data Source 23

Binding FlexPivot to Data Source at Design-Time 23-30

Binding FlexPivot to Data Source in Code 30-31

Using FlexPivotPage ToolStrip 32

Grid Menu 32

Chart Menu 32-35

Report Menu 35-38

Data Blending Features 39

Joining 39

Grouping 39-42

Drilling Down Data 42-43

Applying Conditional Formatting 43-45

FlexPivot for WinForms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Creating Reports with FlexPivot 45-46

Copying Data to Excel 46-47

Filtering 47

Using Value Filters 47-48

Using Range Filters 48-50

Sorting 50-51

Formatting Numeric Data 51-52

Specifying Subtotal Function 52-54

Calculating Weighted Averages and Sums 54-55

FlexPivot Cube 56

Setting Microsoft SQL Server Analysis Services 56

Connecting to a Cube 56-57

Using the Cube 57-58

Task-Based Help 59

Configuring Fields in Code 59-60

Adding Multiple Fields in Values List 60-61

Applying Themes 61-64

Using LINQ Queries to Add Data in FlexPivot 64-65

Creating Custom FlexPivot Application in Code 65

Creating Default View 65-67

Adding Predefined Views 67-74

Persisting Views 74-75

Importing Data from Excel 75-78

C1DataEngine Overview 79

Using C1DataEngine 79

Base Tables 79-80

Simple Operations 80-81

Aggregation 81-82

Combining Operations and Queries 82

Filter and Range 82-84

Join 84-86

Excel Add-in 86

Using Excel Add-in 86

FlexPivot for WinForms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPivot for WinForms Overview
ComponentOne Studio introduces FlexPivot for WinForms, a powerful data analysis
product designed and developed to cater high-end business intelligence needs. Being
a data summarization product, FlexPivot enables end users in breaking heavy and
complex database into smaller, modular data chunks presented in multiple formats
including grids, charts and reports.

Getting Started

To get started, review the
following topics:

Key Features
Quick Start:
FlexPivot for
WinForms

What is FlexPivot
In most of the real-world business scenarios, organizing large datasets into smaller, comprehensible formats and
extracting valuable information and insights from them remain a common concern. Although a variety of
powerful business intelligence tools exists, end users still prefer tools that combine high-performance with smaller
footprint to offer faster data analysis and summarization capabilities.

FlexPivot is designed to offer high-end business intelligence capabilities and optimized data analysis to end users.
FlexPivot controls offer superior analytical processing features. FlexPivot is powered by a platform-independent data
engine that performs data analytics locally in the application, without locking into another data analysis tool.

FlexPivot controls also deliver simple, code-free data analysis as it creates dynamic summarized views merely by
dragging data fields into respective lists available on its User Interface. In addition, the C1FlexPivot class
library provides well-defined extensions and API to fetch complex data through code so that end users can analyze
and summarize the data in creative ways.

FlexPivot also supports multi-dimensional data analysis through simple drag-and-drop operations. You can create
interactive grids, charts and reports that can be saved, exported, shared and printed in various file formats (such as
XLS, PDF and XLSX) to cater diverse business needs. FlexPivot also offers the capability to connect with online or local
cubes so that users can easily slice and dice the cube data.

Enhanced Data Engine

The C1DataEngine, the core component that powers FlexPivot, is a C# component with low footprint. This data
engine stores data in memory-mapped files using column-oriented technology that helps deliver higher processing
speeds of up to millions of records in a fraction of a second. The C1DataEngine can also be used separately,
independent of FlexPivot controls for data analysis and visualization as described in Using C1DataEngine section.

The data engine fully supports all the features on a 64-bit OS machine.

FlexPivot for WinForms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Introduction to FlexPivot
FlexPivot is designed similar to an online analytical processing tool. This product is a set of technologies that enable
dynamic visualization and analysis of data.

Typical analytical processing tools include OLAP cubes and pivot tables such as the ones provided by Microsoft Excel.
These tools take large set of data and summarize it by grouping records based on a set of criteria. For example, an
OLAP cube might summarize sales data by grouping it on the basis of product, region and period. In this case, each
grid cell would display the total sales for a particular product, in a particular region, and for a specific period. This cell
would normally represent data from several records in the original data source.

Data analysis and processing tools allow users to redefine grouping criteria dynamically (online). This makes it easy to
perform ad-hoc data analysis and discover hidden patterns.

For example, consider the following table:

Date Product Region Sales

Oct 2015 Product A North 12

Oct 2015 Product B North 15

Oct 2015 Product C South 4

Oct 2015 Product A South 3

Nov 2015 Product A South 6

Nov 2015 Product C North 8

Nov 2015 Product A North 10

Nov 2015 Product B North 3

Now suppose you were asked to analyze this data and answer questions such as:

Are sales going up or down?
Which products are most important to the company?
Which products are most popular in each region?

In order to answer these simple questions, you would have to summarize the data to obtain tables such as these:

Sales by Date and by Product

Date Product A Product B Product C Total

Oct 2007 15 15 4 34

Nov 2007 16 3 8 27

Total 31 18 12 61

Sales by Product and by Region

Product North South Total

FlexPivot for WinForms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Product A 22 9 31

Product B 18 18

Product C 8 4 12

Total 48 13 61

Each cell in the summary tables represents several records in the original data source, where one or more values fields
are summarized (sum of sales in this case) and categorized on the basis of other fields (date, product, or region in this
case).

This can be done easily in a spreadsheet, but the work is tedious, repetitive, and error-prone. Even if you write a
custom application to summarize the data, probably you spend a lot of time maintaining it to add new views, and
users might get constrained in their analyses to the views implemented by you.

FlexPivot allows users to define the views they want in an interactive, and ad-hoc fashion. They can use pre-defined
views or create and save new ones. Any changes to the underlying data are reflected automatically in the views, and
users can create and share reports showing these views. In short, FlexPivot control provides flexible and efficient data
analysis.

FlexPivot for WinForms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Key Features
Below mentioned are some of the key features of FlexPivot that would help developers realize their complex data
analysis needs.

Multiple Value Fields
FlexPivot supports multiple fields in the Values list. Users can drag multiple fields into the Values list and see
the results in grid and chart. See the topic Adding Multiple Fields in Values List to know more about this.

Enhanced and Powerful Data Engine
FlexPivot is built with a new, powerful data engine that stores data in memory-mapped files using column-
oriented technology. The C1DataEngine offers high-speed processing of very large datasets that makes it
possible to reach high performance of up to hundreds of millions records in a fraction of a second. The engine
also supports query operations such as Aggregation, Joins, Grouping, Filter, Unary/Binary operations, etc. See
Using C1DataEngine section for an overview of query related operations.

Enhanced User Interface
FlexPivot comes with an enhanced, Excel-like user interface (UI) offering modern color schemes in toolbar,
drop-down menus, tables and charts.

Multiple Theme Support
FlexPivot allows developers in choosing a theme that suits their application requirements. To support multiple
themes, FlexPivot includes C1ThemeController support.

Plot Information on Grid View
FlexPivot provides the FlexPivotGrid control to display data in a grid-like view. The C1FlexPivotGrid class
library enables you to customize your FlexPivot application. See the FlexPivot Architecture section for an
overview of the FlexPivotGrid control.

Choose how to display the information at runtime
Use the FlexPivotPanel to determine which fields of your data source should be used to display data and how.
Drag fields between the lower areas of the FlexPivotPanel to create a filter, column headers, row headers, or
get the sum of values from a column or row. For more information, see FlexPivotPanel section.

Implements C1 Controls for Customization
FlexPivot comes with C1 control support (such as check boxes, tabs and toolstrip) instead of standard Microsoft
controls. This way, the FlexPivot product provides users with complete flexibility in customizing the look and
feel of their application according as per their requirements.

Query Operation Support
FlexPivot supports query operations including aggregation, joins, filters, ranges, sorting, grouping, unary and
binary operations, calculated fields, projections and grouping, etc.

FlexPivot controls fully support all the features on a 64-bit OS machine.

FlexPivot for WinForms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPivot Architecture
This section highlights the architectural features of FlexPivot. The section contains a series of subtopics that
cover information on various components integrated within FlexPivot
including FlexPivotPage, FlexPivotPanel, FlexPivotGrid, FlexPivotChart and FlexPivotPrintDocument.

FlexPivotPage
The FlexPivotPage control is designed for easy and quick development of FlexPivot applications. The control provides
a complete user interface (UI) built using other controls.

The C1FlexPivotPage object model exposes the integrated controls so that developers can easily customize them by
adding or removing the interface elements as per their requirements. Developers can also use the source code of the
control for more extensive customization and implement them according to the specifications of their application.

The image below depicts the architectural organization of the FlexPivotPage control.

In Visual Studio, the FlexPivotPage control appears similar to the image below.

FlexPivot for WinForms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPivotPanel
The FlexPivotPanel forms the core control available with FlexPivot.

The C1FlexPivotPanel control is designed to provide an Excel-like drag-and-drop UI that enables users to define
custom views of the data. The control displays a list containing all the fields that exist in the data. Users can drag-and-
drop these fields to lists that represent the row and column dimensions of the output table, the values summarized in
the output data cells, and the fields used for filtering the data.

At the core of this control is a powerful data engine that is responsible for fetching raw data from the data source as
per the criteria selected by the user. The criteria for data selection is determined by the fields enlisted in the various
lists appearing on the panel.

FlexPivot features an open architecture. It can accept any regular collection as data, including tables and generic lists;
and add LINQ enumerations to summarize the data and produce a regular data table as output.

The C1FlexPivotPanel control bound to a data source appears similar to the image below.

FlexPivot for WinForms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following table describes the lists that are included in the C1FlexPivotPanel control and their purpose.

C1FlexPivotPanel Area Description

Filters Specifies the field to filter.

Rows The items added to the Rows list become the row headers of a grid. These items
populate the Y-axis in a chart.

Columns The items added to the Column list become the column headers of a grid. These
items populate the legend in a chart.

Values Shows the summation of the specified field.

Defer Updates Suspends automatic updates that occur when the user modifies the view definition
when this checkbox is selected.

Upon right-clicking the Filter, Rows, Columns, or Values lists at runtime, a context menu appears that allows you to do
the following.

Move the field to a different area
Remove the field
Click field settings to format
Apply a filter to the field

The image below illustrates the above stated options.

FlexPivot for WinForms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPivotGrid
The FlexPivotGrid displays data fetched from the data source in the form of Pivot tables. FlexPivotGrid can be bound
to a data source for populating it with an ordered dataset. The control provides automatic data binding
with C1FlexPivotPanel objects, grouped row and column headers, and custom behaviors for resizing columns, copying
data to the clipboard, and showing details for a given cell.

Extending the features of C1FlexGrid control, the C1FlexPivotGrid control allows users to export the grid content to
Excel sheet or use styles and owner-draw cells to customize the grid's overall appearance.

The image below shows how a FlexPivotGrid control populated with ordered data looks.

FlexPivotChart
The FlexPivotChart displays data fetched from the data source in the form of Pivot charts. The C1FlexPivotChart

FlexPivot for WinForms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

control can be bound to a data source to populate it with data. The control provides automatic data binding with
FlexPivotPanel objects, automatic tooltips, chart types and integrated palettes.

Extending the features of C1Chart control, the C1FlexPivotChart control allows users to export the chart to different
file formats including PNG and JPG or customize chart styles and interactivity.

The image below shows how a FlexPivotChart control looks.

FlexPivotPrintDocument
The C1FlexPivotPrintDocument control creates and displays reports based on various views available in the FlexPivot
control. The control extends the PrintDocument class and provides properties that can be used for specifying and
formatting content, displaying grids and charts, and create ad-hoc reports using raw data.

FlexPivot for WinForms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding Data to FlexPivot Application
FlexPivot comes with three options to add data as mentioned below.

Using C1DataEngine
Using a Data Source
Using Cube

Using C1DataEngine

Using the C1DataEngine is the most effective way to add data to FlexPivot controls. The data engine is not a database
or server but a low-footprint C# component that can be easily integrated into FlexPivot applications. The engine
stores data in memory-mapped files, which gets fetched instantly without any delay in importing these files.
The C1DataEngine does not put any restriction on the size of the dataset that you wish to analyze or display, and that
too without compromising the performance. To know more about using FlexPivot with C1DataEngine, see Using
FlexPivot Controls with C1DataEngine topic.

Using Data Source

FlexPivot controls support binding with data sources to display and analyze data in multiple ways. To know more
about using data sources with FlexPivot controls, see Using FlexPivot Controls with Data Source topic.

Using Cube

FlexPivot includes cube support that enables users in slicing and dicing the cube in several ways. You can connect to
online cubes, or to Analysis Services, Microsoft SQL Server Analysis Services (SSAS), and SQL Server 2008, 2012,
etc for extracting valuable information. For more information on cube support, see FlexPivot Cube topic.

FlexPivot for WinForms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Design Time Support through Smart Tag
FlexPivot comes with smart tags as a capability to configure the controls at design-time. A smart tag represents a
short-cut Tasks menu that provides the most commonly used properties in each control.
The C1FlexPivotPanel, C1FlexPivotPage, C1FlexPivotChart, and C1FlexPivotGrid controls offer smart tag support at
design-time so you can easily access their properties and configure them.

The following sub topics give a detailed description of the smart tags available in various controls.

FlexPivotPanel Smart Tag
The C1FlexPivotPanel control includes a smart tag in Visual Studio to provide access to its commonly used properties
and tasks. The FlexPivotPanel smart tag appears when the control is bound to a data source.

To access the FlexPivotPanel Tasks menu, click the smart tag in the upper-right corner of the FlexPivotPanel control.
This smart tag appears similar to the image below.

The FlexPivotPanel Tasks menu provides the following options:

Show Totals Row
Clicking the Show Totals Row check box adds a row at the bottom of your grid which totals all the data in the
column.

Show Totals Column
Clicking the Show Totals Column check box adds a column to the right of the last column in your grid which
totals all the data in the row.

Show Zeros
Clicking the Show Zeros check box shows any cells containing zero in the grid.

Choose Data Source
Clicking the drop-down arrow in the Choose Data Source box opens a list of available data sources and allows
you to add a new data source. To add a new data source to the project, click Add Project Data Source option.
This opens the Data Source Configuration Wizard.

Plot Information on Grid View
FlexPivot provides a FlexPivotGrid control to display data. FlexPivotGrid is also available as separate control so
you can customize your FlexPivot application. See the FlexPivot Architecture section for an overview of the
control.

About FlexPivotPanel
Clicking About FlexPivotPanel displays a dialog box, which is helpful in finding the version number of the

FlexPivot for WinForms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

product and other resources.

FlexPivotPage Smart Tag
The C1FlexPivotPage control includes a smart tag in Visual Studio to provide access to its commonly used properties
and tasks.

To access the FlexPivotPage Tasks menu, click the smart tag in the upper-right corner of the FlexPivotPage control.
This smart tag appears similar to the image below.

The FlexPivotPage Tasks menu provides the following options:

Show Totals Row
Clicking the Show Totals Row check box adds a row at the bottom of your grid that totals all the data in the
column.
Show Totals Column
Clicking the Show Totals Column check box adds a column to the right of the last column in your grid that
totals all the data in the row.
Show Zeros
Clicking the Show Zeros check box shows any cells containing zero in the grid.
Show Detail on Right Click
Clicking the Show Detail on Right Click check box allows a detail view to be shown when the user right-clicks a
cell in the grid.
Show Selection Status
Clicking the Show Selection Status check box causes the control to display the sum of the values selected on

FlexPivot for WinForms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

the grid in the status bar along the bottom of the control. This corresponds to setting the
ShowSelectionStatus property to True.
Chart Type
Clicking the drop-down arrow next to ChartType allows you to select the chart type options such as Bar,
Column, Area, Line, and Scatter.
Palette
Clicking the drop-down arrow next to Show Legend allows you to choose whether to always, never, or
automatically show the legend.
Show Legend
Clicking the drop-down arrow next to Show Legend allows you to choose whether to always, never, or
automatically show the legend.
Show Title
Clicking the Show Title check box places a title above the chart.
Show Gridlines
Clicking the Show Gridlines check box places gridlines in the chart.
Stacked
Clicking the Stacked check box creates a chart view where the data is stacked.
Show Raw Data
Clicking the Show Raw Data check box adds a raw data table, which contains the raw data from your data
sources, to the views.
Choose Data Source
Clicking the drop-down arrow in the Choose Data Source box opens a list of available data sources and allows
you to add a new data source. To add a new data source to the project, click Add Project Data Source to
open the Data Source Configuration Wizard.
About C1FlexPivotPage
Clicking About C1FlexPivotGrid displays a dialog box, which provides the version number of the product and
other online resources.
Undock in parent container
Clicking Undock in parent container sets the Dock property to None so that none of the borders of the
control are bound to the container. The menu option then changes to Dock in parent container. When you
click this option, the Dock property of the control sets to Fill and the control bounds to the container.

FlexPivotChart Smart Tag
The C1FlexPivotChart control includes a smart tag in Visual Studio to provide access to its commonly used properties
and tasks. This smart tag appears similar to the image below.

To access FlexPivotChart Tasks menu, click the smart tag in the upper-right corner of the FlexPivotChart control.

The FlexPivotChart Tasks menu provides the following options:

Choose Data Source
Clicking the drop-down list next to Choose Data Source allows you to select a FlexPivotPanel to bind the chart
to.
About C1FlexPivotChart
Clicking About C1FlexPivotChart displays a dialog box, which provides the version of C1Chart and online
resources.
Dock in Parent Container

FlexPivot for WinForms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

Clicking Dock in Parent Container sets the Dock property to Fill so that the control bounds to the container.
The menu option then changes to Undock in parent container.

FlexPivotGrid Smart Tag
The C1FlexPivotGrid control includes a smart tag in Visual Studio to provide access to its commonly used properties
and tasks. This smart tag appears similar to the image given below.

To access the FlexPivotGrid Tasks menu, click the smart tag in the upper-right corner of the FlexPivotGrid control.

The FlexPivotGrid Tasks menu provides the following options:

Choose Data Source
Clicking the drop-down list next to Choose Data Source allows you to select a FlexPivotPanel to
bind the grid to.
About C1FlexPivotGrid
Clicking About C1FlexPivotGrid displays a dialog box, which provides the product version.
Dock in parent container
Clicking Dock in Parent Container sets the Dock property to Fill so that the control bounds to the
container. The menu option then changes to Undock in parent container.

FlexPivot for WinForms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

Quick Start: FlexPivot for WinForms
This quick start guide is intended to get you up and running with FlexPivot. In this section, you begin by connecting
the C1FlexPivotPage control to C1DataEngine. You also understand how to bind C1FlexPivotPage control to a local
data source, and then continue exploring various features available in the control at runtime.

Using FlexPivot Controls with C1DataEngine
Using C1DataEngine is the most recommended way to add data into FlexPivot controls and fetch it for analysis. All
you need to do is create an empty Windows Forms Application, add the FlexPivotPage control to the form,
and connect it to the C1DataEngine. Add a few lines of code and that's it. You are ready to add a million records to
your application.

To know how the C1DataEngine can be used independent of the FlexPivot controls for data visualization and
analysis, see Using C1DataEngine topic.

Step 1: Setting up the Application
In this step, you begin with creating a Windows Forms application in Visual Studio and then adding a FlexPivotPage
control to it.

At Design-Time

Complete the following steps to add FlexPivotPage control to your Windows Forms application.

1. Create a new Windows Forms Application project in Visual Studio.
2. Navigate to the Toolbox and locate the C1FlexPivotPage icon.
3. Double-click or drag-and-drop the C1FlexPivotPage icon to add the control to the Form. The design view looks

similar to the following image.

FlexPivot for WinForms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 2: Connecting FlexPivotPage Control with DataEngine
In the previous step, you created a basic Windows Forms application and added FlexPivotPage control to it. In this step, you begin with connecting the FlexPivotPage
control to C1DataEngine.

To connect the FlexPivotPage control to C1DataEngine, perform the following steps.

1. Switch to the code view i.e. Form1.cs and initialize workspace within the form's constructor.
Visual Basic

Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.
C#

Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.
2. Initialize full path to the folder where the DataEngine stores data in files, and an SQL connection above the Form's constructor using the following code.

Visual Basic
Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.

C#
Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.

Initially, the DataEngine is empty but it automatically fills with files as and when the data is added to it.

3. Initialize a standard connection string to the database file being used.
Visual Basic

Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.
C#

Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.
4. Switch to the Design view and subscribe Form1_Load event from the Properties window.
5. Add the following code to the event handler created for Form1_Load event in the code view.

Visual Basic
Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.

C#
Type your example code here. It will be automatically colorized when you switch to Preview or build the help system.

With this, you have successfully connected the FlexPivotPage control to the DataEngine.

Step 3: Creating Different Views at Runtime
Let us now take a look at how we can create different views of the data added using the DataEngine in the previous

FlexPivot for WinForms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

step.

Press F5 to run the application. FlexPivotPage is now connected to C1DataEngine and you can see the control appears
similar to the image below with various data fields that you can choose for data analysis.

You can create different views by dragging the data fields available in the FlexPivotPanel to Rows, Columns and Values
lists as illustrated in the steps below.

1. Drag the Country field from the FlexPivotPanel to Rows list, and Extended Price field to Values list. A
summarized view of Extended Price against Countries appears in the form of a grid as shown in the image
below.

FlexPivot for WinForms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Click the Chart tab to view the same data in chart format.

FlexPivot for WinForms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Drag Salesperson field in the Columns list to slightly enhance the view. The new view shows Extended Price by
Country and Salesperson.

FlexPivot for WinForms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

With this, you have completed all the steps of this Quick Start guide.

Updating Data
FlexPivot enables users to add and update data incrementally through the C1DataEngine. This feature saves users
from loading the entire data in every session since the data added in the first session persists. You can achieve this
functionality by adding a few lines of code to your application. The data gets loaded into the view instantly without
any delay in importing data since it is stored in memory-mapped files.

Refer to the product sample DataUpdate stored at the following location in your system to see the
C1DataEngine in full action

C:\...\Documents\ComponentOne Samples\WinForms\DataUpdate.

Complete the following steps to incrementally update data in the FlexPivotPage control.

1. Add the following code in the Form1_Load event. The code given below immediately loads the data into the
C1DataEngine if the folder pointed out by the data path is not empty. The FlexPivotPage control also displays
the loaded data into the view once it is connected to the C1DataEngine.
C#

Workspace.Init(dataPath);

2. To add new rows of data to the persisted view, use connect.AppendData method as mentioned below.
C#

connector.AppendData(tableName);

FlexPivot for WinForms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. By default, a FlexPivot application automatically updates the results once the AppendData method finishes. To
delay updates, use BeginUpdate and EndUpdate methods. You can call the EndUpdate method to update
FlexPivot results when you are finished with adding data using connectors.
C#

c1FlexPivotPage.FlexPivotPanel.FlexPivotEngine.BeginUpdate();
c1FlexPivotPage.FlexPivotPanel.FlexPivotEngine.EndUpdate();

Using FlexPivot Controls with Data Source
This section is intended to get you up and running in creating an application that adds data by binding the
FlexPivotPage control to a data source at design-time. This way users can add data to the FlexPivot control at design-
time without writing even a single line of code.

This section also highlights how to bind the FlexPivotPage control to a data source in code.

Binding FlexPivot to Data Source at Design-Time
FlexPivot provides an array of default features that can be directly used without writing even a single line of code. You start
by adding the FlexPivotPage control to an empty Windows Forms application and binding it to a data source using the
Smart tag.

At Design-Time

1. Create a new Windows Forms Application in Visual Studio.
2. Navigate to the Toolbox and locate the C1FlexPivotPage control icon.
3. Double-click or drag-and-drop the C1FlexPivotPage icon to the Form.
4. The C1FlexPivotPage control docks to fill the form in the designer as shown in the image below.

FlexPivot for WinForms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Click the smart tag icon () appearing in the upper right corner of the C1FlexPivotPage control. The C1FlexPivotPage
Tasks smart tag panel appears similar to the image below.

FlexPivot for WinForms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Click the drop-down menu appearing against the Choose Data Source option in the C1FlexPivotPage Tasks smart
tag panel.

7. Click the 'Add Project Data Source' link to open Data Source Configuration Wizard window.
8. Select Database as the Data Source type in the Data Source Configuration Wizard window and click Next.

FlexPivot for WinForms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

9. Choose Dataset as the database model in the Data Source Configuration Wizard window and click Next.

FlexPivot for WinForms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

10. Choose data connection string for your application to connect to the database and click Next. In this example, we
are using C1NWind.mdb file as the data source. This file is kept at Documents\ComponentOne
Samples\Common\C1NWind.mdb location on your system.

FlexPivot for WinForms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

11. Save the connection string by selecting the checkbox and click Next.

FlexPivot for WinForms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

12. Choose database objects from the Data Source Configuration Wizard window that you want in your dataset. In
this example, we are selecting Invoices view for data binding as shown in the image. Click Finish to complete the
data binding.

FlexPivot for WinForms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

13. Press F5 to run the application. FlexPivotPage control is now connected to the C1NWind.mdb file and you can see
that the control appears with various data fields available in the FlexPivotPanel.

You can now create different views by dragging the data fields to Rows, Columns and Values list for data analysis. Click
here to know how to create different views.

Binding FlexPivot to Data Source in Code
You can also bind the FlexPivot controls to a data source kept locally at your machine in code. Follow the given steps to bind the FlexPivotPage control to data source
(c1nwind.mdb) in code.

In Code

1. Create a Windows Forms Application project in Visual Studio.
2. Drag-and-drop C1FlexPivotPage control to the Form.
3. Switch to the code view and add the following code to initialize a standard connection string.

Visual Basic
Private Shared Function GetConnectionString() As String
 Dim path As String = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + "\ComponentOne Samples\Common"
 Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;"
 Return String.Format(conn, path)
End Function

C#
static string GetConnectionString()
{
 string path = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

This code creates a connection with the c1nwind.mdb database file installed on your system at Documents\ComponentOne Samples\Common location on
your system.

4. Add the following code in the Form's constructor to fetch data from the data source through Oledb adapters.

FlexPivot for WinForms 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic
' load data
Dim da = New OleDbDataAdapter("select * from invoices", GetConnectionString())
Dim dt = New DataTable()
da.Fill(dt)

C#
// load data
var da = new OleDbDataAdapter("select * from invoices", GetConnectionString());
var dt = new DataTable();
da.Fill(dt);

5. Bind the FlexPivotPage control to the data source using DataSource property of C1FlexPivotPage class in the Form's constructor.
Visual Basic

' bind data
Me.C1FlexPivotPage1.DataSource = dt

C#
// bind data
this.c1FlexPivotPage1.DataSource = dt;

6. Press F5 to run the application. FlexPivotPage is now connected to the c1nwind.mdb file with various data fields available in the FlexPivotPanel.

You can now create different views by dragging the data fields to Rows, Columns and Values list for data analysis.

FlexPivot for WinForms 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using FlexPivotPage ToolStrip
The C1FlexPivotPage control provides a ToolStrip that you can use to:

load or save a C1FlexPivotPage as an .xml file.
display data in a grid or chart.
setup and print a report.

The ToolStrip appears similar to the image below.

The following tables describes the buttons that appear in the ToolStrip and their purpose.

Button Description

Load Load a FlexPivot view from a file.

Save Save a FlexPivot view to a file.

Export Export data appearing on the view to .xlsx format.

Undo Cancel the last action performed in C1FlexPivotPage.

Redo Perform the last action(s) cancelled using the Undo button.

Grid Choose the columns and rows to display data in the C1FlexPivotGrid.

Chart Customize the chart that displays the selected data. You can determine: the chart type,
the palette or theme using this button. You can also determine whether the title appears,
whether the chart is stacked, and whether the gridlines appear or not.

Report Customize the report by specifiying a header or footer for each page; determine what to
include in the report, the grid, the chart, or raw data grid; specify the page layout,
including its orientation, paper size, margins, etc.; preview the report before printing; and
print the report.

Grid Menu
The Grid menu appears similar to the image below and provides three options listed in the table below.

Total Rows Allows you to choose from Grand Totals, Subtotals, or None.

Total Columns Allows you to choose from Grand Totals, Subtotals, or None.

Show Zeros If checked, shows any cells containing zero in the grid.

Simply uncheck any of these items to hide the total rows, total columns, or any zeros in the grid.

FlexPivot for WinForms 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

Chart Menu
From the Chart menu, you can determine: the chart type, the palette, whether to show the chart title above the chart,
whether to show a stacked chart, whether to show chart gridlines, and whether to show totals only.

The following table illustrates the option available in the Chart drop-down menu.

Chart Type Click Chart Type to select from five common chart types shown below.

Palette Click Palette to select from twenty-two palette options that define the colors of the chart and
legend items. See the options in the Palette topic below.

Show Title When selected, shows a title above the chart.

Stacked When selected, creates a chart view where the data is stacked.

Show Gridlines When selected, shows gridlines in the chart.

Totals Only When selected, shows only totals as opposed to one series for each column in the data
source.

Chart Types

FlexPivot offers five common chart types that are shown in the table below.

Bar

FlexPivot for WinForms 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

Column

Area

Line

FlexPivot for WinForms 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

Scatter

Palette

The FlexPivotChart controls comes with 22 different palette options that offer different color schemes to present the
data chart more dynamically. Users can choose the from these palettes as per their styling requirements.

Report Menu
The Report Menu provides you with options to preview or print the report, setup report pages, add header and/or
footers, and specify items to be shown in the report. On clicking the Report button available in the toolstrip, a context
menu appears with Print Preview, Print and Options as follows.

The following table illustrates the options available in the Report context menu.

Print Preview Select Print Preview to preview your report before printing or to export to a PDF file.

Print Click Print to print the C1FlexPivotGrid, C1FlexPivotChart, or both.

Options Click Options to open the Document Options dialog box.

Document Options

Page Tab

The page tab allows you to specify the Orientation, Paper Size, and Margins. See the image below to visualize the
option more clearly.

FlexPivot for WinForms 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

Header/Footer Tab

The header/footer tab allows you to add a header and/or footer to each page of the report. See the image below to
visualize the option more clearly.

FlexPivot for WinForms 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

Click one of the buttons on the toolbar to insert fields into the header or footer.

Button Field

Presets Choose from the three predefined options containing groups of fields to be
inserted in the header or footer.

Page Number &[Page]

Current Date &[Date]

Current Time &[Time]

Document Name $[DocName]

View Description &[ViewTitle]

Author Name &[UserName]

Check the Separator box to show a separator line below the header or above the footer. Click the Font button to
change the font, style, size, or effects.

Report Content Tab

On the Report Content tab, you can determine whether to include the grid, chart, and/or raw data grid in your report.
You can also scale the items as desired and extend the last columns of the grids.

FlexPivot for WinForms 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPivot for WinForms 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

Data Blending Features
Designed as powerful data analysis tools to deliver high-end business intelligence capabilities, the C1FlexPivot
controls can be used for various data blending operations such as filtering, grouping, sorting, drill-down, applying
conditional formatting, creating interactive reports, etc. Once connected to data (Invoices view of C1NWind.mdb
file), users can implement all these data blending features in the FlexPivot controls as illustrated in this section.

Joining
Using the C1DataEngine, you can combine (join, blend) data from different data sources (tables) into a single table
and analyze the combined data in FlexPivot. See Using C1DataEngine > Join to know in detail how to join multiple
data sources.

Refer to the product sample DataJoin stored at the following location in your system to see how to build a join
query dynamically based on our user selection of table and fields:

C:\...\Documents\ComponentOne Samples\WinForms\C1FlexPivot\CS or VB\DataJoin.

Grouping
Grouping enables users to organize data in groups based on certain set of criteria. The FlexPivotGrid control lets users group
data based on specific conditions.

Consider a user wants to analyze the Unit Price for three consecutive years, that is 2012, 2013 and 2014, of a few products.
The user wants to know these price points so that he can maximize his profits by making some adjustments in the Unit Price.
In such a case, the user can firstly group the data by Order Date and then format data to obtain yearly figures.

The image given below shows a FlexPivotGrid displaying the Unit Price of three products, namely Chai, Chang and Geitost.

FlexPivot for WinForms 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

Complete the following steps to implement grouping in C1FlexPivotGrid control. This implementation uses the sample
created in Binding FlexPivot to Data Source in Code topic.

At Runtime

1. Drag-and-drop ProductName and OrderDate fields in the Rows list, and UnitPrice in the Values list.
2. The data before grouping appears similar to the image given below.

FlexPivot for WinForms 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Right-click the OrderDate field from the Rows list and select Field Settings option from the context menu. The Field
Settings dialog for OrderDate field appears.

4. Click the Format tab and select Custom format. Enter "yyyy" in the Custom Format textbox and click OK.

FlexPivot for WinForms 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Right-click the ProductName field from the Rows list and select Field Settings option from the context menu.
6. Select Chai, Chang and Geitost products in the filter tab and click OK.

In Code

You can also group the data in code. Use the following code to apply the same grouping as above.

Dim fp = Me.c1FlexPivotPage1.FlexPivotEngine
fp.RowFields.Add("ProductName", "OrderDate")
fp.ValueFields.Add("UnitPrice")

Dim field = fp.Fields("OrderDate")
field.Format = "yyyy"

Dim filter As C1.FlexPivot.C1FlexPivotFilter =
fp.Fields("ProductName").Filter
filter.Clear()
filter.ShowValues = "Chai,Chang,Geitost".Split(","C)

var fp = this.c1FlexPivotPage1.FlexPivotEngine;
fp.RowFields.Add("ProductName", "OrderDate");
fp.ValueFields.Add("UnitPrice");

var field = fp.Fields["OrderDate"];
field.Format = "yyyy";

C1.FlexPivot.C1FlexPivotFilter filter = fp.Fields["ProductName"].Filter;
filter.Clear();
filter.ShowValues = "Chai,Chang,Geitost".Split(',');

Visual Basic

C#

FlexPivot for WinForms 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

Drilling Down Data
Drilling down feature provides users with access to a structured database placed at a lower level in the hierarchy. The
FlexPivotGrid control enables users in drilling down the database to see the underlying records below each
aggregate value appearing in the grid. Users can view the underlying data by simply double-clicking any cell.

1. In the Grid tab, right-click the first cell appearing under the UnitPrice column.
2. You notice a new grid appears with a summary of records displayed as follows.

Applying Conditional Formatting
Conditional formatting enables users to highlight cells with a certain color, depending upon the cell's value. The FlexPivotGrid control lets users apply conditional
formatting to an individual cell or a range of cells to let them visualize data more clearly for analysis and comparison. The C1FlexPivotGrid class extends this
functionality from the OwnerDraw feature of C1FlexGrid.

Let's say a user wants to analyze the variation in Extended Price of products on the basis of Geography, that is City and Country. The user wants to know the
cities in which the Extended Price of the product is less than 100 so that he/she can make price adjustments in future. In such a case, the user can apply
conditional formatting to highlight and compare Extended Price.

The image given below shows a FlexPivotGrid highlighting Extended prices greater than 100 and segregated by Product, Country and City.

FlexPivot for WinForms 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

Implementation

Complete the following steps for applying conditional formatting to C1FlexPivotGrid. This implementation uses the sample created in Binding FlexPivot to Data
Source in Code topic.

1. Create an instance of CellStyle class, and initialize a constant field Value with 100 in code view.
Visual Basic

Private cellValue As CellStyle
Const Value As Integer = 100

C#
CellStyle cellValue;
const int Value = 100;

2. Add the following code in Form's constructor to create a default view that displays Extended Price in Values list, Product Name in Columns list, City and
Country fields in Columns list.

Visual Basic
Dim fp = Me.c1FlexPivotPage1.FlexPivotEngine
fp.ValueFields.Add("ExtendedPrice")
fp.RowFields.Add("Country", "City")
fp.ColumnFields.Add("ProductName")

C#
var fp = this.c1FlexPivotPage1.FlexPivotEngine;
fp.ValueFields.Add("ExtendedPrice");
fp.RowFields.Add("Country", "City");
fp.ColumnFields.Add("ProductName");

3. Add the following code to the Form's constructor for configuring grid and styling grid cells.
Visual Basic

' configure grid
Dim grid = Me.c1FlexPivotPage1.FlexPivotGrid

' style used to show 'big values'
cellValue = grid.Styles.Add("cellValue")
cellValue.BackColor = Color.LightGreen

' owner draw to apply the style
grid.DrawMode = DrawModeEnum.OwnerDraw

C#
// configure grid
var grid = this.c1FlexPivotPage1.FlexPivotGrid;

// style used to show 'big values'
cellValue = grid.Styles.Add("cellValue");
cellValue.BackColor = Color.LightGreen;

// owner draw to apply the style
grid.DrawMode = DrawModeEnum.OwnerDraw;

4. Subscribe grid_OwnerDrawCell event to apply conditional formatting.
Visual Basic

AddHandler grid.OwnerDrawCell, AddressOf grid_OwnerDrawCell
C#

grid.OwnerDrawCell += grid_OwnerDrawCell;
5. Add the following code to the event handler created for grid_OwnerDrawCell event.

Visual Basic

FlexPivot for WinForms 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

Private Sub grid_OwnerDrawCell(sender As Object, e As OwnerDrawCellEventArgs)
 Dim grid = TryCast(sender, C1.Win.C1FlexGrid.C1FlexGrid)
 If e.Row >= grid.Rows.Fixed AndAlso e.Col >= grid.Cols.Fixed AndAlso TypeOf grid(e.Row, e.Col) Is Double Then
 Dim value__1 = CDbl(grid(e.Row, e.Col))
 If value__1 > Value Then
 e.Style = cellValue
 End If
 End If
End Sub

C#
private void grid_OwnerDrawCell(object sender, OwnerDrawCellEventArgs e)
{
 var grid = sender as C1.Win.C1FlexGrid.C1FlexGrid;
 if (e.Row >= grid.Rows.Fixed &&
 e.Col >= grid.Cols.Fixed &&
 grid[e.Row, e.Col] is double)
 {
 var value = (double)grid[e.Row, e.Col];
 if (value > Value)
 {
 e.Style = cellValue;
 }
 }
}

6. Run the application to see that the extended prices greater than 100 highlighted in green color.

Creating Reports with FlexPivot
FlexPivot includes report design functionality so that the end users can make full use of full-featured reports to cater
diverse business needs. The report design functionality enables end users to share the report generated by the control
with others as well. The generated report shows data in tabular format on one page and a chart representation on the
other as depicted in the image in Step 2 below.

1. Click the Report button appearing in the toolstrip on the control's interface.
2. A Print Preview dialog box appears similar to the image below.

3. In the Print Preview dialog, click the Page Setup button and change the orientation to Landscape, and Click
the Zoom drop-down menu and select Two-Pages option. The report appears similar to the image below.

FlexPivot for WinForms 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can print the generated report by clicking the Print Document button appearing on the toolstrip. Users can also

export the generated report in PDF format using the Export to PDF button on the toolstrip. The exported PDF format
report can be easily shared with others through e-mail or can be hosted on the web.

Copying Data to Excel
Though the built-in reports are convenient and handy to use, end users may wish to copy the data appearing on the
FlexPivotGrid to an Excel sheet for performing additional analysis such as regression. Besides, end users may also want
to create customized reports by annotating the data or using custom charts.

To cater such needs, the C1FlexPivotGrid control comes with default clipboard support that allows users to copy and
paste data on an Excel sheet. Modeled on ComponentOne's popular FlexGrid control, the C1FlexPivotGrid enables
users in directly copying and pasting the data using Ctrl+C and Ctrl+V shortcuts, respectively.

Complete the following steps to copy the data to an Excel sheet.

1. Select the entire data appearing on the FlexPivotGrid by clicking once on the very first cell of the grid.
2. Press Ctrl+C to copy the entire data.
3. Open an Excel sheet on your system.
4. Press Ctrl+V to paste the data. The data gets pasted in the Excel sheet.

FlexPivotGrid also displays a context menu at runtime that provides various options including copying data. Right-
click on the grid to open the context menu at runtime as shown in the image below.

FlexPivot for WinForms 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

The context menu provides the following options:
Options Description

Copy Copies the data appearing in the grid

Show Detail Drills down the record on the selected
value

Field Settings Opens the Field Settings Dialog

Filtering
Filtering is one of the core features available in the FlexPivot control. The filtering feature enables users to display a
specified set of data as per the filters applied on the fields.

FlexPivot supports two types of filters, that are Value Filter and Range Filter. The Value Filter allows users to filter
specific values in a list. The Range Filter allows users to filter data based on some condition(s). The two filters are
independent of each other, and values must pass both filters to be included in the grid and chart.

To know how to apply these filters on fields in code behind, see the topic Configuring Fields in Code that
describes implementation similar to the above example through code.

Using Value Filters
Let's say a user wants to view the maximum unit prices of three products namely Boston Crab Meat, Filo Mix and Ipoh
Coffee offered by four salespersons (Andrew Fuller, Laura Callahan, Margaret Peacock and Robert King). For this, the
user needs to slice the Salesperson and Product Name fields in the database using value filters.

The image given below shows a FlexPivotGrid displaying the maximum unit price of the three products offered by

FlexPivot for WinForms 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

these salespersons.

Complete the following steps to implement value filtering in the FlexPivotGrid control. This implementation uses the
sample created in Binding FlexPivot to Data Source in Code topic.

1. Add Salesperson and ProductName fields in the Rows list and UnitPrice field in the Values list.
2. Right-click the Salesperson field from the Rows list and click Field Settings option once to open the Field

Settings dialog.
3. Select the following salespersons from the given list

Andrew Fuller
Laura Callahan
Margaret Peacock
Robert King

4. Right-click the ProductName field from the Rows list and click Field Settings option once to open the Field
Settings dialog.

5. Select the following products from the given list
Boston Crab Meat
Filo Mix
Ipoh Coffee

6. Right-click the UnitPrice field from the Values list and click Field Settings option once to open the Field Settings
dialog.

7. Navigate to the Subtotals tab and select Maximum.

Using Range Filters
Let's say a user wants to view the quantity of three products namely Alice Mutton, Boston Crab Meat, Filo Mix ordered
by respective salespersons in the first nine months of the year 2012. For this, the user needs to slice the Salesperson

FlexPivot for WinForms 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

and Product Name fields in the database using range filters.

The image given below shows a FlexPivotGrid displaying the quantity of the three products ordered by respective
salespersons for the first nine months of the year 2012.

Complete the following steps to implement value filtering in the FlexPivotGrid control. This implementation uses the
sample created in Binding FlexPivot to Data Source in Code topic.

1. Add Salesperson and OrderDate fields in the Rows list, Quantity field in the Values list, and ProductName field
in the Columns lists.

2. Right-click the ProductName field in the Columns list and click Field Settings option once to open the Field
Settings dialog.

3. Select the following products from the given list.
Alice Mutton
Boston Crab Meat

4. Right-click the OrderDate field in the Rows list and click Field Settings option once to open the Field Settings
dialog.

5. Click the Date/Time Filter once and then click Custom Filter to apply conditions.

FlexPivot for WinForms 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Set the condition in the Custom Filter dialog as illustrated below.

7. Click OK to see that the FlexPivotGrid control displays relevant data.

Sorting
Sorting is an important requirement when it comes to data analysis. Sorting helps in listing or arranging data in a
specified order. The FlexPivotGrid control allows users to sort numeric values in ascending or descending data.

By default, data appearing in output grids are sorted by key. For example, the Country column in the FlexPivotGrid
control appears sorted alphabetically. However, this is not always very useful for data presentation as users may prefer
to sort the grid by value fields such as Unit Price, Extended Price or Discount.

To enable sorting, the C1FlexPivotGrid.AllowSorting property can be set true. This allows users to sort data by clicking
the arrow appearing on the column headers, just like a regular grid. See the image below to visualize this behavior at
runtime.

FlexPivot for WinForms 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

Clicking the arrow appearing on the column header changes the sort order from ascending to descending to
unsorted.

By default, the AllowSorting property is set to True for C1FlexPivotGrid class.

Formatting Numeric Data
FlexPivot provides the option to format and represent numeric data in various formats such as number, currency,
scientific, and percentage. You can also use custom format so that the numbers appears the way you want.

At Runtime

1. Right-click a field in the Values list in the pivot panel.
2. Click Field Settings option in the context menu to open Field Settings dialog.
3. Click the Format tab and select one of the following options.

Numeric Formats the data as a number such as 1,235. You can specify the number of decimal
places, and whether to use thousand separator (,) or not.

Currency Formats the data as currency. You can specify the number of decimal places.

Percentage Formats the data as percentage. You can specify the number of decimal places.

Scientific Formats the data in scientific notation. You can specify the number of decimal
places.

Custom Applies a custom format to the data.

FlexPivot for WinForms 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Click OK and observe how the format of numeric data changes.

In Code

You can format numeric data using the Format property and standard numeric format strings in code. Following
enlisted are the accepted format strings to be used in code.

"N" or "n" Numeric Formats data as h numbers such as 1,k235. You can specify
the number of decimal places and whether to use
thousand separator (,) or not.

"C" or "c" Currency Formats the data as currency. You can specify the number
of decimal places.

"P" or "p" Percentage Formats the data as percentage. You can specify the
number of decimal places.

"E" or "e" Scientific Formats the data in scientific notation. You can specify the
number of decimal places.

Non-standard numeric strings Custom Apply a custom format to the data.

Use the following code to format numeric data in Currency format.

//formatting numeric data in code
Dim field = fp.Fields("ExtendedPrice")
field.Format = "c"

//formatting numeric data in code
var field = fp.Fields["ExtendedPrice"];
field.Format = "c";

Visual Basic

C#

Specifying Subtotal Function
FlexPivot control allows users to specify subtotals using various aggregate functions such as Sum, Count, Average,
etc. This can either be done at runtime through the Field Settings dialog, or in code.

At Runtime

1. Right-click the field in the Values area of the FlexPivotPanel control and select Field Settings option.
2. Click the Subtotals tab and select the type of aggregate function you want to apply.

FlexPivot for WinForms 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

Sum Gets the sum of a group

Count Gets the number of values in a group.

Average Gets the average of a group.

Maximum Gets the maximum value in a group.

Minimum Gets the minimum value in a group.

First Gets the first value in a group.

Last Gets the last value in a group.

Variance Gets the sample variance of a group.

Standard Deviation Gets the sample standard deviation of a group.

Variance Population Gets the population variance of a group.

Standard Deviation Population Gets the population standard deviation of a group.

3. Click OK and observe the change in the values.

In Code

You can use the Subtotal property to specify subtotals in code.

//formatting numeric data in code
Dim field = fp.Fields("ExtendedPrice")
field.Subtotal = C1.FlexPivot.Subtotal.Average

Visual Basic

C#

FlexPivot for WinForms 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

// show average price
var field = fp.Fields["ExtendedPrice"];
field.Subtotal = C1.FlexPivot.Subtotal.Average;

The C1FlexPivotPage class also provides the TotalsBeforeData property to determine whether row and column totals
should be displayed before or after regular data rows and columns. The TotalsBeforeData property accepts Boolean
values. If the value is set to true, total rows appear above data rows and total columns appear to the left of the regular
data columns. By default, this property is set to false.

Calculating Weighted Averages and Sums
The FlexPivot control allows users to calculate average or sum of the data displayed on the FlexPivotGrid control. This
can be done both at runtime as well as in code.

Consider a scenario where the user wants to find the average price for a group of products, taking into account the
quantity of each purchased product. You can weigh the price average by the number of units purchased.

At Runtime

1. Right-click the field in the Values area of the FlexPivotPanel control and select Field Settings option.
2. Click the Subtotals tab and select the type of subtotal you want to calculate.
3. In the Weigh by drop-down list, select the field from your data table to be used as a weight as illustrated in

the image below.
4. Click OK to close the Field Settings dialog.

In Code

FlexPivot for WinForms 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

Use the WeightField property to specify the field to be used as weight. The code given below uses Quantity field as
the Weight.

//setting weight field in code
var fp = this.c1FlexPivotPage1.FlexPivotEngine;
var field = fp.Fields["Quantity"];
field.WeightField = fp.Fields["Quantity"];

//setting weight field in code
var fp = this.c1FlexPivotPage1.FlexPivotEngine;
var field = fp.Fields["Quantity"];
field.WeightField = fp.Fields["Quantity"];

Visual Basic

C#

FlexPivot for WinForms 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPivot Cube
In computing, cube is a multidimensional, logically-arranged dataset. More specifically, FlexPivot Cube is a data
structure that provides faster data analysis in multiple dimensions.

FlexPivot features cube support that enables users in extracting valuable information by slicing and dicing the cube in
ways pertinent for data analysis. You can connect to various data sources such as Microsoft SQL Server Analysis
Services (SSAS), or online cubes, or attach to a local cube at runtime. FlexPivot control works with Analysis Services
and SQL Server 2008, 2012 and 2014.

Setting Microsoft SQL Server Analysis Services
This guide is intended to provide users with information on setting up SQL Server Analysis Service (SSAS). To
analyse cube data, you need to setup SSAS. The following steps explain how to setup the database.

1. Install a full version of SQL Server.
2. Download the Adventure Works database compatible with the version of SQL Server you installed. You can

select the database from http://msftdbprodsamples.codeplex.com/releases.
3. Install Adventure Works database in the SQL Server.

Connecting to a Cube
Users can connect to a cube database through ConnectCube method. This method accepts two parameters: the name
of the cube and the connection string to the installed SSAS.

The connection string must specify the Data Source, that is the Server name, and the Initial Catalog, that is the
database name. The version of the Provider must also be specified if more than one Microsoft OLE DB provider for
FlexPivot is installed. For instance, if the Provider is set to MSOLAP, the latest version of OLE DB for FlexPivot
installed on your system is used.

The code given below illustrates an example of connecting to a cube.

Visual Basic

'prepare to build view
Dim connectionString As String = "Data Source=ServerAddress;Provider=msolap;Initial
Catalog=DatabaseName;User Id=ValidUserID; Password=ValidPassword"

Dim cubeName As String = "Adventure Works"
Try
c1FlexPivotPage1.FlexPivotPanel.ConnectCube(cubeName, connectionString)
' show some data.
Dim fp = c1FlexPivotPage1.FlexPivotEngine
fp.BeginUpdate()
fp.ColumnFields.Add("Color")
fp.RowFields.Add("Category")
fp.ValueFields.Add("Order Count")
fp.EndUpdate()
Catch ex As Exception
MessageBox.Show(ex.Message)
End Try

FlexPivot for WinForms 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msftdbprodsamples.codeplex.com/releases

C#

//prepare to build view
string connectionString = @"Data Source=ServerAddress;Provider=msolap;Initial
Catalog=DatabaseName;User Id=ValidUserID; Password=ValidPassword";

string cubeName = "Adventure Works";
try
{
c1FlexPivotPage1.FlexPivotPanel.ConnectCube(cubeName, connectionString);
// show some data.
var fp = c1FlexPivotPage1.FlexPivotEngine;
fp.BeginUpdate();
fp.ColumnFields.Add("Color");
fp.RowFields.Add("Category");
fp.ValueFields.Add("Order Count");
fp.EndUpdate();
}
catch (Exception ex)
{
MessageBox.Show(ex.Message);
}

Using the Cube
In the previous step, you connected your application with a cube. Now, its time to run the application and see how the data
appears on the FlexPivot control.

1. Press F5 to run the project.
2. You notice that the control appears displaying some random data fetched from the database Adventure Works.
3. Now, drag-and-drop Country and and State-Province fields from the pivot panel to the Rows list, and Order Count

and Internet Sales Amount to the Values list.
4. The control now displays a grid summarizing Order Count and Internet Sales Amount by Country and State

Province as follows.

FlexPivot for WinForms 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. The cube data bound to the FlexPivot control in the above image consists of Dimensions, Measures, and Key
Performance Indicators (KPIs). Dimensions are used to categorize the data cube, while Measures are the values for
the dimensions. KPIs evaluate the measures in cube so as to present different perspectives of performance.

6. The installed cube Adventure Works consists of Geography as one of the many dimensions, Internet Sales as one of
the measures, and Customer Perspective and Financial Perspective as the KPIs.

7. Users can use the cube data to build reports much like they would using regular datasets. The major difference
between cube data and regular dataset is that data in cubes is represented in a tree-like structure in the
C1FlexPivotPanel control.

8. Each node in the tree-like structure represents a dimensional entity or an object for measure.
9. Moreover, dimensions comprises Heirarchies, Levels, and Attributes

Heirarchies: Organizes levels in which the dimensions of a cube are structured.
Level: Describes position in a heirarchy.
Attribute: Gives additional information about the corresponding data.

FlexPivot for WinForms 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

Task-Based Help
The task-based help section assumes that you are familiar with programming in Visual Studio.NET environment. Each
help topic in this section lets you accomplish a specific task such as configuring fields in code, using LINQ queries,
applying themes, importing data from an Excel sheet in FlexPivot. For more information, click the following links:

Configuring Fields in Code
Adding Multiple Fields in Values List
Applying Themes
Using LINQ Queries to Add Data in FlexPivot
Creating Custom FlexPivot Application in Code
Importing Data from Excel

Configuring Fields in Code
FlexPivot allows users to configure fields programmatically. The control comes with a powerful object model that enables developers in configuring fields, applying
filters, and specifying format of data fields in code.

To configure fields in code, complete the following steps.

1. Create a new Windows Forms Application project.
2. Drag-and-drop FlexPivotPage control (see the C1FlexPivotPage icon in the Toolbox) onto the form.
3. Switch to the code view and add the following code to set up a connection string with c1nwind.mdb database.

Visual Basic
Private Shared Function GetConnectionString() As String
 Dim path As String = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + "\ComponentOne Samples\Common"
 Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;"
 Return String.Format(conn, path)
End Function

C#
static string GetConnectionString()
{
 string path = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

4. Add the following code within the Form's constructor to load data (Invoices view) from the database, assign it to the FlexPivotPage control, and initialize a default
view.

Visual Basic
' get data
Dim da = New OleDbDataAdapter("select * from invoices", GetConnectionString())
Dim dt = New DataTable()
da.Fill(dt)

' bind to FlexPivot page
Me.C1FlexPivotPage1.DataSource = dt

' build view
Dim fp = Me.C1FlexPivotPage1.FlexPivotEngine
fp.ValueFields.Add("ExtendedPrice")
fp.RowFields.Add("OrderDate", "ProductName")

C#
// get data
var da = new OleDbDataAdapter("select * from invoices", GetConnectionString());
var dt = new DataTable();
da.Fill(dt);

// bind to FlexPivot page
this.c1FlexPivotPage1.DataSource = dt;

// build view
var fp = this.c1FlexPivotPage1.FlexPivotEngine;
fp.ValueFields.Add("ExtendedPrice");
fp.RowFields.Add("OrderDate", "ProductName");

5. Use the following code to format the ExtendedPrice and OrderDate fields. This code sets the format of the ExtendedPrice field to Currency and that of
the OrderDate field to Year.

Visual Basic
' format order date and extended price
Dim field = fp.Fields("OrderDate")
field.Format = "yyyy"
field = fp.Fields("ExtendedPrice")
field.Format = "c"

' show average price (instead of sum)
field = fp.Fields("ExtendedPrice")
field.Subtotal = C1.FlexPivot.Subtotal.Average

FlexPivot for WinForms 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#
// format order date and extended price
var field = fp.Fields["OrderDate"];
field.Format = "yyyy";
field = fp.Fields["ExtendedPrice"];
field.Format = "c";

// show average price (instead of sum)
field = fp.Fields["ExtendedPrice"];
field.Subtotal = C1.FlexPivot.Subtotal.Average;

6. Add the following code to apply filter on products. This code applies filter to display only 4 products that include Chai, Chang, Geitost and Ikura.
Visual Basic

' apply value filter to show only a few products
Dim filter As C1.FlexPivot.C1FlexPivotFilter = fp.Fields("ProductName").Filter
filter.Clear()
filter.ShowValues = "Chai,Chang,Geitost,Ikura".Split(","c)

C#
// apply value filter to show only a few products
C1.FlexPivot.C1FlexPivotFilter filter = fp.Fields["ProductName"].Filter;
filter.Clear();
filter.ShowValues = "Chai,Chang,Geitost,Ikura".Split(',');

7. Add the following code to apply filter on OrderDate field. This code filters OrderDate from January 1st, 2013 to December 31st, 2014.
Visual Basic

' apply range filter to show only some dates
filter = fp.Fields("OrderDate").Filter
filter.Clear()
filter.Condition1.[Operator] = C1.FlexPivot.ConditionOperator.GreaterThanOrEqualTo
filter.Condition1.Parameter = New DateTime(2014, 1, 1)
filter.Condition2.[Operator] = C1.FlexPivot.ConditionOperator.LessThanOrEqualTo
filter.Condition2.Parameter = New DateTime(2014, 12, 31)
filter.AndConditions = True

C#
// apply range filter to show only some dates
filter = fp.Fields["OrderDate"].Filter;
filter.Clear();
filter.Condition1.Operator = C1.FlexPivot.ConditionOperator.GreaterThanOrEqualTo;
filter.Condition1.Parameter = new DateTime(2014, 1, 1);
filter.Condition2.Operator = C1.FlexPivot.ConditionOperator.LessThanOrEqualTo;
filter.Condition2.Parameter = new DateTime(2014, 12, 31);
filter.AndConditions = true;

8. Run the application. The form appears with a custom view showing fields set in the code.

Adding Multiple Fields in Values List
FlexPivot provides the option for adding more than one value fields to the Values list. All you need to do is set MaxItems
property to some numeric value in the code. This example uses the sample created in Configuring Fields in Code.

1. Set the MaxItems property to 3 and add three value fields namely Extended Price, Discount and Freight to the

FlexPivot for WinForms 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

ValueFields.Add() method as illustrated in the following code.
Visual Basic

'apply multiple value fields
fp.ValueFields.MaxItems = 3
fp.ValueFields.Add("ExtendedPrice", "Discount", "Freight")

C#
//apply multiple value fields
fp.ValueFields.MaxItems = 3;
fp.ValueFields.Add("ExtendedPrice", "Discount", "Freight");

2. Press F5 to run the application and observe that Extended Price, Discount and Freight fields are displayed in the grid.

Applying Themes
The overall appearance of FlexPivot controls can also be customized by applying themes through C1ThemeController. Developers can choose from a collection of
predefined built-in themes to customize the control's overall appearance.

To apply built-in themes, perform the following steps.

1. Create a new Windows Forms Application project in Visual Studio.
2. Drag-and-drop the C1FlexPivotPage control onto the form from the Toolbox.
3. Add C1.Win.C1Themes.4 reference to your project to access built-in themes through C1ThemeController.
4. Click once on the smart tag icon (). The C1FlexPivotPageTasks smart panel appears as illustrated in the image below.

FlexPivot for WinForms 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

5. Select Undock in Parent Container option to undock the FlexPivotPage control in the parent container i.e. Form.
6. Navigate to the toolbox and add a standard label control to the form.
7. Set some of the properties of the label control from the Properties Window as follows:

AutoSize = True
TabIndex = 0
Text = "Apply Theme"

8. Add a standard Combobox control from the Toolbox and set some its properties as follows:
Name = "cbTheme"
FormattingEnabled = True
DropDownStyle = DropDownList
TabIndex = 1
Text = "Apply Theme"

The Design View appears similar to the following image:

9. Switch to the code view add the following Import statement.
Visual Basic

Imports C1.Win.C1Themes
Imports System.Data.OleDb

C#
using C1.Win.C1Themes;

FlexPivot for WinForms 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

using System.Data.OleDb;
10. Add the following code to set up a connection string with the C1NWind.mdb database file.

Visual Basic
Private Shared Function GetConnectionString() As String
 Dim path As String = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + "\ComponentOne Samples\Common"
 Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;"
 Return String.Format(conn, path)
End Function

C#
// get standard nwind mdb connection string
static string GetConnectionString()
{
 string path = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

11. Add the following code in the Form's constructor to fetch data from the C1NWind.mdb database file and create a view.
Visual Basic

' get data
Dim da = New OleDbDataAdapter("Select * from Invoices", GetConnectionString())
Dim dt = New DataTable("NorthWind Sales Data")
da.Fill(dt)

' assign data to C1FlexPivotPage control
C1FlexPivotPage1.DataSource = dt

Dim fp = C1FlexPivotPage1.FlexPivotEngine
fp.ValueFields.MaxItems = 3
fp.BeginUpdate()
fp.RowFields.Add("Country")
fp.ColumnFields.Add("Product")
fp.ValueFields.Add("Sales")
fp.EndUpdate()

C#
// get data
var da = new OleDbDataAdapter("Select * from Invoices", GetConnectionString());
var dt = new DataTable("NorthWind Sales Data");
da.Fill(dt);

// assign data to C1FlexPivotPage control
c1FlexPivotPage1.DataSource = dt;

var fp = c1FlexPivotPage1.FlexPivotEngine;
fp.ValueFields.MaxItems = 3;
fp.BeginUpdate();
fp.RowFields.Add("Country");
fp.ColumnFields.Add("Product");
fp.ValueFields.Add("Sales");
fp.EndUpdate();

12. Add the following code in the Form's constructor to subscribe SelectedIndexChanged event for Combobox control, and implement logic for applying themes to
the Form on selecting built-in themes from the dropdown list.

Visual Basic
For Each theme As String In C1ThemeController.GetThemes()
 cbTheme.Items.Add(theme)
Next
AddHandler cbTheme.SelectedIndexChanged, AddressOf cbTheme_SelectedIndexChanged

C#
cbTheme.SelectedIndexChanged += cbTheme_SelectedIndexChanged;
foreach (string theme in C1ThemeController.GetThemes())
 cbTheme.Items.Add(theme);

13. Add the following code to the event handler created for cbTheme.SelectedIndexChanged event.
Visual Basic

Private Sub cbTheme_SelectedIndexChanged(sender As Object, e As EventArgs)
 Dim theme As C1Theme = C1ThemeController.GetThemeByName(cbTheme.Text, False)
 If theme IsNot Nothing Then
 C1ThemeController.ApplyThemeToObject(c1FlexPivotPage1, theme)
 End If
End Sub

C#
private void cbTheme_SelectedIndexChanged(object sender, EventArgs e)
{
 C1Theme theme = C1ThemeController.GetThemeByName(cbTheme.Text, false);
 if (theme != null)
 C1ThemeController.ApplyThemeToObject(c1FlexPivotPage1, theme);
}

14. Press F5 to run the application and select a predefined theme, for example, VisualStyleOffice2010Black from the dropdown list.

FlexPivot for WinForms 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

15. The theme applies to the forms as illustrated in the following image.

Using LINQ Queries to Add Data in FlexPivot
FlexPivot can use various collections such as LINQ queries to add data. LINQ provides a flexible and efficient data querying model to create new queries within the client application without modifying the database. As a
result, FlexPivot control can use LINQ queries as a data source so that end users can create their own views for data analysis.

Complete the following steps to create a LINQ query and use it as a data source for FlexPivot.

1. Create a new Windows Forms Application project in Visual Studio.
2. Drag-and-drop FlexPivotPage control (see C1FlexPivotpage icon in the Toolbox) onto the form.
3. Switch to the code view and add the following namespaces.

Visual Basic
Imports System.Data.OleDb
Imports System.Linq

C#
using System.Data.OleDb;
using System.Linq;

4. Add the following code in the Forms1.cs constructor to load the data using LINQ query.
Visual Basic

Dim ds = New DataSet()
For Each table As String In "Products,Categories,Employees,Customers,Orders,Order Details".Split(","c)
 Dim sql As String = String.Format("select * from [{0}]", table)
 Dim da = New OleDbDataAdapter(sql, GetConnectionString())
 da.Fill(ds, table)
Next table

C#
var ds = new DataSet();
foreach (string table in "Products,Categories,Employees,Customers,Orders,Order Details".Split(','))
{

FlexPivot for WinForms 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

 string sql = string.Format("select * from [{0}]", table);
 var da = new OleDbDataAdapter(sql, GetConnectionString());
 da.Fill(ds, table);
}

5. Initialize a connection string to connect with a database installed on your system. This example uses C1NWind.mdb file as the database. You can find this file at Documents\ComponentOne Samples\Common
location on your system. In case your database file is kept at a different location then make changes in the path defined in the GetConnectionString method.

Visual Basic
Private Shared Function GetConnectionString() As String
 Dim path As String = Environment.GetFolderPath(Environment.SpecialFolder.Personal) & "\ComponentOne Samples\Common"
 Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;"
 Return String.Format(conn, path)
End Function

C#
static string GetConnectionString()
{
 string path = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

6. Add the following LINQ query to connect the FlexPivotPage control with the tables loaded from the database.
Visual Basic

Dim q = From detail In ds.Tables("Order Details").AsEnumerable() _
 Join product In ds.Tables("Products").AsEnumerable() On detail.Field(Of Integer)("ProductID") Equals product.Field(Of Integer)("ProductID") _
 Join category In ds.Tables("Categories").AsEnumerable() On product.Field(Of Integer)("CategoryID") Equals category.Field(Of Integer)("CategoryID") _
 Join order In ds.Tables("Orders").AsEnumerable() On detail.Field(Of Integer)("OrderID") Equals order.Field(Of Integer)("OrderID") _
 Join customer In ds.Tables("Customers").AsEnumerable() On order.Field(Of String)("CustomerID") Equals customer.Field(Of String)("CustomerID") _

C#
var q =
 from detail in ds.Tables["Order Details"].AsEnumerable()
 join product in ds.Tables["Products"].AsEnumerable()
 on detail.Field<int>("ProductID") equals product.Field<int>("ProductID")
 join category in ds.Tables["Categories"].AsEnumerable()
 on product.Field<int>("CategoryID") equals category.Field<int>("CategoryID")
 join order in ds.Tables["Orders"].AsEnumerable()
 on detail.Field<int>("OrderID") equals order.Field<int>("OrderID")
 join customer in ds.Tables["Customers"].AsEnumerable()
 on order.Field<string>("CustomerID") equals customer.Field<string>("CustomerID")
 join employee in ds.Tables["Employees"].AsEnumerable()
 on order.Field<int>("EmployeeID") equals employee.Field<int>("EmployeeID")

Each table connects to the query by joining its primary key to a given field. For instance, Products table is joined using ProductID, Categories is joined using CategoryID, and so on.

7. Add the following Select statement to build a new anonymous class containing fields specified in query above. Note that the fields may map directly to the table fields or may be calculated.
Visual Basic

Select New With
 {
 Key .Sales = (detail.Field(Of Short)("Quantity") * CDbl(detail.Field(Of Decimal)("UnitPrice"))) * (1 - CDbl(detail.Field(Of Single)("Discount"))),
 Key .OrderDate = order.Field(Of Date)("OrderDate"),
 Key .Product = product.Field(Of String)("ProductName"),
 Key .Customer = customer.Field(Of String)("CompanyName"),
 Key .Country = customer.Field(Of String)("Country"),
 Key .Employee = employee.Field(Of String)("FirstName") & " " & employee.Field(Of String)("LastName"),
 Key .Category = category.Field(Of String)("CategoryName")}

C#
select new
{
 Sales = (detail.Field<short>("Quantity") * (double)detail.Field<decimal>("UnitPrice")) * (1 - (double)detail.Field<float>("Discount")),
 OrderDate = order.Field<DateTime>("OrderDate"),
 Product = product.Field<string>("ProductName"),
 Customer = customer.Field<string>("CompanyName"),
 Country = customer.Field<string>("Country"),
 Employee = employee.Field<string>("FirstName") + " " + employee.Field<string>("LastName"),
 Category = category.Field<string>("CategoryName")
};

8. Convert the LINQ query to a list using the ToList() method and assign the resultant to the DataSource property of C1FlexPivotPage class.
Visual Basic

c1FlexPivotPage1.DataSource = q.ToList()
C#

c1FlexPivotPage1.DataSource = q.ToList();
9. Create a default view that gets loaded as the initial view when the application runs.

Visual Basic
Dim fp = c1FlexPivotPage1.FlexPivotPanel.FlexPivotEngine
fp.BeginUpdate()
fp.RowFields.Add("Country")
fp.ColumnFields.Add("Category")
fp.ValueFields.Add("Sales")
fp.EndUpdate()

C#
var fp = c1FlexPivotPage1.FlexPivotPanel.FlexPivotEngine;
fp.BeginUpdate();
fp.RowFields.Add("Country");
fp.ColumnFields.Add("Category");
fp.ValueFields.Add("Sales");
fp.EndUpdate();

10. Run the project to observe that the FlexPivotPage control bound to data from tables defined in the C1NWind.mdb database file appears with an initial view.

Creating Custom FlexPivot Application in Code
FlexPivot controls can be easily customized to suit the requirements of developers as well as end users. From setting
default views to adding predefined views, developers can perform high-level customizations in these controls through
code.

Creating Default View
Data (view or table) added to the FlexPivotPage control can be visualized by creating views. You can create summarized views by dragging data fields into various lists at
runtime as illustrated in Creating Different Views at Runtime topic. To create a default view that appears automatically when your FlexPivot application runs, you need to
perform some design-time settings and add set the ViewDefinition property in code.

Complete the following steps to create an application that displays a default view with ProductName in the Rows list, Country in the Columns list, and ExtendedPrice in

FlexPivot for WinForms 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

the Values list.

1. Create a new Windows Forms Application project in Visual Studio.
2. Add the C1FlexPivotPage control to your project and bind it to Invoices view of the c1NWind data source file as illustrated in Binding FlexPivot to Data Source

topic.
3. In Solution Explorer, right-click your project and click Properties to open Project designer.
4. In the Project Design, click Settings option.
5. Create a new setting and name it, for example, DefaultView.

6. Switch to code view and add the following code in Form1_Load event to initialize the default view and set the data fields.

Visual Basic
Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 ' modify the connection string to make it work for the current user on this machine
 Me.InvoicesTableAdapter.Connection.ConnectionString = GetConnectionString()

 'loads data into the table adapter
 Me.InvoicesTableAdapter.Fill(Me.C1NWindDataSet.Invoices)

 ' show default view:
 ' this assumes an application setting of type string called "DefaultView"
 Dim view = My.Settings.DefaultView
 If Not String.IsNullOrEmpty(view) Then
 c1FlexPivotPage1.ViewDefinition = view
 Else
 ' build default view now
 Dim fp = c1FlexPivotPage1.FlexPivotEngine
 fp.BeginUpdate()
 fp.RowFields.Add("ProductName")
 fp.ColumnFields.Add("Country")
 fp.ValueFields.Add("ExtendedPrice")
 fp.EndUpdate()
 End If
End Sub

C#
private void Form1_Load(object sender, EventArgs e)
{
 //modify the connection string to make it work for the current user on this machine
 this.invoicesTableAdapter.Connection.ConnectionString = GetConnectionString();

 //loads data into the table adapter
 this.invoicesTableAdapter.Fill(this.c1NWindDataSet.Invoices);

 // show default view:
 // this assumes an application setting of type string called "DefaultView"
 var view = Properties.Settings.Default.DefaultView;
 if(!string.IsNullOrEmpty(view))
 {
 c1FlexPivotPage1.ViewDefinition = view;
 }
 else
 {
 // build default view
 var fp = c1FlexPivotPage1.FlexPivotEngine;
 fp.BeginUpdate();
 fp.RowFields.Add("ProductName");
 fp.ColumnFields.Add("Country");
 fp.ValueFields.Add("ExtendedPrice");
 fp.EndUpdate();
 }

}
7. Initialize a standard connection string to the database file being used.

Visual Basic
'initializing the connection string
Private Shared Function GetConnectionString() As String
 Dim path As String = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + "\ComponentOne Samples\Common"
 Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;"

FlexPivot for WinForms 66

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Return String.Format(conn, path)
End Function

C#
//initializing the connection string
static string GetConnectionString()
{
 string path = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

8. Press F5 to run the application. The default view gets displayed with ProductName appearing in the Rows list, Country in the Columns list, and ExtendedPrice in
the Values list.

Adding Predefined Views
Users can add predefined views to their FlexPivot application by defining the views in an XML file and adding the same as a resource to the Project
Designer. The C1FlexPivotPage class includes ReadXml and WriteXml methods to add files as streams. These methods are automatically invoked by the
FlexPivotPage control to apply predefined views.

1. Create a new XML file, for example FlexPivotViews.xml, and add the following code to define 5 view definitions, each showing Extended Price (a
field in the Invoices View of the c1NWind.mdb database file) by

Product vs Country
Salesperson vs Country
Salesperson vs Month
Salesperson vs Weekday
Salesperson vs Year
XML

 <FlexPivotViews>

 <C1FlexPivotPage id="Product vs Country">
 <C1FlexPivotEngine>
 <Fields>
 <Field name="Address" subtotal="Count" />
 <Field name="City" subtotal="Count" />
 <Field name="Country" subtotal="Count" />
 <Field name="CustomerID" subtotal="Count" />
 <Field name="Customers_CompanyName" subtotal="Count" />
 <Field name="Discount" subtotal="Sum" format="n0" />
 <Field name="ExtendedPrice" subtotal="Sum" format="n0" />
 <Field name="Freight" subtotal="Sum" format="n0" />
 <Field name="OrderDate" subtotal="Count" format="d" />
 <Field name="OrderID" subtotal="Sum" format="n0" />
 <Field name="PostalCode" subtotal="Count" />
 <Field name="ProductID" subtotal="Sum" format="n0" />
 <Field name="ProductName" subtotal="Count" />
 <Field name="Quantity" subtotal="Sum" format="n0" />

copyCode

FlexPivot for WinForms 67

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Field name="Region" subtotal="Count" />
 <Field name="RequiredDate" subtotal="Count" format="d" />
 <Field name="Salesperson" subtotal="Count" />
 <Field name="ShipAddress" subtotal="Count" />
 <Field name="ShipCity" subtotal="Count" />
 <Field name="ShipCountry" subtotal="Count" />
 <Field name="ShipName" subtotal="Count" />
 <Field name="ShippedDate" subtotal="Count" format="d" />
 <Field name="Shippers_CompanyName" subtotal="Count" />
 <Field name="ShipPostalCode" subtotal="Count" />
 <Field name="ShipRegion" subtotal="Count" />
 <Field name="UnitPrice" subtotal="Sum" format="n0" />
 </Fields>
 <RowFields>
 <Field name="ProductName" />
 </RowFields>
 <ColumnFields>
 <Field name="Country" />
 </ColumnFields>
 <ValueFields>
 <Field name="ExtendedPrice" />
 </ValueFields>
 </C1FlexPivotEngine>
 <C1FlexPivotPrintDocument>
 <Header Text="&[ViewTitle]	&[Date]	Page &[Page]" Separator="True"
FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Footer Text="" Separator="False" FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Grid ShowGrid="True" GridOptions="1" />
 <Chart ShowChart="True" ChartFillsPage="True" />
 <RawData ShowRawData="False" RawDataOptions="1" />
 <PageSettings Landscape="False" Margins="100,100,100,100" />
 </C1FlexPivotPrintDocument>
 <C1FlexPivotChart ChartType="Bar" ColorGeneration="Office" ShowTitle="True"
ShowLegend="Automatic" ShowGridLines="True" Stacked="True" />
 </C1FlexPivotPage>

 <C1FlexPivotPage id="SalesPerson vs Country">
 <C1FlexPivotEngine>
 <Fields>
 <Field name="Address" subtotal="Count" />
 <Field name="City" subtotal="Count" />
 <Field name="Country" subtotal="Count" />
 <Field name="CustomerID" subtotal="Count" />
 <Field name="Customers_CompanyName" subtotal="Count" />
 <Field name="Discount" subtotal="Sum" format="n0" />
 <Field name="ExtendedPrice" subtotal="Sum" format="n0" />
 <Field name="Freight" subtotal="Sum" format="n0" />
 <Field name="OrderDate" subtotal="Count" format="d" />
 <Field name="OrderID" subtotal="Sum" format="n0" />
 <Field name="PostalCode" subtotal="Count" />
 <Field name="ProductID" subtotal="Sum" format="n0" />
 <Field name="ProductName" subtotal="Count" />
 <Field name="Quantity" subtotal="Sum" format="n0" />
 <Field name="Region" subtotal="Count" />
 <Field name="RequiredDate" subtotal="Count" format="d" />
 <Field name="Salesperson" subtotal="Count" />
 <Field name="ShipAddress" subtotal="Count" />
 <Field name="ShipCity" subtotal="Count" />
 <Field name="ShipCountry" subtotal="Count" />
 <Field name="ShipName" subtotal="Count" />
 <Field name="ShippedDate" subtotal="Count" format="d" />
 <Field name="Shippers_CompanyName" subtotal="Count" />
 <Field name="ShipPostalCode" subtotal="Count" />
 <Field name="ShipRegion" subtotal="Count" />
 <Field name="UnitPrice" subtotal="Sum" format="n0" />
 </Fields>
 <RowFields>

FlexPivot for WinForms 68

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Field name="Country" />
 </RowFields>
 <ColumnFields>
 <Field name="Salesperson" />
 </ColumnFields>
 <ValueFields>
 <Field name="ExtendedPrice" />
 </ValueFields>
 </C1FlexPivotEngine>
 <C1FlexPivotPrintDocument>
 <Header Text="&[ViewTitle]	&[Date]	Page &[Page]" Separator="True"
FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Footer Text="" Separator="False" FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Grid ShowGrid="True" GridOptions="1" />
 <Chart ShowChart="True" ChartFillsPage="True" />
 <RawData ShowRawData="False" RawDataOptions="1" />
 <PageSettings Landscape="False" Margins="100,100,100,100" />
 </C1FlexPivotPrintDocument>
 <C1FlexPivotChart ChartType="Bar" ColorGeneration="Office" ShowTitle="True"
ShowLegend="Automatic" ShowGridLines="True" Stacked="True" />
 </C1FlexPivotPage>

 <C1FlexPivotPage id="SalesPerson vs Month">
 <C1FlexPivotEngine>
 <Fields>
 <Field name="Address" subtotal="Count" />
 <Field name="City" subtotal="Count" />
 <Field name="Country" subtotal="Count" />
 <Field name="CustomerID" subtotal="Count" />
 <Field name="Customers_CompanyName" subtotal="Count" />
 <Field name="Discount" subtotal="Sum" format="n0" />
 <Field name="ExtendedPrice" subtotal="Sum" format="n0" />
 <Field name="Freight" subtotal="Sum" format="n0" />
 <Field name="OrderDate" subtotal="Count" format="MMMM" />
 <Field name="OrderID" subtotal="Sum" format="n0" />
 <Field name="PostalCode" subtotal="Count" />
 <Field name="ProductID" subtotal="Sum" format="n0" />
 <Field name="ProductName" subtotal="Count" />
 <Field name="Quantity" subtotal="Sum" format="n0" />
 <Field name="Region" subtotal="Count" />
 <Field name="RequiredDate" subtotal="Count" format="d" />
 <Field name="Salesperson" subtotal="Count" />
 <Field name="ShipAddress" subtotal="Count" />
 <Field name="ShipCity" subtotal="Count" />
 <Field name="ShipCountry" subtotal="Count" />
 <Field name="ShipName" subtotal="Count" />
 <Field name="ShippedDate" subtotal="Count" format="d" />
 <Field name="Shippers_CompanyName" subtotal="Count" />
 <Field name="ShipPostalCode" subtotal="Count" />
 <Field name="ShipRegion" subtotal="Count" />
 <Field name="UnitPrice" subtotal="Sum" format="n0" />
 </Fields>
 <RowFields>
 <Field name="Salesperson" />
 </RowFields>
 <ColumnFields>
 <Field name="OrderDate" />
 </ColumnFields>
 <ValueFields>
 <Field name="ExtendedPrice" />
 </ValueFields>
 </C1FlexPivotEngine>
 <C1FlexPivotPrintDocument>
 <Header Text="&[ViewTitle]	&[Date]	Page &[Page]" Separator="True"
FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Footer Text="" Separator="False" FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Grid ShowGrid="True" GridOptions="1" />

FlexPivot for WinForms 69

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Chart ShowChart="True" ChartFillsPage="True" />
 <RawData ShowRawData="False" RawDataOptions="1" />
 <PageSettings Landscape="False" Margins="100,100,100,100" />
 </C1FlexPivotPrintDocument>
 <C1FlexPivotChart ChartType="Bar" ColorGeneration="Office" ShowTitle="True"
ShowLegend="Automatic" ShowGridLines="True" Stacked="True" />
 </C1FlexPivotPage>

 <C1FlexPivotPage id="SalesPerson vs Weekday">
 <C1FlexPivotEngine>
 <Fields>
 <Field name="Address" subtotal="Count" />
 <Field name="City" subtotal="Count" />
 <Field name="Country" subtotal="Count" />
 <Field name="CustomerID" subtotal="Count" />
 <Field name="Customers_CompanyName" subtotal="Count" />
 <Field name="Discount" subtotal="Sum" format="n0" />
 <Field name="ExtendedPrice" subtotal="Sum" format="n0" />
 <Field name="Freight" subtotal="Sum" format="n0" />
 <Field name="OrderDate" subtotal="Count" format="dddd" />
 <Field name="OrderID" subtotal="Sum" format="n0" />
 <Field name="PostalCode" subtotal="Count" />
 <Field name="ProductID" subtotal="Sum" format="n0" />
 <Field name="ProductName" subtotal="Count" />
 <Field name="Quantity" subtotal="Sum" format="n0" />
 <Field name="Region" subtotal="Count" />
 <Field name="RequiredDate" subtotal="Count" format="d" />
 <Field name="Salesperson" subtotal="Count" />
 <Field name="ShipAddress" subtotal="Count" />
 <Field name="ShipCity" subtotal="Count" />
 <Field name="ShipCountry" subtotal="Count" />
 <Field name="ShipName" subtotal="Count" />
 <Field name="ShippedDate" subtotal="Count" format="d" />
 <Field name="Shippers_CompanyName" subtotal="Count" />
 <Field name="ShipPostalCode" subtotal="Count" />
 <Field name="ShipRegion" subtotal="Count" />
 <Field name="UnitPrice" subtotal="Sum" format="n0" />
 </Fields>
 <RowFields>
 <Field name="Salesperson" />
 </RowFields>
 <ColumnFields>
 <Field name="OrderDate" />
 </ColumnFields>
 <ValueFields>
 <Field name="ExtendedPrice" />
 </ValueFields>
 </C1FlexPivotEngine>
 <C1FlexPivotPrintDocument>
 <Header Text="&[ViewTitle]	&[Date]	Page &[Page]" Separator="True"
FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Footer Text="" Separator="False" FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Grid ShowGrid="True" GridOptions="1" />
 <Chart ShowChart="True" ChartFillsPage="True" />
 <RawData ShowRawData="False" RawDataOptions="1" />
 <PageSettings Landscape="False" Margins="100,100,100,100" />
 </C1FlexPivotPrintDocument>
 <C1FlexPivotChart ChartType="Bar" ColorGeneration="Office" ShowTitle="True"
ShowLegend="Automatic" ShowGridLines="True" Stacked="True" />
 </C1FlexPivotPage>

 <C1FlexPivotPage id="SalesPerson vs Year">
 <C1FlexPivotEngine>
 <Fields>
 <Field name="Address" subtotal="Count" />
 <Field name="City" subtotal="Count" />
 <Field name="Country" subtotal="Count" />

FlexPivot for WinForms 70

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <Field name="CustomerID" subtotal="Count" />
 <Field name="Customers_CompanyName" subtotal="Count" />
 <Field name="Discount" subtotal="Sum" format="n0" />
 <Field name="ExtendedPrice" subtotal="Sum" format="n0" />
 <Field name="Freight" subtotal="Sum" format="n0" />
 <Field name="OrderDate" subtotal="Count" format="yyyy" />
 <Field name="OrderID" subtotal="Sum" format="n0" />
 <Field name="PostalCode" subtotal="Count" />
 <Field name="ProductID" subtotal="Sum" format="n0" />
 <Field name="ProductName" subtotal="Count" />
 <Field name="Quantity" subtotal="Sum" format="n0" />
 <Field name="Region" subtotal="Count" />
 <Field name="RequiredDate" subtotal="Count" format="d" />
 <Field name="Salesperson" subtotal="Count" />
 <Field name="ShipAddress" subtotal="Count" />
 <Field name="ShipCity" subtotal="Count" />
 <Field name="ShipCountry" subtotal="Count" />
 <Field name="ShipName" subtotal="Count" />
 <Field name="ShippedDate" subtotal="Count" format="d" />
 <Field name="Shippers_CompanyName" subtotal="Count" />
 <Field name="ShipPostalCode" subtotal="Count" />
 <Field name="ShipRegion" subtotal="Count" />
 <Field name="UnitPrice" subtotal="Sum" format="n0" />
 </Fields>
 <RowFields>
 <Field name="Salesperson" />
 </RowFields>
 <ColumnFields>
 <Field name="OrderDate" />
 </ColumnFields>
 <ValueFields>
 <Field name="ExtendedPrice" />
 </ValueFields>
 </C1FlexPivotEngine>
 <C1FlexPivotPrintDocument>
 <Header Text="&[ViewTitle]	&[Date]	Page &[Page]" Separator="True"
FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Footer Text="" Separator="False" FontName="Arial" FontSize="9" FontStyle="Regular" />
 <Grid ShowGrid="True" GridOptions="1" />
 <Chart ShowChart="True" ChartFillsPage="True" />
 <RawData ShowRawData="False" RawDataOptions="1" />
 <PageSettings Landscape="False" Margins="100,100,100,100" />
 </C1FlexPivotPrintDocument>
 <C1FlexPivotChart ChartType="Bar" ColorGeneration="Office" ShowTitle="True"
ShowLegend="Automatic" ShowGridLines="True" Stacked="True" />
 </C1FlexPivotPage>

</FlexPivotViews>

2. Add the view definitions created above in an XML file (i.e. FlexPivotViews.xml) along with two image files CollapseAll.png () and
Views_small.png () in a folder named, for example, Resources.

3. Add the Resources folder at the back end of your project and include it in your project from the Solution Explorer.
4. Right-click your project in the Solution Explorer and select Properties to open the Project Designer.
5. Select Resources and click the Strings drop-down menu. Choose Images option from the drop-down as illustrated in the image below.

6. Select the Add Resource drop-down menu and choose Add Existing File option.

FlexPivot for WinForms 71

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Browse to the Resources folder where the two image files are added in Step 2 and add them in the Project Designer.
8. Click the Strings drop-down menu. Choose Files option from the drop-down.
9. Select the Add Resources drop-down menu and choose Add Existing File option.

10. Browse to the Resources folder where FlexPivotViews.xml file is added in Step 2 and add it in the Project Designer.
11. Switch to the code view (i.e. Form1.cs) and add the following code to build menu with predefined views.

Visual Basic
' build menu with predefined views:
Dim doc = New System.Xml.XmlDocument()
doc.LoadXml(My.Resources.FlexPivotViews)
Dim menuView = New C1.Win.C1Command.C1CommandMenu()
menuView.Text = "&View"
menuView.Image = My.Resources.Views_small

C#
// build menu with predefined views:
var doc = new System.Xml.XmlDocument();
doc.LoadXml(Properties.Resources.FlexPivotViews);
var menuView = new C1.Win.C1Command.C1CommandMenu();
menuView.Text = "&View";
menuView.Image = Properties.Resources.Views_small;

12. Add the following code below the above code snippet to apply selected view from the drop-down menu.
Visual Basic

For Each nd As System.Xml.XmlNode In doc.SelectNodes("FlexPivotViews/C1FlexPivotPage")
 Dim cmd = New C1.Win.C1Command.C1Command()
 cmd.Text = nd.Attributes("id").Value
 cmd.UserData = nd
 AddHandler cmd.Click, AddressOf menuView_DropDownItemClicked
 Dim link = New C1.Win.C1Command.C1CommandLink(cmd)
 menuView.CommandLinks.Add(link)
Next nd

C#
foreach (System.Xml.XmlNode nd in doc.SelectNodes("FlexPivotViews/C1FlexPivotPage"))
{
 var cmd = new C1.Win.C1Command.C1Command();
 cmd.Text = nd.Attributes["id"].Value;
 cmd.UserData = nd;
 cmd.Click += menuView_DropDownItemClicked;
 var link = new C1.Win.C1Command.C1CommandLink(cmd);
 menuView.CommandLinks.Add(link);
}

13. Add the following code to the event handler created for menuView_DropDownItemClicked event.
Visual Basic

Private Sub menuView_DropDownItemClicked(ByVal sender As Object, ByVal e As C1.Win.C1Command.ClickEventArgs)
 Dim nd = TryCast(e.CallerLink.Command.UserData, System.Xml.XmlNode)
 If nd IsNot Nothing Then
 ' load view definition from XML
 c1FlexPivotPage1.ViewDefinition = nd.OuterXml

 ' show current view name in status bar
 c1FlexPivotPage1.LabelStatus.Text = nd.Attributes("id").Value
 End If
End Sub

C#
private void menuView_DropDownItemClicked(object sender, C1.Win.C1Command.ClickEventArgs e)
{
 var nd = e.CallerLink.Command.UserData as System.Xml.XmlNode;
 if (nd != null)
 {
 // load view definition from XML
 c1FlexPivotPage1.ViewDefinition = nd.OuterXml;

 // show current view name in status bar
 c1FlexPivotPage1.LabelStatus.Text = nd.Attributes["id"].Value;
 }
}

14. Add the new View Menu to the toolstrip appearing on C1FlexPivotPage control using the following code.
Visual Basic

FlexPivot for WinForms 72

Copyright © 2017 GrapeCity, inc. All rights reserved.

' add new view menu to C1FlexPivotPage toolstrip
Dim menuLink = New C1.Win.C1Command.C1CommandLink(menuView)
c1FlexPivotPage1.ToolBar.CommandLinks.Insert(3, menuLink)

C#
// add new view menu to C1FlexPivotPage toolstrip
var menuLink = new C1.Win.C1Command.C1CommandLink(menuView);
c1FlexPivotPage1.ToolBar.CommandLinks.Insert(3, menuLink);

15. Initialize a new variable, for example collapseAllView, of C1Command type in the Form1 class.
Visual Basic

Dim collapseAllView As C1.Win.C1Command.C1Command
C#

C1.Win.C1Command.C1Command collapseAllView;
16. Add the CollapseAll Menu to the toolstrip appearing on C1FlexPivotPage control using the following code.

Visual Basic
' add collapseall menu to C1FlexPivotPage toolstrip
collapseAllView = New C1.Win.C1Command.C1Command()
collapseAllView.Text = "&CollapseAll"
collapseAllView.Image = My.Resources.CollapseAll
AddHandler collapseAllView.Click, AddressOf collapseAllView_Click
Dim collapseAllViewLink = New C1.Win.C1Command.C1CommandLink(collapseAllView)
c1FlexPivotPage1.ToolBar.CommandLinks.Add(collapseAllViewLink)

C#
// add collapseall menu to C1FlexPivotPage toolstrip
collapseAllView = new C1.Win.C1Command.C1Command();
collapseAllView.Text = "&CollapseAll";
collapseAllView.Image = Properties.Resources.CollapseAll;
collapseAllView.Click += collapseAllView_Click;
C1.Win.C1Command.C1CommandLink collapseAllViewLink = new C1.Win.C1Command.C1CommandLink(collapseAllView);
c1FlexPivotPage1.ToolBar.CommandLinks.Add(collapseAllViewLink);

17. Add the following code in the event handler created for collapseAllView_Click event.
Visual Basic

Private Sub collapseAllView_Click(ByVal sender As Object, ByVal e As EventArgs)
 c1FlexPivotPage1.FlexPivotGrid.CollapseAllCols()
 c1FlexPivotPage1.FlexPivotGrid.CollapseAllRows()
End Sub

C#
private void collapseAllView_Click(object sender, C1.Win.C1Command.ClickEventArgs e)
{
 c1FlexPivotPage1.FlexPivotGrid.CollapseAllCols();
 c1FlexPivotPage1.FlexPivotGrid.CollapseAllRows();
}

18. Subscribe c1FlexPivotPage1.Updated event using the code below.
Visual Basic

AddHandler c1FlexPivotPage1.Updated, AddressOf c1FlexPivotPage1_Updated
C#

c1FlexPivotPage1.Updated += c1FlexPivotPage1_Updated;
19. Add the following code to the event handler created for c1FlexPivotPage1.Updated event.

Visual Basic
Private Sub c1FlexPivotPage1_Updated(ByVal sender As Object, ByVal e As EventArgs)
 ' clear report name after user made any changes
 c1FlexPivotPage1.LabelStatus.Text = String.Empty

 ' update button status of collapseAllView.
 If (c1FlexPivotPage1.ShowTotalsColumns
 = C1.FlexPivot.ShowTotals.Subtotals Or c1FlexPivotPage1.ShowTotalsRows
 = C1.FlexPivot.ShowTotals.Subtotals) Then
 collapseAllView.Enabled = True
 Else
 collapseAllView.Enabled = False
 End If
End Sub

C#
private void c1FlexPivotPage1_Updated(object sender, EventArgs e)
{
 // clear report name after user made any changes
 c1FlexPivotPage1.LabelStatus.Text = string.Empty;

 // update button status of collapseAllView.
 if (c1FlexPivotPage1.ShowTotalsColumns == C1.FlexPivot.ShowTotals.Subtotals
 || c1FlexPivotPage1.ShowTotalsRows == C1.FlexPivot.ShowTotals.Subtotals)
 collapseAllView.Enabled = true;
 else
 collapseAllView.Enabled = false;
}

20. Press F5 to run the application. The toolstrip appears with a View drop-down menu.

FlexPivot for WinForms 73

Copyright © 2017 GrapeCity, inc. All rights reserved.

21. Click the View drop-down menu and observe that the list shows all the views whose definition is added in the FlexPivotViews.xml file.

Persisting Views
Users can also persist the view they created in their FlexPivot application across session. Any customization made by
the user on the view can be saved and restored when the application is run next time.

To persist views, perform the following steps.

1. Add the following code to save the current view by reading the ViewDefinition property and assigning it to the
DefaultView created.

FlexPivot for WinForms 74

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic
Protected Overrides Sub OnClosing(e As CancelEventArgs)
 'save current view as new default
 My.Settings.DefaultView = c1FlexPivotPage1.ViewDefinition
 My.MySettings.Default.Save()
 MyBase.OnClosing(e)
End Sub

C#
// saves current view as default for next time when the form closes
protected override void OnClosing(CancelEventArgs e)
{
 // save current view as new default
 Properties.Settings.Default.DefaultView = c1FlexPivotPage1.ViewDefinition;
 Properties.Settings.Default.Save();
 base.OnClosing(e);
}

2. Press F5 to run the application and drag City data field in the Rows list. The default view appears similar to the
image below.

3. Close the application and restart it by pressing F5. The last view that you created persists and appears as the
default view.

Importing Data from Excel
You can import data from Excel files (.xls, .xlsx) to your FlexPivot application. The code sample given below illustrates importing Excel files in C1FlexPivotPage.

Complete the following steps to import data from an Excel file to C1FlexPivotPage control. This example uses a sample Excel file named Sales.xlsx for importing data.

1. Create a Windows Forms Application project in Visual Studio.
2. Add C1FlexPivotPage control to the form through Toolbox.
3. Click once on the smart tag icon () to open the C1FlexPivotPage Tasks smart tag panel.
4. Select Undock in Parent Container option to undock the FlexPivotPage control in the parent container i.e. Form.
5. Navigate to the Toolbox again and add a general button control to the Form.
6. Place the button control above the FlexPivotPage control.
7. Set the Text property for the button control as Import Data from the Properties window. The designer appears similar to the image given below.

FlexPivot for WinForms 75

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Switch to the code view and add the following code to set up a connection string with the Sales.xlsx file.
Visual Basic

'get sample Excel file connection string
Private Function GetConnectionString(Optional firstRowHasNames As Boolean = True, Optional mixedTypesAsText As Boolean = True) As String
 Dim conn As String = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source={0};Extended Properties=""Excel 12.0;HDR={1};IMEX={2};ReadOnly=true"""
 Return String.Format(conn, samplePath, firstRowHasNames, mixedTypesAsText)
End Function

C#
//get sample Excel file connection string
private string GetConnectionString(bool firstRowHasNames = true, bool mixedTypesAsText = true)
{
 string conn = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source={0};Extended Properties=\"Excel 12.0;HDR={1};IMEX={2};ReadOnly=true\"";
 return string.Format(conn, samplePath, firstRowHasNames, mixedTypesAsText);

}

You can store this file at Documents\ComponentOne Samples\Common\Sales.xlsx location on your system. In case you want to store the file at a different location then make changes in the
path defined in the GetConnectionString method.

9. Switch to the code view and add the following import statements.
Visual Basic

Imports C1.DataEngine
Imports System.Data.OleDb

C#
using C1.DataEngine;
using System.Data.OleDb;

10. Initialize data path and sample path as illustrated in the following code.
Visual Basic

Dim dataPath As String = Path.Combine(System.Windows.Forms.Application.StartupPath, "Data")
Dim samplePath As String = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + "\ComponentOne Samples\Common\Sales.xlsx"

C#
string dataPath = Path.Combine(System.Windows.Forms.Application.StartupPath, "Data");
string samplePath = Environment.GetFolderPath(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common\Sales.xlsx";

11. Create a class named Sales in the code view to read the data from Excel file.
Visual Basic

Public Class Sales
 Public Property salesperson() As String
 Get
 Return m_salesperson
 End Get
 Set(value As String)
 m_salesperson = Value
 End Set
 End Property
 Private m_salesperson As String
 Public Property region() As String
 Get
 Return m_region
 End Get
 Set(value As String)
 m_region = Value
 End Set
 End Property
 Private m_region As String
 Public Property account_number() As Double
 Get
 Return m_account_number
 End Get
 Set(value As Double)
 m_account_number = Value
 End Set
 End Property
 Private m_account_number As Double
 Public Property amount() As Decimal
 Get
 Return m_amount
 End Get
 Set(value As Decimal)
 m_amount = Value
 End Set
 End Property
 Private m_amount As Decimal
 Public Property month() As String

FlexPivot for WinForms 76

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Get
 Return m_month
 End Get
 Set(value As String)
 m_month = Value
 End Set
 End Property
 Private m_month As String

 Public Sub New(reader As IDataReader)
 Dim nv = New NullValue()
 salesperson = If(reader.IsDBNull(0), nv.NullString, reader.GetString(0))
 region = If(reader.IsDBNull(1), nv.NullString, reader.GetString(1))
 account_number = If(reader.IsDBNull(2), nv.NullDouble, reader.GetDouble(2))
 amount = If(reader.IsDBNull(3), nv.NullDecimal, reader.GetDecimal(3))
 month = If(reader.IsDBNull(4), nv.NullString, reader.GetString(4))
 End Sub

 Public Shared Iterator Function GetSalesInfo(reader As IDataReader) As IEnumerable(Of Sales)
 While reader.Read()
 Yield New Sales(reader)
 End While
 End Function

End Class
C#

public class Sales
{
 public string salesperson { get; set; }
 public string region { get; set; }
 public double account_number { get; set; }
 public decimal amount { get; set; }
 public string month { get; set; }

 public Sales(IDataReader reader)
 {
 var nv = new NullValue();
 salesperson = reader.IsDBNull(0) ? nv.NullString : reader.GetString(0);
 region = reader.IsDBNull(1) ? nv.NullString : reader.GetString(1);
 account_number = reader.IsDBNull(2) ? nv.NullDouble : reader.GetDouble(2);
 amount = reader.IsDBNull(3) ? nv.NullDecimal : reader.GetDecimal(3);
 month = reader.IsDBNull(4) ? nv.NullString : reader.GetString(4);
 }

 public static IEnumerable<Sales> GetSalesInfo(IDataReader reader)
 {
 while (reader.Read())
 yield return new Sales(reader);
 }
}

12. Initialize workspace in the Form's constructor.
Visual Basic

Public Sub New()
 InitializeComponent()
 C1.DataEngine.Workspace.Init(dataPath)
End Sub

C#
public Form1()
{
 InitializeComponent();
 C1.DataEngine.Workspace.Init(dataPath);
}

13. Add the following code to fetch data from the Excel file.
Visual Basic

Private Function GetFirstSalesData() As String
 Using conn As New OleDbConnection(GetConnectionString())
 conn.Open()
 ' get workbook table list
 Dim tables = conn.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, New Object() {Nothing, Nothing, Nothing, "TABLE"})

 Dim name As String = tables.Rows(0)("TABLE_NAME").ToString()

 Dim command = New OleDbCommand((Convert.ToString("select * from [") & name) + "]", conn)
 Using reader = command.ExecuteReader()
 Dim connector = New ObjectConnector(Of Sales)(Sales.GetSalesInfo(reader))
 connector.GetData(name)
 End Using
 Return name
 End Using
End Function

C#
private string GetFirstSalesData()
{
 using (OleDbConnection conn = new OleDbConnection(GetConnectionString()))
 {
 conn.Open();
 // get workbook table list
 var tables = conn.GetOleDbSchemaTable(OleDbSchemaGuid.Tables, new object[] { null, null, null, "TABLE" });

 string name = tables.Rows[0]["TABLE_NAME"].ToString();

 var command = new OleDbCommand("select * from [" + name + "]", conn);
 using (var reader = command.ExecuteReader())
 {
 var connector = new ObjectConnector<Sales>(Sales.GetSalesInfo(reader));
 connector.GetData(name);
 }
 return name;
 }
}

14. Subscribe button1_click event from the Properties window.
15. Add the following code to the event handler created in the above step.

Visual Basic
Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

FlexPivot for WinForms 77

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Dim tableName As String = GetFirstSalesData()
 C1FlexPivotPage1.FlexPivotPanel.ConnectDataEngine(tableName)

 'build a default view
 Dim engine = C1FlexPivotPage1.FlexPivotPanel.FlexPivotEngine
 engine.BeginUpdate()
 engine.RowFields.Add("salesperson")
 engine.ValueFields.Add("amount")
 engine.EndUpdate()
End Sub

C#
private void button1_Click(object sender, EventArgs e)
{
 string tableName = GetFirstSalesData();
 c1FlexPivotPage1.FlexPivotPanel.ConnectDataEngine(tableName);

 //build a default view
 var engine = c1FlexPivotPage1.FlexPivotPanel.FlexPivotEngine;
 engine.BeginUpdate();
 engine.RowFields.Add("salesperson");
 engine.ValueFields.Add("amount");
 engine.EndUpdate();
}

This code connects the Data Engine to the sample table and builds a default view to be displayed on running the application.

16. Press F5 to run the application and click the button control appearing on the form to import data from the sample file.

FlexPivot for WinForms 78

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DataEngine Overview
ComponentOne Studio's DataEngine powers FlexPivot control, but this is not its only purpose. C1DataEngine can also
be used on its own, separate from FlexPivot, to integrate (blend, join), transform, and aggregate (analyze) data. In this
section, you learn to use the DataEngine independent of FlexPivot through queries.

Using C1DataEngine
The C1DataEngine can be used independently for data blending and analysis by executing queries. A query takes data
from base tables or from other queries, performs operations on that data such as joining multiple tables, filtering,
calculations, grouping, aggregation, and saves results as a new table in the DataEngine.

Query results can then be used in various ways including but not limited to:

Showing results in a grid (for example, aggregation results, for analysis)
Feeding results to FlexPivot for analysis (for example, joining several tables so FlexPivot can analyze the joined
table)
Further programmatically transform the results to perform any batch tasks on data

The unique advantage of using DataEngine queries compared with other programming techniques is their exceptional
performance. A query can often process millions of records in a second or less. In addition, DataEngine queries
support custom operations, which allows you to create user-specific queries for both simple and group operations
(aggregation).

Refer to the product sample DataEngineQueries sample at the following location in your system to see the
C1DataEngine in full action.

C:\...\Documents\ComponentOne Samples\WinForms\C1FlexPivot\CS or VB\DataEngineQueries.

Base Tables
Base tables are simply data imported into DataEngine from external sources using connectors. Base tables act as input
data for queries. Since a query or query result is also a table, you can distinguish between the two by the fact that
base tables are not produced by queries. Every base table has a name (it must be unique in the workspace) and a
collection of columns. When a workspace is initialized in code, some base tables can already exist (their data stored in
the workspace's folder in memory-mapped files) and some can be added after workspace initialization.

A query is based on a table or on multiple tables if it's a join query. We will consider queries based on a single table
first. A simple, non-join query is based on a base table or another query. Let us start with a simple case of a query over
a base table first. To define query, you need to get hold of a base table first. This can be done using the syntax below.

Syntax

Dim od As Object = workspace.table("OrderDetails")

dynamic od = workspace.table("OrderDetails");

Visual Basic

C#

FlexPivot for WinForms 79

Copyright © 2017 GrapeCity, inc. All rights reserved.

This is an object representing a base table with the name "OrderDetails". Note that such table must already exist (i.e.
must have been created earlier by importing data via a connector). This object is dynamic to make it easy (and type-
safe) for you to reference table columns. For example, od.ProductID is the ProductID column, and od.Discount is the
Discount column of the OrderDetails table.

Simple Operations
After getting hold of the base tables, you can perform a range of operations by formulating queries. Having the easy
way to represent columns, we can formulate a query for simple operations as illustrated below.

Syntax

Dim query1 As Object = workspace.query("prices", New With { _
 Key .Order = od.OrderID, _
 Key .Product = Od.ProductID _
 Key .Price = Op.Mul(od.UnitPrice, od.Quantity), _
 })

dynamic query1 = workspace.query("prices", new
 {
 Order = od.OrderID,
 Product = od.ProductID,
 Price = Op.Mul(od.UnitPrice, od.Quantity)
 });

This is a simple query over a single table without grouping and aggregation. It creates a table (result of any query is a
table) having the same number of rows as the base table OrderDetails. It has three columns called Order, Product, and
Price. In every row, columns Order and Product contain the same order and Product IDs as in the base OrderDetail
row. The Price column is unit price times quantity. Op.Mul is multiplication operation. Other binary operations have
similar notation:

Op.Add - for addition
Op.Sub - for subtraction
Op.Div - for division
Op.Mod - for modulus

There are also some unary operations. For example, Op.UCase(products.ProductName) converts string to upper
case. All operations are listed in the class C1.DataEngine.Op

To execute a query, use the Execute method as illustrated below.

Syntax

query1.Query.Execute()

Visual Basic

C#

Visual Basic

FlexPivot for WinForms 80

Copyright © 2017 GrapeCity, inc. All rights reserved.

query1.Query.Execute();

C#

Aggregation
Aggregation (subtotals) operations compute a single value from a collection of values using operators such as Sum,
Min, Max, Count, etc. The most basic difference between Aggregation operations and Simple operations is that
aggregation uses grouping. Aggregation without grouping is also possible but in that case it produces a single row of
grand totals. Grouping is needed to produce subtotals. Input rows are grouped by values of one or more columns,
and subtotals are calculated for each of those groups.

The following syntax illustrates an aggregation query that calculates subtotals for each products, so the number of
resulting row is equal to the number of products. For each product, two subtotals (aggregations) are calculated. These
subtotals are number of orders including that product, and maximum discount for that product in those orders.

Syntax

Dim query2 As dynamic = workspace.query("subtotals", New With { _
 Key .Product = od.ProductID, _
 Key .OrdersCount = Op.Count(od.OrderID), _
 Key .MaxDiscount = Op.Max(od.Discount) _
})

dynamic query2 = workspace.query("subtotals", new
 {
 Product = od.ProductID,
 OrdersCount = Op.Count(od.OrderID),
 MaxDiscount = Op.Max(od.Discount)
 });

While using aggregation, you can group more than one column. The following query illustrates this as it has two
grouping columns as a result of which there will be more groups in the result.

Syntax

Dim query3 As dynamic = workspace.query("subtotals3", New With { _
 Key .Product = od.ProductID, _
 Key .Discount = od.Discount, _
 Key .OrdersCount = Op.Count(od.OrderID) _
})

Visual Basic

C#

Visual Basic

FlexPivot for WinForms 81

Copyright © 2017 GrapeCity, inc. All rights reserved.

dynamic query3 = workspace.query("subtotals3", new
 {
 Product = od.ProductID,
 Discount = od.Discount,
 OrdersCount = Op.Count(od.OrderID)
 });

In the above query results in more than one group each containing orders including a certain product with a certain
discount, and the subtotal will show the number of orders in the group.

C#

Combining Operations and Queries
A query line can have only have one operation in it. In simple words, you cannot combine operations to form a
complex formula. However, this is not a problem because queries can be easily combined and results of any query can
be fed as input to another query. So, you can perform some simple operations first and then apply an aggregation
query to calculate subtotals on their results. You can also apply simple calculation operations to results of an
aggregation, or build any other combination you need.

One common case is specifically supported so that you can avoid creating multiple queries. You can define a column
in a query and then use its string name as the argument of an operation. This combination can be represented in a
single query as follows.

Syntax

discount = Op.Max(Op.Mul(od.UnitPrice, od.Discount)),
MaxDiscount = Op.Max("discount")

discount = Op.Max(Op.Mul(od.UnitPrice, od.Discount)),
MaxDiscount = Op.Max("discount")

When you combine queries, that is, define a query that is based on another query, the resulting query contains by
default only the columns that are defined in it explicitly. In other words, it does not by default include columns from
the query on which it is based. However, sometimes your query just needs to add a few columns to those in the base
one (for example, add two columns of the base query) or it might show the same columns only filtered by a condition.
You can do it by adding a line for each column as given below:

columnName = baseQuery.columnName

A shortcut for the above case is adding _base = "*"

Visual Basic

C#

Filter and Range
You can restrict your query calculation to some subset of the input rows using a filter condition. Or maybe the entire

FlexPivot for WinForms 82

Copyright © 2017 GrapeCity, inc. All rights reserved.

purpose of your query is to select a subset of rows from a base table or another query result based on some filter
condition or a range of values of a column or several columns. All this is achieved by filter conditions. There are two
kinds of conditions, namely _range and _filter.

Filter(_filter) Range (_range)

_filter is more general as it can represent any condition. However, it
has performance cost because it scans the entire set of input rows and
checks the condition on every row.

_range is a special case of filter in which
DataEngine does not need to scan all rows,
and hence performs faster.

Range

The following query illustrates how to formulate range condition.

Syntax

Dim query4 As dynamic = workspace.query("range", New With { _
 Key ._base = "*", _
 Key ._range = od.UnitPrice.Eq(10) _
})

dynamic query4 = workspace.query("range", new
 {
 _base = "*",
 _range = od.UnitPrice.Eq(10)
 });

The above query selects OrderDetails rows with unit price = 10. This process is very efficient as the query traverses to
the desired segment of rows using an index built internally by DataEngine and outputs just those rows with unit price
= 10 without checking any other rows. In addition, several condition operations can also be applied to a column. The
above query uses is Eq that is "equals". Other common operations are Gte, Lte (greater than or equals, less than or
equals), Gt, Lt (greater than, less than), etc. Conditions applied to a column can be combined as follows.

Syntax

_range = od.UnitPrice.Gte(10).Lte(20)

This kind of 'between' condition is still appropriate for _range, performance optimization is still possible because row
scan can be constrained to scanning the from-to segment of rows. You can also specify ranges with conditions
imposed on two or more columns as illustrated below.

Syntax

_range = od.Discount.Eq(0) + od.UnitPrice.Gte(10).Lte(20)

Filter

Some conditions cannot be specified as _range. For example, A "not equal" or Ne condition cannot be used in a range.
So, to use Ne condition, you need to apply _filter as illustrated below.

Syntax

Visual Basic

C#

FlexPivot for WinForms 83

Copyright © 2017 GrapeCity, inc. All rights reserved.

_filter = od.Discount.Ne(0)

DataEngine conditions can also be combined with 'or', not only with 'and'. However, 'or' can only be used in a filter as
illustrated below.

Syntax

_filter = od.UnitPrice.Lt(10).Or().Gt(20)

There is also an And() operation that allows you to combine 'or' and 'and' in a single filter as illustrated below.

Syntax

_filter = od.UnitPrice.Lt(10).Or().Gt(20).And().Lt(30)

The above query means either less than 10 or between 20 and 30.

You can have any number of Or() and And() connectives, and impose conditions on multiple columns combining them
with + as illustrated below.

Syntax

_filter = od.Discount.Ne(0) + od.UnitPrice.Lt(10).Or().Gt(20).Or().Gt(30)

Join
All the queries that were discussed in the previous topics were based on a single table. However, one cannot restrict
the queries to a single table and so applying queries on multiple tables becomes important.

Join is a very important feature of DataEngine queries that allows you to combine (blend) data from several tables
(base tables or queries). Join query is a special kind of query that does not have any calculation or aggregation
operations. The only purpose it serves is that of joining tables. If you need calculations and/or aggregation subtotals,
you can do this on joined tables as well since all the DataEngine queries, including joins, can be combined as without
restrictions as discussed in Combining Operations and Queries topic.

Joins in DataEngine are always many-to-one, which corresponds to the common "star schema" convention in data
analytics. So there is one main table and one or more 'attached' tables that are linked to the main table. Join result
contains the same number of rows as the main table. Every joined row contains a value for each main table column
included in the result (not necessarily all columns are included, although including all columns is a common case) and
a value for each included column of each linked table (usually only some of the columns of linked tables are included).

The following example illustrates a Join.

Syntax

Dim jq As dynamic = workspace.join("query_join", od, New With { _
 Key .od = od.ProductID + od.OrderID, _
 Key .pr = pr.UnitsInStock Or od.ProductID = pr.ProductID _
})

 dynamic jq = workspace.join("query_join", od, new
 {

Visual Basic

C#

FlexPivot for WinForms 84

Copyright © 2017 GrapeCity, inc. All rights reserved.

 od = od.ProductID + od.OrderID, // get ProductID and OrderID
from the OrderDetails table
 pr = pr.UnitsInStock | od.ProductID == pr.ProductID // get
UnitsInStock from the Products table and join OrderDetails and Products
table on the ProductID field
 });

Main table is specified in the second parameter, od (it is our old OrderDetails table). First line applies to the main table
and defines which columns we take from the main table to the result. In this case we take two columns, ProductID and
OrderID. The main table line is optional. If it's not present, all columns from the main table are included in the join.

Second line defines a linked table, Products, and fields we take from it, UnitsInStock. It also defines, after the separator
| how we link Products to the main table OrderDetails. A linking (join) condition must be an equality between one or
more columns from each side (they are usually called key columns).

Here is a more general example showing that there can be more linked tables than one (but only one main table) and
join conditions can have more than one key column (Main table - Orders; Linked tables - Customers, Employees).

Syntax

Dim jq As dynamic = workspace.join("join2", orders, New With { _
 Key .customers = customers.Company + customers.Country Or
orders.CustomerID = customers.customerID, _
 Key .employees = employees.Name + employees.Title Or
orders.EmployeeID = employees.EmployeeID + orders.CustomerID =
customers.customerID _
})

dynamic jq = workspace.join("join2", orders, new
 {
 customers = customers.Company + customers.Country |
orders.CustomerID == customers.customerID,
 employees = employees.Name + employees.Title | orders.EmployeeID
== employees.EmployeeID + orders.CustomerID == customers.customerID
 });

By default, columns in the result keep their names that they had in the main and in the linked tables. However,
sometimes these names can collide, so you need to change the name of a column in the result (or might just want to
give a column a different name).

Main table columns always keep their names, but names of linked columns can be changed with As("alias") as
illustrated below:

Example Title

customers = customers.Company.As("CustomerCompany") + customers.Country |
orders.CustomerID ==
 customers.customerID,

Refer to the product sample DataEngineQueries stored at the following location in your system to see how to
use join both with and without FlexPivot.

Visual Basic

C#

FlexPivot for WinForms 85

Copyright © 2017 GrapeCity, inc. All rights reserved.

C:\...\Documents\ComponentOne Samples\WinForms\DataEngineQueries

Also, refer to the product sample DataJoin stored at the following location in your system to see how to build a
join query dynamically based on user selection of tables and fields.

C:\...\Documents\ComponentOne Samples\WinForms\DataJoin

Excel Add-in

Using Excel Add-in
C1DataEngine has built-in connectors for getting data from databases or any collection. In addition to that,
C1DataEngine also includes an add-in to Excel that opens up the wealth of data sources available through Microsoft
Power Query.

Power Query, included in Microsoft Excel, provides connectors to multiple data sources, including cloud as well as big
data. The DataEngine Excel add-in can be used in two modes illustrated below:

Programmatic Import to DataEngine

In this mode, the excel remains invisible and is used behind the scenes from the user application code via automation
to directly fetch data from any of the Power Query data sources. In this scenario, developers or information workers
use Excel to develop an application. Once the application is complete, it functions without opening the Excel. This way
Power Query serves as a powerful extension of C1DataEngine to connect to a variety of sources.

Exporting Data to Excel

For Excel users, the Excel add-in has a button for exporting data from any of the Power Query data sources to
C1DataEngine. This mode makes analytical applications very flexible from the point of view of data acquisition.
Developers or information workers can use Excel to make queries to various data sources and the application will
analyze any such data without changes to application code.

Refer to the product sample PowerQueryConnection sample at the following location in your system to see
the C1DataEngine and Power Query in full action.

C:\...\Documents\ComponentOne Samples\WinForms\PowerQueryConnection.

Important Note:

DataEngine Excel add-in is located in C:\...\ComponentOne\C1FlexPivot\ExcelAddIn\bin directory. To install
the add-in, complete the steps given below:

1. First execute the file registerCOM.bat
2. Double-click the file C1.DataEngine.ExcelAddIn.vsto in the folder.

The Excel add-in is compatible with Excel 2016 and Excel 2013. For Excel 2013, Power Query add-in must be
installed.

FlexPivot for WinForms 86

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	FlexPivot for WinForms Overview
	What is FlexPivot

	Introduction to FlexPivot
	Key Features
	FlexPivot Architecture
	FlexPivotPage
	FlexPivotPanel
	FlexPivotGrid
	FlexPivotChart
	FlexPivotPrintDocument

	Adding Data to FlexPivot Application
	Design Time Support through Smart Tag
	FlexPivotPanel Smart Tag
	FlexPivotPage Smart Tag
	FlexPivotChart Smart Tag
	FlexPivotGrid Smart Tag

	Quick Start: FlexPivot for WinForms
	Using FlexPivot Controls with C1DataEngine
	Step 1: Setting up the Application
	Step 2: Connecting FlexPivotPage Control with DataEngine
	Step 3: Creating Different Views at Runtime

	Updating Data
	Using FlexPivot Controls with Data Source
	Binding FlexPivot to Data Source at Design-Time
	Binding FlexPivot to Data Source in Code

	Using FlexPivotPage ToolStrip
	Grid Menu
	Chart Menu
	Report Menu

	Data Blending Features
	Joining
	Grouping
	Drilling Down Data
	Applying Conditional Formatting
	Creating Reports with FlexPivot
	Copying Data to Excel
	Filtering
	Using Value Filters
	Using Range Filters

	Sorting
	Formatting Numeric Data
	Specifying Subtotal Function
	Calculating Weighted Averages and Sums

	FlexPivot Cube
	Setting Microsoft SQL Server Analysis Services
	Connecting to a Cube
	Using the Cube

	Task-Based Help
	Configuring Fields in Code
	Adding Multiple Fields in Values List
	Applying Themes
	Using LINQ Queries to Add Data in FlexPivot
	Creating Custom FlexPivot Application in Code
	Creating Default View
	Adding Predefined Views
	Persisting Views

	Importing Data from Excel

	C1DataEngine Overview
	Using C1DataEngine
	Base Tables
	Simple Operations
	Aggregation
	Combining Operations and Queries
	Filter and Range
	Join

	Excel Add-in
	Using Excel Add-in

