

ComponentOne

Input for WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Input for WinForms Overview 5

Differences from the .NET 1.x Version 5

Help with WinForms Edition 5

Key Features 6

Design-Time Support 7

C1Button Tasks Menu 7

C1CheckBox Tasks Menu 7-8

C1ComboBox Context Menu 8

C1ComboBox Tasks Menu 8-9

C1DateEdit Tasks Menu 9

C1DbNavigator Tasks Menu 9-10

C1DropDownControl Tasks Menu 10

C1Label Tasks Menu 10-11

C1NumericEdit Tasks Menu 11

C1RangeSliderTasks Menu 11-12

C1SplitButton Context Menu 12-13

C1SplitButton Tasks Menu 13

C1TextBox Tasks Menu 13-14

C1ColorPicker Tasks Menu 14

C1FontPicker Tasks Menu 14-15

Using the C1Input Controls 16

C1Input Controls 16-17

C1DbNavigator Control Overview 17-18

C1DbNavigator Appearance 18-19

C1DbNavigator Behavior 19-20

C1ComboBox Control Overview 20

C1ComboBox Elements 20-21

ComboBox Item Modes 21-23

C1ComboBox Styling 23

C1ComboBox Button Appearance 23-24

ComboBox DataBinding 24

Adding Images to Items in the ComboBox 24-25

Adding Items to C1ComboBox 25-26

Removing Items from C1ComboBox 26-27

Input for WinForms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Populating C1ComboBox with Data Using SelectedItemChanged Event 27-28

Populating C1Combbox with Data Using the SelectedIndexChanged Event 28-30

C1RangeSlider Control Overview 30

C1RangeSlider Elements 30

C1RangeSlider Features 30

Maximum and Minimum Values 30-31

Orientation 31

Thumb Values and Range 31-32

C1RangeSlider Appearance 32

Background Image 32-33

Bar Style 33-37

Thumb Style 37-42

C1ColorPicker Control Overview 42

C1ColorPicker Elements 42-44

Working with C1ColorPicker 44-45

Applying Visual Styles to C1ColorPicker 45-46

C1FontPicker Control Overview 46

C1FontPicker Elements 46-47

Working with C1FontPicker 47-48

Applying Visual Styles to C1Font Picker 48-49

Data Binding 49-50

Value and Text: Displaying, Validating, and Updating Values 50-51

Formatting Data 51

Format Types 51-53

Custom Format Specifiers 53

Numeric Custom Format Specifiers 53-56

Date-Time Custom Format Specifiers 56-61

Parsing (Updating) Data 61

Culture (Regional) Settings 61-62

Edit Mask 62-64

Validating Data 64

Input String Validation (PreValidation) 64-65

Typed Value Validation (PostValidation) 65

Editing Date and Time Values 65-66

Editing Numeric Values 66

Drop-Down and Increment Buttons 66

Input for WinForms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DateEdit Control 66-67

C1NumericEdit Control 67

Custom Drop-Down 67

Programmatic Formatting, Parsing, and Validation 67-68

Error Handling 68

Data Errors 68

Incorrect Format in Displaying Data 68

User Input Errors 68-70

Handling NULL and Empty Values 70

Displaying NULL and Empty Values 70

Entering NULL and Empty Values 70

Customizing C1Input's Appearance 71

Visual Styles 71-81

Themes 81-86

C1Themes and the VisualStyle Property 86

Border Styles 86-87

Cursor Styles 87-89

Flat Styles 89-90

Button Color 90

Input for WinForms Task-Based Help 91

Adding a Drop-Down Form 91-93

Changing the Navigation in the Navigator 93-94

Customizing the Drop-Down Editor 94-96

Customizing the C1DropDownControl 96

Binding C1CheckBox 96

Binding C1CheckBox to a Boolean Field 96-97

Binding C1CheckBox to a String Field 97

Binding C1CheckBox to an Integer Field 97-98

Setting the Calendar Drop-down 98-100

Customizing Appearance Using Visual Styles 100-101

Customizing the C1DateEdit Control 101-102

Displaying Clicked C1DropDown Buttons in a Text Box 102-103

Working with a Database 103

Creating a New Connection 103-105

Updating /Refreshing Data from the Database 105-106

Creating a Master-Detail Relation 106-107

Input for WinForms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Customizing the PictureBox 107-111

Navigating the C1DateEdit Control 111-114

Displaying a Border Color for the C1Input Controls 114-115

Showing a Message Box when the Border Color Changes 115-116

Set IME Mode 116-117

Move Focus 117-118

Select Specific Calendar Type 118

Spin Up/Spin Down Programmatically 118-119

Change Up-Down Button Alignment 119

Input for WinForms Samples 120-121

Input for WinForms Tutorials 122

Binding C1Input Controls to a Data Source 122

Binding to a C1DataExpress Data Source 122-124

Binding to an ADO.NET Data Source 124-129

Masked Input 129-136

Masked Input Using Regular Expressions 136-137

Data Navigation and Actions Using C1DbNavigator 137-140

Using C1TextBox for Date-Time Input 140-144

Data Validation 144-149

Data Formatting and Parsing 149-155

Using C1DateEdit and C1NumericEdit Controls 155-159

Custom Drop-Down Form 159-163

Editing Numbers in NumericInput Mode 164-167

Input for WinForms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Input for WinForms Overview
Enhancing the functionality and appearance of the standard controls, Input for
WinForms consists of a suite of twelve controls that support visual styles (including
Office 2010) and data binding. The powerful masked editing capability, rich
formatting model, and localization enables you to use these input controls in your
applications with increased performance. Display dynamic data in a visual format,
manage dataset navigation, display or edit dates, and much more.

Getting Started

C1Input Controls
Input for WinForms
Tutorials
Input for WinForms
Task-Based Help

Differences from the .NET 1.x Version
Please note that some changes in this version are not compatible with the 1.x versions and may require (minimal)
changes to the source code.

Changes from the .NET 1.x version include the following:

C1Input 2.x does not reference or need the C1Common assembly.
Flag properties, such as FormatInfo, MaskInfo, PreValidatation, and PostValidation, do not show the Inherit
flags at design time since those flags are set automatically.
Most complex properties can now be reset to the default value in the designer.
The CopyWithLiterals property was removed from C1TextBox as it is duplicated in MaskInfo.
The AllowDbNull property was removed from C1TextBox and is only available as a sub-property of the
PostValidation property.
C1DropDownControl now allows the option to specify custom images for its buttons via the new ButtonImages
Properties.

Help with WinForms Edition

Getting Started
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

Input for WinForms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/

Key Features
Display dynamic data in a visual format, manage dataset navigation, display or edit dates, and much more Benefit
from using Input for WinForms, featuring:

Support for Office 2007 and 2010 visual styles
All C1Input controls support visual styles, including Office 2007 style. Provide attractive and consistent look and
feel to your application, especially when used with other ComponentOne controls supporting visual styles.
The ability to display dynamic data
C1Input controls function in unbound and bound mode. In bound mode, a control’s value is bound to a data
source field.
Extensive data-binding support
Supports data binding to all .NET data sources, including ADO.NET data source objects and DataObjects
components.
Powerful and customizable masked editing capabilities
C1TextBox and all derived controls support powerful masked editing including date and time formats, numeric
range, and custom format support.
Support for regular expressions in mask format
Regular expressions in mask format make validation of complex input data easy. The regular expressions define
the pattern of data by using keywords such as \A, {}, and so on. They also provide keywords to validate
Japanese characters.
The power to format data in almost any way imaginable
A rich formatting model enables developers to customize the appearance of a control’s text, border, color, and
so on.
Support for data validation
Supports data validation both of the raw input string (PreValidation) and of the typed value entered by the user
(PostValidation).
Support for a wide range of cultures
Define the cultural setting used by the control – this applies to string comparison, numeric and date time
formats, and special characters.
Specialized drop-down editors
C1DropDownControl allows you to attach your own logic to the spin buttons and your own drop-down
form/editor to the drop-down button.
Promp input error detection
Completely customizable error-handling behavior – detect an error while parsing or validating input value, and
respond by showing an error message.
Drop-down and increment buttons
The specialized C1Input controls for date-time and numeric editing, C1DateEdit, C1NumericEdit,
and C1ComboBox controls support drop-down and increment/decrement (up/down) buttons.
Slidable Thumbs
C1RangeSlider control provides movable thumbs which slide on a bar, enabling you to add numeric data
selection to your applications.
Various formatting modes to choose from
Different formats available - display mode (used for a read-only or non-editing mode control) and edit mode.
Ability to quickly resolve NULL and empty values
Provides flexible rules for handling NULL and empty values, allowing the programmer to resolve this problem
in practically any circumstance.
Customizable Appearance
Appearance of C1Input controls can be customized, owing to diverse properties and powerful theming
capabilities. These provide flexible mechanism for adjusting look of the controls. The C1Input Control
also provides two independent controls, C1ColorPicker and C1FontPicker. The C1ColorPicker control provides
a rich, interactive color selection interface to select color for your control and C1FontPicker control provides
functionality to choose fonts for a text.

Input for WinForms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

Design-Time Support
C1Input provides visual editing to make it easier to configure the C1Input controls. This section describes how to use
C1Input's design-time environment to configure the C1Input controls.

Context Menu
You can use the C1Input control's context menu for additional resources at design time.

Tasks Menu
In Visual Studio 2005 2008, and 2010 the C1Input controls include a smart tag. A smart tag represents a short-cut
tasks menu that provides the most commonly used properties in each control. You can invoke each control's Tasks
menu by clicking on the smart tag () in the upper-right corner of the control. For more information on how to use
the smart tags for each control in C1Input, see the following topics.

C1Button Tasks Menu
In the C1Button Tasks menu you can quickly and easily set the VisualStyle property for the C1Button control.

To access the C1Button Tasks menu, click on the smart tag () in the upper-right corner of the control. This will open
the C1Button Tasks menu.

The C1Button Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and, Office2010Silver.The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1CheckBox Tasks Menu
In the C1CheckBox Tasks menu you can quickly and easily set the VisualStyle property for the C1DateEdit control.

To access the C1CheckBox Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1CheckBox Tasks menu.

Input for WinForms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1CheckBox Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About Input

Clicking the About ComponentOne Input link displays the About ComponentOne C1Input dialog box,
which is helpful in finding the version number of the control and online resources.

C1ComboBox Context Menu
The C1ComboBox control provides a context menu for additional resources at design time. Right-click on the
C1ComboBox control to open its context menu.

The C1Input context menu operates as follows:

About ComponentOne Input
Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is helpful in
finding the version number of the control and online resources.

Edit Items...

Clicking the Edit Items... opens the String Collection Editor where you enter strings in the collection one per line.

C1ComboBox Tasks Menu

Input for WinForms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the C1ComboBox Tasks menu you can quickly and easily set the VisualStyle property for the C1ComboBox
control.

To access the C1ComboBox Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1ComboBox Tasks menu.

The C1ComboBox Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne C1Input dialog box,
which is helpful in finding the version number of the control and online resources.

C1DateEdit Tasks Menu
In the C1DateEdit Tasks menu you can quickly and easily set the VisualStyle property for the C1DateEdit control.

To access the C1DateEdit Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1DateEdit Tasks menu.

The C1DataEdit Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1DbNavigator Tasks Menu
In the C1DbNavigator Tasks menu you can quickly and easily set the VisualStyle property for the C1DbNavigator
control.

Input for WinForms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

To access the C1DbNavigator Tasks menu, click on the smart tag () in the upper-right corner of the control. This
will open the C1DbNavigator Tasks menu.

The C1DbNavigator Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, and Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1DropDownControl Tasks Menu
In the C1DropDownControl Tasks menu you can quickly and easily set the VisualStyle property for the
C1DropDownControl control.

To access the C1DropDownControl Tasks menu, click on the smart tag () in the upper-right corner of the control.
This will open the C1DropDownControl Tasks menu.

The C1DropDownControl Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1Label Tasks Menu
In the C1Label Tasks menu you can quickly and easily set the VisualStyle property for the C1Label control.

Input for WinForms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

To access the C1Label Tasks menu, click on the smart tag () in the upper-right corner of the control. This will open
the C1Label Tasks menu.

The C1Label Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1NumericEdit Tasks Menu
In the C1NumericEdit Tasks menu you can quickly and easily set the VisualStyle property for the C1NumericEdit
control.

To access the C1NumericEdit Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1NumericEdit Tasks menu.

The C1NumericEdit Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1RangeSliderTasks Menu
In the C1RangeSlider Tasks menu you can quickly and easily set the VisualStyle property for

Input for WinForms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

the C1RangeSlider Control.

To access the C1RangeSlider Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1RangeSlider Tasks menu.

The C1RangeSlider Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About C1.Win.C1 Input

Clicking the About C1.Win.C1Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1SplitButton Context Menu
The C1SplitButton control provides a context menu for additional resources at design time. Right-click on the
C1SplitButton control to open its context menu.

The C1Input context menu operates as follows:

About ComponentOne Input
Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

Input for WinForms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Edit Items...

Clicking the Edit Items... opens the DropDownItem Collection Editor where you can add or remove dropdown
items.

C1SplitButton Tasks Menu
In the C1SplitButton Tasks menu you can quickly and easily set the VisualStyle property for the C1SplitButton
control.

To access the C1SplittButton Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1SplitButton Tasks menu.

The C1SplitButton Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and, Office2010Silver.The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is
helpful in finding the version number of the control and online resources.

C1TextBox Tasks Menu
In the C1TextBox Tasks menu you can quickly and easily set the VisualStyle property for the C1TextBox control.

To access the C1TextBox Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1TextBox Tasks menu.

The C1TextBox Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver .The default value is Custom.

For more information on how to set the VisualStyle property, see Customizing Appearance Using Visual Styles.

About ComponentOne Input

Clicking the About ComponentOne Input link displays the About ComponentOne Input dialog box, which is

Input for WinForms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

helpful in finding the version number of the control and online resources.

C1ColorPicker Tasks Menu
In the C1ColorPicker Tasks menu, you can quickly and easily set the VisualStyle property for the C1ColorPicker
control.

To access the C1ColorPicker Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1ColorPicker Tasks menu.

The C1ColorPicker Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Applying Visual Styles to C1ColorPicker
and Customizing Appearance Using Visual Styles.

About C1.Win.C1Input

Clicking the About C1.Win.C1Input link displays the ComponentOne dialog box, which is helpful in finding
the information about the version number, licensing, and online resources of the control.

C1FontPicker Tasks Menu
In the C1FontPicker Tasks menu, you can quickly and easily set the VisualStyle property for the C1FontPicker
control.

To access the C1FontPicker Tasks menu, click on the smart tag () in the upper-right corner of the control. This will
open the C1FontPicker Tasks menu.

The C1FontPicker Tasks menu operates as follows:

VisualStyle

Clicking the drop-down arrow in the VisualStyle drop-down opens a list of different VisualStyle enumeration
options, such as System, Office2007Blue, Office2007Black, Office2007Silver, Custom, Office2010Blue,
Office2010Black, and Office2010Silver. The default value is Custom.

For more information on how to set the VisualStyle property, see Applying Visual Styles to C1FontPicker
and Customizing Appearance Using Visual Styles.

Input for WinForms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

About C1.Win.C1Input

Clicking the About C1.Win.C1Input link displays the ComponentOne dialog box, which is helpful in finding
the information about the version number, licensing, and online resources of the control.

Input for WinForms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using the C1Input Controls
The following sections describe various aspects of using the C1Input controls.

C1Input Controls
The current version of C1Input contains twelve controls:

C1Button

A standard button type control derived from the standard System.Windows.Forms.Button. The C1Button
control supports additional visual styles.

C1CheckBox

A window control used for setting or changing the value of an item as true, false, or indeterminate. The default
C1CheckBox control is a two-state checkbox, but can be a three-state checkbox when the ThreeState
property is enabled. The property CheckState determines the appearance of the checkbox state.

The following table describes the three check box states and how it visually affects each checkbox.

Checkbox
State Description

Indeterminate A dark shaded gray box appears in the
box when only a few of the checkbox
items are selected.

Checked A checkmark appears in the checkbox
item when the item is selected.

Unchecked An empty checkbox appears in the
checkbox when the item is not selected.

The following image displays each check box state for the C1CheckBox control: indeterminate, checked, and
unchecked.

C1ComboBox

A composite combobox control that allows users to view a drop-down list of options and select one or more
options from the list.

C1TextBox

The main data bound control used for entering and editing information of any data type in a text form.
Supports data formatting, edit mask, data validation and other features. C1TextBox also supports formatted
and masked editing of all data types, including special features for date-time formats. Apart from being the
main data editor control, C1TextBox also serves as the base class for specialized controls such as
C1NumericEdit and C1DateEdit. C1TextBox derives from the standard System.Windows.Forms.TextBox control.

C1DropDownControl

Input for WinForms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

A control derived from C1TextBox, C1DropDownControl supports all C1TextBox formatting, validation, and
other features. Like the other two C1TextBox-derived controls, it also supports UpDown (spin) and drop-down
buttons. However, unlike those specialized controls, C1DropDownControl allows you to attach your own logic
to the UpDown button and your own drop-down form/editor to the drop-down button.

C1DateEdit

A data bound control derived from C1TextBox specialized for editing date and time values. In addition to
C1TextBox functionality, C1DateEdit supports a drop-down calendar and an up/down (spin) button for
changing the value.

C1DbNavigator

A data bound control which provides buttons for convenient navigation over data source rows. It enables
movement to the first, last, previous and next row and common data actions such as updating the data source
and refreshing data.

C1Label

A read-only data bound control that displays formatted data. C1Label derives from the standard
System.Windows.Forms.Label control.

C1NumericEdit

A data bound control derived from C1TextBox specialized for editing numeric values. In addition to C1TextBox
functionality, C1NumericEdit supports a drop-down calculator and an up/down (spin) button that can be used
to increment/decrement the value.

C1PictureBox

A data bound control which shows picture images stored in a data source field, derives from
System.Windows.Forms.PictureBox.

C1RangeSlider

A control built on top of System.Windows.Forms.Control, C1RangeSlider enables numeric data selection over a
range. The range is defined by two thumbs- upper value thumb and lower value thumb, which move over a
Range Bar.

C1SplitButton

A composite button control supporting additional visual styles and drop down item list.

C1DbNavigator Control Overview
The C1DbNavigator class represents the C1DbNavigator control. It is a data bound control that provides buttons for
convenient navigation over data source rows. It enables movement to the first, last, previous and next row and
common data actions such as updating the data source and refreshing data.

The NavigatorButtonEnum gets the list of available buttons for the C1DbNavigator control which are the following:
Add, Apply, Cancel, Delete, Edit, First, Last, Next, Position, Previous, Refresh, and Update.

The Position value of the NavigatorButtonEnum is used in the BeforeAction event when the text in Position text box is
changed. For an example see, Changing the Navigation in the Navigator.

The C1DbNavigator control includes the following buttons that can be used to navigate and edit the records in a
dataset:

Input for WinForms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

Button Description

First button. Moves to the first row in the record. Visible by
default.

Previous button. Moves to the previous row in the record. Visible
by default.

Next button. Moves to the next row in the record. Visible by
default.

Last button. Moves to the last row in the record. Visible by
default.

Add button. Adds a row to the record. Not visible by default.

Delete button. Deletes the row in the record. Not visible by
default.

Edit button. Edits the row in the record. Not visible by default.

Apply button. Applies the changes made in the record. Not
visible by default.

Cancel button. Cancels the changes. Not visible by default.

Update button. Updates the record. Not visible by default.

Refresh button. Refreshes the record. Not visible by default.

C1DbNavigator Appearance
C1DbNavigator’s buttons, border, and user interface strings can easily be customized by using C1DbNavigator’s
properties.

C1DbNavigator’s Button Properties

The following table lists and describes the properties used to customize the buttons on the C1DbNavigator control:

Property Description

C1DbNavigator.ButtonSize The size of the navigator buttons.

C1DbNavigator.ButtonStyle Gets the navigator button style which can be
flat or standard.

C1DbNavigator.ButtonTextAlign Controls how the text is positioned relative to
the image in the navigator buttons.

C1DbNavigator.ButtonTexts Gets or sets the texts displayed on the
buttons.

C1DbNavigator.ButtonToolTips The string collection defining the navigator
button tooltips.

C1DbNavigator.ColorButtons Specifies if navigator buttons have color
bitmaps.

Input for WinForms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DbNavigator.ColorWhenHover If true, navigator buttons show color bitmaps
when the mouse hovers over them.

C1DbNavigator.VisibleButtons Specifies which buttons are visible.

C1DbNavigator’s User Interface Strings

The following table lists and describes the properties used to customize the user interface strings on the
C1DbNavigator:

UIString Description

Row: Represents the current selected row number in the record.

of {0} Represents the total amount of rows in the record.

(inactive) Represents the position textbox where the text is displayed.

(empty)

Confirmation Appears in the title of the dialog box that appears when you
click on the delete button to delete a row in the record.

Do you want to
delete the row?

Appears in the content area of the confirmation dialog box.

C1DbNavigator Position Textbox Property

You can use the Text property to get or set the text in the position textbox. If the Position textbox is not visible, it
returns empty string.

If you set the Text property when the Position textbox is not visible, the action has no effect.

Changing the Text property causes the data source position change.

C1DbNavigator Behavior
C1DbNavigator’s includes several events for controlling its behavior. For example, the C1DbNavigator’s behavior can
change when any of the buttons are pressed, if the current row or if the fields have been changed in the record, if
there is an exception thrown when clicking one of its buttons, or if the visual property style has changed.

The following table lists the C1DbNavigator events:

Event Description

Adding Occurs when the Add button is pressed.

BeforeAction Occurs when a button is clicked, before the action is executed.

ButtonClick Occurs when a navigator button has been pressed, after the button action is performed.

ButtonCursorChanged Event fired when the value of the ButtonCursor property is changed.

Deleting Occurs when the Delete button is pressed.

Editing Occurs when the Edit button is pressed.

Error Occurs when an exception is thrown performing an action on button click.

ItemChanged Occurs when the current row has been modified, some of its fields changed.

PositionChanged Occurs when the position has changed.

Input for WinForms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

RefreshData Occurs when Refresh button is pressed.

TextChanged Occurs when the C1.Win.C1Input.C1DbNavigator.Text property value changes.

UpdateData Occurs when Update button is pressed.

VisualStyleChanged Occurs when the VisualStyle property has changed.

C1ComboBox Control Overview
C1ComboBox is a composite control that is used for displaying a list of selectable items. It functions similar to the
ListBox control, but it takes up less space since the items can be hidden. Items can be added to the C1ComboBox
through the Items property or they could be bound to data via an arrary of strings or binding source. C1ComboBox
includes the following elements: Textbox, Button, and DropDownList. In the textbox you can type anything or you
can click the button to select an item from the DropDownList. For more information see C1ComboBox Elements. In its
default state the C1ComboBox control appears collapsed and only displays one item inside the textbox area. In its
expanded state the C1ComboBox control appears expanded and displays a dropdown listbox of selectable items.

The following image illustrates the C1ComboBox in its collapsed and expanded states:

In a typical combobox control, a dropdown button appears to the right and functions as a dropdownlist where you
can quickly choose from a list of options. However, in C1ComboBox you can add more functionality and create a
numeric up/down button to edit numeric values or you can add a modal button if you need to show a modal dialog in
your combobox. For more information see C1ComboBox Button Appearance.

C1ComboBox Elements
This section provides a visual and descriptive overview of the elements that comprise the C1ComboBox control.

The C1ComboBox control is made up of an editable text box and drop-down list.

Input for WinForms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1ComboBox Text Box

Users can enter text in the C1ComboBox textbox at runtime or you can assign strings to the Text property. If you
assign a value to the Text property, the current value in the textbox of the C1ComboBox will changes.

As text is entered into the C1ComboBox textbox, C1ComboBoxItems matching the characters will appear in the drop-
down list. For example, if you enter "Sm" in the text box for a C1ComboBox listing customer names, any customer
names starting with "Sm" appear in the drop-down list.

 C1ComboBox DropDown Button

The default C1ComboBox displays a dropdown style button, but you can choose whether or not to show the button
through the VisibleButtons property. In addition to the dropdown button you could also display the Updown button
or your own custom button. A modal button can be displayed next to the dropdown, updown, or custom button or
you can display it separately. For more information see C1ComboBox Button Appearance.

The size of the button can be modified using the ButtonWidth property.

Drop-down List of C1ComboBoxItems

The drop-down list is made up of C1ComboBoxItems and is only visible at run time. You can access the drop-down list
by clicking the trigger button, or drop-down arrow, next to the C1ComboBox text box.

Items can be added to the C1ComboBox at design time through the String Collection Editor. In the String Collection
Editor you can type the items line-by-line. Items could also be added dynamically during runtime through the Items
property. For an example see, Adding Items to C1ComboBox.

ComboBox Item Modes
You can use the ItemMode property to build item presentation.

There are three options which include the following:

Default

In the default option, each C1ComboBoxItem is a string and can also be an image.

The following image illustrates a C1ComboBox with the Default option:

Input for WinForms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

For an example see the ComboBoxImages sample.

HtmlPattern

In the HtmlPattern, each item is built from a HTML pattern and bound item data.

The following image illustrates a C1ComboBox with the HtmlPattern:

The HtmlPattern used above is set to the following: <table><tr><td>Country:</td><td>{Text}</td></tr>
<tr><td align="right">Flag:</td><td></td></tr></table>

For an example see the ComboBoxItemModes sample.

Html

In the Html option, each item is a fragment of a HTML subset.

The following image illustrates a C1ComboBox with the Html option:

Input for WinForms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Html used above is set to the following:

For an example see the ComboBoxItemModes sample.

C1ComboBox Styling
If you are not using one of the predefined themes you can set the C1ComboBox's VisualStyle property to Custom to
create your own style for the C1CombBox control.

C1ComboBox includes the following apppearance properties:

Property Description

DefaultItemForeColor Gets or sets the default text color for the
items in the C1ComboBox.

DropDownBackColor Gets or sets the background color for the
dropdown form in the C1ComboBox.

DropDownBorderColor Gets or sets the border color for the
dropdown form in the C1ComboBox.

HotItemBackColor Gets or sets the background color of the
combobox items when you mouse over
them.

HotItemBorderColor Gets or sets the border color for the
combobox items when mouse over the
border.

HotItemForeColor Gets or sets the forecolor for the
combobox items when you mouse over
them.

Padding Gets or sets the padding within the
dropdown form.

TextSpacing Gets or sets the textual parts of the
combobox items.

C1ComboBox Button Appearance
The default C1ComboBox appears with one dropdown button to the right of the textbox. You can determine the
button's visibility and what type of button to use through the C1ComboBox.VisibleButtons property.

The C1ComboBox.VisibleButtons property provides the following possible values:

Value Appearance or Description

None C1ComboBox appears with no dropdown button.

UpDown Gets or sets the background color for the dropdown
form in the C1ComboBox.

DropDown Displays the default image for the DropDown button.

Input for WinForms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

Modal Displays ther default image for the Modal button. It
appears to the right of the dropdown button if the
dropdown button is enabled too.

Custom Gets or sets the custom button for the C1ComboBox
control.

Once the button style is determined you can use the default button image for the selected button or you can create a
custom image for it. The following properties can be used to apply the custom image for each button style (Custom,
UpDown, DropDown, and Modal):

ButtonImages.CustomImage - Applies the image to the Custom button.
ButtonImages.DownImage - Applies the image to the Down button.
ButtonImages.DropImage - Applies the image to the DropDown button.
ButtonImages.ModalImage - Applies the image to the Modal buton.
ButtonImages.Up - Applies the image to the Up button.

ComboBox DataBinding
C1ComboBox can be bound to an Enum and an Array at runtime or it can be bound at design time through an array
or strings or bindingsource. Binding C1ComboBox to data gives you the ability to browse data in a database, enter
new data, or add existing data.

The C1ComboBoxFeatures sample shows how to use the following different methods for binding data to
C1CombBox:

How to bind C1ComboBox to an Enum at runtime
How to bind C1ComboBox to an Array at runtime
How to bind C1ComboBox to an Array at design time
How to bind C1ComboBox to a bindingsource

Adding Images to Items in the ComboBox
You can easily use the images from the ImageList to add images to each item in the dropdown list of a C1ComboBox
control.

To add images to C1ComboBoxItems at Design time, complete the following:

1. Add the C1ComboBox control to your form.
2. Add items to C1ComboBox.Items collection using the String Collection Editor.
3. Add the ImageList control to your form.
4. Add images to the imageList1.
5. Set keys (Name) of the images equal to the items in C1ComboBox.Items.

To add images to C1ComboBoxItems at Run time, add the following code:

To write code in Visual Basic

Visual Basic

c1ComboBox1.ItemsImageList = imageList
imageList.Images.Add("First item", Image.FromFile("First.png"))
c1ComboBox1.Items.Add("First item")

Input for WinForms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

c1ComboBox1.ItemsImageList = imageList;
imageList.Images.Add("First item", Image.FromFile("First.png"));
c1ComboBox1.Items.Add("First item");

Adding Items to C1ComboBox
You can easily add items to C1ComboBox programatically using the Add method or you can add them at design time
through the String Collection Editor. If you have more than one item, the Add method will add the new item(s) in
the next position. If you need to add an item or object at a specific position in the list you can use the Insert method.
An entire array can be added to the ComboBox by using the AddRange method to add the object or string of items
to the C1ComboBox.

To Add Items Programatically

To add items to the C1ComboBox using the Add method of the C1ComboBox class. The collection is referenced using
the Items property.

To write code in Visual Basic

Visual Basic

 c1ComboBox1.Items.Add("Pittsburgh")

To write code in C#

C#

 c1ComboBox1.Items.Add("Pittsburgh");

To Add Items Using the String Collection Editor

1. On the form, right-click on the C1ComboBox control and select Edit Items. The String Collection Editor
appears.

2. In the String Colllection Editor, enter the string and then press Enter to add the next string in position.

To Insert the String or Object at the Desired Position

The following example inserts the string, Chicago, in the fifth position:

To write code in Visual Basic

Visual Basic

c1ComboBox1.Items.Insert(4, "Chicago")

To write code in C#

C#

Input for WinForms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

c1ComboBox1.Items.Insert(4, "Chicago");

To Pass an Array through Strings

To pass an array through strings, complete the following:

1. Add the C1ComboBox control to the Form.
2. Add a Button control to the Form.
3. Create the following Button_Click event handler and add the following code to pass the array through strings

to the C1ComboBox:

To write code in Visual Basic

Visual Basic

Type your Drop Down Section text here.

C#

C#

 private void button1_Click(object sender, EventArgs e)
 {
 string[] items = { "FreeStyle Stroke", "Back Stroke", "ButterFly Stroke", "Breast Stroke"};
 c1ComboBox1.Items.AddRange(items);
 }

4. Run your project and click on the Button.
5. Click on the dropdown button on the C1ComboBox control and notice the string of items appear in the

dropdownlist:

Removing Items from C1ComboBox
All Items or specific items can easily be removed from the C1ComboBox programmatically or at design time through
the Strings Collection Editor.

Removing All Items Programatically

To programatically remove all items from C1ComboBox, complete the following:

To write code in Visual Basic

Visual Basic

c1ComboBox1.Items.Clear()

Input for WinForms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

c1ComboBox1.Items.Clear();

Removing an Item Programatically

To programatically remove an item use the Remove or RemoveAt methods. The Remove method removes the
specified item or selected item. The RemoveAt method removes the item with the specified index number.

The following code shows how to use the Remove and RemoveAt methods to remove specific items or remove
selected items:

To write code in Visual Basic

Visual Basic

' To remove item with index 0:
c1ComboBox1.Items.RemoveAt(0)
' To remove currently selected item:
c1ComboBox1.Items.Remove(ComboBox1.SelectedItem)
' To remove "Chicago" item:
c1ComboBox1.Items.Remove("Chicago")

To write code in C#

C#

// To remove item with index 0:
comboBox1.Items.RemoveAt(0);
// To remove currently selected item:
comboBox1.Items.Remove(comboBox1.SelectedItem);
// To remove "Chicago" item:
comboBox1.Items.Remove("Chicago");

Populating C1ComboBox with Data Using
SelectedItemChanged Event
To populate the C1ComboBox with data once a specific item in the combobox has been selected, use
the SelectedItemChanged event like the following:

1. Add two C1ComboBoxes on the Form.
2. Add the string, "Pittsburgh", to the first C1ComboBox using the String Collection Editor.
3. Double click on the SelectedItemChanged event in C1ComboBox Properties window to create an event

handler for the SelectedItemChanged event.
4. Add the following code to the SelectedIndexChanged event:

To write code in Visual Basic

Visual Basic

 Private Sub comboBox1_SelectedItemChanged(sender As Object, e As EventArgs)
 c1ComboBox2.Items.Clear()

Input for WinForms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

 If c1ComboBox1.SelectedItem.ToString() = "Pittsburgh" Then
 c1ComboBox2.Items.Add("Pittsburgh is known as the Steel City and the City of Bridges.")
 c1ComboBox2.Items.Add("Pittsburgh has 446 Bridges")
 Else

 c1ComboBox2.Items.Add("You did not select Pittsburgh.")
 End If
End Sub

To write code in C#

C#

 private void comboBox1_SelectedItemChanged(object sender, EventArgs e)
 {
 c1ComboBox2.Items.Clear();
 if (c1ComboBox1.SelectedItem.ToString() == "Pittsburgh")
 {
 c1ComboBox2.Items.Add("Pittsburgh is known as the Steel City and the City of Bridges.");
 c1ComboBox2.Items.Add("Pittsburgh has 446 Bridges");
 }
 else
 {
 c1ComboBox2.Items.Add("You did not select Pittsburgh.");

 }
 }

5. Run your project and select Pittsburgh in the first C1ComboBox.
6. Click on the dropdown button in the second C1ComboBox and notice the items were added to the

dropdownlist based on what you added in the SelectedItemChanged event.

Populating C1Combbox with Data Using the
SelectedIndexChanged Event
To populate the C1ComboBox with data once a specific index in the combobox has been selected, use
the SelectedIndexChanged event like the following:

1. Add two C1ComboBoxes on the Form.
2. In the first C1ComboBox add the items line by line in the String Collection Editor so it appears like the

Input for WinForms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

following:

3. Double click on the SelectedIndexChanged event in the C1ComboBox Properties window to create an event
handler for the SelectedIndexChanged event.

4. Add the following code to the SelectedIndexChanged event:

To write code in Visual Basic

Title Text

 Private Sub comboBox1_SelectedIndexChanged(sender As Object, e As EventArgs)
 c1ComboBox2.Items.Clear()
 If c1ComboBox1.SelectedIndex.ToString() = "1" Then

 c1ComboBox2.Items.Add("You selected the second item.")
 Else

 c1ComboBox2.Items.Add("You did not select the second item.")
 End If
End Sub

To write code in C#

C#

 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
 {
 c1ComboBox2.Items.Clear();
 if (c1ComboBox1.SelectedIndex.ToString() == "1")
 {
 c1ComboBox2.Items.Add("You selected the second item.");

 }
 else
 {
 c1ComboBox2.Items.Add("You did not select the second item.");

 }
 }

4. Run your project and select the first index or second item, "Orlando" in the first C1ComboBox.
5. Click on the dropdown button in the second C1ComboBox and notice the items were added to the

Input for WinForms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

dropdownlist based on what you added in the SelectedIndexChanged event.

C1RangeSlider Control Overview
C1RangeSlider is a simple control that enables you to select a range of numeric data with lower value thumb and
upper value thumb. These thumbs define start and end values of the range. When you drag the thumb towards the
left (or down) on Range Bar you reduce its value, and you increase the value when drag it towards the right (or up).
The control has minimum and maximum bounds for thumb values. Thumb value cannot be less than the minimum
bound and more than the maximum bound. Moreover, lower value cannot be greater than the upper value, and
otherwise.

The control can be oriented horizontally or vertically.

C1RangeSlider Elements
When you add C1Range Slider control to your form it exists as a completely functional slider control, with two thumbs
to set range values and a range bar on which the thumbs move.

C1RangeSlider Features
This section describes key features of C1RangeSlider control.

Maximum and Minimum Values
The Maximum and Minimum properties enable you to set upper and lower allowable bounds for range
in C1RangeSlider control. Lower value thumb cannot be set to a value less than the Minimum, and Upper Value thumb
cannot be set to a value greater than the Maximum.

By default Minimum is set to 0 and Maximum is set to 100.

Set the Minimum and Maximum values using Minimum and Maximum properties from Properties pane of the

Input for WinForms 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

control, or through code:

To write code in Visual Basic

Visual Basic

Me.c1RangeSlider1.Minimum = 10
Me.c1RangeSlider1.Maximum = 100

To write code in C#

C#

this.c1RangeSlider1.Minimum = 10;
this.c1RangeSlider1.Maximum = 100;

Orientation
C1RangeSlider control can be displayed Horizontally or Vertically, using Orientation property. By default, the control
is oriented horizontally.

You can easily change the orientation through Orientation property in Properties pane, or through code:

To write code in Visual Basic

Visual Basic

Me.c1RangeSlider1.Orientation = Orientation.Vertical

To write code in C#

C#

this.c1RangeSlider1.Orientation = Orientation.Vertical;

Thumb Values and Range

Input for WinForms 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

Range in C1RangeSlider control is the difference between UpperValue and LowerValue properties. These two values
are linked with movable thumbs which are used to set the numeric range on the control.

Setting the Thumb Values

Thumb values can be set using UpperValue and LowerValue properties in properties pane or through code.

By default, the UpperValue property is set to 100, and LowerValue property is set to 0.

To write code in Visual Basic

Visual Basic

Me.c1RangeSlider1.LowerValue = 24
Me.c1RangeSlider1.UpperValue = 88

To write code in C#

C#

this.c1RangeSlider1.LowerValue = 24;
this.c1RangeSlider1.UpperValue = 88;

C1RangeSlider Appearance
You can customize the appearance of C1RangeSlider control by adjusting background image, thumb style and range
bar style.

Background Image
Complete the following steps to set background image to C1RangeSlider control:

1. In Solution Explorer, right-click the project name and select Add > New Folder.
2. Rename the folder Resources.
3. Add the desired image to the Resources folder of your local project.
4. In Solution Explorer, click the Show All Files() button.
5. Right-click the image kept in Resources folder and select Include In Project.
6. Right-click C1RangeSlider control and select Properties.
7. In the Properties pane expand the Appearance node.
8. Click the ellipsis() button next to BackgroundImage property. Select Resources dialog box appears.
9. Click the Import button and browse to Resources folder in your project.

10. Select the image and click OK to save and close the Select Resource dialog box.

Input for WinForms 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

Setting the Background Image Layout

1. In Properties pane, click the dropdown corresponding to BackgroundImageLayout property.
2. Select the appropriate layout for the background image of your C1RangeSlider control.

Bar Style
You can manage the appearance of C1RangeSlider control through various Bar Style options.

BackColor

Back color of C1RangeSlider bar can be changed at design time or through code.

To change the back color in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select BackColor property from BarStyle collection.
4. In the drop-down menu corresponding to BackColor property, select Lavender.

Input for WinForms 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

To change the back color at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.BarStyle.BackColor = System.Drawing.Color.Lavender

To write code in C#

C#

this.c1RangeSlider1.Styles.BarStyle.BackColor = System.Drawing.Color.Lavender;

BorderColor

To change the border color in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select BorderColor property from BarStyle collection.
4. In the drop-down menu corresponding to BorderColor property, select MediumBlue.

Input for WinForms 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

To change the border color at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.BarStyle.BorderColor = System.Drawing.Color.MediumBlue

To write code in C#

C#

this.c1RangeSlider1.Styles.BarStyle.BorderColor = System.Drawing.Color.MediumBlue;

Run your project and observe the customizations. Following image shows the changed back color and border color of
range bar in C1RangeSlider control:

DisabledBackColor

DisabledBackColor property enables you to set the background color of range bar, which will be visible when the
C1RangeSlider control is disabled.

To change the DisabledBackColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select DisabledBackColor property from BarStyle collection.
4. In the drop-down menu corresponding to DisabledBackColor property, select ScrollBar.

Input for WinForms 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

To change the DisabledBackColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.BarStyle.DisabledBackColor =
System.Drawing.SystemColors.ScrollBar

To write code in C#

C#

this.c1RangeSlider1.Styles.BarStyle.DisabledBackColor =
System.Drawing.SystemColors.ScrollBar;

DisabledBorderColor

DisabledBorderColor property enables you to set the border color of range bar, which will be visible when the
C1RangeSlider control is disabled.

To change the DisabledBorderColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select DisabledBorderColor property from BarStyle collection.
4. In the drop-down menu corresponding to DisabledBorderColor property, select Red.

Input for WinForms 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

To change the DisabledBorderColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.BarStyle.DisabledBorderColor = System.Drawing.Color.Red

To write code in C#

C#

this.c1RangeSlider1.Styles.BarStyle.DisabledBorderColor = System.Drawing.Color.Red;

Set the Enabled property to False, and run the project. Following image shows disabled back color and disabled
border color of range bar in the C1RangeSlider control:

Thumb Style
You can manage the appearance of C1RangeSlider control through various Thumb Style options.

Back Color

Back color of C1RangeSlider thumbs can be changed at design time or through code

To change the back color in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select BackColor property from ThumbStyle collection.

Input for WinForms 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. In the drop-down menu corresponding to BackColor property, select Tan.

To change the Back Color at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.BackColor = System.Drawing.Color.Tan

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.BackColor = System.Drawing.Color.Tan;

Border Color

Border color of C1RangeSlider thumbs can be changed at design time or through code

To change the back color in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select BorderColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to BorderColor property, select ActiveCaptionText.

To change the Border Color at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.BorderColor =
System.Drawing.SystemColors.ActiveCaptionText

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.BorderColor =
System.Drawing.SystemColors.ActiveCaptionText;

Corner Radius

CorneRadius property enables you to customise the appearance of thumbs of C1RangeSlider control. Thumbs with
CornerRadius set to 0 will be rectangular. To add curvature to the thumbs, you can increase their corner radius.

Corner Radius of C1RangeSlider thumbs can be changed at design time or through code

To change CornerRadius of thumbs in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select CornerRadius property from ThumbStyle collection.
4. Set CornerRadius to 4.

To change the Corner Radius at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Input for WinForms 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.CornerRadius = 4

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.CornerRadius = 4;

The following image shows customised thumb styles of C1RangeSlider control with corner radius 4.

Disabled Back Color

DisabledBackColor property enables you to set the background color of thumb, which will be visible when the
C1RangeSlider control is disabled.

DisabledBackColor of C1RangeSlider thumbs can be changed at design time or through code

To change the DisabledBackColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select DisabledBackColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to DisabledBackColor property, select InactiveCaption.

To change the DisabledBackColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.DisabledBackColor =
System.Drawing.SystemColors.InactiveCaption

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.DisabledBackColor =
System.Drawing.SystemColors.InactiveCaption;

Disabled Border Color

DisabledBorderColor property enables you to set the border color of thumbs, which will be visible when the
C1RangeSlider control is disabled.

DisabledBorderColor of C1RangeSlider thumbs can be changed at design time or through code.

To change the DisabledBorderColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select DisabledBorderColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to DisabledBorderColor property, select WindowFrame.

Input for WinForms 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

To change the DisabledBorderColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.DisabledBorderColor =
System.Drawing.SystemColors.WindowFrame

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.DisabledBorderColor =
System.Drawing.SystemColors.WindowFrame;

The following image shows customised thumb styles in disabled C1RangeSlider control.

Hovered Back Color

HoveredBackColor property enables you to set the back color of thumbs, which will be visible when mouse is over it.

HoveredBackColor of C1RangeSlider thumbs can be changed at design time or through code

To change the HoveredBackColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select HoveredBackColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to HoveredBackColor property, select ActiveCaption.

To change the HoveredBackColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.HoveredBackColor =
System.Drawing.SystemColors.ActiveCaption

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.HoveredBackColor =
System.Drawing.SystemColors.ActiveCaption;

Hovered Border Color

HoveredBorderColor property enables you to set the border color of thumbs, which will be visible when mouse is
over it.

HoveredBackColor of C1RangeSlider thumbs can be changed at design time or through code

To change the HoveredBorderColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.

Input for WinForms 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. In Properties pane expand the Styles node.
3. Select HoveredBorderColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to HoveredBorderColor property, select Blue.

To change the HoveredBorderColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.HoveredBorderColor = System.Drawing.Color.Blue

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.HoveredBorderColor = System.Drawing.Color.Blue;

The following image shows customised thumb styles of C1RangeSlider control on mouse over.

Pressed Back Color

PressedBackColor property enables you to set the back color of thumbs, which will be visible when mouse-click is
performed over it.

PressedBackColor of C1RangeSlider thumbs can be changed at design time or through code

To change the PressedBackColor in design time complete the following:

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select PressedBackColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to PressedBackColor property, select Gold.

To change the PressedBackColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.PressedBackColor = System.Drawing.Color.Gold

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.PressedBackColor = System.Drawing.Color.Gold;

Pressed Border Color

PressedBorderColor property enables you to set the border color of thumbs, which will be visible when mouse-
click is performed over it.

PressedBorderColor of C1RangeSlider thumbs can be changed at design time or through code

To change the PressedBorderColor in design time complete the following:

Input for WinForms 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Right-click the C1RangeSlider control and select Properties option.
2. In Properties pane expand the Styles node.
3. Select PressedBorderColor property from ThumbStyle collection.
4. In the drop-down menu corresponding to PressedBorderColor property, select Orange.

To change the PressedBorderColor at run-time, add the following code in FormLoad event:

To write code in Visual Basic

Visual Basic

Me.C1RangeSlider1.Styles.ThumbStyle.PressedBorderColor = System.Drawing.Color.Orange

To write code in C#

C#

this.c1RangeSlider1.Styles.ThumbStyle.PressedBorderColor =
System.Drawing.Color.Orange;

The following image shows customised thumb styles of C1RangeSlider control when mouse-click is performed.

C1ColorPicker Control Overview
C1ColorPicker control is a color input editor that provides an interactive color selection interface. Users can select
basic colors and can define custom colors from various options available in the C1ColorPicker to create a polished
and professional looking application. C1ColorPicker also supports additional visual styles and themes that help
users in further customizing their applications.

C1ColorPicker Elements
The C1ColorPicker control exists as a complete color selection control that you can customize further. When you click
the drop-down button available on the C1ColorPicker, the control's interface looks similar to the following image:

Input for WinForms 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

The ellipses on the right of drop-down button let you select the basic colors that available in the color picker.

You can also define custom colors by clicking the Default Custom Colors button, creating a custom color from the
color palette, and then adding the defined color to custom colors.

Input for WinForms 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with C1ColorPicker
This topic illustrates how to use C1ColorPicker in Windows Forms applications. The steps to set up Visual Studio
project and customize the application during runtime are as follows:

1. Create a Windows Forms project and add C1ColorPicker control to the Form.
2. Add a RichTextBox control to the Form. Set the Text property of the RichTextBox to TextColor. The Form

appears like the image shown below:

3. Set the Color property of the C1ColorPicker control to a desired color from the palette. This enables the user to
set a particular color as the current color instead of the default Transparent.

4. Add the following code to the C1ColorPicker1_ValueChanged event handler to change the color of the text
on color selection:
VB

Private Sub C1ColorPicker1_ValueChanged(sender As Object, e As EventArgs)

copyCode

Input for WinForms 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

Handles C1ColorPicker1.ValueChanged
 RichTextBox1.SelectionColor = DirectCast(DirectCast(sender,
C1ColorPicker).Value, Color)
End Sub

C#

private void c1ColorPicker1_ValueChanged(object sender, EventArgs e)
{
 richTextBox1.SelectionColor = (Color)c1ColorPicker1.Value;
}

5. Run the application. Now you can select the color from the drop-down of the C1ColorPicker and set the color
of the text in the RichTextBox control. The following image shows the output where the text is set as red.

copyCode

Applying Visual Styles to C1ColorPicker
Visual styles can be applied to the C1ColorPicker control using VisualStyle property. The smart tag on the top right
corner of C1ColorPicker control lets users select the visual style they want to apply on the color picker.

To Change the Visual Style using the Smart Tag
Complete the following steps:

1. Select the C1ColorPicker control.
2. Click the smart tag () to open the C1ColorPicker Tasks menu.
3. Click the visual style drop-down arrow and select a visual style to apply on the C1ColorPicker control.

To Change the Visual Style through Code
The code snippets refer the color picker application created in Working with C1ColorPicker.

1. Add the ComboBox control to the form.
2. Add the following line of code to the application to get the visual styles in the ComboBox:

VB

InitializeComponent()
ComboBox1.DataSource = [Enum].GetValues(GetType(VisualStyle))

C#

Input for WinForms 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

InitializeComponent();
comboBox1.DataSource = Enum.GetValues(typeof(VisualStyle));

3. Add code to the comboBox1_SelectedIndexChanged event handler so that the visual style of C1ColorPicker
is updated on selecting an option from the combo box listing the available visual styles:
VB

Private Sub ComboBox1_SelectedIndexChanged(sender As Object, e As EventArgs)
Handles ComboBox1.SelectedIndexChanged
 C1ColorPicker1.VisualStyle = DirectCast(ComboBox1.SelectedItem, VisualStyle)
End Sub

C#

private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)
{
 c1ColorPicker1.VisualStyle = (VisualStyle)comboBox1.SelectedItem;

}

4. Run the application.
Now you can select the visual style from the drop down of the combo box and set the visual style of the
C1ColorPicker. The following image shows the output:

copyCode

copyCode

C1FontPicker Control Overview
C1FontPicker control is a font selection control that lets users select the desired font from a drop-down list. Users can
select out of a list of more than 250 fonts available in the C1FontPicker. The C1FontPicker also supports additional
visual styles and themes to choose from so that the users can further customize their applications.

C1FontPicker Elements
C1FontPicker control is a font selection control and when you click the drop-down button on C1FontPicker, the
control's interface looks similar to the following image:

Input for WinForms 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can browse through the list to see the available fonts .

Working with C1FontPicker
This topic illustrates how to use C1FontPicker for Windows Forms applications. The steps to set up Visual Studio
project and customize the application during runtime are as follows:

1. Create a Windows Forms project and add C1FontPicker control to the Form.
2. Add RichTextBox control to the Form. Set the Text property of the RichTextBox to TextFontStyle. The Form

appears like the image shown below:

Input for WinForms 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Add the following code to the C1FontPicker1_ValueChanged event handler to change the font of the text on
font selection:
VB

Private Sub C1FontPicker1_ValueChanged(sender As Object, e As EventArgs) Handles
C1FontPicker1.ValueChanged
 RichTextBox1.SelectionFont = New Font(DirectCast(sender,
C1FontPicker).Value.ToString(), RichTextBox1.SelectionFont.Size,
RichTextBox1.SelectionFont.Style)
End Sub

C#

private void c1FontPicker1_ValueChanged(object sender, EventArgs e)
{
 richTextBox1.SelectionFont = new
Font(((C1FontPicker)sender).Value.ToString(), richTextBox1.SelectionFont.Size,
richTextBox1.SelectionFont.Style);
}

4. Run the application. Now you can select the font from C1FontPicker drop-down. The following image shows
the output:

copyCode

copyCode

Applying Visual Styles to C1Font Picker
The smart tag on the top right corner of the C1FontPicker control lets users select the visual style of the
C1FontPicker.

To Change the Visual Style using the Smart Tag
Complete the following steps:

1. Select the C1FontPicker control.
2. Click the smart tag () to open the C1FontPicker Tasks menu.
3. Click the visual style drop-down arrow and select a visual style to apply on the C1FontPicker control.

Input for WinForms 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

To Change the Visual Style through Code
The code snippets refer the font picker application created in Working with C1FontPicker.

1. Add the ComboBox control to the form.
2. Add the following line of code to the application to get the visual styles in the ComboBox:

VB

InitializeComponent()
ComboBox2.DataSource = [Enum].GetValues(GetType(VisualStyle))

C#

InitializeComponent();
comboBox2.DataSource = Enum.GetValues(typeof(VisualStyle));

3. Add code to the comboBox1_SelectedIndexChanged event handler so that the visual style of C1FontPicker is
updated on selecting an option from the combo box listing visual styles available:
VB

Private Sub ComboBox2_SelectedIndexChanged(sender As Object, e As EventArgs)
Handles ComboBox2.SelectedIndexChanged
 C1FontPicker1.VisualStyle = DirectCast(ComboBox2.SelectedItem, VisualStyle)
End Sub

C#

private void comboBox2_SelectedIndexChanged(object sender, EventArgs e)
{
 c1FontPicker1.VisualStyle = (VisualStyle)comboBox2.SelectedItem;
}

4. Run the application. Now you can select the visual style from the drop down of the combo box and set the
visual style of the C1FontPicker. The following image shows the output:

copyCode

copyCode

Data Binding
C1Input controls can function both in unbound and in bound mode. In bound mode, a control’s Value is bound to a

Input for WinForms 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

data source field.

C1Input controls support data binding to all .NET data sources. This includes ADO.NET data source objects such as
DataTable, DataView and DataSet, and also DataObjects components such as C1ExpressTable, C1ExpressView,
C1ExpressConnection, C1DataView, C1DataTableSource and C1DataSet.

For details about creating ADO.NET data source objects, please refer to the .NET Framework documentation.

For details about using DataObjects, see the C1DataObjects documentation included in the ComponentOne Studio
Enterprise. DataObjects is a data framework, a part of ComponentOne Studio Enterprise, enhancing ADO.NET in many
ways.

To bind a C1Input control to a date source field:

To bind a C1Input control to a data source field:

1. Assign the data source object to the control's DataSource property
2. Then assign a field of the data source object to the control’s DataField property.

You can set the DataSource and DataField properties in code as well as in the designer. At design time, you can
select the data source object and its field from the lists of available data sources and their fields provided by
the DataSource/DataField property combo boxes.

3. Set the DataType property.

After you bind the control to a data field, the DataType property is automatically set to the data type of the
field it is bound to. In most cases, this setting is what you need. However, sometimes you need different types
for the control and the field. For example, you might have a string field containing dates. In such cases, you can
set the DataType property after binding and use the BindingFormatting/BindingParsing events to convert data
to/from the control’s DataType when it is written from/saved to the data source.

The DataSource/DataField properties are used to bind the Value property of the control to a data source field. The
Value property is the main property of a C1Input control. It holds and returns a value with of a specific data type. In
addition, you have the freedom to bind other properties of the control to other data sources and fields, as in any
other WinForms control, using the DataBindings property. This functionality is not C1Input-specific; it is supported by
the .NET Framework for all controls.

Caution: Do not use properties other than the Value property under DataBindings to bind the control’s value
to a field, use the DataSource and DataField properties instead (or use Value in DataBindings). For example,
although it is possible to bind the Text property to a field, the result will not be the same as binding the Value
property.

Value and Text: Displaying, Validating, and Updating Values
The Value property is the main property of a C1Input control and is responsible for returning and accepting a value
with a specific DataType.

When the control is not in EditMode, the Text shown by the control will display its current Value (except when
TextDetached property is set to True) in a properly formatted form, see Formatting Data for details.

If the control is not read-only, it automatically switches to EditMode when it receives input focus, provided that
TextDetached property is set to False. Input focus refers to when the input window of the control receives focus. In
edit mode, the control’s text is edited by the user while the Value remains unchanged until the editing ends. When the
user attempts to leave the control, (for instance, move the input focus elsewhere), the Value property is updated with
the Text entered by the user.

The process of updating the Value involves the following three main actions:

Parsing

Input for WinForms 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/system.windows.forms.control.databindings(vs.80).aspx

Since the Value property is typed (according to the control’s current DataType), the process starts from the
action of parsing the Text string, and converting it to the correct DataType. If necessary, the entered text can be
validated at this point using string-based validation techniques such as pattern matching and regular
expressions, see Validating Data for details.

Validation

Once a typed value is obtained, it passes the PostValidation check, where it can be matched against a list of
predefined values, maximum and minimum values and intervals, or validated programmatically in the
PostValidating event. After validation, the new value is assigned to the Value property, and then the Value
property is updated to the data source.

Updating

Updating the Value normally occurs when the user tries to move the input focus out of the control or makes a
mouse click outside of the control. However, it can also be triggered programmatically, by calling the
UpdateValueWithCurrentText method at any time.

Setting the TextDetached property to True (it is False by default) forces the control into a special mode. If
TextDetached property is set to True, the link between Value and Text is disabled, changing Value does not update
Text, and changing Text does not update Value even when the control loses input focus. The Text property becomes
independent of the Value property. This mode is useful when you want full programmatic control over updating the
Text and Value.

Formatting Data
C1Input controls support a rich formatting model which enables developers to customize the appearance of a
control’s text in almost any way imaginable. The main function of formatting is to display a string Text representation
of a typed or stored Value.

Formatting is controlled by the FormatType property, see Format Types for details. Its enumerated values define data
will be formatted in the control. Some of the options correspond to .NET standard format specifiers for numeric and
date-time types, for example, StandardNumber and LongDate, see Formatting Types in the .NET Framework
documentation.

One FormatType option, CustomFormat, corresponds to the case of a custom format specifier as defined in the .NET
Framework documentation, the specifier itself is determined by the CustomFormat property. For example,
CustomFormat property is set to "##,###.###" produces numbers with at most five digits before and three digits after
decimal point. See Custom Format Specifiers for details.

There is also a special FormatType option, UseEvent, which delegates the formatting to the Formatting event.

The ability to represent NULL values (System.DBNull) is controlled by the NullText and EmptyAsNull properties.

Sometimes you may find it useful to trim leading and/or trailing spaces when showing the formatted value. You can
use the TrimStart and TrimEnd properties for that.

It is possible to specify two different formats, one for display (when the control is read-only or is not in the edit
mode), and another for edit mode, see Value and Text: Displaying, Validating, and Updating Values to find more
information about edit mode.

These two formatting modes are governed by the DisplayFormat and EditFormat properties. By default, both of them
inherit from the control’s properties. To assign specific FormatType, CustomFormat or other formatting property (see
FormatInfo class) for a specific mode, expand the DisplayFormat or EditFormat nodes, and change the (Inherit) flags
and set the desired sub-property.

Format Types

Input for WinForms 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/fbxft59x(vs.80).aspx

By default (FormatType property is set to DefaultFormat), the Text is obtained by applying the standard ToString()
method of the current DataType to the typed Value (more exactly, if the type has a type converter,
TypeConverter.ToString() is used). This conversion (as all others) uses the regional settings provided by the CultureInfo
property.

Formatting is controlled by the FormatType property. Its enumerated values define the method of formatting values.
Some of the options correspond to standard format specifiers for numeric and date-time types, for example, the
StandardNumber and LongDate formats, for more information see Formatting Types in the .NET Framework
documentation. One option, CustomFormat, corresponds to the case of a custom format specifier as defined in the
.NET Framework documentation, the specifier itself is determined by the CustomFormat property. There is also an
option delegating formatting to code in an event. The following table describes the list of available options:

Formatting Option Description

DefaultFormat Conversion using TypeConverter.ConvertToString().

UseEvent Conversion performed by user code in the Formatting (or Parsing) event.

CustomFormat Formatting uses the string assigned to the CustomFormat property. Parsing uses NumberStyle,
DateTimeStyle, and CustomFormat properties.

GeneralNumber The number is converted to the most compact decimal form, using fixed point or scientific
notation.

Currency The number is converted to a string that represents a currency amount.

FixedPoint The number is converted to a string of the form "-ddd.ddd…" where each 'd' indicates a digit
(0-9). The string starts with a minus sign if the number is negative. The numeric precision is
given by the property NumberFormatInfo.NumberDecimalDigits of the specified culture.

StandardNumber The number is converted to a string of the form "-d,ddd,ddd.ddd…", where each 'd' indicates a
digit (0-9). The string starts with a minus sign if the number is negative. Thousand separators
are inserted between each group of three digits to the left of the decimal point. The numeric
precision is given by the property NumberFormatInfo.NumberDecimalDigits of the specified
culture.

Percent The number is converted to a string that represents a percent as defined by the
NumberFormatInfo.PercentNegativePattern property or the
NumberFormatInfo.PercentPositivePattern property. If the number is negative, the string
produced is defined by the PercentNegativePattern and starts with a minus sign. The
converted number is multiplied by 100 in order to be presented as a percentage. The default
numeric precision given by NumberFormatInfo is used.

Scientific The number is converted to a string of the form "-d.ddd…E+ddd" or "-d.ddd…e+ddd", where
each 'd' indicates a digit (0-9). The string starts with a minus sign if the number is negative.
One digit always precedes the decimal point. The exponent always consists of a plus or minus
sign and a minimum of three digits. The exponent is padded with zeros to meet this minimum,
if required.

RoundTrip The round-trip specifier guarantees that a numeric value converted to a string will be parsed
back into the same numeric value. This format is supported by floating-point types only.

Integer Displays number as a string that contains the value of the number in Decimal (base 10) format.
This format is supported for integral types only.

Hexadecimal The number is converted to a string of hexadecimal digits. This format is supported for
integral types only.

YesNo Converts to Boolean and shows No for False, Yes for True.

Input for WinForms 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/fbxft59x(vs.80).aspx

TrueFalse Converts to Boolean and shows True or False.

OnOff Converts to Boolean and shows Off for False, On for True.

GeneralDate General date/time pattern (short time).

LongDate Displays a date according to specified CultureInfo's long date format.

MediumDate Displays a date using the medium date format ("dd-MMM-yy").

ShortDate Displays a date using specified CultureInfo's short date format.

LongTime Displays a time using your locale's long time format; includes hours, minutes, seconds.

MediumTime Displays time in 12-hour format using hours and minutes and the AM/PM designator ("hh:mm
tt").

ShortTime Displays a time using the 24-hour format, for example, 17:45.

LongDateShortTime Displays the long date and short time according to specified CultureInfo's format.

LongDateLongTime Displays the long date and long time according to specified CultureInfo's format.

ShortDateShortTime Displays the short date and short time according to specified CultureInfo's format.

ShortDateLongTime Displays the short date and long time according to specified CultureInfo's format.

MonthAndDay Displays the month and the day of a date.

DateAndTimeGMT Formats the date and time as Greenwich Mean Time (GMT).

DateTimeSortable Formats the date and time as a sortable index.

GMTSortable Formats the date and time as a GMT sortable index.

LongDateTimeGMT Formats the date and time with the long date and long time as GMT.

YearAndMonth Formats the date as the year and month.

Custom Format Specifiers
Setting FormatType to CustomFormat corresponds to the case of a custom format specifier as defined in the .NET
Framework documentation, the specifier itself is determined by the CustomFormat property. In the CustomFormat
string you define the format desired using special characters for numeric and date-time types as presented in the
following tables. For details, see Custom Numeric Format Strings and Date and Time Format Strings in the .NET
Framework documentation.

Numeric Custom Format Specifiers
The following table describes the custom numeric format specifiers:

Format
Specifier Name Description

0 Zero
placeholder

If the value being formatted has a digit in the
position where the '0' appears in the format
string, then that digit is copied to the output
string. The position of the leftmost '0' before
the decimal point and the rightmost '0' after

Input for WinForms 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/0c899ak8(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz(VS.80).aspx

the decimal point determines the range of
digits that are always present in the output
string.

Digit
placeholder

If the value being formatted has a digit in the
position where the '#' appears in the format
string, then that digit is copied to the output
string. Otherwise, nothing is stored in that
position in the output string. Note that this
specifier never displays the '0' character if it is
not a significant digit, even if '0' is the only
digit in the string. It will display the '0'
character if it is a significant digit in the
number being displayed.

. Decimal
point

The first '.' character in the format string
determines the location of the decimal
separator in the formatted value; any
additional '.' characters are ignored. The actual
character used as the decimal separator is
determined by the NumberDecimalSeparator
property of the NumberFormatInfo object that
controls formatting.

, Thousand
separator
and
number
scaling

The ',' character serves two purposes. First, if
the format string contains a ',' character
between two digit placeholders (0 or #) and to
the left of the decimal point if one is present,
then the output will have thousand separators
inserted between each group of three digits
to the left of the decimal separator. The actual
character used as the decimal separator in the
output string is determined by the
NumberGroupSeparator property of the
current NumberFormatInfo object that
controls formatting. Second, if the format
string contains one or more ',' characters
immediately to the left of the decimal point,
then the number will be divided by the
number of ',' characters multiplied by 1000
before it is formatted. For example, the format
string '0,,' will represent 100 million as simply
100. Use of the ',' character to indicate scaling
does not include thousand separators in the
formatted number. Thus, to scale a number by
1 million and insert thousand separators you
would use the format string '#,##0,,'.

% Percentage
placeholder

The presence of a '%' character in a format
string causes a number to be multiplied by
100 before it is formatted. The appropriate
symbol is inserted in the number itself at the
location where the '%' appears in the format

Input for WinForms 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

string. The percent character used is
dependent on the current NumberFormatInfo
class.

E0 E+0 E-
0 e0 e+0
e-0

Scientific
notation

If any of the strings 'E', 'E+', 'E-', 'e', 'e+', or 'e-'
are present in the format string and are
followed immediately by at least one '0'
character, then the number is formatted using
scientific notation with an 'E' or 'e' inserted
between the number and the exponent. The
number of '0' characters following the
scientific notation indicator determines the
minimum number of digits to output for the
exponent. The 'E+' and 'e+' formats indicate
that a sign character (plus or minus) should
always precede the exponent. The 'E', 'E-', 'e',
or 'e-' formats indicate that a sign character
should only precede negative exponents.

'ABC'
"ABC"

Literal
string

Characters enclosed in single or double
quotes are copied to the output string
literally, and do not affect formatting.

; Section
separator

The ';' character is used to separate sections
for positive, negative, and zero numbers in the
format string.

True|False Boolean
format

String representation for two Boolean values,
True and False separated with ‘|’, Strings
"True" and "False" can be replaced with any
other strings representing the two Boolean
values.

Other All other
characters

All other characters are copied to the output
string as literals in the position they appear.

Examples
The following table displays examples using the custom numeric format specifiers:

CustomFormat Value Output

123 123

00000 123 00123

(###) ### - #### 1234567890 (123) 456 – 7890

#.## 1.2 1.2

0.00 1.2 1.20

00.00 1.2 01.20

#,# 1234567890 1,234,567,890

#,, 1234567890 1235

Input for WinForms 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

#,,, 1234567890 1

#,##0,, 1234567890 1,235

#0.##% 0.086 8.6%

0.###E+0 86000 8.6E+4

0.###E+000 86000 8.6E+004

0.###E-000 86000 8.6E004

[##-##-##] 123456 [12-34-56]

##;(##) 1234 1234

##;(##) -1234 (1234)

Date-Time Custom Format Specifiers
The following table describes the custom date-time format specifiers:

Format
Specifier Description

d Displays the current day of the month, measured as a number
between 1 and 31, inclusive. If the day is a single digit only (1-
9), then it is displayed as a single digit. Note that if the 'd'
format specifier is used alone, without other custom format
strings, it is interpreted as the standard short date pattern
format specifier. If the 'd' format specifier is passed with other
custom format specifiers, it is interpreted as a custom format
specifier.

dd Displays the current day of the month, measured as a number
between 1 and 31, inclusive. If the day is a single digit only (1-
9), it is formatted with a preceding 0 (01-09).

ddd Displays the abbreviated name of the day for the specified
DateTime object. If a specific valid format provider (a non-null
object that implements IFormatProvider with the expected
property) is not supplied, then the AbbreviatedDayNames
property of the DateTimeFormat object and its current culture
associated with the current thread is used. Otherwise, the
AbbreviatedDayNames property from the specified format
provider is used.

dddd (plus
any
number of
additional
"d"
characters)

Displays the full name of the day for the specified DateTime
object. If a specific valid format provider (a non-null object
that implements IFormatProvider with the expected property)
is not supplied, then the DayNames property of the
DateTimeFormat object and its current culture associated with
the current thread is used. Otherwise, the DayNames property
from the specified format provider is used.

f Displays seconds fractions represented in one digit. Note that
if the 'f' format specifier is used alone, without other custom

Input for WinForms 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

format strings, it is interpreted as the full (long date + short
time) format specifier. If the 'f' format specifier is passed with
other custom format specifiers, it is interpreted as a custom
format specifier.

ff Displays seconds fractions represented in two digits.

fff Displays seconds fractions represented in three digits.

ffff Displays seconds fractions represented in four digits.

fffff Displays seconds fractions represented in five digits.

ffffff Displays seconds fractions represented in six digits.

fffffff Displays seconds fractions represented in seven digits.

g or gg
(plus any
number of
additional
"g"
characters)

Displays the era (A.D. for example) for the specified DateTime
object. If a specific valid format provider (a non-null object
that implements IFormatProvider with the expected property)
is not supplied, then the era is determined from the calendar
associated with the DateTimeFormat object and its current
culture associated with the current thread. Note that if the 'g'
format specifier is used alone, without other custom format
strings, it is interpreted as the standard general format
specifier. If the 'g' format specifier is passed with other custom
format specifiers, it is interpreted as a custom format specifier.

h Displays the hour for the specified DateTime object in the
range 1-12. The hour represents whole hours passed since
either midnight (displayed as 12) or noon (also displayed as
12). If this format is used alone, then the same hour before or
after noon is indistinguishable. If the hour is a single digit (1-
9), it is displayed as a single digit. No rounding occurs when
displaying the hour. For example, a DateTime of 5:43 returns 5.

hh, hh
(plus any
number of
additional
"h"
characters)

Displays the hour for the specified DateTime object in the
range 1-12. The hour represents whole hours passed since
either midnight (displayed as 12) or noon (also displayed as
12). If this format is used alone, then the same hour before or
after noon is indistinguishable. If the hour is a single digit (1-
9), it is formatted with a preceding 0 (01-09).

H Displays the hour for the specified DateTime object in the
range 0-23. The hour represents whole hours passed since
midnight (displayed as 0). If the hour is a single digit (0-9), it is
displayed as a single digit.

HH, HH
(plus any
number of
additional
"H"
characters)

Displays the hour for the specified DateTime object in the
range 0-23. The hour represents whole hours passed since
midnight (displayed as 0). If the hour is a single digit (0-9), it is
formatted with a preceding 0 (01-09).

m Displays the minute for the specified DateTime object in the
range 0-59. The minute represents whole minutes passed

Input for WinForms 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

since the last hour. If the minute is a single digit (0-9), it is
displayed as a single digit. Note that if the 'm' format specifier
is used alone, without other custom format strings, it is
interpreted as the standard month day pattern format
specifier. If the 'm' format specifier is passed with other
custom format specifiers, it is interpreted as a custom format
specifier.

mm, mm
(plus any
number of
additional
"m"
characters)

Displays the minute for the specified DateTime object in the
range 0-59. The minute represents whole minutes passed
since the last hour. If the minute is a single digit (0-9), it is
formatted with a preceding 0 (01-09).

M Displays the current month, measured as a number between 1
and 12, inclusive. If the month is a single digit (1-9), it is
displayed as a single digit. Note that if the 'M' format specifier
is used alone, without other custom format strings, it is
interpreted as the standard month day pattern format
specifier. If the 'M' format specifier is passed with other
custom format specifiers, it is interpreted as a custom format
specifier.

MM Displays the current month, measured as a number between 1
and 12, inclusive. If the month is a single digit (1-9), it is
formatted with a preceding 0 (01-09).

MMM Displays the abbreviated name of the month for the specified
DateTime object. If a specific valid format provider (a non-null
object that implements IFormatProvider with the expected
property) is not supplied, the AbbreviatedMonthNames
property of the DateTimeFormat object and its current culture
associated with the current thread is used. Otherwise, the
AbbreviatedMonthNames property from the specified format
provider is used.

MMMM Displays the full name of the month for the specified DateTime
object. If a specific valid format provider (a non-null object
that implements IFormatProvider with the expected property)
is not supplied, then the MonthNames property of the
DateTimeFormat object and its current culture associated with
the current thread is used. Otherwise, the MonthNames
property from the specified format provider is used.

s Displays the seconds for the specified DateTime object in the
range 0-59. The second represents whole seconds passed
since the last minute. If the second is a single digit (0-9), it is
displayed as a single digit only. Note that if the 's' format
specifier is used alone, without other custom format strings, it
is interpreted as the standard sortable date/time pattern
format specifier. If the 's' format specifier is passed with other
custom format specifiers, it is interpreted as a custom format
specifier.

Input for WinForms 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

ss, ss (plus
any
number of
additional
"s"
characters)

Displays the seconds for the specified DateTime object in the
range 0-59. The second represents whole seconds passed
since the last minute. If the second is a single digit (0-9), it is
formatted with a preceding 0 (01-09).

t Displays the first character of the A.M./P.M. designator for the
specified DateTime object. If a specific valid format provider (a
non-null object that implements IFormatProvider with the
expected property) is not supplied, then the AMDesignator (or
PMDesignator) property of the DateTimeFormat object and its
current culture associated with the current thread is used.
Otherwise, the AMDesignator (or PMDesignator) property
from the specified IFormatProvider is used. If the total number
of whole hours passed for the specified DateTime is less than
12, then the AMDesignator is used. Otherwise, the
PMDesignator is used. Note that if the 't' format specifier is
used alone, without other custom format strings, it is
interpreted as the standard long time pattern format specifier.
If the 't' format specifier is passed with other custom format
specifiers, it is interpreted as a custom format specifier.

tt, tt (plus
any
number of
additional
"t"
characters)

Displays the A.M./P.M. designator for the specified DateTime
object. If a specific valid format provider (a non-null object
that implements IFormatProvider with the expected property)
is not supplied, then the AMDesignator (or PMDesignator)
property of the DateTimeFormat object and its current culture
associated with the current thread is used. Otherwise, the
AMDesignator (or PMDesignator) property from the specified
IFormatProvider is used. If the total number of whole hours
passed for the specified DateTime is less than 12, then the
AMDesignator is used. Otherwise, the PMDesignator is used.

y Displays the year for the specified DateTime object as a
maximum two-digit number. The first two digits of the year
are omitted. If the year is a single digit (1-9), it is displayed as
a single digit.

yy Displays the year for the specified DateTime object as a
maximum two-digit number. The first two digits of the year
are omitted. If the year is a single digit (1-9), it is formatted
with a preceding 0 (01-09).

yyyy Displays the year for the specified DateTime object, including
the century. If the year is less than four digits in length, then
preceding zeros are appended as necessary to make the
displayed year four digits long.

z Displays the time zone offset for the system's current time
zone in whole hours only. The offset is always displayed with a
leading or trailing sign (zero is displayed as '+0'), indicating
hours ahead of Greenwich mean time (+) or hours behind
Greenwich mean time (-). The range of values is –12 to +13. If

Input for WinForms 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

the offset is a single digit (0-9), it is displayed as a single digit
with the appropriate leading sign. The setting for the time
zone is specified as +X or –X where X is the offset in hours
from GMT. The displayed offset is affected by daylight time.

zz Displays the time zone offset for the system's current time
zone in whole hours only. The offset is always displayed with a
leading or trailing sign (zero is displayed as '+00'), indicating
hours ahead of Greenwich mean time (+) or hours behind
Greenwich mean time (-). The range of values is –12 to +13. If
the offset is a single digit (0-9), it is formatted with a
preceding 0 (01-09) with the appropriate leading sign. The
setting for the time zone is specified as +X or –X where X is
the offset in hours from GMT. The displayed offset is affected
by daylight time.

zzz, zzz
(plus any
number of
additional
"z"
characters)

Displays the time zone offset for the system's current time
zone in hours and minutes. The offset is always displayed with
a leading or trailing sign (zero is displayed as '+00:00'),
indicating hours ahead of Greenwich mean time (+) or hours
behind Greenwich mean time (-). The range of values is –12 to
+13. If the offset is a single digit (0-9), it is formatted with a
preceding 0 (01-09) with the appropriate leading sign. The
setting for the time zone is specified as +X or –X where X is
the offset in hours from GMT. The displayed offset is affected
by daylight time.

: Time separator.

/ Date separator.

" Quoted string. Displays the literal value of any string between
two quotation marks preceded by the escape character (/).

' Quoted string. Displays the literal value of any string between
two " ' " characters.

%c Where c is a standard format character, displays the standard
format pattern associated with the format character.

\c Where c is any character, the escape character displays the
next character as a literal. The escape character cannot be
used to create an escape sequence (like "\n" for new line) in
this context.

| Section separator. Custom date-time format can contain
multiple format strings separated with ‘|’, This feature allows to
specify multiple input formats for date-time values. Only the
first format string is used to format value, convert date-time to
string. Performing the inverse conversion (parsing) from string
to date-time, a string will be recognized (parsed) if it satisfies
one of the allowed formats.

Any other
character

Other characters are written directly to the output string as
literals.

Input for WinForms 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

Examples
The following table displays examples using the custom date-time format specifiers:

Format Specifiers Current Culture Time Zone Output

d, M en-US GMT 12, 4

d, M es-MX GMT 12, 4

d MMMM en-US GMT 12 April

d MMMM es-MX GMT 12 Abril

dddd MMMM yy gg en-US GMT Thursday April 01 A.D.

dddd MMMM yy gg es-MX GMT Jueves Abril 01 DC

h , m: s En-US GMT 6 , 13: 12

hh,mm:ss En-US GMT 06,13:12

HH-mm-ss-tt En-US GMT 06-13-12-AM

hh:mm, G\MT z En-US GMT 05:13 GMT +0

hh:mm, G\MT z En-US GMT +10:00 05:13 GMT +10

hh:mm, G\MT zzz En-US GMT 05:13 GMT +00:00

hh:mm, G\MT zzz En-US GMT –9:00 05:13 GMT -09:00

Parsing (Updating) Data
Data modified by the end user in a C1Input control is converted from a string to a typed Value. Converting data from
a string representation is called parsing. It is the opposite of formatting. Parsing is controlled by the ParseInfo
property. The ParseInfo property provides access to the ParseInfo Class that contains sub-properties that control
different aspects of parsing.

For the most part, you will probably be satisfied with the default parsing that is performed according to the format
specification, as it is the inverse of formatting. By default, the same format property value is used for parsing as for
formatting. However, you can change any of aspects of how the control parses, by expanding the ParseInfo property,
changing the (Inherit) flags, and setting desired properties.

The ParseInfo class also contains two flag properties, NumberStyle and DateTimeStyle, which enable you to fine-tune
parsing by allowing or disallowing white spaces and special characters in input strings for numeric and date-time data.
For more information see the ParseInfo class in the reference section.

By setting the FormatType property to UseEvent, you can make your parsing entirely custom through writing code to
handle the parsing action in the Parsing event.

Note: Parsing is not performed in DateTimeInput and NumericInput modes. It is unnecessary, because in this
case the content is already a typed value (date/time or number), so there is no need to parse a string to obtain
the value.

Culture (Regional) Settings
Regional settings affect almost all aspects of C1Input functionality. Formatting, parsing, validating data and

Input for WinForms 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

performing masked input all depend on cultural settings for string comparison, numeric and date time formats and
special characters, such as decimal point character. See description of the CultureInfo class in .NET Framework
documentation for details on culture-specific settings.

C1Input controls use the following properties to define CultureInfo:

Culture property

The Culture property defines what culture is used by the control. It is an integer ID with a list of all cultures
available at design time. The default is Current Culture, which is the current culture used by the application
containing the control.

CultureInfo property

The CultureInfo property contains all the settings, the CultureInfo object corresponding to the specified culture
ID.

UserCultureOverride property

The Boolean UserCultureOverride property allows the culture settings to be overridden by the end user
regional settings.

You can change any settings in the CultureInfo programmatically. To enable this, C1Input controls fire the
CultureInfoSetup event at startup and whenever the Culture property is set. Handling this event you can fine-tune
various CultureInfo settings. For example, you may want to set CultureInfo.DateTimeFormat.FirstDayOfWeek according
to your application needs.

Another setting affecting most of C1Input functionality is the Boolean CaseSensitive property (although it is not
culture-related). Case sensitivity is used in string comparisons. C1Input controls have a CaseSensitive property that
defines the default case sensitivity for all operations. You can override this setting in most classes controlling
particular functionality, such as ParseInfo, PreValidation, PostValidation, and so on.

Edit Mask
C1Input controls support masked input when you set the EditMask property to a mask string. If you define an edit
mask, each character position in the control maps to either a special placeholder or a literal character. Literal
characters, or literals, can give visual cues about the type of data being used. For example, the parentheses
surrounding the area code of a telephone number and dashes are literals: (412)-123-4567. The edit mask prevents you
from entering invalid characters into the control and provides other enhancements of the user interface.

To enable masked input, set the EditMask property to a mask string composed of placeholders and literals, see the
table of available placeholders below. You can also define your own placeholders, using the CustomPlaceholders
collection.

Although setting EditMask is enough in simple cases, there is also a MaskInfo property containing sub-properties
controlling various important aspects of masked input. One of them is the CustomPlaceholders collection mentioned
above. Some of the others are:

Property Description

AutoTabWhenFilled If True, focus automatically moves to the next control when the mask is filled. Default: False.

PromptChar Character displayed on empty positions. Default: '_'.

SaveBlanks If True, the stored text includes blank positions as StoredEmptyChar. Default: False.

SaveLiterals If True (default), the stored text (StoredContent) includes literals.

ShowLiterals Enumeration controlling the way in which literals appear while the user types. They can appear

Input for WinForms 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo(vs.80).aspx

always, or never, or as the user reaches a literal while typing.

SkipOptional If True (default), optional mask positions are automatically skipped until the first position
allowing the typed character.

StoredEmptyChar Character stored in empty mask positions. Default: '_'.

See the MaskInfo class for the complete list of mask-related properties.

If ShowLiterals property is set to FreeFormatEntry, optional mask positions can be completely omitted; there is no
need to fill them with blank characters.

Mask characters (placeholders) used in C1Input are similar to those used in Microsoft Access and Microsoft ActiveX
MaskedEdit control (and more placeholders can be defined using the using the CustomPlaceholders collection):

Placeholder Description

Digit placeholder permits a numeric character or a plus or minus sign in this
position (entry optional).

. Decimal placeholder. The actual character used is the one specified as the decimal
placeholder in your international settings. This character is treated as a literal for
masking purposes.

, Thousands separator. The actual character used is the one specified as the
thousands separator in your international settings. This character is treated as a
literal for masking purposes.

: Time separator. The actual character used is the one specified as the time
separator in your international settings. This character is treated as a literal for
masking purposes.

/ Date separator. The actual character used is the one specified as the date
separator in your international settings. This character is treated as a literal for
masking purposes.

\ Treat the next character in the mask string as a literal. This allows you to include
the #, &, A, … characters in the mask. This character is treated as a literal for
masking purposes.

& Character placeholder (entry required). Any character is permitted.

> Convert all the characters that follow to uppercase.

< Convert all the characters that follow to lowercase.

~ Turns off the previous < or >.

! Causes the optional characters that follow in the edit mask to display from right to
left, rather than from left to right. So, blanks appear on the left.

^ Turns off the previous ! character. After ^, blanks appear on the right.

A Alphanumeric character placeholder (entry required). For example: a – z, A – Z, or 0
– 9.

a Alphanumeric character placeholder (entry optional).

0 Digit placeholder (entry required). For example: 0 – 9.

9 Digit placeholder (entry optional).

Input for WinForms 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

C Character or space placeholder (entry optional). Any character is permitted.

L Letter placeholder (entry required). For example: a – z or A – Z.

? Letter placeholder (entry optional).

\n New line literal. It is applicable when Multiline property is set to True.

" All characters in a string enclosed in double quotes are considered as literals.

Literal All other symbols are displayed as literals; that is, as themselves.

Example
The telephone number mentioned above, (412) 123-4567 can be represented with a mask EditMask set to (000) 000-
0000.

Validating Data
C1Input controls support data validation both of the raw input string (PreValidation) and of the typed value entered
by the user (PostValidation). See Value and Text: Displaying, Validating, and Updating Values for explanation of the
validation process.

Input String Validation (PreValidation)
Input string validation is controlled by the PreValidation property. The PreValidation class allows you to specify
validation rules either as wildcard pattern strings or regular expression strings. All rules (strings) are specified in the
PatternString property. Multiple rules (sub-strings) are separated by the ItemSeparator ('|' by default).

The PreValidation property defines how the PatternString is interpreted.

Value Description

ExactList PatternString contains a list of possible
values separated by ItemSeparator.

PreValidatingEvent The PreValidating event is being used
in validation.

Wildcards PatternString contains a list of wildcard
patterns separated by the
ItemSeparator. The following
characters are reserved in a pattern: ?
(any single character), # (any single
digit), * (zero or more characters), \
(escape). You can also define your own
custom pattern characters using the
PreValidation property.

RegexPattern PatternString contains a regular
expression.

Using the PreValidatingEvent option, you can perform input string validation in code, in the PreValidating event. For
more information, see the event description.

If you use regular expressions, the RegexPattern option, there is also a RegexOptions property that is sometimes

Input for WinForms 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

needed to set flags affecting regular expression functionality.

Note: Input string validation (PreValidation) is not used in DateTimeInput and NumericInput modes. When
DateTimeInput or NumericInput modes are active is Typed Value Validation (PostValidation) is performed.

Examples
The following examples describe how the Validation and PatternString properties are interpreted:

Validation property set to ExactList, PatternString property set to red|green|blue: Input string must be one of
the three permitted values, red, green or blue, possibly ignoring the case, if CaseSensitive is set to False.
Validation property set to Wildcards, PatternString property set to (412)*: Input string must start with (412),
possibly ignoring the case, if CaseSensitive is set to False.
Validation property set to RegexPattern, PatternString set to [0-9]*: Input string contains one or more digits.

Typed Value Validation (PostValidation)
PostValidation allows you to validate the typed Value entered by the user.

The PostValidation class allows you to:

Check that the value matches one of the values in a pre-defined value list specified in the Values property.
Test the value to see if it is below a minimum or above a maximum, that is you can test to see if the value
belongs to an interval.

You can even specify multiple intervals of allowed values. The intervals are defined in the Intervals property
where you specify minimum and maximum values for each interval, and also whether minimum and maximum
values are used or ignored, and whether or not the inequality is strict (minimum/maximum value included).

Exclude some values using the ValuesExcluded property.
Perform validation programmatically in the PostValidating event.

To distinguish between declarative and programmatic validation, use the PostValidation property with two possible
values: ValuesAndIntervals and PostValidatingEvent. Note that PostValidatingEvent disables automatic validation of
values and intervals. Call the ValidateValuesAndIntervals method from the event code if you want to combine event
code with values and intervals validation.

Editing Date and Time Values
C1TextBox supports a special editing mode called DateTimeInput mode that makes editing date and time values
easier. This mode is enabled when DataType property is set to DateTime and DateTimeInput property is set to True
(default). In the DateTimeInput mode, the currently selected date or time field, such as the year, month, date, and so
on, is highlighted and edited separately. Formatted fields represented in string form, such as month or day of the
week in LongDate format, can be typed as numbers on the keyboard, and their string representation is updated
automatically. The UP ARROW/DOWN ARROW keys or mouse wheel can be used to increment/decrement the current
field.

Additional properties controlling date-time input are:

Property Description

MinShortYear The minimum year that can be entered without
leading zeros (when DateTimeInput is set to
True). For example, if MinShortYear is set to 300

Input for WinForms 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

(default), entering 200 is not allowed (will be
ignored), whereas 400 is interpreted as 0400
A.D. Regardless of this property value, entering
0200 will be interpreted as year 0200 A.D.

CurrentTimeZone This property is True by default, which means
that date-time values are invariant, not adjusted
to time zones. If this property is set to False, the
Text shown to the user and the underlying
stored Value become different. The stored Value
belongs to the time zone defined by the
GMTOffset property specifying the offset in
hours and minutes of the base time zone from
Greenwich Mean Time. The Text shown to the
user belongs to the local time zone defined by
the user computer settings. Displaying values
and parsing values entered by the user, C1Input
adjusts it to the time zone difference.

To make editing date-time values even more convenient to the user, you can use the specialized C1DateEdit control.
In addition to C1TextBox functionality, it supports a drop-down calendar and up/down buttons (speedbuttons)
incrementing/decrementing the currently selected date-time field.

Editing Numeric Values
C1TextBox supports a special editing mode called NumericInput mode that makes editing numeric values easier. This
mode is enabled when the NumericInput property is set to True (default) and DataType is one of numeric data types
(Byte, UInt16, UInt32, UInt64, SByte, Int16, Int32, Int64, Decimal, Single, Double). In the NumericInput mode, numbers
are edited in a calculator-like fashion. It accepts only digits, +/- sign, and, if data type and format allow, decimal point
and exponent. Other characters, such as letters, are ignored. There are also special functional keys recognized in
NumericInput mode for values of type Single and Double: F9 (change sign), F2 (negative infinity), F3 (positive infinity),
F4 (NaN, "not a number").

To make editing numbers even more convenient to the user, you can use the specialized C1NumericEdit control. In
addition to C1TextBox functionality, it supports a drop-down calculator and up/down buttons (speed buttons)
incrementing/decrementing the value by the specified Increment.

Drop-Down and Increment Buttons
The specialized C1Input controls for date-time and numeric editing, C1DateEdit and C1NumericEdit controls, support
drop-down and increment/decrement (up/down) buttons. Button visibility is controlled by the ShowDropDownButton
and ShowUpDownButtons properties.

To control drop-down alignment and distance from the control you can use the DropDownAlign and GapHeight
properties. To open/close drop-down programmatically, use the OpenDropDown and CloseDropDown methods.
Opening/closing drop-down triggers events DropDownOpened and DropDownClosed. You can use the
DropDownOpened event to adjust drop-down properties (mostly, calendar properties in Calendar) before the drop-
down is shown to the user. You can check if the drop-down is open using the DroppedDown property.

C1DateEdit Control
C1DateEdit control supports up/down buttons and drop-down calendar.

Input for WinForms 66

Copyright © 2017 GrapeCity, inc. All rights reserved.

The up/down buttons function if DateTimeInput property is set to True. They increment/decrement the currently
selected field of the date-time value, see Editing Date and Time Values.

The drop-down calendar has the same object model as the standard MonthCalendar control
(System.Windows.Forms.MonthCalendar) and almost the same appearance with additional buttons such as Clear,
Today, and two year navigation buttons.

Button visibility is controlled by the properties ShowClearButton and ShowTodayButton. These properties and all
other calendar properties are available both in the designer and in code in the Calendar object. If you want to change
calendar properties programmatically when the calendar is opened, before it is shown to the user, use the
DropDownOpened event.

C1NumericEdit Control
C1NumericEdit control supports up/down (spin) buttons and drop-down calculator.

Up/down buttons increment/decrement the Value by the amount specified in the Increment property (default: 1).

The drop-down calculator follows the standard Windows calculator model, allows the user to perform calculations
without leaving the control.

Custom Drop-Down
C1Input includes a powerful custom drop-down functionality that allows you to create any drop-down editor you
need, in addition to the standard calendar and calculator drop-downs provided by C1Input. Drop-down editors are
created visually as forms in your project.

To create your own custom drop-down editor, use the C1DropDownControl. This control class derives from C1TextBox
and adds custom drop-down functionality and up/down buttons.

To create a drop-down editor for your control:

1. Add a form to your project derived from C1.Win.C1Input.DropDownForm and select the form class name in the
DropDownFormClassName property of your C1DropDownControl.

2. In your DropDownForm-derived form you can set the Value property of C1DropDownControl when necessary (use
the DropDownForm.OwnerControl property to get the control object), or you can do it when the form is closing, in
the PostChanges event.

See the DropDownForm class reference for the full description of available options for custom drop-down forms. Also
see Documents\ComponentOne Samples\WinForms (installed by default) for common-use samples of the
custom drop-down functionality.

If you need to create a custom control with drop-down functionality, this can be done by deriving a custom control
class from C1DropDownControl and overriding its C1DropDownControl.DefaultDropDownFormClassName
property.

Programmatic Formatting, Parsing, and Validation
If standard and custom format specifiers are not enough, you can format values in code in the Formatting event by
setting the FormatType property to UseEvent, see Formatting Data. In your formatting code, you can use the standard
C1Input formatting as a helper or for any other purposes, calling the Format method.

Parsing can also be done in event code, in the Parsing event, by setting the FormatType property to UseEvent. You can
use standard C1Input parsing routines in your code if you need them, with the following ParseInfo methods: Parse,
ParseFixed, ParseFloat, ParseInteger, ParseBoolean and ParseDateTime.

Some useful methods for edit mask management can be found in the MaskInfo class.

Input for WinForms 67

Copyright © 2017 GrapeCity, inc. All rights reserved.

When you need to synchronize the Value property with the text currently entered by the user, call the
UpdateValueWithCurrentText method. Normally, this synchronization is done automatically when the control loses
focus, but in certain situations you may find necessary to call this method and force the Value update. Updating Value
involves parsing the input text, validating, and updating the Value property, see Value and Text: Displaying, Validating,
and Updating Values. You can also perform the first two phases, parsing and validation without changing the Value,
using the methods ParseContent and CheckValidationResult.

Error Handling
Error handling is very important in data input forms. C1Input gives developers full control over various error
conditions, such as the errors listed in the following topics.

Data Errors
WinForms data sources such as ADO.NET and C1DataObjects contain provisions for detecting logical errors in data, by
the data source itself or by the programmer, setting the RowError property or calling the SetColumnError method
(SetFieldError in C1DataObjects). You can show logical row and column errors in C1Input using
System.Windows.Form.ErrorProvider component.

To show logical column errors, use the ErrorProvider component with C1Input controls as you would use it with any
other controls.

To show row error in C1DbNavigator control, set the ErrorProvider property to an ErrorProvider component. Then
C1DbNavigator will display error icon with RowError ToolTip text when there is an error in current row.

Incorrect Format in Displaying Data
Incorrect format is possible, although generally avoided in applications that data fetched from the database or
another data source does not match the format or edit mask defined in a C1Input control. In such cases, the control
cannot show its value properly formatted. Although C1Input controls have reasonable default behavior handling this
situation, you may want to inform the user of invalid data. This is done using the ErrorProvider property (ErrorProvider
in C1Label control). If you set this property to an ErrorProvider component, C1Input uses that ErrorProvider
component to signal errors when it displays invalid data (data that can’t be formatted for display in the control). It
calls the ErrorProvider.SetControl method when such error is detected. Before doing that, C1Input fires the
FormatError event where you can customize the error message (ErrorProvider ToolTip text) and perform other actions.

User Input Errors
When C1Input detects an error while parsing or validating input value, it fires the ValidationError event. Then, by
default, it shows an error message. The default behavior can be changed and customized in different ways:

C1Input controls have an ErrorInfo property containing settings (properties of the ErrorInfo class) affecting error
handling:

Property Description

BeepOnError If True, the control beeps signaling an error. Default:
False.

CanLoseFocus If True, the control is allowed to lose focus regardless of
the error. This property is False by default, meaning that
the control will stay in focus until the error is corrected.

Input for WinForms 68

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note that setting ErrorAction to SetValueOnError or
ResetValue allows the user to leave the control after
error by resetting its value.

ErrorAction Enumerated value that determines what action is
performed on the control value when an error occurs.
ErrorAction set to None (default) means that the Value
is not changed, remains as it was before the
unsuccessful value update. If ErrorAction is set to
SetValueOnError, control’s Value is set to the value
specified in the ValueOnError property of the ErrorInfo
class. If ErrorAction is set to ResetValue, control’s Value
is set to the last value the control had before it entered
edit mode. Setting the ErrorAction property to
ThrowException interrupts execution and throws an
exception, ValidationException.

ErrorMessage Error message shown in the standard message box
and/or in the exception.

ErrorMessageCaption The text to display in the title bar of the error message
box.

ErrorProvider Gets or sets an ErrorProvider object used to indicate
error state of the control.

ShowErrorMessage If True (default), the standard error message is shown.

ValueOnError Value used to reset the control if ErrorAction is set to
SetValueOnError.

ValueOnErrorIsDbNull Boolean property used to set ValueOnError to DBNull
(only necessary at design time).

In addition to that, ErrorInfo.ErrorMessage can be specified for particular actions: edit mask errors
(MaskInfo.ErrorMessage), parsing (ParseInfo.ErrorMessage), pre- and post-validation (PreValidation.ErrorMessage,
PostValidation.ErrorMessage). If a specialized error message is not specified in one of these sub-objects, the control’s
ErrorInfo.ErrorMessage takes effect. Note that you can use ErrorProvider icon to indicate the error, instead of showing
a message box, if you set ErrorProvider to an ErrorProvider component and ShowErrorMessage to False.

The properties listed above, when set in the control’s ErrorInfo object, affect all error handling in the control. When an
error occurs, their values can be customized programmatically to handle that particular error. This is achieved by
passing an ErrorInfo argument to the ValidationError event. The ErrorInfo argument passed to ValidationError is a
copy of the control’s ErrorInfo with all its properties. It is an independent copy, so you can change properties in the
ErrorInfo event argument for the current error without affecting the overall control’s ErrorInfo settings. By setting
ErrorInfo properties in the ValidationError event you specify how to handle the error. For example, you can suppress
the standard error message (and show your own message instead) by setting the ShowErrorMessage property to
False, or you can change ValueOnError (and set ErrorAction to SetValueOnError), or change the ErrorMessage. Keep in
mind that you must set the properties of the ErrorInfo argument passed to the ValidationError event, not the
properties of the control’s ErrorMessage.

After the ValidationError event, error handling proceeds as specified in the event’s ErrorInfo argument. If ErrorAction is
set to ThrowException, an exception is thrown (using the ErrorMessage text). If BeepOnError is True, the control
beeps. If ShowErrorMessage is set to True, the standard error message box is shown (with ErrorMessage text). After
that, the control’s value may be changed if so specified by ErrorAction. Finally, moving focus to another control is
either canceled or permitted, according to CanLoseFocus, if validation was triggered by an attempt to move focus out
of the control. If ErrorProvider property is set to an ErrorProvider component, that component is used to show the

Input for WinForms 69

Copyright © 2017 GrapeCity, inc. All rights reserved.

error icon near the offending control, with ErrorMessage ToolTip (ErrorProvider.SetError is called).

If you perform parsing or validation programmatically, in event code, and exit the event with an error condition (set
the event’s Succeeded argument to False), you can describe the error and how it must be handled by setting the
properties of an ErrorInfo argument passed to the event. Such argument is provided for the following events:
PreValidating, Parsing and PostValidating. Its initial values are taken from the control’s ErrorInfo property. This
ErrorInfo argument that you change in the event is then passed to the ValidationError event where it can be further
changed as described above.

Handling NULL and Empty Values
NULL values (DBNull) can be difficult to handle without appropriate tools. C1Input provides flexible rules for handling
nulls allowing the programmer the ability to solve this problem in practically any circumstance.

Displaying NULL and Empty Values
When a control is not in edit mode or is read-only, null values are displayed according to the NullText property (which
can be overridden in DisplayFormat). If the property EmptyAsNull is set to True (default: False), empty strings are also
displayed with the same NullText string. The EmptyAsNull property can also be overridden in EmptyAsNull. In edit
mode, the NullText and EmptyAsNull properties of the EditFormat object take effect, instead of those of
DisplayFormat.

In edit mode with an active EditMask, the null value and the empty string are shown as an empty mask with literals in
their places and prompt characters filling the rest.

When editing a date-time value with the DateTimeInput property set to True, the null value is represented by an
empty control. When the user starts editing with a keystroke or mouse click, the control immediately turns to a non-
null value, namely, to the last non-null value assigned to the control or to today’s date.

In programmatic formatting (FormatType set to UseEvent), the Formatting event is only called for non-null values.

Entering NULL and Empty Values
Unless in edit mask mode or in date-time editing withDateTimeInput set to True, the user can enter a null value in
one of the following ways:

If the control text equals NullText, the resulting value is null. The effective NullText value here is determined by
NullText. Comparison with NullText is case-sensitive or not depending on the CaseSensitive property.
Clearing the control, entering an empty string results in null value if the C1TextBox.EmptyAsNull property is set
to True (it is False by default).
In programmatic parsing, DBNull value can be returned by the programmer in the Parsing event.

If the user enters a null value (either by entering an empty string or NullText, see above), input string validation and
parsing are skipped, see Input string validation (PreValidation) and Parsing (Updating) Data. However, PostValidation
is performed in this case as in all others, see Typed value validation (PostValidation).

Input for WinForms 70

Copyright © 2017 GrapeCity, inc. All rights reserved.

Customizing C1Input's Appearance
C1Input is designed to make customization easy for you. You have endless possibilities in changing the default
appearance for each C1Input control. C1Input provides numerous property styles for the input boxes, as well as built-
in themes for Windows XP and Office 2007.

Visual Styles
C1Input has seven built-in visual styles: System, Office2007Blue, Office2007Black, Office2007Silver, Office2010Blue,
Office2010Black, and Office2010Silver.

Setting the VisualStyle property on a C1Input control will control the gradients and borders used to paint C1TextBox,
C1Label, C1DbNavigator, C1DropDownControl, C1DateEdit (including the drop down calendar), C1NumericEdit
(including the drop down calculator), C1SplitButton, C1ComboBox,C1CheckBox, C1RangeSlider and C1Button.

To customize the appearance of a C1Input control using Visual Styles, set the VisualStyle property to Custom,
Office2007Black, Office2007Blue, Office2007Silver, System, Office2010Blue, Office2010Black, or
Office2010Silver. This property can be set either in the designer or in code. The following table describes each of the
Visual Styles:

Visual Style Description

Custom No visual style (use styles and appearance
properties as usual).

Office2007Black Style matches Office2007 Black color scheme.

Office2007Blue Style matches Office2007 Blue color scheme.

Office2007Silver Style matches Office2007 Silver color scheme.

System Style matches the current system settings.

Office2010Blue Style matches Office2010 Blue color scheme.

Office2010Black Style matches Office2010 Black color scheme.

Office2010Silver Style matches Office2010 Silver color scheme.

Using the Designer
Locate the VisualStyle property in the Properties window and set it to Custom, Office2007Black, Office2007Blue,
Office2007Silver, System, Office2010Blue, Office2010Black, or Office2010Silver. In this example, the VisualStyle
property is set to Office2007Blue for a C1TextBox control.

Input for WinForms 71

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using the Code Editor
Add code to the Form_Load event to set the VisualStyle property of a control to Custom, Office2007Black,
Office2007Blue, Office2007Silver, or System. The following code sets the VisualStyle property to Office2007Blue
for a C1TextBox control:

To write code in Visual Basic

Visual Basic

Me.C1TextBox1.VisualStyle = C1.Win.C1Input.VisualStyle.Office2007Blue

To write code in C#

C#

this.c1TextBox1.VisualStyle = C1.Win.C1Input.VisualStyle.Office2007Blue;

Custom Visual Style
No visual style is applied.

C1TextBox

C1CheckBox

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

C1NumericEdit

Input for WinForms 72

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1Button

C1ComboBox

C1RangeSlider

C1SplitButton

System Visual Style
The current system settings.

C1TextBox

C1CheckBox

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

Input for WinForms 73

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1NumericEdit

C1Button

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

C1SplitButton

Office2007Black Visual Style
The Office 2007 Black color scheme.

C1TextBox

C1CheckBox

C1Label

C1DbNavigator

Input for WinForms 74

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DropDownControl

C1DateEdit

C1NumericEdit

C1Button

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

C1SplitButton

Office2007Blue Visual Style
The Office 2007 Blue color scheme.

C1TextBox

C1CheckBox

Input for WinForms 75

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

C1NumericEdit

C1Button

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

C1SplitButton

Office2007Silver Visual Style
The Office 2007 Silver color scheme.

C1TextBox

Input for WinForms 76

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1CheckBox

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

C1NumericEdit

C1Button

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

C1SplitButton

Office2010Blue Visual Style
The Office 2010 Blue color scheme.

Input for WinForms 77

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1TextBox

C1CheckBox

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

C1NumericEdit

C1Button

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

C1SplitButton

Input for WinForms 78

Copyright © 2017 GrapeCity, inc. All rights reserved.

Office2010Black Visual Style
The Office 2010 Black color scheme.

C1TextBox

C1CheckBox

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

C1NumericEdit

C1Button

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

Input for WinForms 79

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1SplitButton

Office2010Silver Visual Style
The Office 2010 Silver color scheme.

C1TextBox

C1CheckBox

C1Label

C1DbNavigator

C1DropDownControl

C1DateEdit

C1NumericEdit

C1Button

Input for WinForms 80

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1ComboBox

Note: For illustration
purposes two
comboboxes are
shown.

C1RangeSlider

C1SplitButton

Themes
In addition to the Visual Styles you can use the C1ThemeController to apply other themes to the C1Input control. You
could also create your own theme using the ThemeDesigner.

To customize the appearance of a C1Input control using Themes, add the C1ThemeController to your
component tray and set the Themes property to any of the following predefined styles listed below:

Theme Name Image

Office2007Black

Office2007Blue

Office2007Silver

Office2010Black

Office2010Blue

Input for WinForms 81

Copyright © 2017 GrapeCity, inc. All rights reserved.

Office2010Silver

Office2013DarkGray

Office2013LightGray

Office2013White

ExpressionDark

ExpressionLight

GreenHouse

RainerOrange

ShinyBlue

Input for WinForms 82

Copyright © 2017 GrapeCity, inc. All rights reserved.

Violette

VisualStyleOffice2010Black

VisualStyleOffice2010Blue

VisualStyleOffice2010Silver

VS2013Blue

VS2013Dark

VS2013Light

VS2013DarkSolar

VS2013Green

Input for WinForms 83

Copyright © 2017 GrapeCity, inc. All rights reserved.

VS2013Purple

VS2013Red

VS2013Tan

How to apply themes to the C1Input controls at Design Time

To use the C1ThemeController component with any of the C1Input controls, complete the following:

1. Add any of the C1Input controls, for example C1ComboBox, on the form at design time.

2. Add the C1ThemeController component to your component tray. The C1ThemeController dialog box
appears.

If you use the C1ThemeController 2.0 component a C1ThemeController dialog box appears. The
ThemeController dialog box is used to quickly to apply the theme to all themeable controls in the
application, all themeable controls on the form, or different themes on different controls.

The C1ThemeController dialog box lists all of the components that appears on your form. If you have
themeable controls on your form before you add the C1ThemeController the dialog box lists all of the
components on your form. Each control/component is initially set to none to prevent unintentional loss of
property settings on those controls.

3. In the C1ThemeController dialog box click on the Theme dropdown button next to Form1 and c1ComboBox1
and select one of the predefined themes, for example, Violette.

Input for WinForms 84

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Click OK to save and close the C1ThemeController dialog box.
5. Run your project and observe that the Violette theme is applied to your Form and C1Combobox.

How to Apply Themes to the C1Input Controls Programatically

Input for WinForms 85

Copyright © 2017 GrapeCity, inc. All rights reserved.

The following code shows how to programatically apply the built-in theme using the RegisterTheme and SetTheme
methods:

To write code in Visual Basic

Visual Basic

'Register the theme file with the C1ThemeController

C1.Win.C1Themes.C1ThemeController.RegisterTheme("C:\Users\Documents\Visual Studio
2010\Projects\ThemesProject\ShinyBlue.c1theme")

'Apply it to a control, use the theme name, not the file name

Me.c1ThemeController1.SetTheme(c1ComboBox1, "ShinyBlue")

To write code in C#

C#

//Register the theme file with the C1ThemeController;

C1.Win.C1Themes.C1ThemeController.RegisterTheme(@"C:\Users\Documents\Visual Studio
2010\Projects\ThemesProject\ShinyBlue.c1theme");

//Apply it to a control and use the theme name

this.c1ThemeController1.SetTheme(c1ComboBox1, "ShinyBlue")

In addition to the predefined themes you can customize your theme using the Themes designer. For more
information see the Themes for WinForms documentation.

C1Themes and the VisualStyle Property
Many WinForms controls include a property called VisualStyle, of an enum type defined in the control assembly, but
following a common naming pattern for the type and possible values. Typically, the enum type is called VisualStyle,
with values such as Office2010Blue, Office2010Black, and so on. C1Themes are designed to provide a more powerful
and flexible mechanism for adjusting the look of controls. Still there is obvious overlap between the two mechanisms,
with the possibility of conflicts. The rules for dealing with this overlap are as follows:

Theme sections for all C1 controls include a VisualStyle property that can be specified by the theme.
By default and in all supplied themes, those properties are set to 'Custom' so that the VisualStyle does not
interfere with applying other properties.
Setting VisualStyle in a theme to anything other than custom sets the corresponding property on the target
control and disables applying all other theme properties. (In the C1ThemeDesigner, this actually disables the
rest of the theme tree for the control.)

While we recognize that backward compatibility or other considerations may require the use of VisualStyle rather than
themes to customize the look of your application, we recommend that if possible you use C1Themes as they provide a
more powerful and flexible mechanism for that. Support for visual styles in new controls will be phased out as themes
will replace it.

Border Styles
The following border styles are available for C1Input:

Input for WinForms 86

Copyright © 2017 GrapeCity, inc. All rights reserved.

Border
Style Preview

None

FixedSingle

Fixed3D
(Default)

Border Color
A border color can be applied to C1DateEdit, C1CheckBox, C1Label, C1NumericEdit, C1DropDownControl, and
C1TextBox controls when the border style is set to FixedSingle and the value of the BorderColor property is
specified.

For more information on applying a border color to an applicable C1Input control see Displaying a Border Color for
the C1Input controls.

Cursor Styles
You can customize how the cursor appears when the pointer moves over the control by specifying a value for the
Cursor property. You can also customize how the cursor appears when the mouse is over the buttons on the
applicable input controls using the ButtonCursor property. The cursor styles are applicable to all C1Input controls.
The button cursor styles are applicable to the C1DropDownControl, C1DbNavigator, C1DateEdit, and
C1NumericEdit. The cursor and button cursor styles appear like the following:

Button Cursor Style Preview

AppStarting

Arrow

Cross

Default

IBeam

No

Input for WinForms 87

Copyright © 2017 GrapeCity, inc. All rights reserved.

SizeAll

SizeNESW

SizeNS

SizeNWSE

SizeWE

UpArrow

WaitCursor

Help

HSplit

VSplit

NoMove2D

NoMoveHoriz

NoMoveVert

PanEast

PanNE

Input for WinForms 88

Copyright © 2017 GrapeCity, inc. All rights reserved.

PanNorth

PanNW

PanSE

PanSouth

PanSW

PanWest

Hand

Flat Styles
C1Button provides different flat styles to choose from when you move the mouse over the button control and click it.

The ButtonBase.FlatStyle property includes the following values:

Flat Style Preview

Standard

Flat

Popup

System

When the ButtonBase.FlatStyle property is set to "Flat" you can modify the border color, border thickness, hover
backcolor, and mouse down backcolor using the ButtonBase.FlatAppearance property. The

Input for WinForms 89

Copyright © 2017 GrapeCity, inc. All rights reserved.

ButtonBase.FlatAppearance property provides the following properties:

BorderColor – Specifies the color of the border around the button.
BorderSize – Specifies the size, in pixels, of the border around the button.
MouseDownBackColor – Specifies the color of the client area of the button when the mouse is pressed within
the bounds of the control.
MouseOverBackColor – Specifies the color of the client area of the button when the mouse pointer is within
the bounds of the control.

The following image represents a flat style C1Button with its BorderColor, BorderSize, and MouseOverBackColor
properties set.

Button Color
In the C1DBNavigator control you can specify whether or not to show blue buttons using the ColorButtons property.
You can also specify whether or not to show the colored buttons when hovering over the buttons using the
ColorWhenHover property.

The following image shows how the colored buttons appear on the C1DBNavigator when the ColorButtons property is
set to true.

Input for WinForms 90

Copyright © 2017 GrapeCity, inc. All rights reserved.

Input for WinForms Task-Based Help
The task-based help section assumes that you are familiar with programming in the Visual Studio .NET environment,
and know how to use C1Input controls in general. If you are a novice to the Input for WinForms product, please see
the Input for WinFormsTutorials first.

Each topic provides a solution for specific tasks using the Input for WinForms product. By following the steps
outlined in each topic, you will be able to create projects using a variety of Input for WinForms features.

Each task-based help topic also assumes that you have created a new .NET project.

Adding a Drop-Down Form
To add a drop-down form to your project, complete the following steps:

1. Right-click your project (located in the Solution Explorer) and select Add New Item from the Add sub-menu.

2. In the Add New Item dialog box, select Windows Form from the list of Templates in the right pane. Then
enter DropDownForm1.cs in the Name textbox.

Input for WinForms 91

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. The next step is to replace the following class definition line(s) in the DropDownForm code:

To write code in Visual Basic

Visual Basic

Public Class DropDownForm1
 Inherits System.Windows.Forms.Form

To write code in C#

C#

Public Class DropDownForm1:System.Windows.Forms.Form

with:

To write code in Visual Basic

Visual Basic

Public Class DropDownForm1
 Inherits C1.Win.C1Input.DropDownForm

To write code in C#

C#

Public Class DropDownForm1: C1.Win.C1Input.DropDownForm

The form should look like the image below before editing:

Input for WinForms 92

Copyright © 2017 GrapeCity, inc. All rights reserved.

Changing the Navigation in the Navigator
To change the navigation in the Navigator, change Index like the following:

To write code in Visual Basic

Visual Basic

Private Sub c1DbNavigator1_BeforeAction(sender As Object, e As
C1.Win.C1Input.NavigatorBeforeActionEventArgs)
 If e.Button = C1.Win.C1Input.NavigatorButtonEnum.First Then
 ' Goto second record instead of the first
 e.Index = 1
 End If

 ' Go to the last row if user entered too large position
 If e.Button = C1.Win.C1Input.NavigatorButtonEnum.Position AndAlso e.Cancel
Then
 e.Cancel = False
 End If
End Sub

To write code in C#

C#

private void c1DbNavigator1_BeforeAction(object sender,
C1.Win.C1Input.NavigatorBeforeActionEventArgs e)
 {
 if (e.Button == C1.Win.C1Input.NavigatorButtonEnum.First)
 {

Input for WinForms 93

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // Goto second record instead of the first
 e.Index = 1;
 }

 // Go to the last row if user entered too large position
 if (e.Button == C1.Win.C1Input.NavigatorButtonEnum.Position && e.Cancel)
 {
 e.Cancel = false;
 }
 }

Customizing the Drop-Down Editor
The drop-down form below includes option buttons and button controls for the user to make a selection from the
C1DropDownControl.

The drop-down form appearance properties have been edited so that the form appears as below:

Select the form class name (for this example, WindowsApplication1.DropDownForm1) in the
DropDownFormClassName property of your C1DropDownControl. Notice that when you run the project and select
the drop-down arrow, the drop-down form now appears.

Enable the button controls on the drop-down form:
1. Set the AcceptButton and CancelButton properties of your DropDownForm1 to button1 and button2,

respectively.
2. Select the OK button and set its DialogResult property to OK. Similarly, select the Cancel button and set its

DialogResult property to Cancel.
3. To make the drop-down form change the control text when it is closed after the user clicks an item, add the

following event handler for the PostChanges event:

To write code in Visual Basic

Visual Basic

Private Sub DropDownForm1_PostChanges(sender As Object, e As System.EventArgs)
 If (MyBase.DialogResult = DialogResult.OK) Then
 Dim control1 As Control
 For Each control1 In MyBase.Controls
 If (TypeOf control1 is RadioButton AndAlso CType(control1,
RadioButton).Checked) Then
 MyBase.OwnerControl.Value = CType(control1, RadioButton).Text
 End If
 Next

Input for WinForms 94

Copyright © 2017 GrapeCity, inc. All rights reserved.

 End If
End Sub

To write code in C#

C#

private void DropDownForm1_PostChanges(object sender, System.EventArgs e)
{
 if (DialogResult == DialogResult.OK)
 {
 foreach (Control control1 in Controls)
 {
 if (control1 as RadioButton != null &&
((RadioButton)control1).Checked)
 {
 OwnerControl.Value = ((RadioButton)control1).Text;
 }
 }
 }
}

4. At design time, select DropDownForm1 to view its properties in the Properties window, and then select the

Events button from the Properties toolbar.
5. Set the DropDownForm1.PostChanges event to DropDownForm1_PostChanges.

6. To make the OK button (button1) receive focus when the form opens, set the DropDownForm1.FocusControl
property to button1.

7. To have a check in the Standard option button, in design time select radiobutton1 and set its Checked
property to True.

This topic illustrates the following:
Your form should appear similar to the form below:

Input for WinForms 95

Copyright © 2017 GrapeCity, inc. All rights reserved.

Customizing the C1DropDownControl
This topic shows how you can customize the C1Input.C1DropDownControl.

To make only the drop-down button visible:

1. Expand the VisibleButtons property node.
2. Set UpDown to False. Note that the DropDown default is set to True. The control should now look like the

image below:

To make the width of the drop-down form equal to the width of the control:

1. Select the drop-down form.
2. Set Options.AutoResize to True.

Binding C1CheckBox
The following topics show how to bind C1CheckBox to a Boolean, String, and Integer field.

Binding C1CheckBox to a Boolean Field
To programmatically bind C1CheckBox to a Boolean field, use the following code:

To write code in Visual Basic

Input for WinForms 96

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

C1CheckBox1.DataSource = dt
C1CheckBox1.DataField = "ColumnBoolean"

To write code in C#

C#

C1CheckBox1.DataSource = dt;
C1CheckBox1.DataField = "ColumnBoolean";

Binding C1CheckBox to a String Field
To programmatically bind C1CheckBox to a String field, use the following code:

To write code in Visual Basic

Visual Basic

c1CheckBox1.DataSource = dt
c1CheckBox1.DataField = "ColumnString"
c1CheckBox1.DataType = GetType(String)
' Use TranslateValues property to translate string values to/from the check box
states.
c1CheckBox1.TranslateValues.Checked = "Yes"
c1CheckBox1.TranslateValues.Unchecked = "No"

To write code in C#

C#

c1CheckBox1.DataSource = dt;
c1CheckBox1.DataField = "ColumnString";
c1CheckBox1.DataType = typeof(string);
// Use TranslateValues property to translate string values to/from the check box
states.
c1CheckBox1.TranslateValues.Checked = "Yes";
c1CheckBox1.TranslateValues.Unchecked = "No";

Binding C1CheckBox to an Integer Field
To programmatically bind C1CheckBox to an Integer field, use the following code:

To write code in Visual Basic

Visual Basic

c1CheckBox1.DataSource = dt
c1CheckBox1.DataField = "ColumnInt"
c1CheckBox1.DataType = GetType(Integer)
‘Use TranslateValues property to translate string values to/from the check box
states.

Input for WinForms 97

Copyright © 2017 GrapeCity, inc. All rights reserved.

c1CheckBox1.TranslateValues.Checked = 1
c1CheckBox1.TranslateValues.Unchecked = 0

To write code in C#

C#

c1CheckBox1.DataSource = dt;
c1CheckBox1.DataField = "ColumnInt";
c1CheckBox1.DataType = typeof(int);
// Use TranslateValues property to translate string values to/from the check box
states.
c1CheckBox1.TranslateValues.Checked = 1;
c1CheckBox1.TranslateValues.Unchecked = 0;

Setting the Calendar Drop-down
In previous versions of Input for WinForms, the Calendar feature in the C1DateEdit control allowed you to set the
"Today" and "Clear" buttons by manipulating the Calendar.UIString property. In newer versions of the
C1Input.DateEdit control, you can set these buttons by accessing the C1DateEdit properties menu.

To set the "Today" and "Clear" buttons:

1. Add the C1DateEdit control to your form.
2. Select C1.DateEdit1 from the Properties menu.
3. Locate Calendar in the left column and expand the Calendar property.

Input for WinForms 98

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Locate ClearText in the left column and enter "&Reset" in the right column.

5. Locate TodayText in the left column and enter "&Now" in the right column.

6. Press F5 to compile and run the project.

Input for WinForms 99

Copyright © 2017 GrapeCity, inc. All rights reserved.

Now when you open the C1DateEdit dropdown menu, the "Today" and "Clear" buttons are set.

Customizing Appearance Using Visual Styles
Setting the VisualStyle property on a C1Input control will control the gradients and borders used to paint C1TextBox,
C1Label, C1DbNavigator, C1DropDownControl, C1DateEdit (including the drop down calendar), C1NumericEdit
(including the drop down calculator), and C1Button.

To customize the appearance of a C1Input control using Visual Styles, set the VisualStyle property to Custom,
Office2007Black, Office2007Blue, Office2007Silver, System, Office2010Blue, Office2010Black, or
Office2010Silver. This property can be set either in the designer or in code. The following table describes each of the
Visual Styles:

Visual Style Description

Custom No visual style (use styles and appearance
properties as usual).

Office2007Black Style matches Office2007 Black color scheme.

Office2007Blue Style matches Office2007 Blue color scheme.

Office2007Silver Style matches Office2007 Silver color scheme.

System Style matches the current system settings.

Office2010Blue Style matches Office2010 Blue color scheme.

Office2010Black Style matches Office2010 Black color scheme.

Office2010Silver Style matches Office2010 Silver color scheme.

Using the Designer
Locate the VisualStyle property in the Properties window and set it to Custom, Office2007Black, Office2007Blue,
Office2007Silver, System, Office2010Blue, Office2010Black, or Office2010Silver. In this example, the VisualStyle
property is set to Office2007Blue for a C1TextBox control.

Input for WinForms 100

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using the Code Editor
Add code to the Form_Load event to set the VisualStyle property to Custom, Office2007Black, Office2007Blue,
Office2007Silver, or System. The following code sets the VisualStyle property to Office2007Blue for a C1TextBox
control:

To write code in Visual Basic

Visual Basic

Me.C1TextBox1.VisualStyle = C1.Win.C1Input.VisualStyle.Office2007Blue

To write code in C#

C#

Me.C1TextBox1.VisualStyle = C1.Win.C1Input.VisualStyle.Office2007Blue

Customizing the C1DateEdit Control
This topic demonstrates how to customize the drop-down of a C1DateEdit control. By default, the drop-down appears
like the image below:

Button Visibility
You can hide the Clear and Today buttons by performing the following tasks:

1. Select the C1DateEdit control.
2. In the Properties window, expand the Calendar property node.
3. Set the ShowClearButton and ShowTodayButton properties to False.

Input for WinForms 101

Copyright © 2017 GrapeCity, inc. All rights reserved.

Format Display
The FormatType property allows you to edit the date displayed in the box.

By default, the date and time are displayed in the box. To only show the date, perform the following task:

1. Select the C1DateEdit control.
2. In the Properties window, set the FormatType property to ShortDate.

Displaying Clicked C1DropDown Buttons in a Text Box
To display clicked C1DropDownControl buttons in a text box, use the C1DropDownControl.UpDownButtonClick
event. In this example, the output will be displayed in a textbox (TextBox1).

To write code in Visual Basic

Visual Basic

Private Sub C1DropDownControl1_UpDownButtonClick(ByVal sender As Object, ByVal e As
C1.Win.C1Input.UpDownButtonClickEventArgs) Handles
C1DropDownControl1.UpDownButtonClick
 If (e.Delta = 1) Then
 Me.TextBox1.AppendText("Up " & ControlChars.CrLf)
 ElseIf (e.Delta = -1) Then
 Me.TextBox1.AppendText("Down " & ControlChars.CrLf)
 End If
End Sub

To write code in C#

C#

private void c1DropDownControl1_UpDownButtonClick(object sender,
C1.Win.C1Input.UpDownButtonClickEventArgs e)
{
 if ((e.Delta == 1))
 {
 this.textBox1.AppendText("Up\r\n");
 }
 else if ((e.Delta == -1))
 {
 this.textBox1.AppendText("Down\r\n");
 }
}

This topic illustrates the following:
When the Up or Down buttons are clicked in the C1DropDownControl, the words Up or Down will appear in a
textbox to indicated which button was pressed.

Input for WinForms 102

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with a Database
The following topics demonstrate how to connect to a database and utilize Input for WinForms features once
connected to a database.

Creating a New Connection
To create a new connection, complete the following steps:

1. Select the C1ExpressConnection1.ConnectionString property from the Properties window and select New
Connection from the drop-down box. The standard OLE DB Data Link Properties dialog box appears:

Input for WinForms 103

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Select the provider, the database and other necessary connection properties in the dialog box.

In these tutorials, we use the standard MS Access Northwind sample database (C1NWind.mdb).

3. Select Microsoft Jet 4.0 OLE DB Provider in the Provider tab. Once you have chosen the data you can select
the Next button.

Input for WinForms 104

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. In the Connection tab, click on the ellipsis button to add the C1NWind.mdb database to the ConnectionString.
The Select Access Database dialog box will appear. Enter the path, Documents\ComponentOne
Samples\Common\C1NWind.mdb (or the location of your database) for the C1NWind.mdb database. Press
OK

That will close the Data Link Properties dialog box and put the connection string in the ConnectionString
property.

Updating /Refreshing Data from the Database
This topic demonstrates how you can use the Update/Refresh button to send changes and re-fetch data from the
database. Complete the following steps:

1. Add a C1DbNavigator control to your form and select the control to view its Properties window.
2. Expand the VisibleButtons property node and set Update and Refresh to True. Set the default navigation

buttons (Next, Previous, First, Last) to False.
3. Set the PositionVisible property to False. As an option, you can set its ColorButtons property to True for the

buttons to have color bitmaps:

4. To make the Update and Refresh buttons functional, add a Click event handler to the C1DbNavigator
component. Enter the following code:

To write code in Visual Basic

Visual Basic

Input for WinForms 105

Copyright © 2017 GrapeCity, inc. All rights reserved.

Private Sub c1DbNavigator1_UpdateData(sender As Object, e As System.EventArgs)
 c1ExpressConnection1.Update()
End Sub

Private Sub c1DbNavigator1_RefreshData(sender As Object, e As System.EventArgs)
 c1ExpressConnection1.Fill()
End Sub

To write code in C#

C#

private void c1DbNavigator1_UpdateData(object sender, System.EventArgs e)
{
 c1ExpressConnection1.Update();
}

private void c1DbNavigator1_RefreshData(object sender, System.EventArgs e)
{
 c1ExpressConnection1.Fill();
}

Creating a Master-Detail Relation
This topic shows how to create a master-detail relation between tables, C1ExpressTable1 (master) and
C1ExpressTable2 (detail).

1. Select the C1ExpressionConnection1 component to view the Properties window. Press the ellipsis button in the
Relations property of the C1ExpressionConnection1 control to open the Relations dialog box.

2. In the Relations dialog box, select Products for the Parent field, Order Details for the Child field, and then

select the Add join button to open the Add new join dialog box.
3. Add a join with ProductID for both the Parent field and the Child field. Press OK to close the dialog box.

The join should appear as below:

Input for WinForms 106

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Press OK to close the Relations dialog box.

Customizing the PictureBox
Like most controls, you can easily increase or decrease the size of the C1.Input.PictureBox either using your mouse or
through the C1.Input.PictureBox.Size property. But, depending on the dimensions of the picture files, an image might
be cut off or might leave a large blank space showing within the PictureBox:

Or…

Input for WinForms 107

Copyright © 2017 GrapeCity, inc. All rights reserved.

Perhaps you want your image to appear larger when the program runs. If you increase the size of the PictureBox
control you still need to alter the Input.PictureBox.SizeMode for the picture to stretch to the controls boundaries.

To Expand the Image in the PictureBox

1. Create .NET project and add the following controls to your form.
C1ExpressTable1 (C1.Data.Express.C1ExpressTable)
C1Label1-3 (C1.Win.C1Input.C1Label)
C1PictureBox1 (C1.Win.C1Input.C1PictureBox)
C1TextBox1 (C1.Win.C1Input.C1TextBox)
C1DbNavigator1 (C1.Win.C1Input.C1DbNavigator)

2. Arrange the controls to resemble the form below:

Input for WinForms 108

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Enter the following to the C1.Data.Express.C1ExpressTable.ConnectionString property:

"Provider=Microsoft.Jet.OLEDB.4.0;Data Source="Documents\ComponentOne
Samples\Common\C1NWind.mdb"

Note: Step 3 assumes that you have the sample file, C1NWind.mdb, in the default location created upon
installing the ComponentOne controls. If your database file is in a different location or you want to use a
different database file, adjust this entry appropriately.

4. Using the Properties window, bind the remaining controls to the database:
Visual Style Description

C1DbNavigator1.DataSource C1ExpressTable1

C1Label1.DataSource C1ExpressTable1

C1Label1.DataField LastName

C1Label2.DataSource C1ExpressTable1

C1Label2.DataField FirstName

C1Label3.DataSource C1ExpressTable1

C1Label3.DataField HireDate

C1PictureBox1.DataSource C1ExpressTable1

C1PictureBox1.DataField Photo

C1TextBox1.DataSource C1ExpressTable1

Input for WinForms 109

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1TextBox1.DataField Notes

If you ran the program now, the images shown when cycling through the database would not fill the picture
box and a large blank space would appear on the form. You need to stretch the image to the boundaries of the
PictureBox.

5. Change the C1PictureBox1.SizeMode property from Normal to StretchImage. Notice that there are 3 other
options to choose from as well.

6. Run the program and notice how large the employee photo appears.

Input for WinForms 110

Copyright © 2017 GrapeCity, inc. All rights reserved.

Navigating the C1DateEdit Control
When end-users select the C1DateEdit control, then press the Enter or Tab to move to another control or select
another control with the mouse, the current date is automatically entered into the C1DateEdit control.

To move to another control without the date being automatically entered, complete one of the following:

Using the Designer:
1. Create a new .NET project and place a C1DateEdit control and a C1TextBox control on your form.
2. To show end-users that a control has an empty value, in the C1DateEdit.NullText property, enter “{Empty

Value}”.

If you ran the program at this point and selected the C1DateEdit control with either the keyboard or mouse,
then try to select the C1TextBox control, today’s date would automatically be entered into the C1DateEditr
field and you would be unable to leave that field blank.

Input for WinForms 111

Copyright © 2017 GrapeCity, inc. All rights reserved.

Notice that the cursor is in the C1TextBox but the current date remains in the C1DateEdit field.

3. Using the Properties window, change the C1DateEdit1.DateTimeInput property to False and change the
C1DateEdit1.EmptyAsNull property to True.

4. Run the Program and click on the C1DateEdit control, then click on the C1TextBox.

Notice that even after switching to the C1TextBox, the C1DateEdit field remains empty.

Using the Code Editor:
1. Create a new .NET project and in the Solution Explorer add a reference to the C1Input control.
2. Add the following import statement to the code editor

To write code in Visual Basic

Visual Basic

Imports C1.Win.C1Input

To write code in C#

C#

using C1.Win.C1Input;

3. Add the C1DateEdit control and C1TextBox control to the Form_Load event.

To write code in Visual Basic

Visual Basic

Dim X As New C1DateEdit
Controls.Add(X)
X.Location = New Point(50, 40)
Dim Y As New C1TextBox
Controls.Add(Y)

Input for WinForms 112

Copyright © 2017 GrapeCity, inc. All rights reserved.

Y.Location = New Point(100, 80)

To write code in C#

C#

C1DateEdit X = new C1DateEdit();
Controls.Add(X);
X.Location = new Point(50, 40);
C1TextBox Y = new C1TextBox();
Controls.Add(Y);
Y.Location = new Point(100, 80);

4. To show end-users that the control has an empty value, add the following code to the C1DateEdit entry.

To write code in Visual Basic

Visual Basic

X.NullText = "{Empty Value}"

To write code in C#

C#

X.NullText = "{Empty Value}";

If you ran the program at this point and selected the C1DateEdit control with either the keyboard or mouse,
then try to select the C1TextBox control, today’s date would automatically be entered into the C1DateEdit
field and you would be unable to leave that field blank.

5. To preserve the “Empty Value” in the C1DateEdit field even after switching to another control, add the
following code to the C1DateEdit entry.

To write code in Visual Basic

Visual Basic

X.DateTimeInput = False
X.EmptyAsNull = False

To write code in C#

C#

X.DateTimeInput = False;

Input for WinForms 113

Copyright © 2017 GrapeCity, inc. All rights reserved.

X.EmptyAsNull = False;

6. Run the Program and click on C1DateEdit control, then click on the C1TextBox.

Notice that even after switching to the C1TextBox, the C1DateEdit field remains empty.

Displaying a Border Color for the C1Input Controls
A border color can be applied to C1DateEdit, C1Label, C1NumericEdit, C1DropDownControl, and C1TextBox
controls.

To create a border color for the C1DropDownControl at design time

1. Add a C1DropDownControl to your form.
2. Navigate to C1DropDownControl’s properties window and set the BorderStyle property to “FixedSingle”.
3. Change C1DropDownControl’s BorderColor property to “Red”.

To create a border color for the C1DropDownControl programmatically

Use the following code to add a border color to the C1DropDownControl:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Dim dropdown As New C1DropDownControl
 Me.Controls.Add(dropdown)
 dropdown.BorderStyle = BorderStyle.FixedSingle
 dropdown.BorderColor = Color.Red
 End Sub

To write code in C#

C#

private void Form1_Load(object sender, EventArgs e)
 {
 C1DropDownControl dropdown = new C1DropDownControl();
 this.Controls.Add(dropdown);
 dropdown.BorderStyle = BorderStyle.FixedSingle;
 dropdown.BorderColor = Color.Red;
 }

This topic illustrates the following:

Input for WinForms 114

Copyright © 2017 GrapeCity, inc. All rights reserved.

A red border color with a fixed single border style is added to the C1DropDownControl.

Showing a Message Box when the Border Color Changes
You can use the BorderColorChanged event when the value of the BorderColor property changes.

To create a message box when the border color changes for C1TextBox, complete the following:

1. Add a C1TextBox control to your form.
2. Navigate to C1TextBox’s properties window and change the BorderStyle property to "FixedSingle".
3. Add a MouseClick event to the C1TextBox control to change C1TextBox’s border color to purple.

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox1_MouseClick(ByVal sender As System.Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles C1TextBox1.MouseClick
 C1TextBox1.BorderColor = Color.Purple
End Sub

To write code in C#

C#

private void c1TextBox1_MouseClick(object sender, MouseEventArgs e)
 {

 c1TextBox1.BorderColor = Color.Purple;
 }

4. Add a BorderColorChanged event to C1TextBox1 to show a message box that informs the user the border
color has changed.

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox1_BorderColorChanged(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles C1TextBox1.BorderColorChanged
 MessageBox.Show(“The C1TextBox1 border color change to purple”)
End Sub

To write code in C#

C#

private void c1TextBox1_BorderColorChanged(object sender, EventArgs e)
 {
 MessageBox.Show("The c1TextBox1 border color changed to purple");
 }

Input for WinForms 115

Copyright © 2017 GrapeCity, inc. All rights reserved.

This topic illustrates the following:

When you mouse click on the C1TextBox control the border color changes to purple. Once it changes to purple the
BorderColorChanged event fires and a message box appears informing the user that the border color has changed.

Set IME Mode
The ImeMode property can be used to set an Input Method Editor (IME) mode of the C1Input controls. An Input
Method Editor is a program that lets users enter complex symbols or characters, like Japanese Kanji characters, into
the input controls, using a basic keyboard.

The following table describes the values available for ImeMode property.

Value Description

On Indicates that the IME is on. Symbols or characters that are specific to Chinese or Japanese can be
entered. Valid for Japanese, Simplified Chinese, and Traditional Chinese IME only.

Off Indicates that the IME is off. The object behaves the same as English entry mode. Valid only for
Japanese, Simplified Chinese and Traditional Chinese IME.

Disable Indicates that the IME is disabled. It means that a user cannot turn the IME on from the keyboard
as the IME window is hidden.

Hiragana Hiragana Double Byte Characters. Valid only for the Japanese IME.

Katakana Katakana Double Byte Characters. Valid only for the Japanese IME.

KatakanaHalf Katakana Single Byte Characters. Valid only for the Japanese IME.

AlphaFull Alphanumeric Double Byte Characters. Valid only for Korean and Japanese IME.

Alpha Alphanumeric Single Byte Characters. Valid only for Korean and Japanese IME.

HangulFull Hangul Double Byte Characters. Valid only for the Korean IME.

NoControl None (Default).

Inherit Indicated that the IME mode of the parent control is inherited.

Close Indicates that the IME is closed. Valid only for the Chinese IME.

Hangul Hangul Single Byte Characters. Valid only for the Korean IME.

OnHalf Indicates that the IME is on HalfShape. Valid only for the Chinese IME.

 Complete the following steps to change the IME mode for the C1Input control:

1. Create a new Windows Application project. Place a C1Input control (C1TextBox, C1ComboBox, C1DateEdit,
C1DropDownControl or C1NumericEdit) on the form.

Input for WinForms 116

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. From the Properties window, set the ImeMode property, as per your requirement.

Move Focus
This feature makes navigating through the controls easier and allows you to add keyboard navigation support to the
C1Input (C1TextBox, C1ComboBox, C1DateEdit, C1DropDownControl and C1NumericEdit) controls. The following
properties enable you to move focus from or to the C1Input controls.

ExitOnLastChar: Moves focus from the C1Input control either when the length of the text entered reaches the
maximum length, as defined in the MaxLength property, or when the mask is filled. Its default value is False.
ExitOnLeftRightKey: Moves focus from the C1Input control when the left or right arrow keys are pressed. Its
default value is None.
TabStop: Indicates whether the focus is moved to the C1Input control, from the control on the left, when the
TAB key is pressed. Its default value is True.

The table below describes values and behavior of the above properties.

Property Possible Value Description

ExitOnLastChar True Enables moving focus from the C1Input control when
the length of text entered reaches the maximum
length, defined in the MaxLength property, or when
the mask is filled.

False Disables moving focus from the C1Input control when
the length of text entered reaches the maximum
length, defined in the MaxLength property, or when
the mask is filled.

ExitOnLeftRightKey None Disables moving from the C1Input control when the
arrow keys are pressed.

Left Enables moving focus to the control on the left side of
the C1Input control, when the left arrow key is pressed.

Right Enables moving focus to the control on the right side
of the C1Input control, when the right arrow key is
pressed.

Both Enables moving focus to the control on either left
or right side of the C1Input control, when the
respective key is pressed.

TabStop True Enables moving focus to the C1Input control, from the
control on the left side of the C1Input control, when
the TAB key is pressed.

False Disables moving focus to the C1Input control, from the
control on the left side of the C1Input control, when
the TAB key is pressed.

Complete the following steps to enable or disable this feature in the C1Input control:

1. Create a new Windows Application project. Place a C1Input control (C1TextBox, C1ComboBox, C1DateEdit,
C1DropDownControl or C1NumericEdit) on the form.

2. From the Properties window, set either one or all of the following properties, as per your requirement.

Input for WinForms 117

Copyright © 2017 GrapeCity, inc. All rights reserved.

Set the ExitOnLastChar to true or false, to enable or disable moving focus from the control when the
text entered reaches the maximum length.
Set the ExitOnLeftRightKey to Left, Right or Both, to enable moving the focus from the control when
the respective key is pressed.
Set the TabStop to true or false, to enable or disable moving focus to the C1Input control, when the tab
key is pressed.

Select Specific Calendar Type
The CalendarType property, present in the C1DateEdit and C1NumericEdit controls lets you select specific calendar
types to use a non-default Calendar. The following calendar types are supported by C1DateEdit and C1NumericEdit
controls:

Default
ChineseLuniSolarCalendar
EastAsianLunisolarCalendar
GregorianCalendar
HebrewCalendar
HijriCalendar
JapaneseCalendar
JapaneseLunisolarCalendar
JulianCalendar
KoreanCalendar
KoreanLunisolarCalendar
TaiwanCalendar
TaiwanLunisolarCalendar
ThaiBuddhistCalendar
UmAlQuraCalendar

 Complete the following steps to change the calendar type for the C1Input control:

1. Create a new Windows Application project. Place a C1Input control (C1DateEdit or C1NumericEdit) on the form.
2. From the Properties window, set the CalendarType property, as per your requirement.

Spin Up/Spin Down Programmatically
The SpinUp and SpinDown methods enable you to increase or decrease the values entered in the C1Input
controls (C1ComboBox, C1DropDownControl, C1DateEdit and C1NumericInput) when the focus is not on the control.

In addition to the above methods, C1ComboBox and C1DateEdit contain an additional property AllowSpinLoop that,
when set to true, loops through the items when the SpinUp or SpinDown method is invoked.

Following is an example to use the SpinUp method:

1. Create a new Windows Application project. Place a C1NumericEdit control on the form.
2. From the Properties window, set the Value property to 0.
3. Add a textbox control onto the form and double click the textbox to generate the TextChanged event, in code.
4. Add the following code to the textbox's TextChanged event.

To write code in Visual Basic

Visual Basic

Private Sub TextBox1_TextChanged(sender As Object, e As EventArgs) Handles
TextBox1.TextChanged

Input for WinForms 118

Copyright © 2017 GrapeCity, inc. All rights reserved.

 c1NumericEdit1.SpinUp(1)
End Sub

To write code in C#

C#

private void textBox1_TextChanged(object sender, EventArgs e)
{
 c1NumericEdit1.SpinUp(1);
}

5. Run the project.

What You've Accomplished

When you enter characters into the textbox control, the value in the C1NumericEdit control will increase by 1, each
time a new character is entered, giving you the count of characters entered in the control.

Change Up-Down Button Alignment
The UpDownButtonAlignment property lets you change the alignment of the Up and Down buttons present next to
the DropDown button in C1DropDown, C1DateEdit and C1NumericEdit. This property can have the following values:

Default: Both the buttons are placed on the right side, along with the drop-down button.

UpLeftDownRight: The Up button is placed on the left side and the Down button is placed on the right side.

UpRightDownLeft: The Up button is placed on the right side and the Down button is placed on the left side.

Complete the following steps to change the alignment of the Up and Down buttons:

1. Create a new Windows Application project. Place a C1Input control (C1DropDown, C1DateEdit or
C1NumericEdit) on the form.

2. From the Properties window, set the UpDownButtonAlignment property, as per your requirement.

Input for WinForms 119

Copyright © 2017 GrapeCity, inc. All rights reserved.

Input for WinForms Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos
which may make use of other development tools included with the ComponentOne Studio.

Please refer to the pre-installed product samples through the following path:

Documents\ComponentOne Samples\WinForms

Note: The Samples are also available at http://helpcentral.componentone.com/Samples.aspx.

Visual basic samples

The following Visual Basic samples are included with C1Input:

Sample Description

CreditCardDropDown Using a custom drop-down form. This sample uses the C1DropDownControl and
DropDownForm controls.

FormattingInBinding Demonstrates the use of two important events of C1TextBox, C1Label, and C1PictureBox
controls.This sample uses the C1DateEdit, C1DbNavigator, C1Label, and C1PictureBox
controls.

InheritedDropDown Implements a fully functional font editing control based onC1DropDrownControl. The user
can change font properties with the texteditor or open the drop-down portion to change
font properties in a more convenient way. This sample uses the C1DropDownControl,
C1TextBox, and DropDownForm controls.

LookUpSample Shows how to create a custom drop-down control with names from a lookup table. The
UpDown button scrolls the names, while the ellipsis (...) button allows to enter a new name.

NumPadDropDown1 Replaces the standard calculator in a C1NumericEdit control with the custom drop-down
numpad. This sample uses the C1NumericEdit and DropDownForm controls.

NumPadDropDown2 Demonstrates the ability to enter numbers with the mouse or other pointing device. This
sample uses the C1DbNavigator, C1NumericEdit, and DropDownForm controls.

ComboBoxFeatures Demonstrates the basic features of C1ComboBox such as the difference between the Default
and DropDownList styles, how to bind the dropdownlist to an enum, array of strings, and a
bindingsource, and how to control the drop down form size using the MinimumSize and
MaximumSize properties.

ComboBoxImages Shows how to easily use images from the ImageList in the dropdown items of the
C1ComboBox control.

ComboBoxItemModes Demonstrates how to use the different values (Default, HtmlPattern, and Html) from the
ItemMode property.

SplitButtons This sample shows how to use the C1SplitButton control.

SplitButtonsBasic This sample shows how to use the basic features of the C1SplitButton control such as how
to use the Save and SaveAs actions.

C# samples

The following C# samples are included with C1Input:

Input for WinForms 120

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/Samples.aspx

Sample Description

CreditCardDropDown Using a custom drop-down form. This sample uses the C1DropDownControl and
DropDownForm controls.

FormattingInBinding Demonstrates the use of two important events of C1TextBox, C1Label, and C1PictureBox
controls.This sample uses the C1DateEdit, C1DbNavigator, C1Label, and C1PictureBox
controls.

InheritedDropDown Implements a fully functional font editing control based onC1DropDrownControl. The user
can change font properties with the texteditor or open the drop-down portion to change
font properties in a more convenient way. This sample uses the C1DropDownControl,
C1TextBox, and DropDownForm controls.

NumPadDropDown1 Replaces the standard calculator in a C1NumericEdit control with the custom drop-down
numpad. This sample uses the C1NumericEdit and DropDownForm controls.

NumPadDropDown2 Demonstrates the ability to enter numbers with the mouse or other pointing device. This
sample uses the C1DbNavigator, C1NumericEdit, and DropDownForm controls.

ComboBoxFeatures Demonstrates the basic features of C1ComboBox such as the difference between the Default
and DropDownList styles, how to bind the dropdownlist to an enum, array of strings, and a
bindingsource, and how to control the drop down form size using the MinimumSize and
MaximumSize properties.

ComboBoxImages Shows how to easily use images from the ImageList in the dropdown items of the
C1ComboBox control.

ComboBoxItemModes Demonstrates how to use the different values (Default, HtmlPattern, and Html) from the
ItemMode property.

SplitButtons This sample shows how to use the C1SplitButton control.

SplitButtonsBasic This sample shows how to use the basic features of the C1SplitButton control such as how
to use the Save and SaveAs actions.

Input for WinForms 121

Copyright © 2017 GrapeCity, inc. All rights reserved.

Input for WinForms Tutorials
The tutorials assume that you are familiar with programming in Visual Basic.NET, know what a DataSet is, and
generally know how to use bound controls. The tutorials provide step-by-step instructions—no prior knowledge of
C1Input is needed. By following the steps outlined in this chapter, you will be able to create projects demonstrating a
variety of C1Input features, and get a good sense of what C1Input can do and how to do it.

The tutorials use an Access database, C1NWind.mdb. The database file C1NWind.mdb is in the Common subdirectory
of the ComponentOne Samples program folder and the sample projects are in the C1Input subdirectory of the
ComponentOne Samples installation directory.

If you have the Northwind database installed in a different location, you can change the connection string, or copy
the C1NWind.mdb file to the required location.

Note: If you are running the pre-built tutorial projects included in C1Input installation, please be aware that the
projects have the sample database location hard coded in the connection string: Documents\ComponentOne
Samples\Common​\C1NWind.mdb

Binding C1Input Controls to a Data Source
In this tutorial, you will see how easy it is to show database data in a form using C1Input components. Without any
manual coding, you can format data, navigate data source rows, even display pictures.

C1Input controls support data binding to any .NET data source objects. Among them, you can use any standard
ADO.NET object, such as DataTable, DataView or DataSet as your data source. The alternative and recommended way
is to use C1DataObjects framework, a part of ComponentOne Studio Enterprise adding many enhancements to
ADO.NET. We will use C1DataObjects Express Edition (C1DataExpress) data source in all our tutorials except this first
one, since it is the easiest way to bind to data in a .NET application. If you are interested in ADO.NET versions of
tutorial projects, they can be found in the Tutorials\ADO.NET subdirectory. This tutorial will show how to bind both to
C1DataObjects and to ADO.NET.

Binding to a C1DataExpress Data Source
To bind to a C1DataExpress data source, complete the following steps:

1. Create a new Windows Application project.

2. Place the following components on the form as shown in the figure:
C1ExpressTable1 (C1.Data.Express.C1ExpressTable)
C1Label1-2 (C1.Win.C1Input.C1Label)
C1PictureBox1 (C1.Win.C1Input.C1PictureBox)
C1TextBox1 (C1.Win.C1Input.C1TextBox)
C1DbNavigator1 (C1.Win.C1Input.C1DbNavigator)

Input for WinForms 122

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Select the C1ExpressTable1 component, go to the Properties window, select the ConnectionString property
drop-down arrow and select New Connection.

The Add Connection dialog box opens.

4. Select the provider, the database, and other necessary connection properties in that dialog box.

In these tutorials, we use the standard MS Access Northwind sample database (C1NWind.mdb). Add the
following to the ConnectionString property: Provider=Microsoft.Jet.OLEDB.4.0;Data
Source="Documents\ComponentOne Samples\Common\C1NWind.mdb".

5. For the C1ExpressTable1 component, open the DbTableName property box and select Employees from the
Database Table list.

Now, we will bind some C1Input controls to the data control. Suppose we want to show the first name, date of
birth, notes, and photo for each employee. The first name and date of birth will be displayed in C1Label
controls, notes in C1TextBox, and photo in C1PictureBox.

6. For the C1Label1 control, go to the Properties window, select C1ExpressTable1 from the drop-down list for
the DataSource property.

7. Then select FirstName from the list for the DataField property.
8. Bind the C1Label2 DataSource property to C1ExpressTable1 and the C1Label2 DataField property to

BirthDate and C1TextBox1 DataSource property to C1ExpressTable1 and the C1TextBox1 DataField
property to Notes.

9. After binding the C1Label2 control, you can notice that its DataType property is set to the field type,
DateTime. Now, change the format for C1Label2 so that it will not show time with the date of birth (showing
time is the default). To change the format, select the FormatType property, open its combo box and select
MediumDate.

Next, bind the C1PictureBox control to the Photo field.

10. First select C1ExpressTable in the DataSource property combo box of the C1PictureBox control.
11. Open the DataField property combo box and select Photo from the list of available fields.
12. Set up the C1DbNavigator1 control allowing the user to navigate through the data set. To bind the navigator

control to the data source, select C1ExpressTable1 in its DataSource property combo box.
13. To dock the navigator control to the bottom of the form and separate it from the rest of the form with a three-

Input for WinForms 123

Copyright © 2017 GrapeCity, inc. All rights reserved.

dimensional line, set the following properties:
C1DbNavigator1.Dock = Bottom
C1DbNavigator1.BorderStyle = Fixed3D

Run the program and observe the following:
C1Input controls show data in Employees records. You can navigate between Employees records using the four VCR-
style buttons of the navigator control. You can also go directly to a certain record by typing the record number in the
navigator control record number edit field, or set the input focus to the record number field and use mouse wheel to
scroll through the records.

Binding to an ADO.NET Data Source
To bind to an ADO.NET data source, complete the following steps:

1. Create a new Windows Application project.
2. Place the following components on the form as shown in the figure:

C1Label1-2 (C1.Win.C1Input.C1Label)
C1PictureBox1 (C1.Win.C1Input.C1PictureBox)
C1TextBox1 (C1.Win.C1Input.C1TextBox)
C1DbNavigator1 (C1.Win.C1Input.C1DbNavigator)

Input for WinForms 124

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Add a BindingSource component (located on the Data tab of the Toolbox) to the form.
4. In the Properties window, locate the DataSource property and expand the drop-down. Select Add Project

Data Source.

The DataSource Configuration Wizard opens.

5. Select Database on the Choose a Data Source Type page, and click Next.

6. Click the New Connection button to create a new connection or choose one from the drop-down list.
7. Click the Browse button to specify the location of the C1NWind.mdb database. Click the Test Connection

button to make sure that you have successfully connected to the database or server and click OK. The new
string appears in the on the Choose Your Data Connection page.

Input for WinForms 125

Copyright © 2017 GrapeCity, inc. All rights reserved.

8. Click the Next button to continue. A dialog box will appear asking if you would like to add the data file to your
project and modify the connection string. Click No.

9. Save the connection string in the application configuration file by checking the Yes, save the connection as
box and entering a name. Click the Next button to continue.

Input for WinForms 126

Copyright © 2017 GrapeCity, inc. All rights reserved.

10. On the Choose your database object page, select the Employees table. Click Finish to exit the wizard.

A DataSet and connection string are added to your project.

11. In the Properties window, set the DataMember property for BindingSource1 to Employees. A
DataTableAdapter is added to the form and automatically adds the following code to the Form_Load event:

To write code in Visual Basic

Input for WinForms 127

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Me.EmployeesTableAdapter.Fill(Me.NwindDataSet.Employees)

To write code in C#

C#

this.EmployeesTableAdapter.Fill(this.NwindDataSet.Employees);

Bind C1Input controls to the data source
Suppose we want to show the first name, date of birth, notes, and photo for each employee. The first name and date
of birth will be displayed in a C1Label control, notes in C1TextBox, and photo in C1PictureBox. Binding the C1Input
controls to the data source involves the following operations:

1. For the C1Label1 control, go to the Properties window, select NwindDataSet from the drop-down list for the
DataSource property.

2. Then select Employees.FirstName from the list for the DataField property.

Note: To change the Label's Size property, you must set its AutoSize property to False.

3. As in the steps above, from the Properties window, bind the C1Label2 DataSource property to NwindDataSet
and the DataField property to Employees.BirthDate.

4. Bind the C1TextBox1 DataSource property to NwindDataSet and the DataField property to
Employees.Notes.

After binding the controls, complete the following tasks:

Notice that the C1Label2 DataType property is set to the field type, DateTime. Now, change the format
for C1Label2 so that it will not show time with the date of birth (showing time is the default). To change
the format, select the FormatType property, open its combo box and select MediumDate.
Set the C1TextBox1.Multiline property to True.

Next, bind the C1PictureBox control to the Photo field.

5. First select NwindDataSet in the DataSource property combo box of the C1PictureBox control.
6. Then open the DataField property combo box and select Employees.Photo from the list of available fields.

Next, set up the C1DbNavigator1 control allowing the user to navigate through the data set. To bind the
navigator control to the data source:

7. First select dataSet11 in its DataSource property combo box.
8. Then select Employees in its DataMember property combo box.
9. To dock the navigator control to the bottom of the form and separate it from the rest of the form with a three-

dimensional line, set the following properties:
C1DbNavigator1.Dock = Bottom
C1DbNavigator1.BorderStyle = Fixed3D

Run the program and observe the following:
C1Input controls show data in Employees records. You can navigate between Employees records using the four DVD-
style buttons of the navigator control. You can also go directly to a certain record by typing the record number in the
navigator control record number edit field, or set the input focus to the record number field and use mouse wheel to
scroll through the records.

Input for WinForms 128

Copyright © 2017 GrapeCity, inc. All rights reserved.

Masked Input
In this tutorial, you will learn how to use edit mask to facilitate and restrict user input.

1. Create a new Windows Application project. Place the following components on the form as shown in the figure:
C1ExpressConnection1 (C1.Data.Express.C1ExpressConnection)
C1ExpressTable1-3 (C1.Data.Express.C1ExpressTable)
Label1-4 (all of type System.Windows.Forms.Label)
C1TextBox1-7 (C1.Win.C1Input .C1TextBox)
C1Label1-4 (C1.Win.Input.C1Label)
C1DbNavigator1 (C1.Win.C1Input .C1DbNavigator)
Button1 (System.Windows.Forms.Button)

Input for WinForms 129

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: The labels in blue are all of type System.Windows.Forms.Label. The Text property for each label is
as it appears on the form.

2. From the Properties window, set the following basic properties for the Label, C1Label, and Button controls:
Control Property Value

Label1 Name labStoredExpNumber

Text <stored value>

Label2 Name labStoredDateTime

Text <stored value>

Label3 Name labStoredPhone

Text <stored value>

Label4 Name labStoredMultiline

Text <stored value>

C1Label1 Name labCompanyName

Text labCompanyName

C1Label2 Name labCustomerID

Text labCustomerID

C1Label3 Name labOrderDate

Text labOrderDate

C1Label4 Name labFreight

Text labFreight

Button1 Name btnClose

Text Close

3. Select the C1ExpressConnection1 component, go to the Properties window, open the ConnectionString
property. Add the following to the ConnectionString property: Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=" Documents\ComponentOne Samples\Common ".

4. Set the properties of C1ExpressTable1-3 as follows:
Control Property Value

C1ExpressTable1 ConnectionComponent C1ExpressConnection1

DbTableName Customers

C1ExpressTable2 ConnectionComponent C1ExpressConnection1

DbTableName Orders

C1ExpressTable3 ConnectionComponent C1ExpressConnection1

DbTableName <Composite…>

* See steps below.

* Selecting the <Composite…> value for the C1ExpressTable3 opens the Composite Table Editor. In the editor,
complete the following steps:

Input for WinForms 130

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Select the Add table button to add Customers table.
2. Select the Add table button again to add Orders table related as One-to-Many (1-M).
3. Select the Add join button. The Add new join dialog box appears.
4. Select CustomerID for the Parent field and Child field.

5. Click OK.
6. The new Customers.CustomerID – Orders.CustomerID join appears in the window; click OK.

7. To bind controls to the data source, set the following properties:

Note: If all of the fields in the CompositeTable are not appearing in the DataField drop-down, select
C1ExpressTable3 and open the C1ExpressTable Tasks menu by clicking the smart tag (). In the
C1ExpressTable Tasks menu, click Retrieve Fields. You may have to set the DataSource and DataField
properties again.

Control Property Value

C1DbNavigator1 DataSource C1ExpressConnection1

DataMember CompositeTable

labCompanyName DataSource C1ExpressConnection1

Input for WinForms 131

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataField CompositeTable.CompanyName

labCustomerID DataSource C1ExpressConnection1

DataField CompositeTable.CustomerID

labOrderDate DataSource C1ExpressConnection1

DataField CompositeTable.OrderDate

labFreight DataSource C1ExpressConnection1

DataField CompositeTable.Freight

C1TextBox5 DataSource C1ExpressConnection1

DataField CompositeTable.CustomerID

C1TextBox6 DataSource C1ExpressConnection1

DataField CompositeTable.OrderDate

C1TextBox7 DataSource C1ExpressConnection1

DataField CompositeTable.Freight

8. The labels located to the right of the C1TextBox1-4 controls display the current Value property of the
corresponding C1TextBox. To synchronize them with C1TextBox1-4, create event handlers C1TextBox1(…
4)_ValueChanged:

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox1_ValueChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TextBox1.ValueChanged
 Try
 labStoredExpNumber.Text = CType(Me.C1TextBox1.Value, String)
 Catch
 labStoredExpNumber.Text = ""
 End Try
End Sub

Private Sub C1TextBox2_ValueChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TextBox2.ValueChanged
 Try
 labStoredDateTime.Text = CType(Me.C1TextBox2.Value, String)
 Catch
 labStoredDateTime.Text = ""
 End Try
End Sub

Private Sub C1TextBox3_ValueChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TextBox3.ValueChanged
 Try
 labStoredPhone.Text = CType(Me.C1TextBox3.Value, String)
 Catch
 labStoredPhone.Text = ""
 End Try

Input for WinForms 132

Copyright © 2017 GrapeCity, inc. All rights reserved.

End Sub

Private Sub C1TextBox4_ValueChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TextBox4.ValueChanged
 Try
 labStoredMultiline.Text = CType(Me.C1TextBox4.Value, String)
 Catch
 labStoredMultiline.Text = ""
 End Try
End Sub

To write code in C#

C#

private void c1TextBox1_ValueChanged(object sender, System.EventArgs e)
{
 try
 {
 labStoredExpNumber.Text = (string)this.c1TextBox1.Value;
 }
 catch
 {
 labStoredExpNumber.Text = "";
 }
}

private void c1TextBox2_ValueChanged(object sender, System.EventArgs e)
{
 try
 {
 labStoredDateTime.Text = (string)this.c1TextBox1.Value;
 }
 catch
 {
 labStoredDateTime.Text = "";
 }
}

private void c1TextBox3_ValueChanged(object sender, System.EventArgs e)
{
 try
 {
 labStoredPhone.Text = (string)this.c1TextBox1.Value;
 }
 catch
 {
 labStoredPhone.Text = "";
 }
}

private void c1TextBox4_ValueChanged(object sender, System.EventArgs e)

Input for WinForms 133

Copyright © 2017 GrapeCity, inc. All rights reserved.

{
 try
 {
 labStoredMultiline.Text = (string)this.c1TextBox1.Value;
 }
 catch
 {
 labStoredMultiline.Text = "";
 }
}

9. C1TextBox1 allows you to enter numbers with or without fractional part and with optional exponent. It uses
the WhenNextStarted mode of showing mask literals, so the decimal point appears only when necessary, when
the user starts entering the decimal part.

For C1TextBox1:
10. Set the EditMask property to !###0.^999e#9.

Here '#' is an optional position for a digit or sign, '9' is an optional position for a digit, '0' is a required position
for a digit, '!' is a special character specifying right justification for the following text, '^' cancels right
justification mode, 'e' – a literal.

11. Then expand the MaskInfo property and set ShowLiterals to WhenNextStarted.

Note: C1TextBox and C1NumericEdit support a special edit mode, NumericInput mode facilitating input
of any numeric data type. It is usually more convenient for numeric input than edit mask. Try
NumericInput before using an edit mask for numeric data.

12. C1TextBox2 is used for entering a date/time value.

For C1TextBox2:
13. Set the EditMask property to !90/90/9900 90:90 >PM.

There are two new special characters used in this mask: '>' causes the next characters to be converted to upper
case, 'P' is a non-standard special character (custom placeholder) allowing entering either 'A' or 'P'.

14. To define a custom placeholder, expand the MaskInfo property and press the ellipsis button in the
CustomPlaceholders property to open the Collection Editor. In the Collection Editor, add a new item. Set
the properties of the newly added item:
Property Value

Placeholder P

LookupChars AP

Thus the letter 'P' represents a position in edit mask where the user can type 'A' or 'P'.

15. Now, we want to specify that entered date/time values are stored in the database in a compact form without
literals. For example, the value "11/_8/2002 _1:42 PM" is stored as "11*82002*142P".

To enable this storage format, set SaveBlanks to True and SaveLiterals to False (both properties are contained
in MaskInfo). Also, change StoredEmptyChar from default '_' to '*' to store asterisk in blank positions. If you set
SaveBlanks to False, SaveLiterals to True, blank positions will not be saved in the database, the above data will
be saved as "11/8/2002 1:42PM".

Input for WinForms 134

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note: C1TextBox and C1DateEdit support a special edit mode, DateTimeInput mode facilitating input of
date/time data. It is usually more convenient for date/time input than edit mask. Try DateTimeInput
before using an edit mask for date/time data.

Set up the C1TextBox3 control for telephone number input with mask (999) 0099-00099. Here ‘9’ is an
optional digit position, ‘0’ is a required digit position.

For C1TextBox3:
16. Set the EditMask property to (999) 0099-00099.
17. Expand the MaskInfo property and set AutoTabWhenFilled to True. This will automatically move the input

focus to the next control once the user fills the last mask position.
18. The C1TextBox4 control demonstrates multiline mask input.

For the C1TextBox4:

Set its Multiline property to True.
Set its ScrollBars property to Vertical.
Set the EditMask property to the following:
"First Name: "CCCCCCCCCCCCCCC\n"Last Name: "CCCCCCCCCCCCCCCCCCCC\n"
Date of Birth: "!90/90/9900^\n"Work Status: "CCCCCCCCCCCCCCC\n"Salary:
$"!######0.^99

Here ‘\n’ represents a line break.

Expand the MaskInfo property and set SaveBlanks to True.

This ensures that all positions left blank by the user are saved as spaces. If SaveBlanks is set to False, optional
positions not filled by the user will be ignored. Additionally, you can set SaveLiterals to False, which will
prevent saving literal texts, so only the information typed by the user is saved.

19. All the previous controls were unbound. Let us also configure some data bound C1Label and C1TextBox
controls. They are located at the bottom of the form. Their data binding properties were set on Step 4. Set their
other properties as follows:
Control Property Value

labCustomerID MaskInfo.EditMask >LLLLL

C1TextBox5 EditMask >LLLLL

labOrderDate FormatType CustomFormat

CustomFormat M/d/yyyy

MaskInfo.EditMask !90/90/0000

C1TextBox6 FormatType CustomFormat

CustomFormat M/d/yyyy

EditMask !90/90/0000

labFreight FormatType CustomFormat

CustomFormat $ ####0.##

MaskInfo.EditMask $!99990.^99

C1TextBox7 FormatType CustomFormat

Input for WinForms 135

Copyright © 2017 GrapeCity, inc. All rights reserved.

CustomFormat $ ####0.##

EditMask $!99990.^99

Run the program and observe the following:
Mask characters appear when you move focus to a control (except c1TextBox1 that has ShowLiterals set to
WhenNextStarted).
In edit mode, empty mask positions are shown using PromptChar (default: ‘_’). When the control loses focus,
these positions are hidden.
Experiment typing in the controls and look at the stored values displayed in the labels.
If you select the whole text and press Delete, the input control is cleared. Depending on the EmptyAsNull, this
is interpreted either as DBNull value or as current edit cancellation, reverting to the previous value when the
control loses focus. The same effect, canceling edit, has the ESC key.

Masked Input Using Regular Expressions
You can use regular expressions in masks for validating more complex input formats using RegexpEditMask. The
Properties pane showing RegexpEditMask property for c1TextBox control is as shown:

The keywords in regular expressions and their description is shown in the following table:

Keywords Description

\A Matches any upper case alphabet [A-Z].

\a Matches any lower case alphabet [a-z].

\D Matches any decimal digit [0-9].

Input for WinForms 136

Copyright © 2017 GrapeCity, inc. All rights reserved.

\W Matches any word character. It is same as [a-z A-Z 0-9].

\K Matches SBCS Katakana.

\H Matches all SBCS characters.

\ A Matches any upper case DBCS alphabet [A-Z].

\ a Matches any lower case DBCS alphabet [a-z].

\ D Matches any DBCS decimal digit [0-9].

\ W Matches any DBCS word character. It is same as [a-z A-Z 0-9].

\ K Matches all DBCS Katakana.

\ J Matches all Hiragana.

\ Z Matches all DBCS characters.

\N Matches all SBCS big Katakana.

\ N Matches all DBCS big Katakana.

\ G Matches DBCS big Hiragana.

\ T Matches surrogate character.

[] Matches a character subset.

[^] To express an exclude subset.

- Defines contiguous character range.

{} Specifies the number of times to match.

* Specifies zero or more matches. It is the short expression for {0,}.

+ Specifies one or more matches. It is the short expression for {1,}.

? Specifies zero or one matches. It is the short expression for {0,1}.

Keywords Description

Data Navigation and Actions Using C1DbNavigator
This tutorial demonstrates the main features of the C1DbNavigator control. It is primarily used to navigate through
data source rows, but it can also be used to perform common actions on data such as adding rows, confirming
changes, updating the data source, refreshing from the data source (canceling changes), and others.

1. Create a new Windows Application project.
2. Place the following components on the form as shown in the figure:

C1ExpressConnection (C1.Data.Express.C1ExpressConnection)
C1ExpressTable1-2 (C1.Data.Express.C1ExpressTable)
C1Label1-3 (C1.Win.C1Input.C1Label)
DataGridView1-2 (System.Windows.Forms.DataGridView)
C1DbNavigator1-3 (C1.Win.C1Input.C1DbNavigator)
Button1 (System.Windows.Forms.Button)

Input for WinForms 137

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. From the Properties window, set the following properties for the C1Label and Button controls:
Control Property Value

C1Label1 TextDetached True

Text Customers:

C1Label2 TextDetached True

Text Orders:

C1Label3 TextDetached True

Text Update/Refresh:

Button1 Name btnClose

Text Close

4. Select the C1ExpressConnection1 component, go to the Properties window, open the ConnectionString
property. Add the following to the ConnectionString property: Provider=Microsoft.Jet.OLEDB.4.0;Data
Source="Documents\ComponentOne Samples\Common​\C1NWind.mdb".

5. Set the properties of C1ExpressTable1-2 as follows:
Control Property Value

C1ExpressTable1 ConnectionComponent C1ExpressConnection1

DbTableName Customers

C1ExpressTable2 ConnectionComponent C1ExpressConnection1

DbTableName Orders

6. Also, you need to set the AutoIncrement property of the OrderID field in C1ExpressTable2, otherwise you will
not be able to update data in the database: Select C1ExpressTable2, press the ellipsis button in the Properties
window for the Fields property to open the Fields dialog box, select the OrderID field and set its
AutoIncrement property to ClientAndServer. This is necessary because OrderID is an autoincrement field in
the database, so it must be treated accordingly by C1DataExpress.

Input for WinForms 138

Copyright © 2017 GrapeCity, inc. All rights reserved.

Create a master-detail relation between C1ExpressTable1 (master) and C1ExpressTable2 (detail):

7. Press the ellipsis button in the Relations property of the C1ExpressionConnection1 control to open the
Relations dialog box.

8. In the dialog box, select Customers for Parent, Orders for Child, add a join with CustomerID for both Parent
field and Child field, press OK to close the Relations dialog box.

9. To bind controls to the data source, set the following properties:
Control Property Value

DataGridView1 DataSource C1ExpressConnection1

DataMember _Customers

C1DbNavigator1 DataSource C1ExpressConnection1

DataMember _Customers

DataGridView2 DataSource C1ExpressConnection1

DataMember _Customers.Customers – Orders

C1DbNavigator2 DataSource C1ExpressConnection1

DataMember _Customers.Customers – Orders

10. Now C1DbNavigator1 allows us to navigate the master table Customers, and the detail table Orders.
However, we want some more functionality for our navigator control. We want the user to be able to perform
common data action pressing navigator buttons. Using the VisibleButtons property, show the following
buttons for C1DbNavigator1-2: Add, Delete, Apply, Cancel. By default, a navigator control also shows the
current row number and row count. To save space, hide this information be setting the PositionVisible property
to False.

11. The third navigator control, C1DbNavigator3 is used to perform update and refresh for the whole data set
(both tables Customers and Orders). To hide redundant navigator fields and buttons, set PositionVisible to
False and select only two buttons, Update and Refresh in the VisibleButtons property. Update and Refresh
buttons do not have built-in functionality, since their function may be different with different data sources. To
make them work, you need to write code in event handlers. Create the following event handlers:

To write code in Visual Basic

Visual Basic

Private Sub C1DbNavigator3_UpdateData(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles C1DbNavigator3.UpdateData
 Me.C1ExpressConnection1.Update()

Input for WinForms 139

Copyright © 2017 GrapeCity, inc. All rights reserved.

End Sub

Private Sub C1DbNavigator3_RefreshData(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles C1DbNavigator3.RefreshData
 Me.C1ExpressConnection1.Fill()
End Sub

To write code in C#

C#

private void c1DbNavigator3_UpdateData(object sender, System.EventArgs e)
{
 this.c1ExpressConnection1.Update();
}

private void c1DbNavigator3_RefreshData(object sender, System.EventArgs e)
{
 this.c1ExpressConnection1.Fill();
}

12. Navigator buttons can be monochrome, color (ColorButtons property set to True) or changing their color
when hovered over (ColorWhenHover property set to True). They can also be three-dimensional (standard) or
flat depending on the ButtonStyle property. Set the following properties:
Control Property Value

C1DbNavigator1 ButtonStyle Standard

C1DbNavigator1.ColorButtons True

C1DbNavigator2 ButtonStyle Standard

ColorButtons True

C1DbNavigator3 ButtonStyle Standard

ColorButtons True

Using properties UIStrings and ButtonToolTips, it is also possible to change the text displayed in the navigator
and to change button ToolTips. For instance, we could specify the first button ToolTip as “Select the first
customer” instead of the default “First record”. These properties can also be used to localize your application.

Run the program and observe the following:
By pressing the navigator buttons, you can move through the rows. If you press the Next button and hold it for
a certain time (determined by the MoveDelayFirst property), the current position will change automatically with
frequency determined by the MoveDelayNext property.
You can jump to any row number by typing the number in the navigator position area in C1DbNavigator1. You
can also use arrow keys and mouse wheel in that area to move to next or previous rows. HOME and END keys
move to the first and last row. PAGE UP and PAGE DOWN keys or mouse wheel with CTRL key pressed to page
through the rowset.
If you change the value in a grid cell and press Cancel, the modified value will revert to the original value.
You can add new rows with the Add button and delete rows with the Delete button.
You can send changes to the database with Update button and re-fetch data from the database (discarding
the changes you may have made) with the Refresh button.

Input for WinForms 140

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using C1TextBox for Date-Time Input
When editing date-time data with the property DateTimeInput set to True, the C1TextBox and C1DateEdit controls
work in a special mode. In this mode, instead of editing date-time values as regular strings, they are divided into
separate fields for month, day, hour, and so on. It looks similar to the standard DateTimePicker control. However,
C1TextBox and C1DateEdit support more formats than the standard DateTimePicker control and have many additional
features, such as time zone adjustment, culture-dependent date formatting, and so on.

1. Create a new Windows Application project. Place the following components on the form as shown in the figure:
C1ExpressTable1 (C1.Data.Express.C1ExpressTable)
C1Label1-9 (C1.Win.C1Input.C1Label)
C1TextBox1-5 (C1.Win.C1Input.C1TextBox)
C1DbNavigator1 (C1.Win.C1Input.C1DbNavigator)
Button1 (System.Windows.Forms.Button)

2. From the Properties window, set the following properties for the C1Label and Button controls:
Control Property Value

C1Label1 TextDetached True

Text OrderID:

C1Label3 TextDetached True

Text Order Date:

C1Label4 TextDetached True

Text Required Date:

C1Label5 TextDetached True

Text Shipped Date/Time (in local time zone):

C1Labe6 TextDetached True

Input for WinForms 141

Copyright © 2017 GrapeCity, inc. All rights reserved.

Text Shipped Date/Time (stored in Mountain Standard
Time - GMT-07:00):

C1Label8 TextDetached True

Text Enter date using Thai Buddist calendar:

C1Label9 TextDetached True

Text Time in custom format (HH:mm:ss:fff):

Button1 Name btnClose

Text Close

3. Add the following to the ConnectionString property of the C1ExpressTable1 control:
Provider=Microsoft.Jet.OLEDB.4.0;Data Source="Documents\ComponentOne
Samples\Common\C1NWind.mdb".

4. For the C1ExpressTable1 component, open the DbTableName property combo box and select Orders from
the database table list.

Also, you need to set the AutoIncrement property of the OrderID field of C1ExpressTable1, otherwise you will
not be able to update data in the database.

5. Select C1ExpressTable1, click the ellipsis button in the Properties window for the Fields property to open the
Fields dialog box, select the OrderID field and set its AutoIncrement property to ClientAndServer. This is
necessary because OrderID is an autoincrement field in the database, so it must be treated accordingly by
C1DataExpress.

6. Bind controls to the data source by setting the following properties:
Control Property Value

C1DbNavigator1 DataSource C1ExpressTable1

C1Label2 DataSource C1ExpressTable1

DataField OrderID

C1TextBox1 DataSource C1ExpressTable1

DataField OrderDate

C1TextBox2 DataSource C1ExpressTable1

DataField RequiredDate

C1TextBox3 DataSource C1ExpressTable1

DataField ShippedDate

C1Label7 DataSource C1ExpressTable1

DataField ShippedDate

Set up the navigator control C1DbNavigator1:

7. Set its PositionVisible property to False and ColorButtons property to True.
8. Expanding the VisibleButtons property, set the following flags to True: First, Previous, Next, Last, Apply,

Cancel, Update, and Refresh.
9. Create the following event handlers (see the Data Navigation and Actions Using C1DbNavigator tutorial for

details):

To write code in Visual Basic

Input for WinForms 142

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

Private Sub C1DbNavigator1_RefreshData(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1DbNavigator1.RefreshData
 C1ExpressTable1.ExpressConnection.Fill()
End Sub

Private Sub C1DbNavigator1_UpdateData(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1DbNavigator1.UpdateData
 C1ExpressTable1.ExpressConnection.Update()
End Sub

To write code in C#

C#

private void C1DbNavigator1_RefreshData(object sender, System.EventArgs e)
{
 C1ExpressTable1.ExpressConnection.Fill();
}

private void C1DbNavigator1_UpdateData(object sender, System.EventArgs e)
{
 C1ExpressTable1.ExpressConnection.Update();
}

10. In C1TextBox1, we will represent the OrderDate in a full format, with full day of week, day, full month name,
and year. To specify that, set the FormatType property to LongDate.

Since we leave the DateTimeInput property with its default value True, we will get date-time editing with
separate fields for day of week, month, day, and year at run time. In the C1TextBox2 control, set the
FormatType to ShortDate.

LongDate and ShortDate are examples of standard .NET formats. Their actual representation depends on the
regional settings controlled by the Culture property.

11. The C1TextBox3 control demonstrates how you can represent a date in different formats depending on
whether it is in edit or display mode (whether it has the input focus). We will make it LongDateShortTime when
the control does not have input focus, and in edit mode, when it has input focus, we will use custom format
with time zone. To begin with the custom format, set the following properties:
Control Property Value

C1TextBox3 FormatType CustomFormat

CustomFormat MM/dd/yyyy h:mm tt zzz

This format is the control’s default format (where tt is the AM/PM designator and zzz is the time zone
representation). We can override it, and other format-related properties, for display and/or edit mode using
properties DisplayFormat and EditFormat. Expand the DisplayFormat property, then expand its sub-property
(Inherit) and select False for the FormatType flag. That will break the inheritance from control for the
FormatType property and allow us to change it. Set this property, and also set the FormatType property for
C1Label7 at this time to the following:

Control Property Value

C1TextBox3 DisplayFormat.FormatType LongDateShortTime

Input for WinForms 143

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1Label7 FormatType LongDateShortTime

12. Specify how NULL values (DBNull) are displayed in C1TextBox3 and in C1Label7. Set the following properties:
Control Property Value

C1TextBox3 NullText (not shipped yet)

EmptyAsNull True

C1Label7 NullText (null)

By default, clearing the control (select all and pressing Delete) reverts it to the value it had before editing once
the control loses focus. We changed this behavior setting the EmptyAsNull property to True, now clearing the
control sets its value to DBNull.

13. The C1TextBox3 control also demonstrates the time zone adjustment feature. It is useful in situations where
information is entered into the database by operators located in different time zones. Then it is convenient to
show and edit dates for each operator in his or her local time, but store the entered dates in the database
adjusted to a single, unified time zone. Suppose the database server is located in Mountain Time zone (7 hours
to the West from GMT, Greenwich Mean Time).

For the C1TextBox3 control:

14. To enable time zone adjustment, set the control’s CurrentTimeZone property to False. This will make the
GMTOffset property modifiable.

15. Set the GMTOffset property to –07:00 (Mountain Standard Time). Now C1TextBox3 converts all values to the
local time before displaying them, and vice-versa, converts values entered by the user to the Mountain Time
zone.

16. The next control, C1TextBox4 demonstrates how date input can be localized for any culture supported in .NET.
Set the Culture property to Thai (Thailand) and FormatType to LongDate. Then date format, including month
names and year number, will be defined by the Thai Buddhist calendar.

17. The last control, C1TextBox5 allows you to enter precise time with milliseconds. Set the FormatType property
to CustomFormat and the CustomFormat property to HH:mm:ss.fff. Set the DataType property to DateTime.

Since this control is not data bound, to start editing from a non-empty value, set the Value property to some
date-time value.

Run the program and observe the following:
By setting the DateTimeInput property to True, you can edit date-time fields, such as year, month, day
separately. You can type on the keyboard (months are entered numerically even if month name is shown) or
use arrow keys or mouse wheel to advance a field. The AM/PM designator can be changed typing the first
letter.
When the C1TextBox3 control takes focus, the date format in it changes. You can specify the time zone in
which the date is entered. By default, it is your local time zone. When you enter a date in C1TextBox3 and move
focus away from the control, the C1Label8 control below shows the actual value stored in the database (and in
the control’s Value property). It is adjusted to the Mountain Time zone.

Data Validation
The main feature of C1TextBox that distinguishes it from the standard TextBox control is that it works with typed data.
When the user enters something in a C1TextBox control (or its descendant, C1DateEdit or C1NumericEdit), the input
string undergoes several transition phases before it becomes a typed value of the Value property. The input string
goes through the following transition phases:

Input for WinForms 144

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Edit mask parsing

The first phase is edit mask parsing (if an edit mask is active, see the Masked Input tutorial), extracting the
stored content string out of the masked string displayed in the control.

2. PreValidation

The next phase is PreValidation of the input string. This validation is always performed over a string value,
regardless of the DataType, since at this time the input string is not yet converted to a typed value (not yet
parsed).

3. Parsing

The next phase after pre-validation is parsing, that is, conversion to the required data type specified in the
DataType property.

4. PostValidation

The last phase before modifying the Value property is PostValidation that is performed over the typed value obtained
by parsing. If the value satisfies the PostValidation conditions, it is assigned to the Value property.

Of course, all these phases are optional, except parsing (and that is optional too, if DataType is set to String), they
only occur if you specify validation conditions in corresponding properties.

This tutorial demonstrates pre-validation and post-validation, that is, how you can perform validation logic before and
after parsing the input string.

1. Create a new Windows Application project. Place the following components on the form as shown in the figure:
C1ExpressConnection (C1.Data.Express.C1ExpressConnection)
C1ExpressTable1-2 (C1.Data.Express.C1ExpressTable)
C1Label1-8 (C1.Win.C1Input.C1Label)
C1TextBox1-5
C1DbNavigator1-2 (C1.Win.C1Input.C1DbNavigator)
Button1 (System.Windows.Forms.Button)

2. From the Properties window, set the following properties for the C1Label and Button controls:

Input for WinForms 145

Copyright © 2017 GrapeCity, inc. All rights reserved.

Control Property Value

C1Label2 TextDetached True

Text Validation Before Parsing

C1Label3 TextDetached True

Text Country (Canada, France, Germany, UK, or
USA):

C1Label4 TextDetached True

Text Phone Number:

C1Label5 TextDetached True

Text Fax:

C1Labe6 TextDetached True

Text Validation After Parsing

C1Label7 TextDetached True

Text Unit Price (from $0 to $10000, but not $12):

C1Label8 TextDetached True

Text Reorder Level:

Button1 Name btnClose

Text Close

3. Select the C1ExpressConnection1 component, go to the Properties window, open the ConnectionString
property combo box. Add the following to the ConnectionString property:
Provider=Microsoft.Jet.OLEDB.4.0;Data Source="Documents\ComponentOne
Samples\Common\C1NWind.mdb".

4. Set the properties of C1ExpressTable1-2 as follows:
Control Property Value

C1ExpressTable1 ConnectionComponent C1ExpressConnection1

DbTableName Customers

C1ExpressTable2 ConnectionComponent C1ExpressConnection1

DbTableName Products

5. To bind controls to the data source, set the following properties:

Control Property Value

C1DbNavigator1 DataSource C1ExpressTable1

C1DbNavigator2 DataSource C1ExpressTable2

C1Label1 DataSource C1ExpressTable1

DataField CompanyName

C1TextBox1 DataSource C1ExpressTable1

DataField Country

Input for WinForms 146

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1TextBox2 DataSource C1ExpressTable1

DataField Phone

C1TextBox3 DataSource C1ExpressTable1

DataField Fax

C1TextBox4 DataSource C1ExpressTable2

DataField UnitPrice

C1TextBox5 DataSource C1ExpressTable2

DataField UnitsInStock

6. Set up the navigator controls. For both C1DbNavigator1 and C1DbNavigator2 set the PositionVisible property
to False. In C1DbNavigator1 show two additional buttons using the VisibleButtons property: Cancel and
Apply.

7. The top part of the form contains controls demonstrating pre-validation, the bottom part demonstrates post-
validation. The first editable control, C1TextBox1 allows you to enter a country name from a list of allowed
countries.

For the C1TextBox1 control:

8. Expand the PreValidation property of that control and set its PatternString sub-property to Canada, France,
Germany, UK, USA.

9. The separator string dividing the list to separate items is specified in the ItemSeparator property. Although we
could use the default "|", set ItemSeparator to ", " (comma and space) for better readability.

The fact that PatternString represents an exact list of values to match the input string against is indicated by
the value of the PreValidation.Validation property set to ExactList. This is default, so we do not have to change
it.

10. The next control, C1TextBox2 validates user input using wildcard patterns. The input string is a telephone
number. Different countries have different conventional phone numbers formats. We allow input strings in any
of the three formats, for US, France and Germany. In this case, the PatternString contains three items, each item
a wildcard pattern. An input string satisfies the condition if it matches one of the patterns. Expand the
PreValidation property and set its sub-properties to the following:
Control Property Value

C1TextBox2 PreValidation.Validation Wildcards

PreValidation.PatternString (*) ###-
####|##.##.##.##|####-
######

11. Wildcard pattern validation demonstrated in the previous step is often not accurate enough. For instance, you
cannot enter three digits instead of four in the third pattern. This kind of validation is better performed with
regular expressions. .NET regular expressions are a very powerful means of string validation. The C1TextBox3
control contains a fax number and string validation is specified with the following property settings:
Control Property Value

C1TextBox3 PreValidation.Validation RegexPattern

PreValidation.PatternString (\(\d+\))?(\d+-\d+|(\d\d.)
{3}\d\d)

The C1TextBox4 control validates the typed Value for the UnitPrice field (post-validation). The validation

Input for WinForms 147

Copyright © 2017 GrapeCity, inc. All rights reserved.

condition is that the price must be between 0 and 10,000 (0 and 10,000 included), and the price of $12.00 is
not allowed. To specify such constraints:

12. Expand the PostValidation property and press the ellipsis button of the Intervals sub-property to open the
ValueInterval Collection Editor dialog box.

13. In this dialog box, you can specify one or more intervals. The input value must belong to one of them. Add an
interval and set its MinValue to 0 and MaxValue to 10000.

14. Press OK to close the dialog box.
15. Now specify the excluded value, 12.00. Press the ellipsis button of the ValuesExcluded property, add 12 in the

Value Collection Editor that opens and press OK to close the editor.

16. The C1TextBox4 control also demonstrates another important feature unrelated to validation. Normally, we
want to display a currency value in a Currency format (with dollar sign), but edit it as a simple number (no
dollar sign). This is easy to do in C1Input. Just recall from the Using C1TextBox for Date-Time Input tutorial that
you can specify different formats for display and edit mode. Set the FormatType to Currency.

17. In C1TextBox5 control validation is performed programmatically, in the PostValidating event code. Set the
Validation property to PostValidatingEvent and create the following event handler for the PostValidating

Input for WinForms 148

Copyright © 2017 GrapeCity, inc. All rights reserved.

event:

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox5_PostValidating(ByVal sender As Object, ByVal e As
C1.Win.C1Input.PostValidationEventArgs) Handles C1TextBox5.PostValidating
 If (CType(e.Value, Int16) < 0) Then
 e.ErrorInfo.ErrorMessage = "Value cannot be less than zero."
 ElseIf (CType(e.Value, Int16) > 5000) Then
 e.ErrorInfo.ErrorMessage = "Value cannot be greater than 5000."
 Else
 Return
 End If
 e.Succeeded = False
End Sub

To write code in C#

C#

private void C1TextBox5_PostValidating(object sender,
C1.Win.C1Input.PostValidationEventArgs e)
{
 if ((Int16)e.Value < 0)
 e.ErrorInfo.ErrorMessage = "Value cannot be less than zero.";
 else if ((Int16)e.Value > 5000)
 e.ErrorInfo.ErrorMessage = "Value cannot be greater than 5000.";
 else
 return;
 e.Succeeded = false;
}

This code verifies that the value lies between 0 and 5000. In case of an error, it sets the e.ErrorMessage property that
makes the specified message text appear in the error message after the event. Setting e.Suceeded to False indicates
that the code has detected a validation error.

Run the program and observe the following:
When any one of the validation conditions are not satisfied, an attempt to leave the control with incorrect value shows
an error message box with caption "C1Input Validation Error" and a brief error description. In the C1TextBox5 control,
the error message is one of the two specified in the code.

Data Formatting and Parsing
This tutorial demonstrates some options in formatting and parsing data.

1. Create a new Windows Application project. Place the following components on the form as shown in the figure:
C1ExpressConnection (C1.Data.Express.C1ExpressConnection)
C1ExpressTable1-2 (C1.Data.Express.C1ExpressTable)
C1Label1-8 (C1.Win.C1Input.C1Label)
C1TextBox1-5 (C1.Win.C1Input.C1TextBox)

Input for WinForms 149

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DbNavigator1-2 (C1.Win.C1Input.C1DbNavigator)
GroupBox1 (System.Windows.Forms.GroupBox)
RadioButton1-5 (all of the type System.Windows.Forms.RadioButton)
Button1 (System.Windows.Forms.Button)

2. From the Properties window, set the following properties for the C1Label, RadioButton, and Button controls:
Control Property Value

C1Label1 TextDetached True

Text Date:

C1Label3 TextDetached True

Text Discontinued:

C1Label4 TextDetached True

Text Order Details

C1Label5 TextDetached True

Text Unit Price:

C1Labe6 TextDetached True

Text Discount:

C1Label7 TextDetached True

Text Quantity:

RadioButton1 Name rbYesNo

Text Yes/No

Checked True

RadioButton2 Name rbTrueFalse

Input for WinForms 150

Copyright © 2017 GrapeCity, inc. All rights reserved.

Text True/False

RadioButton3 Name rbOnOff

Text On/Off

RadioButton4 Name rbOneZero

Text 1/0

RadioButton5 Name rbCustom

Text Custom
(Yep/Nope)

Button1 Name btnClose

Text Close

3. Select the C1ExpressConnection1 component, go to the Properties window, open the ConnectionString
property combo box. Add the following to the ConnectionString property:
Provider=Microsoft.Jet.OLEDB.4.0;Data Source="Documents\ComponentOne Samples\Common​
\C1NWind.mdb.".

4. Set the properties of C1ExpressTable1-2 as follows:
Control Property Value

C1ExpressTable1 ConnectionComponent C1ExpressConnection1

DbTableName Products

C1ExpressTable2 ConnectionComponent C1ExpressConnection1

DbTableName Order Details

Now, create a master-detail relation between C1ExpressTable1 (master) and C1ExpressTable2 (detail):

5. Click the ellipsis button in the Relations property of the C1ExpressionConnection1 control to open the
Relations dialog box.

6. In the dialog box, select Products for Parent, Order Details for Child, add a join with ProductID for both Parent
field and Child field, and press OK to close the Relations dialog box.

7. To bind controls to the data source, set the following properties:

Control Property Value

Input for WinForms 151

Copyright © 2017 GrapeCity, inc. All rights reserved.

Control Property Value

C1DbNavigator1 DataSource C1ExpressConnection1

DataMember _Products

C1DbNavigator2 DataSource C1ExpressConnection1

DataMember _Products.Products -
Order_Details

C1Label2 DataSource C1ExpressConnection1

DataField _Products.ProductName

C1TextBox2 DataSource C1ExpressConnection1

DataField _Products.Discontinued

C1TextBox3 DataSource C1ExpressConnection1

DataField _Products.Products -
Order_Details.UnitPrice

C1TextBox4 DataSource C1ExpressConnection1

DataField _Products.Products -
Order_Details.Discount

C1TextBox5 DataSource C1ExpressConnection1

DataField _Products.Products -
Order_Details.Quantity

C1Label8 DataSource C1ExpressConnection1

DataField _Products.Products -
Order_Details.Quantity

8. For the C1TextBox2 control, bound to the Discontinued field, set the FormatType property to YesNo. This is a
Boolean format showing “Yes” for True and “No” for False.

This will be the default format of the C1TextBox2 control, but we will also make provisions for a custom
format, setting the CustomFormat property of the C1TextBox2 control to Yep|Nope. This custom format will
be enabled when the FormatType property is set to CustomFormat, which will be done with option buttons in
the next step.

9. To switch the Discontinued field format between various Boolean formats, use the radio buttons. Assign the
following event handlers to the radio buttons’ Click events:

To write code in Visual Basic

Visual Basic

Private Sub rbYesNo_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles rbYesNo.Click
 Me.C1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.YesNo
End Sub

Private Sub rbTrueFalse_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles rbTrueFalse.Click
 Me.C1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.TrueFalse

Input for WinForms 152

Copyright © 2017 GrapeCity, inc. All rights reserved.

End Sub

Private Sub rbOnOff_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles rbOnOff.Click
 Me.C1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.OnOff
End Sub

Private Sub rbOneZero_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles rbOneZero.Click
 Me.C1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.Integer
End Sub

Private Sub rbCustom_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Handles rbCustom.Click
 Me.C1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.CustomFormat
End Sub

To write code in C#

C#

private void radioButton_Click(object sender, System.EventArgs e)
{
 switch (((RadioButton)sender).Name)
 {
 case "rbYesNo":
 this.c1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.YesNo;
 break;
 case "rbTrueFalse":
 this.c1TextBox2.FormatType =
C1.Win.C1Input.FormatTypeEnum.TrueFalse;
 break;
 case "rbOnOff":
 this.c1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.OnOff;
 break;
 case "rbOneZero":
 this.c1TextBox2.FormatType = C1.Win.C1Input.FormatTypeEnum.Integer;
 break;
 case "rbCustom":
 this.c1TextBox2.FormatType =
 C1.Win.C1Input.FormatTypeEnum.CustomFormat;
 break;
 }
}

10. For C1TextBox3 bound to the UnitPrice field, set the FormatType to Currency. The currency format with dollar
sign is used both in display and edit mode. For C1TextBox4 bound to Discount, set the FormatType to Percent
(values are displayed and entered times 100 with percent sign). Also, for C1TextBox5 bound to Quantity, set
the FormatType to Hexadecimal, so it will be represented in hexadecimal form (think of it as a kind of low-tech
encryption; we, of course, need this rather unusual format for purely demonstrational purposes).

11. Now, to decipher the hexadecimal Quantity, we want to convert it to the normal decimal representation and
display the decimal number in C1Label8 with suffix “(base 10)”. There is no standard or custom format for such
representation, but we can define our own formatting in code, in the Formatting event. If we set the

Input for WinForms 153

Copyright © 2017 GrapeCity, inc. All rights reserved.

FormatType to UseEvent, our code can perform whatever formatting we need. Create the following event
handler:

To write code in Visual Basic

Visual Basic

Private Sub C1Label8_Formatting(ByVal sender As Object, ByVal e As
C1.Win.C1Input.FormatEventArgs) Handles C1Label8.Formatting
 e.Text = e.Value.ToString() + " (base10)"
End Sub

To write code in C#

C#

private void C1Label8_Formatting(object sender, C1.Win.C1Input.FormatEventArgs
e)
{
 e.Text = e.Value.ToString() + " (base10)";
}

In the C1TextBox1 control we will show how you can allow entering dates in multiple formats. Complete the
following tasks:

12. Since this control is unbound, you need to set its DataType property manually; therefore, set the DataType
property to DateTime.

13. Initialize its value with the current date in code, in the Form_Load event:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Me.C1TextBox1.Value = DateTime.Now
End Sub

To write code in C#

C#

private void Form1_Load(object sender, System.EventArgs e)
{
 this.c1TextBox1.Value = DateTime.Now;
}

14. The DateTimeInput mode (see the Using C1TextBox for Date-Time Input tutorial) only works with a single date
format, so we need to turn it off by setting the DateTimeInput property to False for the C1TextBox1 control.
Set the custom format as follows:
Control Property Value

C1TextBox1 DateTimeInput False

FormatType CustomFormat

CustomFormat MM/dd/yyyy|d-

Input for WinForms 154

Copyright © 2017 GrapeCity, inc. All rights reserved.

MMM-yyyy|d.M.yy

This is a list of allowed formats separated with '|'. Parsing an input string, all formats will be tried until a
matching one is found. Formatting values for display, we obviously need a single format, so only the first
format will be used for formatting.

We also want the control to display the date in LongDate format when not in focus.

15. Expand the DisplayFormat property, and set FormatType to LongDate.

Now the control shows its date value in long format when not in focus, in the first short format when in focus,
and the user can type data in any of the three allowed sort formats.

Run the program and observe the following:
 By selecting different option buttons you can see how Discontinued is shown in different formats. The
currently selected format also determines how Discontinued values can be entered by the user. Note also that
you can enter Boolean values in abbreviated form; just the initial letter is enough for all formats except On/Off
where you need to enter the first two letters. Using the 1/0 format, entering any number except 0 results in a
True value, which corresponds to the standard .NET conversion from integer to Boolean.
In the UnitPrice field you can enter or omit the dollar sign. Negative numbers can be entered both with minus
sign and in parentheses, according to financial conventions.
The Discount field allows you to enter the optional percent sign. When you enter a value in percent, it is
automatically divided by 100 when it is saved in the data source.
You can enter the date in the control at the bottom in any of the three allowed formats, as it is most
convenient to you. For instance June 5, 2002 can be entered as 06/05/2002, or 5-Jun-2002, or 5.6.02.

Control Property Value

Using C1DateEdit and C1NumericEdit Controls
The C1DateEdit control provides enhanced date-time editing capabilities. It derives from C1TextBox, so it supports
DateTimeInput with separate fields for year, month, date, and so on, and all options for formatting and parsing date-
time values. In addition to that, it enables the user to select date in a drop-down calendar, and also to
increment/decrement date fields in DateTimeInput mode with up/down buttons.

The C1NumericEdit control is specialized for numeric input. It also derives from C1TextBox, which enables it with
formatting, parsing and validation functionality. In addition to that, it allows the user to increment/decrement the
value by a specified amount using the up/down buttons, and to use a drop-down calculator to calculate values.

1. Create a new Windows Application project. Place the following components on the form as shown in the figure:
C1ExpressConnection (C1.Data.Express.C1ExpressConnection)
C1ExpressTable1-2 (C1.Data.Express.C1ExpressTable)
C1Label1-10 (C1.Win.C1Input.C1Label)
C1DateEdit1-3 (C1.Win.C1Input.C1DateEdit)
C1NumericEdit1-3 (C1.Win.C1Input.C1NumericEdit)
C1DbNavigator1-2 (C1.Win.C1Input.C1DbNavigator)

Input for WinForms 155

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. From the Properties window, set the following properties for the C1Label controls:
Control Property Value

C1Label1 TextDetached True

Text Order

C1Label3 TextDetached True

Text Order Date:

C1Label4 TextDetached True

Text Freight:

C1Label5 TextDetached True

Text Required
Date:

C1Labe6 TextDetached True

Text Shipped Date:

C1Label7 TextDetached True

Text Order Details

C1Label9 Name True

Text Quantity:

C1Label10 Name True

Text Unit Price:

3. Select the C1ExpressConnection1 component, go to the Properties window, open the ConnectionString
property combo box. Add the following to the ConnectionString property:
Provider=Microsoft.Jet.OLEDB.4.0;Data Source="Documents\ComponentOne
Samples\Common\C1NWind.mdb".

Input for WinForms 156

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Set the properties of C1ExpressTable1-2 as follows:
Control Property Value

C1ExpressTable1 ConnectionComponent C1ExpressConnection1

DbTableName Orders

C1ExpressTable2 ConnectionComponent C1ExpressConnection1

DbTableName Order Details

Create a master-detail relation between C1ExpressTable1 (master) and C1ExpressTable2 (detail):

5. Press the ellipsis button in the Relations property of the C1ExpressionConnection1 control to open the
Relations dialog box.

6. In the dialog box, select Orders for Parent, Order Details for Child, add a join with OrderID for both Parent
field and Child field, press OK to close the Relations dialog box.

7. To bind controls to the data source, set the following properties:
Control Property Value

C1DbNavigator1 DataSource C1ExpressConnection1

DataMember _Orders

C1DbNavigator2 DataSource C1ExpressConnection1

DataMember _Orders.Orders - Order
Details

C1Label2 DataSource C1ExpressConnection1

DataField _Orders.OrderID

C1DateEdit1 DataSource C1ExpressConnection1

DataField _Orders.OrderDate

C1DateEdit2 DataSource C1ExpressConnection1

DataField _Orders.RequiredDate

C1DateEdit3 DataSource C1ExpressConnection1

DataField _Orders.ShippedDate

C1NumericEdit1 DataSource C1ExpressConnection1

Input for WinForms 157

Copyright © 2017 GrapeCity, inc. All rights reserved.

DataField _Orders.Freight

C1Label8 DataSource C1ExpressConnection1

DataField _Orders.Orders - Order
Details.ProductID

C1NumericEdit2 DataSource C1ExpressConnection1

DataField _Orders.Orders - Order
Details.Quantity

C1NumericEdit3 DataSource C1ExpressConnection1

DataField _Orders.Orders - Order
Details.UnitPrice

Set up the OrderDate field (control C1DateEdit1) for a simple date input with a drop-down calendar as the
main means of entering a date.

8. Turn off the DateTimeInput mode setting the DateTimeInput property to False.
9. Make the calendar center-aligned relative to the control by setting the DropDownAlign property to Center.

The next control, C1DateEdit2 (RequiredDate field) will serve as a regular date-time input control, in
DateTimeInput mode, without a drop-down calendar.

10. Set the VisibleButtons property to UpDown.
11. To use the long date format, set the FormatType property to LongDate.

The ShippedDate field (control C1DateEdit3) will contain dates in MediumDate format , with up/down buttons
and a drop-down calendar. Set its FormatType property to MediumDate.

12. Since ShippedDate can be NULL (DBNull), set the EmptyAsNull property to True. Then clearing the control
contents will be equivalent to entering null value.

13. Suppose we want certain days to appear bold in the drop-down calendar. To do that, expand the Calendar
property, select the calendar property MonthlyBoldedDates and add two dates to the array using the
Collection Editor dialog box.

Now we will set up controls for numeric input. The C1NumericEdit1 control is bound to the Freight field. To
set up the C1NumericEdit1 control:

14. Set its FormatType to Currency.
15. Then hide the up/down buttons since it does not make much sense for them to be used in a currency value; set

the VisibleButtons property to UpDown.
16. Set the TextAlign property to Right.
17. Also set the DropDownAlign property to Right to make the drop-down calculator right-aligned as well.

The C1NumericEdit2 control is bound to the Quantity field.

18. Since the Quantity field does not need a drop-down calculator, hide it by setting the VisibleButtons property to
UpDown.

19. Since Quantity is an integer number, set the FormatType property to Integer.
20. Set the increment for up/down buttons to a certain value you prefer, for example, to 3.
21. You can also change the control’s appearance if you feel inclined to, for example, setting the BorderStyle

property to FixedSingle.

The last field (C1NumericEdit3) allows the user to enter a currency value UnitPrice using a drop-down

Control Property Value

Input for WinForms 158

Copyright © 2017 GrapeCity, inc. All rights reserved.

calculator.

22. Set the FormatType property to Currency.
23. As in the C1NumericEdit2 control, set the BorderStyle property to FixedSingle, just to see that you have all

the usual appearance options at your disposal.
24. Hide the up/down buttons (unnecessary for a currency field) by setting the VisibleButtons property to

UpDown.
25. To center the drop-down calendar relative to the control, set the DropDownAlign property to Center.

Run the program and observe the following:
The OrderDate field allows you to enter a date from the keyboard, or open the drop-down calendar and select
a date there with the mouse or arrow keys. In the drop-down calendar you can see the buttons for changing
the month and year. At the bottom of the calendar you see the Clear and Today button. The Clear button sets
the Value to DBNull, and the Today button sets it to the today’s date (that can be overridden in the
Calendar.TodayDate property).
Select a date field in RequiredDate and press the up/down buttons. Notice that you can enter a date without
using keyboard.
In the drop-down calendar in ShippedDate, you can see two bolded dates.
Opening the drop-down calculator in the Freight and Quantity fields, you can see different button styles in the
calculator.

Custom Drop-Down Form
C1DropDownControl is a control derived from C1TextBox, so it supports all its formatting, validation, and other
features. Like other two C1TextBox-derived controls, it also supports up/down (spin) and drop-down buttons.
However, unlike those specialized controls, C1DropDownControl allows you to attach your own logic to the up/down
buttons and your own drop-down form/editor to the drop-down button.

In this tutorial we will create a form that can be used to show a list of MRU (most recently used) values. Note that
although we will use this form in only one control, the same form without modification can be used in any number of
controls in your projects.

Note: Before opening Form1 at design time, you need to compile the tutorial project. Otherwise a "class not
found" error will appear. This is because the drop-down form class needs to be compiled to become available in
the DropDownFormClass property of a C1DropDownControl.

To create a custom drop-down form, complete the following steps:

1. Create a new Windows Application project. Place a C1DropDownControl (C1DropDownControl1) on the form.

Now, add a form derived from drop-down form to your project.

2. From the Solution Explorer, right-click the project and select Add | New Item from the menu.
3. In the Add New Item dialog box, select Windows Form from the list of Templates in the right pane.
4. Then enter MRUDropDown.vb for Visual Basic (MRUDropDown.cs for C#) in the Name box and click Add.
5. The next step is to replace the following class definition line(s) in the MRUDropDown form code. Select View |

Code from the menu and replace the code below:

To write code in Visual Basic

Visual Basic

Public Class MRUDropDown
 Inherits System.Windows.Forms.Form

Input for WinForms 159

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

public partial class MRUDropDown : System.Windows.Forms.Form

with:

To write code in Visual Basic

Visual Basic

Public Class MRUDropDown
 Inherits C1.Win.C1Input.DropDownForm

To write code in C#

C#

public partial class MRUDropDown : C1.Win.C1Input.DropDownForm

6. From the Properties window, expand the Options property node of the MRUDropDown form.
7. Set Option.Focusable to False and Option.AutoResize to True.

The AutoResize option will make the width of the drop-down always equal the width of the control, and
Focusable option set to False is needed because we do not want the drop-down form to take input focus.
Instead, we want focus to remain in the control so the user can type in the control and select from the drop-
down at the same time.

8. Place a ListBox control (ListBox1) on the drop-down form. To make the list box occupy the whole drop-down
area, set the following ListBox1 properties:
Control Property Value

ListBox1 Dock Fill

IntegralHeight False

BorderStyle None

9. To make the form open automatically when the user starts typing in the control, use the
OwnerControlTextChanged event, add the following event handler:

To write code in Visual Basic

Visual Basic

Private Sub MRUDropDown_OwnerControlTextChanged(ByVal sender As Object, ByVal e
As System.EventArgs) Handles MyBase.OwnerControlTextChanged
 OwnerControl.OpenDropDown()
 ListBox1.SelectedIndex = listBox1.FindString(OwnerControl.Text)
End Sub

To write code in C#

C#

private void MRUDropDown_OwnerControlTextChanged(object sender, System.EventArgs
e)

Input for WinForms 160

Copyright © 2017 GrapeCity, inc. All rights reserved.

{
 OwnerControl.OpenDropDown();
 listBox1.SelectedIndex = listBox1.FindString(OwnerControl.Text);
}

The second line selects the list box item corresponding to the current control text, if such item already exists.

10. To enable visual feedback while the user moves the mouse inside the list box, add the following event handler:

To write code in Visual Basic

Visual Basic

Private Sub ListBox1_MouseMove(ByVal sender As Object,ByVal e As
System.Windows.Forms.MouseEventArgs) Handles ListBox1.MouseMove
 ListBox1.SelectedIndex = ListBox1.IndexFromPoint(e.X, e.Y)
End Sub

To write code in C#

C#

private void listBox1_MouseMove(object sender,
System.Windows.Forms.MouseEventArgs e)
{
 listBox1.SelectedIndex = listBox1.IndexFromPoint(e.X, e.Y);
}

11. To enable the user to navigate the drop-down list box with the UP ARROW and DOWN ARROW keys and
delete items with CTRL+DEL key, add the following event handler:

To write code in Visual Basic

Visual Basic

Private Sub MRUDropDown_KeyDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.KeyEventArgs) Handles MyBase.KeyDown
 If e.Modifiers = Keys.None And e.KeyCode = Keys.Up Then
 If ListBox1.SelectedIndex > 0 Then
 ListBox1.SelectedIndex = listBox1.SelectedIndex - 1
 OwnerControl.Text = listBox1.Text
 OwnerControl.SelectAll()
 End If
 e.Handled = True
 End If
 If e.Modifiers = Keys.None And e.KeyCode = Keys.Down Then
 If ListBox1.SelectedIndex < listBox1.Items.Count - 1 Then
 ListBox1.SelectedIndex = listBox1.SelectedIndex + 1
 OwnerControl.Text = listBox1.Text
 OwnerControl.SelectAll()
 End If
 e.Handled = True
 End If
 If e.Modifiers = Keys.Control And e.KeyCode = Keys.Delete And
ListBox1.SelectedIndex >= 0 Then

Input for WinForms 161

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ListBox1.Items.RemoveAt(listBox1.SelectedIndex)
 e.Handled = True
 End If
End Sub

To write code in C#

C#

private void MRUDropDown_KeyDown(object sender,
System.Windows.Forms.KeyEventArgs e)
{
 if (e.Modifiers == Keys.None && e.KeyCode == Keys.Up)
 {
 if (listBox1.SelectedIndex > 0)
 {
 listBox1.SelectedIndex--;
 OwnerControl.Text = listBox1.Text;
 OwnerControl.SelectAll();
 }
 e.Handled = true;
 }
 if (e.Modifiers == Keys.None && e.KeyCode == Keys.Down)
 {
 if (listBox1.SelectedIndex < listBox1.Items.Count - 1)
 {
 listBox1.SelectedIndex++;
 OwnerControl.Text = listBox1.Text;
 OwnerControl.SelectAll();
 }
 e.Handled = true;
 }
 if (e.Modifiers == Keys.Control && e.KeyCode == Keys.Delete &&
listBox1.SelectedIndex >= 0)
 {
 listBox1.Items.RemoveAt(listBox1.SelectedIndex);
 e.Handled = true;
 }
}

12. To select an item and close the drop-down form when the user clicks a list box item, add the following event
handler:

To write code in Visual Basic

Visual Basic

Private Sub ListBox1_MouseDown(ByVal sender As Object, ByVal e As
System.Windows.Forms.MouseEventArgs) Handles ListBox1.MouseDown
 ListBox1.SelectedIndex = listBox1.IndexFromPoint(e.X, e.Y)
 CloseDropDown(True)
End Sub

To write code in C#

Input for WinForms 162

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

private void listBox1_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)
{
 listBox1.SelectedIndex = listBox1.IndexFromPoint(e.X, e.Y);
 CloseDropDown(true);
}

13. To make the drop-down form actually change the control text when it is closed after the user clicks an item,
add the following event handler for the PostChanges event:

To write code in Visual Basic

Visual Basic

Private Sub MRUDropDown_PostChanges(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.PostChanges
 If ListBox1.SelectedIndex >= 0 Then
 OwnerControl.Value = listBox1.Text
 ElseIf ListBox1.FindStringExact(OwnerControl.Text) < 0 Then
 ListBox1.Items.Add(OwnerControl.Text)
 End If
End Sub

To write code in C#

C#

private void MRUDropDown_PostChanges(object sender, System.EventArgs e)
{
 if (listBox1.SelectedIndex >= 0)
 OwnerControl.Value = listBox1.Text;
 else if (listBox1.FindStringExact(OwnerControl.Text) < 0)
 listBox1.Items.Add(OwnerControl.Text);
}

Now the drop-down form is ready and we can use it in the C1DropDownControl1 in Form1.

14. Open Form1, select C1DropDownContro1, go to the Properties window and select the
DropDownFormClassName property. This property allows you to select a drop-down form-derived form from
your project.

15. Select <Project Name>.MRUDropDown from the combo box. This is all you need to attach the drop-down
form to a control. If needed, you can attach this form to any number of controls the same way.

Run the program and observe the following:
When you start typing, it automatically opens the drop-down list. The drop-down can also be opened with the
drop-down button.
After you type something in the control and press ENTER, the next time you open the drop-down you see the
typed item in the list.
You can navigate the list with the mouse and with UP/DOWN keys, although the list drop-down does not have
input focus, the focus remains in the control input area.
Clicking a drop-down item with the mouse changes the control text.

Input for WinForms 163

Copyright © 2017 GrapeCity, inc. All rights reserved.

Editing Numbers in NumericInput Mode
In this tutorial, you will learn how to use NumericInput mode for editing numeric data. C1TextBox and C1NumericEdit
controls have a NumericInput property that is True by default. If the NumericInput property is set to True and
DataType is a numeric type, the control functions in numeric mode facilitating typing of digits, decimal point and
other numeric characters.

1. Create a new Windows Application project. Place the following components on the form as shown in the figure:
C1ExpressTable1 (C1.Data.Express.C1ExpressTable)
Label1-7 (System.Windows.Forms.Label)
C1DbNavigator1 (C1.Win.C1Input.C1DbNavigator)
C1TextBox1-5 (C1.Win.C1Input.C1TextBox)
C1Label1-2 (C1.Win.Input.C1Label)
C1NumericEdit1-2 (C1.Win.C1Input.C1NumericEdit)

2. From the Properties window, set the following properties for the Label and C1DbNavigator controls:
Control Property Value

Label1 Text Quantity:

Label2 Text Discount:

Label3 Text Unit Price:

Label4 Text Scientific Number:

Label5 Text Hexidecimal
Number:

Label6 Text CultureInfoSetup
Event:

Label7 Text Format:

Input for WinForms 164

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1DbNavigator1 Dock Top

3. Select the C1ExpressTable1 component, go to the Properties window, open the ConnectionString property.
Add the following to the ConnectionString property: Provider=Microsoft.Jet.OLEDB.4.0;Data
Source="Documents\ComponentOne Samples\Common\C1NWind.mdb".

4. For the C1ExpressTable1 component, open the DbTableName property combo box and select Order Details
from the database table list.

5. To bind controls to the data source, set the following properties:
Control Property Value

C1DbNavigator1 DataSource C1ExpressTable1

C1TextBox1 DataSource C1ExpressTable1

DataField Quantity

C1NumericEdit1 DataSource C1ExpressTable1

DataField Discount

C1TextBox2 DataSource C1ExpressTable1

DataField UnitPrice

6. Adjust some appearance properties of the controls:
Set BorderStyle to FixedSingle for the controls: C1Label1-2, C1TextBox1-5, C1NumericEdit1-2.
Expand the VisibleButtons property of C1DbNavigator1 and make two additional buttons visible: Apply
and Cancel.
Expand the UIStrings property of C1DbNavigator1 and change Row: to Order Item:.
In C1NumericEdit1, set the VisibleButtons property to UpDown (this control will have only up/down
buttons, no drop-down). And vice versa, in C1NumericEdit2 we want to have only drop-down calculator,
no up/down buttons, so we set its VisibleButtons property to DropDown.

7. C1TextBox1 represents an integer Quantity field. As an integer, it contains only digits, without decimal point
and exponent. To specify integer format, set the FormatType to Integer.

8. C1NumericEdit1 is used for editing a Discount field that is represented as a percentage value. This is specified
by setting FormatType to Percent. Also, specify the increment to be used to increase/decrease the value by a
fixed amount using the up/down buttons: Increment to 0.0005. That will make the control’s up/down button
increment/decrement the value by 0.05%.

9. C1TextBox2 is used to display and edit a UnitPrice field of Decimal type. To show it in currency format, with
dollar sign, set FormatType to Currency. In this case, the currency sign shown in the value is defined by the
current culture setting controlled by Culture property. If Culture is set to (Current Culture), current system
regional settings are used.

There are several unbound (not bound to a data source) controls in the bottom part of the form.
C1NumericEdit2 edits numbers in scientific format, with decimal point and exponent. This control also
includes a drop-down calculator.

10. Set DataType to Decimal (the default).
11. Set FormatType to Scientific. By default, a number in scientific format contains six digits after decimal point

and three digits in the exponent. If you need a non-default format, it can be defined in the CustomFormat
property.

12. The C1TextBox3 control edits numbers in hexadecimal format. Set the DataType property to Int16 (16-bit
integer number).

13. Then set the FormatType property to Hexadecimal. In this mode, the user will be able to type only digits 0-9,
letters A-F, and minus sign (or change the sign of the number pressing F9).

14. The C1Label control (C1Label1) adjacent to C1TextBox3 shows the entered number in the usual decimal
format. To connect it to the number, set C1Label1.DataType to Int16 and add an event handler for the

Control Property Value

Input for WinForms 165

Copyright © 2017 GrapeCity, inc. All rights reserved.

ValueChanged event of the C1TextBox3 control:

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox3_ValueChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TextBox3.ValueChanged
 Try
 C1Label1.Value = C1TextBox3.Value
 Catch
 End Try
End Sub

To write code in C#

C#

private void c1TextBox3_ValueChanged(object sender, System.EventArgs e)
{
 try
 {
 c1Label1.Value = c1TextBox3.Value;
 }
 catch
 {
 }
}

The C1TextBox4 control demonstrates how you can change number format by changing culture settings used
in formatting. Set the DataType property to Int32

15. The set the FormatType property to StandardNumber. A number in this format has a sign, thousands
separators and decimal point. Settings used for this formatting, such as the sign, thousand separator, and
decimal point characters, are defined by the current culture settings controlled by the Culture property.

16. You can specify non-default culture settings handling the CultureInfoSetup event.

For example, we can show negative numbers with the word “minus” instead of the usual “-“. We will also
suppress the fractional part of the number, and use “|” as thousands separator. We will also change the group
sizes (so they are no longer thousands), make the first (rightmost) group contain one digit, second – two digits,
third – three digits, and all the rest (higher) digits make a single group. This is done by the following event
handler:

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox4_CultureInfoSetup(ByVal sender As Object, ByVal e As
C1.Win.C1Input.CultureInfoSetupEventArgs) Handles C1TextBox4.CultureInfoSetup
 Dim ci As System.Globalization.CultureInfo = e.CultureInfo
 ci.NumberFormat.NegativeSign = " minus "
 ci.NumberFormat.NumberGroupSeparator = "|"
 ci.NumberFormat.NumberGroupSizes = New Integer() {1, 2, 3, 0}
 ci.NumberFormat.NumberDecimalDigits = 0
End Sub

Input for WinForms 166

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

private void c1TextBox4_CultureInfoSetup(object sender,
C1.Win.C1Input.CultureInfoSetupEventArgs e)
{
 System.Globalization.CultureInfo ci = e.CultureInfo;
 ci.NumberFormat.NegativeSign = " minus ";
 ci.NumberFormat.NumberGroupSeparator = "|";
 ci.NumberFormat.NumberGroupSizes = new int[] {1, 2, 3, 0};
 ci.NumberFormat.NumberDecimalDigits = 0;
}

C1TextBox5 shows how to specify a custom, non-standard number format.

17. Set DataType to Decimal, FormatType to CustomFormat and CustomFormat to "#,##0,;(###0,);zero".

In this format, three colon-separated parts define three different formats used, correspondingly, for positive,
negative numbers and zero. Character ‘0’ denotes a required digit, character ‘#’ specifies an optional digit, and
‘,’ is the thousands separator. Thousands separator on the right means the number is stored as times 1000 the
entered number (per separator).

18. To see the number that is stored when we enter a number in C1TextBox5, we use a C1Label control
(C1Label2) adjacent to C1TextBox5. Set C1Label2.DataType to Decimal and add an event handler for the
ValueChanged event of the C1TextBox5 control:

To write code in Visual Basic

Visual Basic

Private Sub C1TextBox5_ValueChanged(ByVal sender As Object, ByVal e As
System.EventArgs) Handles C1TextBox5.ValueChanged
 C1Label2.Value = C1TextBox5.Value
End Sub

To write code in C#

C#

private void c1TextBox5_ValueChanged(object sender, System.EventArgs e)
{
 c1Label2.Value = c1TextBox5.Value;
}

Run the program and observe the following:
The user cannot enter arbitrary text in NumericInput mode. For example, if you type a letter, it is ignored. Only
characters allowed by the specified format are permitted.
Using properties FormatType and CustomFormat, you can specify any standard or custom format supported in
.NET (for details see Numeric Format Strings in the .NET documentation). All these formats are used both for
display and editing of numeric values.
Changing culture settings, you can control literal characters used in formatting and various other format
settings.

Input for WinForms 167

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Input for WinForms Overview
	Differences from the .NET 1.x Version
	Help with WinForms Edition

	Key Features
	Design-Time Support
	C1Button Tasks Menu
	C1CheckBox Tasks Menu
	C1ComboBox Context Menu
	C1ComboBox Tasks Menu
	C1DateEdit Tasks Menu
	C1DbNavigator Tasks Menu
	C1DropDownControl Tasks Menu
	C1Label Tasks Menu
	C1NumericEdit Tasks Menu
	C1RangeSliderTasks Menu
	C1SplitButton Context Menu
	C1SplitButton Tasks Menu
	C1TextBox Tasks Menu
	C1ColorPicker Tasks Menu
	C1FontPicker Tasks Menu

	Using the C1Input Controls
	C1Input Controls
	C1DbNavigator Control Overview
	C1DbNavigator Appearance
	C1DbNavigator Behavior

	C1ComboBox Control Overview
	C1ComboBox Elements
	ComboBox Item Modes
	C1ComboBox Styling
	C1ComboBox Button Appearance
	ComboBox DataBinding
	Adding Images to Items in the ComboBox
	Adding Items to C1ComboBox
	Removing Items from C1ComboBox
	Populating C1ComboBox with Data Using SelectedItemChanged Event
	Populating C1Combbox with Data Using the SelectedIndexChanged Event

	C1RangeSlider Control Overview
	C1RangeSlider Elements
	C1RangeSlider Features
	Maximum and Minimum Values
	Orientation
	Thumb Values and Range

	C1RangeSlider Appearance
	Background Image
	Bar Style
	Thumb Style

	C1ColorPicker Control Overview
	C1ColorPicker Elements
	Working with C1ColorPicker
	Applying Visual Styles to C1ColorPicker

	C1FontPicker Control Overview
	C1FontPicker Elements
	Working with C1FontPicker
	Applying Visual Styles to C1Font Picker

	Data Binding
	Value and Text: Displaying, Validating, and Updating Values
	Formatting Data
	Format Types
	Custom Format Specifiers
	Numeric Custom Format Specifiers
	Date-Time Custom Format Specifiers

	Parsing (Updating) Data
	Culture (Regional) Settings
	Edit Mask
	Validating Data
	Input String Validation (PreValidation)
	Typed Value Validation (PostValidation)

	Editing Date and Time Values
	Editing Numeric Values
	Drop-Down and Increment Buttons
	C1DateEdit Control
	C1NumericEdit Control

	Custom Drop-Down
	Programmatic Formatting, Parsing, and Validation
	Error Handling
	Data Errors
	Incorrect Format in Displaying Data
	User Input Errors

	Handling NULL and Empty Values
	Displaying NULL and Empty Values
	Entering NULL and Empty Values

	Customizing C1Input's Appearance
	Visual Styles
	Themes
	C1Themes and the VisualStyle Property
	Border Styles
	Cursor Styles
	Flat Styles
	Button Color

	Input for WinForms Task-Based Help
	Adding a Drop-Down Form
	Changing the Navigation in the Navigator
	Customizing the Drop-Down Editor
	Customizing the C1DropDownControl

	Binding C1CheckBox
	Binding C1CheckBox to a Boolean Field
	Binding C1CheckBox to a String Field
	Binding C1CheckBox to an Integer Field

	Setting the Calendar Drop-down
	Customizing Appearance Using Visual Styles
	Customizing the C1DateEdit Control
	Displaying Clicked C1DropDown Buttons in a Text Box
	Working with a Database
	Creating a New Connection
	Updating /Refreshing Data from the Database
	Creating a Master-Detail Relation

	Customizing the PictureBox
	Navigating the C1DateEdit Control
	Displaying a Border Color for the C1Input Controls
	Showing a Message Box when the Border Color Changes
	Set IME Mode
	Move Focus
	Select Specific Calendar Type
	Spin Up/Spin Down Programmatically
	Change Up-Down Button Alignment

	Input for WinForms Samples
	Input for WinForms Tutorials
	Binding C1Input Controls to a Data Source
	Binding to a C1DataExpress Data Source
	Binding to an ADO.NET Data Source

	Masked Input
	Masked Input Using Regular Expressions

	Data Navigation and Actions Using C1DbNavigator
	Using C1TextBox for Date-Time Input
	Data Validation
	Data Formatting and Parsing
	Using C1DateEdit and C1NumericEdit Controls
	Custom Drop-Down Form
	Editing Numbers in NumericInput Mode

