
ComponentOne

OLAP for WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
OLAP for WinForms Overview 3

Help with WinForms Edition 3

What is C1Olap 4

Introduction to OLAP 5-6

Key Features 7

C1Olap Architecture 8

C1OlapPage 8-9

C1OlapPanel 9-11

C1OlapGrid 11

C1OlapChart 11

C1OlapPrintDocument 11

OLAP for WinForms Quick Start 12

An OLAP Application with No Code 12-13

Creating OLAP Views 13-15

Creating OLAP Reports 15-16

Copying Data to Excel 16

Summarizing Data 16-17

Drilling Down on the Data 17

Customizing the C1OlapPage 18

Persisting OLAP Views 18-19

Creating Predefined Views 19-21

Using LINQ as an OLAP Data Source 21-23

Large Data Sources 23-30

Building a Custom User Interface 30-35

Configuring Fields in Code 35-38

OLAP for WinForms Design-Time Support 39

OLAP for WinForms Smart Tags 39

C1OlapPanel Smart Tag 39

C1OlapPage Smart Tag 39-41

C1OlapChart Smart Tag 41

C1OlapGrid Smart Tag 41-42

Using the C1OlapPage ToolStrip 43

Using the Grid Menu 43

Using the Chart Menu 43-48

Olap for WinForms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using the Report Menu 48-51

OLAP Cube 52

Setting Microsoft SQL Server Analysis Services (SSAS) 52

Connecting to a Cube 52-53

Using Cube Data 53-54

OLAP for WinForms Task-Based Help 55

Binding C1OlapPage or C1OlapPanel to a Data Source 55

Binding C1OlapChart to a C1OlapPanel 55

Binding C1OlapGrid to a C1OlapPanel 55-56

Removing a Field from a Data View 56

Filtering Data in a Field 56-57

Specifying a Subtotal Function 57-58

Formatting Numeric Data 58-59

Calculating Weighted Averages and Sums 59-60

Exporting a Grid 60

Grouping Data 60-63

Sorting Olap Data 63-64

Creating a Report 64

Printing a Report 64-65

Olap for WinForms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

OLAP for WinForms Overview
Create grids, charts,a and ad-hoc reports that can be saved, exported, or printed in no
time with OLAP for WinForms. Use a single control, C1OlapPage, which provides a
complete OLAP user interface, or customize your application with
the C1OlapPanel, C1OlapGrid, C1OlapChart, and C1OlapPrintDocument controls.

 Getting Started

To get started, review the
following topics:

Key Features
OLAP for WinForms
Quick Start
OLAP for WinForms
Samples

Help with WinForms Edition
Getting Started

For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

Olap for WinForms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/

What is C1Olap
OLAP for WinForms (C1Olap) is a suite of .NET controls that provide analytical processing features similar to those
found in Microsoft Excel’s Pivot Tables and Pivot Charts. Asynchronous processing improves the performance of the
controls as multiple processes can occur simultaneously on separate threads.

For example: In case of synchronous processing, when you make any heavy update, the entire application stops
responding to any action made by the user till the update is completed. In case of C1Olap, that supports
asynchronous processing, when you make any heavy update (such as adding multiple fields to row or column box of
a C1OlapPage), the application responds to all user actions even while the update is in progress.

C1Olap takes raw data in any format and provides an easy-to-use interface so users can quickly and intuitively create
summaries that display the data in different ways, uncovering trends and providing valuable insights interactively. As
the user modifies the way in which he wants to see the data, C1Olap instantly provides grids, charts, and reports that
can be saved, exported, or printed.

Olap for WinForms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Introduction to OLAP
OLAP means "online analytical processing". It refers to technologies that enable the dynamic visualization and analysis
of data.

Typical OLAP tools include "OLAP cubes" and pivot tables such as the ones provided by Microsoft Excel. These tools
take large sets of data and summarize it by grouping records based on a set of criteria. For example, an OLAP cube
might summarize sales data grouping it by product, region, and period. In this case, each grid cell would display the
total sales for a particular product, in a particular region, and for a specific period. This cell would normally represent
data from several records in the original data source.

OLAP tools allow users to redefine these grouping criteria dynamically (on-line), making it easy to perform ad-hoc
analysis on the data and discover hidden patterns.

For example, consider the following table:

Date Product Region Sales

Oct 2007 Product A North 12

Oct 2007 Product B North 15

Oct 2007 Product C South 4

Oct 2007 Product A South 3

Nov 2007 Product A South 6

Nov 2007 Product C North 8

Nov 2007 Product A North 10

Nov 2007 Product B North 3

Now suppose you were asked to analyze this data and answer questions such as:

Are sales going up or down?
Which products are most important to the company?
Which products are most popular in each region?

In order to answer these simple questions, you would have to summarize the data to obtain tables such as these:

Sales by Date and by Product

Date Product A Product B Product C Total

Oct 2007 15 15 4 34

Nov 2007 16 3 8 27

Total 31 18 12 61

Sales by Product and by Region

Product North South Total

Olap for WinForms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

Product A 22 9 31

Product B 18 18

Product C 8 4 12

Total 48 13 61

Each cell in the summary tables represents several records in the original data source, where one or more values fields
are summarized (sum of sales in this case) and categorized based on the values of other fields (date, product, or
region in this case).

This can be done easily in a spreadsheet, but the work is tedious, repetitive, and error-prone. Even if you wrote a
custom application to summarize the data, you would probably have to spend a lot of time maintaining it to add new
views, and users would be constrained in their analyses to the views that you implemented.

OLAP tools allow users to define the views they want interactively, in ad-hoc fashion. They can use pre-defined views
or create and save new ones. Any changes to the underlying data are reflected automatically in the views, and users
can create and share reports showing these views. In short, OLAP is a tool that provides flexible and efficient data
analysis.

Olap for WinForms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

Key Features
The following are some of the main features of OLAP for WinForms that you may find useful:

OLAP for WinForms provides ultimate flexibility for building OLAP applications
Drop one control, C1OlapPage, on your form and set the data source to start displaying your data in a grid or
chart-it's that easy! But suppose you need to show multiple charts or grids. No problem. OLAP for WinForms
also provides the C1OlapPanel, C1OlapChart, and C1OlapGrid controls to give you the flexibility you need. See
the C1Olap Architecture for an overview of each of the controls.
OLAP for Winforms provides cube support
Olap (C1Olap) for Winforms allows you to connect to OLAP data sources from Microsoft SQL Server
Analysis Services (SSAS) and build multi-dimensional pivot table that slices and dices the cube data. Build a
complete front-end or dashboard for your database using OLAP while writing just a couple lines of code. See
OLAP Cube for more information on cube support.
Choose from five chart types and twenty-two palette options to enhance your charts
C1OlapChart provides the most common chart types to display your information, including: Bar, column, Area,
Line, and Scatter. You can select from twenty-two palette options that define the colors of the chart and legend
items. See Using the Chart Menu to view all of the chart types and palettes.
Print, preview, or export data to PDF
You can create and preview reports containing data, grids, or charts and then print or export them to PDF. See
Creating OLAP Reports and the OLAP for WinForms Task-Based Help for more information.
Remove a field or data in a field from the grid or chart view
You can easily filter a field so it doesn't appear in your grip or chart view. Simply drag the field to the Filter
area of a C1OlapPanel; see Removing a Field from a Data View for more information. If you want to filter on
data in a field, for example, if you want to find all employees whose last names start with "Sim", you can use
the Field Settings dialog box. See Filtering Data in a Field for detailed steps.
Display information in a grid or chart view
OLAP for WinForms provides a C1OlapGrid and C1OlapChart control to display data. These controls are built
into the C1OlapPage control, but they are also available as separate controls so you can customize your OLAP
application. See the C1Olap Architecture for an overview of each of the controls.
Decide how information is displayed at run time
Use the C1OlapPanel to determine which fields of your data source should be used to display your data and
how. Drag fields between the lower areas of the C1OlapPanel to create a filter, column headers, row headers,
or get the sum of values from a column or row. For more information, see C1OlapPanel.
Asynchronous Processing: Multiple processes can run simultaneously and independent of each other.

Olap for WinForms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1Olap Architecture
C1Olap includes the following controls:

C1OlapPage
The C1OlapPage control is the easiest way to develop OLAP applications quickly and easily. It provides a complete
OLAP user interface built using the other controls in C1Olap. The C1OlapPage object model exposes the inner
controls, so you can easily customize it by adding or removing interface elements. If you want more extensive
customization, the source code is included and you can use it as a basis for your own implementation.

The diagram below shows how the C1OlapPage is organized:

In Visual Studio, the control looks like this:

Olap for WinForms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1OlapPanel
The C1OlapPanel control is the core of the C1Olap product. It has a DataSource property that takes raw data as
input, and an OlapTable property that provides custom views summarizing the data according to criteria provided by
the user. The OlapTable is a regular DataTable object that can be used as a data source for any regular control.

The C1OlapPanel also provides the familiar, Excel-like drag and drop interface that allows users to define custom
views of the data. The control displays a list containing all the fields in the data source, and users can drag the fields to
lists that represent the row and column dimensions of the output table, the values summarized in the output data
cells, and the fields used for filtering the data..

At the core of the C1OlapPanel control, there is a C1OlapEngine object that is responsible for summarizing the raw
data according to criteria selected by the user. These criteria are represented by C1OlapField objects, which contain a
connection to a specific column in toe source data, filter criteria, formatting and summary options. The user creates
custom views by dragging C1OlapField objects from the source Fields list to one of four auxiliary lists: the RowFields,
ColumnFields, ValueFields, and FilterFields lists. Fields can be customized using a context menu.

Notice that the C1Olap architecture is open. The C1OlapPanel takes any regular collection as a DataSource, including
data tables, generic lists, add LINQ enumerations; it then summarizes the data and produces a regular DataTable as
output. C1Olap includes two custom controls that are optimized for displaying the OLAP data, the C1OlapGrid and
C1OlapChart, but you could use any other control as tell.

Olap for WinForms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1OlapPanel looks like this:

C1OlapPanel Area Description

Filter Specifies the field to filter.

Row Field The items in the field specified become the row headers of a grid. These items populate
the Y-axis in a chart.

Column Fields The items in the field specified become the column headers of a grid. These items are
used to populate the legend in a chart.

Values Shows the sum of the field specified.

Defer Updates Suspends the automatic updates that occur while the user modifies the view definition
when this checkbox is selected.

If you right-click fields in the Filter, Column Fields, Row Fields, or Values area at run time, a context menu appears,
allowing you to move the field to a different area. You can also remove the field or click Field Settings to format and
apply a filter to the field. See Filtering Data in a Field for more information.

Olap for WinForms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1OlapGrid
The C1OlapGrid control is used to display OLAP tables. It extends the C1FlexGrid control and provides automatic data
binding to C1OlapPanel objects, grouped row and column headers, as well as custom behaviors for resizing columns,
copying data to the clipboard, and showing details for any given cell.

The C1OlapGrid control extends the C1FlexGrid control, our general-purpose grid control. This means the whole
C1FlexGrid object model is also available to C1Olap users. For example, you can export the grid contents to Excel or
use styles and owner-draw cells to customize the grid’s appearance.

To populate C1OlapGri, bind it to a C1OlapPanel that is bound to a data source. See Binding C1OlapGrid to a
C1OlapPanel for steps on how to do this.

For more information on the C1FlexGrid control, see the FlexGrid for WinForms documentation.

C1OlapChart
The C1OlapChart control is used to display OLAP charts. It extends the C1Chart control and provides automatic data
binding to C1OlapPanel objects, automatic tooltips, chart type and palette selection.

The C1OlapChart control extends the C1Chart control, our general-purpose charting control. This means the whole
C1Chart object model is also available to C1Olap users. For example, you can export the chart to different file formats
including PNG and JPG or customize the chart styles and interactivity

To populate C1OlapChart, bind it to a C1OlapPanel that is bound to a data source. See Binding C1OlapChart to a
C1OlapPanel for steps on how to do this.

For more information on the C1Chart control, see the 2D Chart for WinForms documentation.

C1OlapPrintDocument
The C1OlapPrintDocument component is used to create reports based on OLAP views. It extends the PrintDocument
class and provides properties that allow you to specify content and formatting for showing OLAP grids, charts, and the
raw data used to create the report.

For more information, see the Reports for WinForms documentation.

Olap for WinForms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

OLAP for WinForms Quick Start
This section presents code walkthroughs that start with the simplest C1Olap application and progress to introduce
commonly used features.

An OLAP Application with No Code
To create the simplest C1Olap application, start by creating a new Windows Forms application and dragging
a C1OlapPage control onto the form. Notice that the C1OlapPage control automatically docks to fill the form, which
should look like this:

Now, let us select a data source for the application. Select the C1OlapPage control and activate the smart designer by
clicking the smart tag () that appears in the upper-right corner of the control. Use toe combo box next to "Choose
Data Source" to create a project data source and assign it to the control.

For this sample, find the Northwind database and select the "Invoices" view as shown below:

Olap for WinForms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

Note that as soon as you select the data source, the fields available appear in the C1OlapPanel on the left of the form.

The application is now ready. The following sections describe the functionality provided by default, without writing a
single line of code.

Creating OLAP Views
Run the application and you will see an interface similar to the one in Microsoft Excel. Drag the "Country" field to the
"Row Fields" list and "ExtendedPrice" to the "Value Fields" list, and you will see a summary of prices charged by
country as shown below:

Olap for WinForms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

Click the "Olap Chart" tab and you will see the same data in chart format, showing that the main customers are the
US, Germany, and Austria.

Now drag the "Salesperson" field into the "Column Fields" list to see a new summary, this time of sales per country
and per sales person. If you still have the chart tab selected, you should be looking at a chart similar to the previous
one, except this time the bars are split to show how much was sold by each salesperson:

Olap for WinForms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

Move the mouse over the chart and you will see tooltips that show the name of the salesperson and the amount sold
when you hover over the chart elements.

Now create a new view by swapping the "Salesperson" and "Country" fields by dragging them to the opposite lists.
This will create a new chart that emphasizes salesperson instead of country:

The chart shows that Margaret Peacock was the top salesperson in the period being analyzed, followed closely by
Janet Leverling and Nancy Davolio.

Creating OLAP Reports
This is an interesting chart, so let’s create a report that we can e-mail to other people in the company. Click the
"Report" button at the top of the page and you will see a preview showing the data on the first page and the chart on
the second page. In the Print Preview dialog box, click the "Page Setup" button and change the page orientation to
landscape. The report should look like this:

Olap for WinForms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

Now you can print the report or click the "Export to PDF" button to generate a PDF file that you can send to others or
post on the web.

Close the preview window and save this view by clicking the "Save" button. You can create and save as many views as
you like.

Copying Data to Excel
The built-in reports are convenient, but in some cases you may want to copy some or all the data to Excel so you can
perform additional analyses including regressions, create customized reports by annotating the data or adding
custom charts.

The C1OlapGrid supports the clipboard by default, so you can simply select the data you are interested in, press
Control + C, then paste it directly into an Excel sheet. The row and column headers are included with the data.

Summarizing Data
Before we move on to the next example, let’s create a new view to illustrate how you can easily summarize data in
different ways.

First, uncheck the check box next to the Country field to remove countries from the view.

This time, drag the "Salesperson" field to the "Row Fields" list and the "OrderDate" field to the "Column Fields" list.
The resulting view contains one column for each day when an order was placed. This is not very useful information,
because there are too many columns to show any trends clearly. We would like to summarize the data by month or
year instead.

One way to do this would be to modify the source data, either by creating a new query in SQL or by using LINQ. Both
of these techniques will be described in later sections. Another way is simply to modify the parameters of the
"OrderDate" field. To do this, right-click the "OrderDate" field and click Field Settings. Then select the "Format" tab in
the dialog box, choose the "Custom" format, enter "yyyy", and click OK.

Olap for WinForms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

The dates are now formatted and summarized by year, and the OLAP chart looks like this:

If you wanted to check how sales are placed by month or weekday, you could simply change the format to "MMMM"
or "dddd".

Drilling Down on the Data
As we mentioned before, each cell in the OLAP grid represents a summary of several records in the data source. You
can see the underlying records behind each cell in the OLAP grid by right-clicking it with the mouse.

To see this, click the "Olap Grid" tab and right-click the cell in the Total column in the grid, the one that represents
Andrew Fuller’s sales. You will see another grid showing the 40 records that were used to compute the total displayed
in the OLAP grid:

Olap for WinForms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

Customizing the C1OlapPage
The previous example showed how you can create a complete OLAP application using only a C1OlapPage control and
no code at all. This is convenient, but in most cases you will want to customize the application and the user interface
to some degree

Persisting OLAP Views
We will start by adding a default view to the previous application. To do this, in your Visual Studio project, right-click
the project node in the solution explorer, click the "Properties" item, then select the "Settings" tab and create a new
setting of type string called "DefaultView":

This setting will be used to persist the view across sessions, so any customizations made by the user are automatically
saved when he closes the application and restored next time he runs it.

To enable this behavior, open the "Form1" form, switch to code view, and add the following code to the application:

private void Form1_Load(object sender, EventArgs e)
{
 // auto-generated:
 // This line of code loads data into the 'nWINDDataSet.Invoices' table.
 this.invoicesTableAdapter.Fill(this.nWINDDataSet.Invoices);

 // show default view: this assumes an application
 // setting of type string called "DefaultView"
 var view = Properties.Settings.Default.DefaultView;
 if (!string.IsNullOrEmpty(view))
 {
 c1OlapPage1.ViewDefinition = view;
 }
 else
 {
 // build default view now
 var olap = c1OlapPage1.OlapEngine;
 olap.BeginUpdate();
 olap.RowFields.Add("ProductName");
 olap.ColumnFields.Add("Country");
 olap.ValueFields.Add("ExtendedPrice");
 olap.EndUpdate();
 }
}

Olap for WinForms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

// closing form, save current view as default for next time
protected override void OnClosing(CancelEventArgs e)
{
 // save current view as new default
 Properties.Settings.Default.DefaultView = c1OlapPage1.ViewDefinition;
 Properties.Settings.Default.Save();

 // fire event as usual
 base.OnClosing(e);
}

The first line should already be there when you open the form. It was automatically generated to load the data.

The next block of code checks whether the "DefaultView" setting is already available. If it is, then it is assigned to the
C1OlapPage.ViewDefinition property. This applies the entire view settings, including all fields with their respective
properties, as well as all charting, grid, and reporting options.

If the "DefaultView" setting is not available, then the code creates a view by adding fields to the RowFields,
ColumnFields, and ValueFields collections. The view created shows sales (sum of extended price values) by product
and by country

The next block of code overrides the form’s OnClosing method and saves the current view by reading the
C1OlapPage.ViewDefinition property and assigning it to the "DefaultView" setting, which is then saved.

If you run the project now, you will notice that it starts with the default view created by code. If you make any changes
to the view, close the application, and then re-start it, you will notice that your changes are restored.

Creating Predefined Views
In addition to the ViewDefinition property, which gets or sets the current view as an XML string, the C1OlapPage
control also exposes ReadXml and WriteXml methods that allow you to persist views to files and streams. These
methods are automatically invoked by the C1OlapPage when you click the "Load" and "Save" buttons in the built-in
toolstrip.

These methods allow you to implement predefined views very easily. To do this, start by creating some views and
saving each one by pressing the "Save" button. For this sample, we will create five views showing sales by:

1. Product and Country
2. Salesperson and Country
3. Salesperson and Year
4. Salesperson and Month
5. Salesperson and Weekday

Once you have created and saved all the views, create a new XML file called "OlapViews.xml" with a single
"OlapViews" node, and then copy and paste all your default views into this document. Next, add an "id" tag to each
view and assign each one a unique name. This name will be shown in the user interface (it is not required by OLAP).
Your XML file should look like this:

<OlapViews>

 <C1OlapPage id="Product vs Country">
 <!-- view definition omitted... -->
 <C1OlapPage id="SalesPerson vs Country">
 <!-- view definition omitted... -->
 <C1OlapPage id="SalesPerson vs Year">
 <!-- view definition omitted... -->
 <C1OlapPage id="SalesPerson vs Month">>
 <!-- view definition omitted... -->
 <C1OlapPage id="SalesPerson vs Weekday">

Olap for WinForms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <!-- view definition omitted... -->

</OlapViews>

Now add this file to the project as a resource. To do this, follow these steps:

1. Right-click the project node in the solution explorer, and click "Properties".
2. Select the "Resources" tab and click the drop-down arrow next to "Add Resource".
3. Select the "Add Existing File…" option, choose the XML file and click Open.

Now that the view definitions are ready, we need to expose them in a menu so the user can select them. To do this,
copy the following code into the project:

private void Form1_Load(object sender, EventArgs e)
{
 // auto-generated:
 // This line of code loads data into the 'nWINDDataSet.Invoices' table.
 this.invoicesTableAdapter.Fill(this.nwindDataSet.Invoices);

 // build menu with predefined views:
 var doc = new System.Xml.XmlDocument();
 doc.LoadXml(Properties.Resources.OlapViews);
 var menuView = new ToolStripDropDownButton("&View");
 foreach (System.Xml.XmlNode nd in doc.SelectNodes("OlapViews/C1OlapPage"))
 {
 var tsi = menuView.DropDownItems.Add(nd.Attributes["id"].Value);
 tsi.Tag = nd;
 }
 menuView.DropDownItemClicked += menuView_DropDownItemClicked;
 c1OlapPage1.Updated += c1OlapPage1_Updated;

 // add new view menu to C1OlapPage toolstrip
 c1OlapPage1.ToolStrip.Items.Insert(3, menuView);
}

The code creates a new toolstrip drop-down button, then loads the XML document with the report definitions and
populates the drop-down button with the reports found. Each item contains the view name in its Text property, and
the actual XML node in its Tag property. The node will be used later to apply the view when the user selects it.

Once the drop-down is ready, the code adds it to the C1OlapPage using the ToolStrip property. The new button is
added at position 3, after the first two buttons and the first separator.

The only part still missing is the code that will apply the views to the C1OlapPage when the user selects them by
clicking the button. This is accomplished with the following code:

// select a predefined view
void menuView_DropDownItemClicked(object sender, ToolStripItemClickedEventArgs e)
{
 var nd = e.ClickedItem.Tag as System.Xml.XmlNode;
 if (nd != null)
 {
 // load view definition from XML
 c1OlapPage1.ViewDefinition = nd.OuterXml;

 // show current view name in status bar
 c1OlapPage1.LabelStatus.Text = nd.Attributes["id"].Value;
 }
}
void c1OlapPage1_Updated(object sender, EventArgs e)

Olap for WinForms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

{
 // clear report name after user made any changes
 c1OlapPage1.LabelStatus.Text = string.Empty;
}

The code retrieves the report definition as an XML string by reading the node’s OuterXml property, then assigns it to
the ViewDefinition property. It also shows the name of the view in the C1OlapPage status bar using the LabelStatus
property.

Finally, the code handles the Updated event to clear the status bar whenever the user makes any changes to the view.
This indicates that the view no longer matches the predefined view that was loaded from the application resources.

The C1OlapPage exposes most of the components it contains, which makes customization easy. You can add, remove
or change the elements from the ToolStrip, from the TabControl, and show status messages using the LabelStatus
property. You can also add other elements to the page in addition to the C1OlapPage.

If you need further customization, you can also choose not to use the C1OlapPage at all, and build your interface
using tee lower-level C1OlapPanel, C1OlapGrid, and C1OlapChart controls. The source code for the C1OlapPage
control is included with the package and can be used as a starting point. The example in the "Building a custom User
Interface" section shows how this is done.

Using LINQ as an OLAP Data Source
C1Olap can consume any collection as a data source. It is not restricted to DataTable objects. In particular, it can be
used with LINQ.

LINQ provides an easy-to-use, efficient, flexible model for querying data. It makes it easy for developers to create
sophisticated queries on client applications without requiring modifications to the databases such as the creation of
new stored procedures. These queries can in turn be used as data sources for C1Olap so end users also have the
ability to create their own views of the data.

To illustrate this, create a new project and add a C1OlapPage control to the form. Instead of setting the DataSource
property in the designer and using a stored procedure like we did before, this time we will load the data using a LINQ
query. To do this, add the following code to the form constructor:

public Form1()
{
 // designer
 InitializeComponent();

 // load all interesting tables into a DataSet
 var ds = new DataSet();
 foreach (string table in
 "Products,Categories,Employees," +
 "Customers,Orders,Order Details".Split(','))
 {
 string sql = string.Format("select * from [{0}]", table);
 var da = new OleDbDataAdapter(sql, GetConnectionString());
 da.Fill(ds, table);
 }

 // build LINQ query and use it as a data source
 // for the C1OlapPage control
 // …
}
// get standard c1nwind.mdb connection string
static string GetConnectionString()
{
 string path =
 Environment.GetFolderPath(Environment.SpecialFolder.Personal) +

Olap for WinForms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

 @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;" +
 @"data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

The code loads several tables from the NorthWind database. It assumes the NorthWind database is available in the
"ComponentOne Samples" folder, which is where the C1Olap setup places it. If you have the database in a different
location, you will have to adjust the GetConnectionString method as appropriate.

Next, let’s add the actual LINQ query. This is a long but simple statement:

// build LINQ query
var q =
 from detail in ds.Tables["Order Details"].AsEnumerable()
 join product in ds.Tables["Products"].AsEnumerable()
 on detail.Field<int>("ProductID")
 equals product.Field<int>("ProductID")
 join category in ds.Tables["Categories"].AsEnumerable()
 on product.Field<int>("CategoryID")
 equals category.Field<int>("CategoryID")
 join order in ds.Tables["Orders"].AsEnumerable()
 on detail.Field<int>("OrderID")
 equals order.Field<int>("OrderID")
 join customer in ds.Tables["Customers"].AsEnumerable()
 on order.Field<string>("CustomerID")
 equals customer.Field<string>("CustomerID")
 join employee in ds.Tables["Employees"].AsEnumerable()
 on order.Field<int>("EmployeeID")
 equals employee.Field<int>("EmployeeID")
 select new
 {
 Sales = (detail.Field<short>("Quantity") *
 (double)detail.Field<decimal>("UnitPrice")) *
 (1 - (double)detail.Field<float>("Discount")),
 OrderDate = order.Field<DateTime>("OrderDate"),
 Product = product.Field<string>("ProductName"),
 Customer = customer.Field<string>("CompanyName"),
 Country = customer.Field<string>("Country"),
 Employee = employee.Field<string>("FirstName") + " " +
 employee.Field<string>("LastName"),
 Category = category.Field<string>("CategoryName")
 };

// use LINQ query as DataSource for the C1OlapPage control
c1OlapPage1.DataSource = q.ToList();

The LINQ query is divided into two parts. The first part uses several join statements to connect the tables we loaded
from the database. Each table is connected to the query by joining its primary key to a field that is already available on
the query. We start with the "Order Details" table, and then join "Products" using the "ProductID" field, and then
"Categories" using the "CategoryID" field, and so on.

Once all the tables are joined, a select new statement is used to build a new anonymous class containing the fields
we are interested in. Notice that the fields may map directly to fields in the tables, or they may be calculated. The
"Sales" field for example is calculated based on quantity, unit price, and discount.

Once the LINQ query is ready, it is converted to a list using LINQ’s ToList method, and the result is assigned to the
DataSource property. The ToList method is required because it causes the query to be executed. If you simply assign
the query to any control’s DataSource property, you will get a syntax error.

If you run the project now, you will see that it looks and behaves just like before, when we used a stored procedure as
a data source. The advantage of using LINQ is that the query is built into the application. You can change it easily

Olap for WinForms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

without having to ask the database administrator for help.

Large Data Sources
All the examples discussed so far loaded all the data into memory. This is a simple and convenient way to do things,
and it works in many cases.

In some cases, however, there may be too much data to load into memory at once. Consider for example a table with
a million rows or more. Even if you could load all this data into memory, the process would take a long time.

There are many ways to deal with these scenarios. You could create queries that summarize and cache the data on the
server, or use specialized OLAP data providers. In either case, you would end up with tables that can be used with
C1Olap.

But there are also simpler options. Suppose the database contains information about thousands of companies, and
users only want to see a few at a time. Instead of relying only on the filtering capabilities of C1Olap, which happen on
the client, you could delegate some of the work to the server, and load only the companies the user wants to see. This
is easy to accomplish and does not require any special software or configurations on the server.

For example, consider the following CachedDataTable class (this class is used in the "SqlFilter" sample installed with
C1Olap):

/// <summary>
/// Extends the <see cref="DataTable"/> class to load and cache
/// data on demand using a <see cref="Fill"/> method that takes
/// a set of keys as a parameter.
/// </summary>
class CachedDataTable : DataTable
{
 public string ConnectionString { get; set; }
 public string SqlTemplate { get; set; }
 public string WhereClauseTemplate { get; set; }
 Dictionary<object, bool> _values =
 new Dictionary<object, bool>();

 // constructor
 public CachedDataTable(string sqlTemplate,
 string whereClauseTemplate, string connString)
 {
 ConnectionString = connString;
 SqlTemplate = sqlTemplate;
 WhereClauseTemplate = whereClauseTemplate;
 }

 // populate the table by adding any missing values
 public void Fill(IEnumerable filterValues, bool reset)
 {
 // reset table if requested
 if (reset)
 {
 _values.Clear();
 Rows.Clear();
 }

 // get a list with the new values
 List<object> newValues = GetNewValues(filterValues);
 if (newValues.Count > 0)
 {
 // get sql statement and data adapter
 var sql = GetSqlStatement(newValues);

Olap for WinForms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

 using (var da = new OleDbDataAdapter(sql, ConnectionString))
 {
 // add new values to the table
 int rows = da.Fill(this);
 }
 }
 }
 public void Fill(IEnumerable filterValues)
 {
 Fill(filterValues, false);
 }

This class extends the regular DataTable class and provides a Fill method that can either repopulate the table
completely or add additional records based on a list of values provided. For example, you could start by filling the
table with two customers (out of several thousand) and then add more only when the user requested them.

Note that the code uses an OleDbDataAdapter. This is because the sample uses an MDB file as a data source and an
OleDb-style connection string. To use this class with Sql Server data sources, you would replace the
OleDbDataAdapter with a SqlDataAdapter.

The code above is missing the implementation of two simple methods given below.

 // gets a list with the filter values that are not already in the
 // current values collection;
 // and add them all to the current values collection.
 List<object> GetNewValues(IEnumerable filterValues)
 {
 var list = new List<object>();
 foreach (object value in filterValues)
 {
 if (!_values.ContainsKey(value))
 {
 list.Add(value);
 _values[value] = true;
 }
 }
 return list;
 }

 // gets a sql statement to add new values to the table
 string GetSqlStatement(List<object> newValues)
 {
 return string.Format(SqlTemplate, GetWhereClause(newValues));
 }
 string GetWhereClause(List<object> newValues)
 {
 if (newValues.Count == 0 || string.IsNullOrEmpty(WhereClauseTemplate))
 {
 return string.Empty;
 }

 // build list of values
 StringBuilder sb = new StringBuilder();
 foreach (object value in newValues)
 {
 if (sb.Length > 0) sb.Append(", ");
 if (value is string)
 {
 sb.AppendFormat("'{0}'", ((string)value).Replace("'", "''"));
 }
 else
 {

Olap for WinForms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 sb.Append(value);
 }
 }

 // build where clause
 return string.Format(WhereClauseTemplate, sb);
 }
}

The GetNewValues method returns a list of values that were requested by the user but are still not present in the
DataTable. These are the values that need to be added.

The GetSqlStatement method builds a new SQL statement with a WHERE clause that loads the records requested by
the user that haven’t been loaded yet. It uses string templates provided by the caller in the constructor, which makes
the class general.

Now that the CachedDataTable is ready, the next step is to connect it with C1Olap and enable users to analyze the
data transparently, as if it were all loaded in memory.

To do this, open the main form, add a C1OlapPage control to it, and then add the following code to the form:

public partial class Form1 : Form
{
 List<string> _customerList;
 List<string> _activeCustomerList;
 const int MAX_CUSTOMERS = 12;

These fields will contain a complete list of all the customers in the database, a list of the customers currently selected
by the user, and the maximum number of customers that can be selected at any time. Set the maximum number of
customers to a relatively small value to prevent users from loading too much data into the application at once.

Next, we need to get a complete list of all the customers in the database so the user can select the ones he wants to
look at. Note that this is a long but compact list. It contains only the customer name, not any of the associated details
such as orders, order details, and so on. Here is the code that loads the full customer list:

public Form1()
{
 InitializeComponent();

 // get complete list of customers
 _customerList = new List<string>();
 var sql = @"SELECT DISTINCT Customers.CompanyName" +
 "AS [Customer] FROM Customers";
 var da = new OleDbDataAdapter(sql, GetConnectionString());
 var dt = new DataTable();
 da.Fill(dt);
 foreach (DataRow dr in dt.Rows)
 {
 _customerList.Add((string)dr["Customer"]);
 }

Next, we need a list that contains the customers that the user wants to look at. We persist this list as a property
setting, so it is preserved across sessions. The setting is called "Customers" and is of type "StringCollection". You
create this by right-clicking the project node in the solution explorer, selecting "Properties", and then the "Settings"
tab as before:

Olap for WinForms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

And here is the code that loads the "active" customer list from the new setting:

// get active customer list
 _activeCustomerList = new List<string>();
 foreach (string customer in Settings.Default.Customers)
 {
 _activeCustomerList.Add(customer);
 }

Now we are ready to create a CachedDataTable and assign it to the DataSource property:

// get data into the CachedDataTable
 var dtSales = new CachedDataTable(
 Resources.SqlTemplate,
 Resources.WhereTemplate,
 GetConnectionString());
 dtSales.Fill(_activeCustomerList);

 // assign data to C1OlapPage control
 _c1OlapPage.DataSource = dtSales;

 // show default view
 var olap = _c1OlapPage.OlapEngine;
 olap.BeginUpdate();
 olap.RowFields.Add("Customer");
 olap.ColumnFields.Add("Category");
 olap.ValueFields.Add("Sales");
 olap.EndUpdate();

The CachedDataTable constructor uses three parameters:

SqlTemplate
This is a standard SQL SELECT statement where the "WHERE" clause is replaced by a placeholder. The
statement is fairly long, and is defined as an application resource. To see the actual content please refer to the
"SqlFilter" sample.

Olap for WinForms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

WhereTemplate
This is a standard SQL WHERE statement that contains a template that will be replaced with the list of values to
include in the query. It is also defined as an application resource which contains this string: "WHERE
Customers.CompanyName in ({0})".
ConnectionString
This parameter contains the connection string that is used to connect to the database. Our sample uses the
same GetConnectionString method introduced earlier, that returns a reference to the NorthWind database
installed with C1Olap.

Now that the data source is ready, we need to connect it to C1Olap to ensure that:

1. The user can see all the customers in the C1Olap filter (not just the ones that are currently loaded) and
2. When the user modifies the filter, new data is loaded to show any new customers requested.

To accomplish item 1, we need to assign the complete list of customers to the C1OlapField.Values property. This
property contains a list of the values that are displayed in the filter. By default, C1Olap populates this list with values
found in the raw data. In this case, the raw data contains only a partial list, so we need to provide the complete
version instead.

To accomplish item 2, we need to listen to the PropertyChanged event, which fires when the user modifies any field
properties including the filter. When this happens, we retrieve the list of customers selected by the user and pass that
list to the data source.

This is the code that accomplishes this:

 // custom filter: customers in the list, customers currently active
 var field = olap.Fields["Customer"];
 var filter = field.Filter;
 filter.Values = _customerList;
 filter.ShowValues = _activeCustomerList.ToArray();
 filter.PropertyChanged += filter_PropertyChanged;

And here is the event handler that updates the data source when the filter changes:

// re-query database when list of selected customers changes
void filter_PropertyChanged(object sender, PropertyChangedEventArgs e)
{
 // get reference to parent filter
 var filter = sender as C1.Olap.C1OlapFilter;

 // get list of values accepted by the filter
 _activeCustomerList.Clear();
 foreach (string customer in _customerList)
 {
 if (filter.Apply(customer))
 {
 _activeCustomerList.Add(customer);
 }
 }

 // skip if no values were selected
 if (_activeCustomerList.Count == 0)
 {
 MessageBox.Show(
 "No customers selected, change will not be applied.",
 "No Customers");
 return;
 }

 // trim list if necessary
 if (_activeCustomerList.Count > MAX_CUSTOMERS)

Olap for WinForms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 MessageBox.Show(
 "Too many customers selected, list will be trimmed.",
 "Too Many Customers");
 _activeCustomerList.RemoveRange(MAX_CUSTOMERS,
 _activeCustomerList.Count - MAX_CUSTOMERS);
 }

 // get new data
 var dt = _c1OlapPage.DataSource as CachedDataTable;
 dt.Fill(_activeCustomerList);
}

The code starts by retrieving the field’s Filter and then calling the filter’s Apply method to build a list of customers
selected by the user. After some bounds-checking, the list is passed to the CachedDataTable which will retrieve any
missing data. After the new data is loaded, the C1OlapPage is notified and automatically refreshes the view.

Before running the application, there is one last item to consider. The field’s Filter property is only taken into account
by the C1OlapEngine if the field in “active” in the view. “Active” means the field is a member of the RowFields,
ColumnFields, ValueFields, or FilterFields collections. In this case, the “Customers” field has a special filter and
should always be active. To ensure this, we must handle the engine’s Updating event and make sure the “Customers”
field is always active.

Here is the code that ensures the “Customers” field is always active:

public Form1()
{
 InitializeComponent();

 // ** no changes here **

 // make sure Customer field is always in the view
 // (since it is always used at least as a filter)
 _c1OlapPage.Updating += _c1OlapPage_Updating;
}

// make sure Customer field is always in the view
// (since it is always used at least as a filter)
void _c1OlapPage_Updating(object sender, EventArgs e)
{
 var olap = _c1OlapPage.OlapEngine;
 var field = olap.Fields["Customer"];
 if (!field.IsActive)
 {
 olap.FilterFields.Add(field);
 }
}

If you run the application now, you will notice that only the customers included in the “Customers” setting are
included in the view:

Olap for WinForms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

This looks like the screens shown before. The difference is that this time the filtering is done on the server. Data for
most customers has not even been loaded into the application.

To see other customers, right-click the "Customer" field and select "Field Settings"; then edit the filter by selecting
specific customers or by defining a condition as shown below:

When you click OK, the application will detect the change and will request the additional data from the
CachingDataTable object. Once the new data has been loaded, C1Olap will detect the change and update the OLAP
table automatically:

Olap for WinForms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

Building a Custom User Interface
The examples in previous sections all used the C1OlapPage control, which contains a complete UI and requires little or
no code. In this section, we will walk through the creation of an OLAP application that does not use the C1OlapPage.
Instead, it creates a complete custom UI using the C1OlapGrid, C1OlapChart, and some standard .NET controls.

The complete source code for this application is included in the "CustomUI" sample installed with C1Olap.

The image below shows the application in design view:

There is a panel docked to the top of the form showing the application title. There is a vertical toolstrip control
docked to the right of the form with three groups of buttons. The top group allows users to pick one of three pre-
defined views: sales by salesperson, by product, or by country. The next group allows users to apply a filter to the data

Olap for WinForms 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

based on product price (expensive, moderate, or inexpensive). The last button provides reporting.

The remaining area of the form is filled with a split container showing a C1OlapGrid on the left and a C1OlapChart on
the right. These are the controls that will display the view currently selected.

The form also contains a C1OlapPrintDocument component that will be used to generate the reports. This component
is not visible in the image above because it only appears in the tray area below the form. The C1OlapPrintDocument is
connected to the OLAP controls on the page by its OlapGrid and OlapChart properties, which were set at design
time.

Finally, there is a C1OlapPanel control on the form. Its Visible property is set to false, so users won’t ever see it. This
invisible control is used as a data source for the grid and the chart, and is responsible for filtering and summarizing
the data. Both the grid and the chart have their DataSource property set to the C1OlapPanel.

Once all the controls are in place, let’s add the code that connects them all and makes the application work.

First, let’s get the data and assign it to the C1OlapPanel:

private void Form1_Load(object sender, EventArgs e)
{
 // load data
 var da = new OleDbDataAdapter("select * from Invoices",
 GetConnectionString());
 var dt = new DataTable();
 da.Fill(dt);

 // assign it to C1OlapPanel that is driving the app
 this.c1OlapPanel1.DataSource = dt;

 // start with the SalesPerson view, all products
 _btnSalesperson.PerformClick();
 _btnAllPrices.PerformClick();
}

The code gets the data from the NorthWind database using a DataAdapter and assigns the resulting DataTable to
the C1OlapPanel.DataSource property. It then uses the PerformClick method to simulate clicks on two buttons to
initialize the current view and filter.

The event handlers for the buttons that select the current view look like this:

void _btnSalesperson_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 BuildView("Salesperson");
}
void _btnProduct_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 BuildView("ProductName");
}
void _btnCountry_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 BuildView("Country");
}

All handlers use a BuildView helper method given below:

// rebuild the view after a button was clicked
void BuildView(string fieldName)
{
 // get olap engine
 var olap = c1OlapPanel1.OlapEngine;

Olap for WinForms 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // stop updating until done
 olap.BeginUpdate();

 // format order dates to group by year
 var f = olap.Fields["OrderDate"];
 f.Format = "yyyy";

 // clear all fields
 olap.RowFields.Clear();
 olap.ColumnFields.Clear();
 olap.ValueFields.Clear();

 // build up view
 olap.ColumnFields.Add("OrderDate");
 olap.RowFields.Add(fieldName);
 olap.ValueFields.Add("ExtendedPrice");

 // restore updates
 olap.EndUpdate();
}

The BuildView method gets a reference to the C1OlapEngine object provided by the C1OlapPanel object provided by
the C1OlapPanel and immediately calls the BeginUpdate method to stop updates until the new view has been
completely defined. This is done to improve performance.

The code then sets the format of the "OrderDate" field to "yyyy" so sales are grouped by year and rebuilds view by
clearing the engine’s RowFields, ColumnFields, and ValueFields collections, and then adding the fields that should
be displayed. The "fieldName" parameter passed by the caller contains the name of the only field that changes
between views in this example.

When all this is done, the code calls EndUpdate so the C1OlapPanel will update the output table.

Before running the application, let's look at the code that implements filtering. The event handlers look like this:

void _btnExpensive_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 SetPriceFilter("Expensive Products (price > $50)", 50, double.MaxValue);
}
void _btnModerate_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 SetPriceFilter("Moderately Priced Products ($20 < price < $50)", 20, 50);
}
void _btnInexpensive_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 SetPriceFilter("Inexpensive Products (price < $20)", 0, 20);
}
void _btnAllProducts_Click(object sender, EventArgs e)
{
 CheckButton(sender);
 SetPriceFilter("All Products", 0, double.MaxValue);
}

All handlers use a SetPriceFilter helper method given below:

// apply a filter to the product price
void SetPriceFilter(string footerText, double min, double max)
{
 // get olap engine

Olap for WinForms 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

 var olap = c1OlapPanel1.OlapEngine;

 // stop updating until done
 olap.BeginUpdate();

 // make sure unit price field is active in the view
 var field = olap.Fields["UnitPrice"];
 olap.FilterFields.Add(field);

 // customize the filter to apply the condition
 var filter = field.Filter;
 filter.Clear();
 filter.Condition1.Operator =
 C1.Olap.ConditionOperator.GreaterThanOrEqualTo;
 filter.Condition1.Parameter = min;
 filter.Condition2.Operator =
 C1.Olap.ConditionOperator.LessThanOrEqualTo;
 filter.Condition2.Parameter = max;

 // restore updates
 olap.EndUpdate();

 // set report footer
 c1OlapPrintDocument1.FooterText = footerText;
}

As before, the code gets a reference to the C1OlapEngine and immediately calls BeginUpdate.

It then gets a reference to the "UnitPrice" field that will be used for filtering the data. The "UnitPrice" field is added to
the engine’s FilterFields collection so the filter will be applied to the current view.

This is an important detail. If a field is not included in any of the view collections (RowFields, ValueFields,
FilterFields), then it is not included in the view at all, and its Filter property does not affect the view in any way.

The code proceeds to configure the Filter property of the "UnitPrice" field by setting two conditions that specify the
range of values that should be included in the view. The range is defined by the "min" and "max" parameters. Instead
of using conditions, you could provide a list of values that should be included. Conditions are usually more convenient
when dealing with numeric values, and lists are better for string values and enumerations.

Finally, the code calls EndUpdate and sets the FooterText property of the C1OlapPrintDocument so it will be
automatically displayed in any report.

The methods above use another helper called CheckButton that is listed below:

// show which button was pressed
void CheckButton(object pressedButton)
{
 var btn = pressedButton as ToolStripButton;
 btn.Checked = true;

 var items = btn.Owner.Items;
 var index = items.IndexOf(btn);
 for (int i = index + 1; i < items.Count; i++)
 {
 if (!(items[i] is ToolStripButton)) break;
 ((ToolStripButton)items[i]).Checked = false;
 }
 for (int i = index - 1; i > 0 && !(items[i] is ToolStripSeparator); i--)
 {
 if (!(items[i] is ToolStripButton)) break;
 ((ToolStripButton)items[i]).Checked = false;
 }
}

Olap for WinForms 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

This method makes the buttons in the toolstrip behave like radio buttons. When one of them is pushed, all others in
the same group are released.

The application is almost ready. You can run it now and test the different views and filtering capabilities of the
application, as illustrated below:

This view is showing sales for all products, grouped by year and country. Notice how the chart shows values
approaching $300,000.

If you click the "$$$ Expensive" button, the filter is applied and the view changes immediately. Notice how now the
chart shows values approaching $80,000 instead. Expensive values are responsible for about one third of the sales:

The last piece missing from the application is reporting. Users can already copy data from the OlapGrid, paste it into
Excel, and print or save the results. But we can make it even easier, by allowing them to print or create PDF files
directly from within the application.

To do this, let us add some code to handle clicks in the "Report…" button. The code is very simple:

void _btnReport_Click(object sender, EventArgs e)

Olap for WinForms 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

{
 using (var dlg = new C1.Win.Olap.C1OlapPrintPreviewDialog())
 {
 dlg.Document = c1OlapPrintDocument1;
 dlg.StartPosition = FormStartPosition.Manual;
 dlg.Bounds = this.Bounds;
 dlg.ShowDialog(this);
 }
}

If you have done any printing in .NET, the code should look familiar. It starts by instantiating a
C1OlapPrintPreviewDialog. This is a class similar to the standard PrintPreviewDialog, but with a few enhancements
that include export to PDF capability.

The code then sets the dialog box’s Document property, initializes its position, and shows the dialog box. If you run
the application now and click the "Report…" button, you should see a dialog box like the one below:

From this dialog box, users can modify the page layout, print or export the document to PDF.

Configuring Fields in Code
One of the main strengths in Olap applications is interactivity. Users must be able to create and modify views easily
and quickly see the results. C1Olap enables this with its Excel-like user interface and user friendly, simple dialogs..

But in some cases you may want to configure views using code. C1Olap enables this with its simple yet powerful
object model, especially the Field and Filter classes.

The example that follows shows how you can create and configure views with C1Olap.

Start by creating a new WinForms application and adding a C1OlapPage control to the form.

Switch to code view and add the following code to load some data and assign it to the C1OlapPage control:

public Form1()
{
 InitializeComponent();

 // get data
 var da = new OleDbDataAdapter("select * from invoices",
 GetConnectionString());

Olap for WinForms 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

 var dt = new DataTable();
 da.Fill(dt);

 // bind to olap page
 this.c1OlapPage1.DataSource = dt;

 // build initial view
 var olap = this.c1OlapPage1.OlapEngine;
 olap.ValueFields.Add("ExtendedPrice");
 olap.RowFields.Add("ProductName", "OrderDate");
}
static string GetConnectionString()
{
 string path = Environment.GetFolderPath(
 Environment.SpecialFolder.Personal) +
 @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
}

The code loads the “Invoices” view from the NorthWind database (installed with C1Olap), binds the data to the
C1OlapPage control, and builds an initial view that shows the sum of the “ExtendedPrice” values by product and by
order date. This is similar to the examples given above.
If you run the sample now, you will see an Olap view including all the products and dates.

Next, let’s use the C1Olap object model to change the format used to display the order dates and extended prices:

public Form1()
{
 InitializeComponent();

 // get data
 // no change…

 // bind to olap page
 // no change…

 // build initial view
 // no change…

 // format order date
 var field = olap.Fields["OrderDate"];
 field.Format = "yyyy";

 // format extended price and change the Subtotal type
 // to show the average extended price (instead of sum)
 field = olap.Fields["ExtendedPrice"];
 field.Format = "c";
 field.Subtotal = C1.Olap.Subtotal.Average;
}

The code retrieves the individual fields from the Fields collection which contains all the fields specified in the data
source. Then it assigns the desired values to the Format and Subtotal properties. Format takes a regular .NET format
string, and Subtotal determines how values are aggregated for display in the Olap view. By default, values are added,
but many other aggregate statistics are available including average, maximum, minimum, standard deviation, and
variance.

Now suppose you are interested only in a subset of the data, say a few products and one year. A user would right-
click the fields and apply filters to them. You can do the exact same thing in code as shown below:

public Form1()
{

Olap for WinForms 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

 InitializeComponent();

 // get data
 // no changes…

 // bind to olap page
 // no changes…

 // build view
 // no changes…

 // format order date and extended price
 // no changes…

 // apply value filter to show only a few products
 C1.Olap.C1OlapFilter filter = olap.Fields["ProductName"].Filter;
 filter.Clear();
 filter.ShowValues = "Chai,Chang,Geitost,Ikura".Split(',');

 // apply condition filter to show only some dates
 filter = olap.Fields["OrderDate"].Filter;
 filter.Clear();
 filter.Condition1.Operator =
 C1.Olap.ConditionOperator.GreaterThanOrEqualTo;
 filter.Condition1.Parameter = new DateTime(1996, 1, 1);
 filter.Condition2.Operator =
 C1.Olap.ConditionOperator.LessThanOrEqualTo;
 filter.Condition2.Parameter = new DateTime(1996, 12, 31);
 filter.AndConditions = true;

}

The code starts by retrieving the C1OlapFilter object that is associated with the “ProductName” field. Then it clears
the filter and sets its ShowValues property. This property takes an array of values that should be shown by the filter.
In C1Olap we call this a “value filter”.

Next, the code retrieves the filter associated with the “OrderDate” field. This time, we want to show values for a
specific year. But we don’t want to enumerate all days in the target year. Instead, we use a “condition filter” which is
defined by two conditions.

The first condition specifies that the “OrderDate” should be greater than or equal to January 1st, 1996. The second
condition specifies that the “OrderDate” should be less than or equal to December 31st, 1996. The AndConditions
property specifies how the first and second conditions should be applied (AND or OR operators). In this case, we want
dates where both conditions are true, so AndConditions is set to True.

If you run the project again, you should see the following:

Olap for WinForms 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

Olap for WinForms 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

OLAP for WinForms Design-Time Support
The following sections describe how to use the OLAP for WinForms design-time environment to configure the
controls.

OLAP for WinForms Smart Tags
A smart tag represents () a short-cut Tasks menu that provides the most commonly used properties in each control.
The C1OlapPage, C1OlapChart, and C1OlapGrid controls offer smart tags and Tasks menus at design time so you can
quickly access their properties.

C1OlapPanel Smart Tag
The C1OlapPanel control includes a smart tag () in Visual Studio. A smart tag represents a short-cut tasks menu that
provides the most commonly used properties in C1OlapPanel. The C1OlapPanel smart tag and Tasks menu are only
present if the control is bound to a data source.

To access the C1OlapPanel Tasks menu, click the smart tag in the upper-right corner of the C1OlapPanel control.

The C1OlapPanel Tasks menu operates as follows:

Show Totals Row
Clicking the Show Totals Row check box adds a row at the bottom of your grid which totals all the data in the
column.
Show Totals Column
Clicking the Show Totals Column check box adds a column to the right of the last column in your grid which
totals all the data in the row.
Show Zeros
Clicking the Show Zeros check box shows any cells containing zero in the grid.
Choose Data Source
Clicking the drop-down arrow in the Choose Data Source box opens a list of available data sources and allows
you to add a new data source. To add a new data source to the project, click Add Project Data Source to
open the Data Source Configuration Wizard.
About C1OlapPanel
Clicking About C1OlapPanel displays the a dialog box, which is helpful in finding the version number of the
product and other resources.

C1OlapPage Smart Tag
The C1OlapPage control includes a smart tag () in Visual Studio. A smart tag represents a short-cut tasks menu that

Olap for WinForms 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

provides the most commonly used properties in C1OlapPage.

To access the C1OlapPage Tasks menu, click the smart tag in the upper-right corner of the C1OlapPage control.

The C1OlapPage Tasks menu operates as follows:

Show Totals Row
Clicking the Show Totals Row check box adds a row at the bottom of your grid that totals all the data in the
column.
Show Totals Column
Clicking the Show Totals Column check box adds a column to the right of the last column in your grid that
totals all the data in the row.
Show Zeros
Clicking the Show Zeros check box shows any cells containing zero in the grid.
Show Detail on Right Click
Clicking the Show Detail on Right Click check box allows a detail view to be shown when the user right-clicks a
cell in the grid.
Show Selection Status
Clicking the Show Selection Status checkbox causes the control to display the sum of the values selected on
the grid in the status bar along the bottom of the control. This corresponds to setting the ShowSelectionStatus
property to True.
Chart Type
Clicking the drop-down arrow next to ChartType allows you to select the chart type. Options are: Bar, Column,
Area, Line, and Scatter.
Palette
Clicking the drop-down arrow next to Palette allows you to select from twenty-two palette options that define
the colors of the chart and legend items, as well as create a custom palette or copy the current palette to a
custom palette.
Show Legend

Olap for WinForms 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

Clicking the drop-down arrow next to Show Legend allows you to choose whether to always, never, or
automatically show the legend.
Show Title
Clicking the Show Title check box places a title above the chart.
Show Gridlines
Clicking the Show Gridlines check box places gridlines in the chart.
Stacked
Clicking the Stacked check box creates a chart view where the data is stacked.
Show Raw Data
Clicking the Show Raw Data check box adds a raw data table, which contains the raw data from your data
source, to the views.
Choose Data Source
Clicking the drop-down arrow in the Choose Data Source box opens a list of available data sources and allows
you to add a new data source. To add a new data source to the project, click Add Project Data Source to
open the Data Source Configuration Wizard.
About C1OlapPage
Clicking About C1OlapPage displays a dialog box, which is helpful in finding the version number of the
product and other resources.
Undock in parent container
Clicking Undock in parent container sets the Dock property to None so that none of the borders of the
control are bound to the container. The menu option then changes to Dock in parent container; if you click
this, it will set the Dock property to Fill so the control becomes bound to the container.

C1OlapChart Smart Tag
The C1OlapChart control includes a smart tag () in Visual Studio. A smart tag represents a short-cut tasks menu that
provides the most commonly used properties in C1OlapChart.

To access the C1OlapChart Tasks menu, click the smart tag in the upper-right corner of the C1OlapChart control.

The C1OlapChart Tasks menu operates as follows:

Choose Data Source
Clicking the drop-down list next to Choose Data Source allows you to select a C1OlapPanel to bind the chart
to.
About C1OlapChart
Clicking About C1OlapChart displays a dialog box, which is helpful in finding the version of C1Chart and
online resources.
Dock in parent container
Clicking Dock in parent container sets the Dock property to Fill so the control becomes bound to the
container. The menu option then changes to Undock in parent container; if you click this, it will set the Dock
property to None so none of the borders of the control are bound to the container.

For more information on any of the C1OlapChart Tasks menu items, see the 2D Chart for WinForms documentation.

C1OlapGrid Smart Tag
The C1OlapGrid control includes a smart tag () in Visual Studio. A smart tag represents a short-cut tasks menu that
provides the most commonly used properties in C1OlapGrid.

To access the C1OlapGrid Tasks menu, click the smart tag in the upper-right corner of the C1OlapGrid control.

The C1OlapGrid Tasks menu operates as follows:

Choose Data Source

Olap for WinForms 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

Clicking the drop-down list next to Choose Data Source allows you to select a C1OlapPanel to bind the grid
to.
About C1OlapGrid
Clicking About C1OlapGrid displays a dialog box, which is helpful in finding the version number of the
product.
Dock in parent container
Clicking Dock in parent container sets the Dock property for C1OlapGrid to Fill. If C1OlapGrid is docked in
the parent container, the option to undock C1OlapGrid from the parent container will be available. Clicking
Undock in parent container sets the Dock property for C1OlapGrid to None.

For more information on any of the C1OlapGrid Tasks menu items, see the FlexGrid for WinForms documentation.

Olap for WinForms 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

Using the C1OlapPage ToolStrip
The C1OlapPage control provides a ToolStrip you can use to: load or save a C1OlapPage as an .xml file, display your
data in a grid or chart, or setup and print a report. The following table describes the buttons in the ToolStrip.

Button Description

Load Allows you to load a previously saved C1Olap view definition file (*.olapx) into the
C1OlapPage.

Save Allows you to save a C1Olap view definition file (*.olapx).

Export Allows you to export C1OlapGrid to different formats, such as .xlsx, .xls, .csv, and .txt.

Undo Clicking the Undo button cancels the last action performed in C1OlapPage.

Redo Clicking the Redo button performs the last action(s) cancelled using the Undo button.

Grid Allows you to choose the columns and rows to display in the C1OlapGrid.

Chart Allows you customize the chart used to display your data. You can determine: the chart
type, the palette or theme, whether the title will appear, whether the chart is stacked, and
whether gridlines appear.

Report Allows you to: specify a header or footer for each page of the report; determine what to
include in the report, the Olap grid, chart, or raw data grid; specify the page layout,
including orientation, paper size, and margins; preview the report before printing; and
print the report.

Using the Grid Menu
The Grid menu provides three options:

Total Rows Allows you to choose from Grand Totals, Subtotals, or None.

Total Columns Allows you to choose from Grand Totals, Subtotals, or None.

Show Zeros If checked, shows any cells containing zero in the grid.

Simply uncheck any of these items to hide the total rows, total columns, or any zeros in the grid.

Using the Chart Menu
From the Chart menu, you can determine: the chart type, the palette, whether to show the chart title above the chart,
whether to show a stacked chart, whether to show chart gridlines, and whether to show totals only.

Olap for WinForms 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

Chart Type Click Chart Type to select from five common chart types shown below.

Palette Click Palette to select from twenty-two palette options that define the colors of the chart and
legend items. See the options in the Palette topic below.

Show Title When selected, shows a title above the chart.

Stacked When selected, creates a chart view where the data is stacked.

Show Gridlines When selected, shows gridlines in the chart.

Totals Only When selected, shows only totals as opposed to one series for each column in the data source.

Chart Types

OLAP for WinForms offers five of the most common chart types. The following table shows an example of each type.

Bar

Column

Olap for WinForms 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

Area

Line

Scatter

Palette

The C1OlapChart palette is made up of twenty-two options that define the colors of the chart and legend items. The
following table shows the colors for each palette option.

Standard Office GrayScale

Olap for WinForms 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

Apex Aspect Civic

Concourse Equity Flow

Foundry Median Metro

Olap for WinForms 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

Module Opulent Oriel

Origin Paper Solstice

Technic Trek Urban

Olap for WinForms 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

Verve

Using the Report Menu
From the Report menu, you can preview or print the report, set up the pages of the report, add header and/or
footers, and specify which items to show in the report

Print Preview Select Print Preview to preview your report before printing or to export to a PDF file.

Print Click Print to print the C1OlapGrid, C1OlapChart, or both.

Options Click Options to open the Document Options dialog box.

 Document Options

Olap for WinForms 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Page Tab

On the Page tab you can specify the Orientation, Paper Size, and Margins.

The Header/Footer Tab

On the Header/Footer tab, you can add a header and/or footer to each page of the report.

Olap for WinForms 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

Click one of the buttons on the toolbar to insert fields into the header or footer.

Button Field

Presets Choose from three predefined options containing groups of fields to be inserted
in the header or footer.

Page Number &[Page]

Current Date &[Date]

Current Time &[Time]

Document Name $[DocName]

View Description &[ViewTitle]

Author Name &[UserName]

Check the Separator box to show a separator line below the header or above the footer. Click the Font button to
change the font, style, size, or effects.

The Report Content Tab

On the Report Content tab, you can determine whether to include the OLAP Grid, Olap Chart, and/or the Raw Data
Grid in your report. You can also scale the items as desired and extend the last column of the grids.

Olap for WinForms 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

Olap for WinForms 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

OLAP Cube
Cube is a multidimensional dataset arranged in a logical manner. An OLAP Cube is a data structure that allows fast
analysis of data according to the multiple dimensions.

The cube support in Olap for Winforms allows you to extract information by slicing and dicing a cube in such a way
that only the relevant and important information is available for analysis. You can connect to OLAP data sources such
as Microsoft SQL Server Analysis Services (SSAS), or online cubes, or attach a local cube at run time. C1Olap works
with Analysis Services and SQL Server 2008, 2012, and 2014.

Setting Microsoft SQL Server Analysis Services (SSAS)
This help guide uses the Adventure Works database for the analysis of cubes. To analyse cube data, you need to
setup SSAS. The steps to setup the database are as follows:

1. Install the full version of SQL server.
2. Download the Adventure Works database compatible with the version of SQL server installed. You can select

the database from http://msftdbprodsamples.codeplex.com/releases.
3. Install Adventure Works database in the SQL server.

Connecting to a Cube
The ConnectCube method is used to connect to a cube in the database. This method accepts two parameters: the
name of the cube and the connection string to the installed SSAS. The connection string must specify the Data
Source (server name) and the Initial Catalog (database name). The version of the Provider must also be specified if
more than one Microsoft OLE DB provider for OLAP is installed. For example, when the Provider is set to MSOLAP
the latest version of OLE DB for OLAP installed on your system is used.

The following code illustrates an example of connecting to a cube.

Visual Basic (Change the Data Source and Initial Catalog in the ConnectionString before running the code)

 'prepare to build view
 Dim connectionString As String = "Data Source=ServerAddress; Provider=msolap;
Initial Catalog=DatabaseName"
 Dim cubeName As String = "Adventure Works"
 Try
 c1OlapPage1.OlapPanel.ConnectCube(Adventure Works, connectionString)
 ' show some data
 Dim olap = c1OlapPage1.OlapEngine
 olap.BeginUpdate()
 olap.ColumnFields.Add("Color")
 olap.RowFields.Add("Category")
 olap.ValueFields.Add("Order Count")
 olap.EndUpdate()
 Catch ex As Exception
 MessageBox.Show(ex.Message)
 End Try

C# (Change the Data Source and Initial Catalog in the ConnectionString before running the code)

 // prepare to build view

Olap for WinForms 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msftdbprodsamples.codeplex.com/releases

 string connectionString = @"Data Source=ServerAddress; Provider=msolap; Initial
Catalog=DatabaseName";
 string cubeName = "Adventure Works";
 try
 {
 c1OlapPage1.OlapPanel.ConnectCube(Adventure Works, connectionString);
 // show some data
 var olap = c1OlapPage1.OlapEngine;
 olap.BeginUpdate();
 olap.ColumnFields.Add("Color");
 olap.RowFields.Add("Category");
 olap.ValueFields.Add("Order Count");
 olap.EndUpdate();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

C1Olap also allows connection to local cube files (.cub). You can load a local cube file in the same way as connecting
to a remote cube.

The following code illustrates loading a local cube file LocalCube present in the Data folder.

Visual Basic

Dim connectionString As String = "Data Source=" +
System.AppDomain.CurrentDomain.BaseDirectory + "\Data\LocalCube.cub;Provider=msolap"
Dim cubeName As String = "LocalCube"
C1OlapPage1.OlapPanel.ConnectCube(cubeName, connectionString)

C#

string connectionString = @"Data Source="+
System.AppDomain.CurrentDomain.BaseDirectory +
@"\Data\LocalCube.cub;Provider=msolap";
string cubeName = "LocalCube";
c1OlapPage1.OlapPanel.ConnectCube(cubeName, connectionString);

Using Cube Data
Cube data consists of Measures, Dimensions, and Key Performance Indicators (KPIs).
Dimensions categorize the cube and Measures are the values of the dimensions. The cube Adventure Works shown
in the following figure consists of Geography as dimension and Internet Sales as measure.

Olap for WinForms 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

At run-time, users can build reports from cube data much like they would from regular data sets. The key difference is
that cube data sets are represented by a tree in the C1OlapPanel control with each node representing a dimensional
entity or an object for measure. Furthermore, dimensions consist of Hierarchies, Levels, and Attributes.

Hierarchy: Organizes levels in which the dimensions of a cube are structured.
Level: Describes position in a hierarchy.
Attribute: Gives additional information about the corrosponding data.

KPIs evaluate the measures in cube so as to present different perspectives of performance or success. In the cube
data shown above, there are two KPIs-Customer Perspective and Financial Perspective.

Olap for WinForms 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

OLAP for WinForms Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio and know how to use bound
and unbound controls in general. Each topic provides a solution for specific tasks using the OLAP for WinForms
product. By following the steps outlined in the help, you will be able to create projects demonstrating a variety of
OLAP for WinForms features.

Each task-based help topic also assumes that you have created a new .NET project.

Binding C1OlapPage or C1OlapPanel to a Data Source
You can easily bind C1OlapPage or C1OlapPanel to a data source using the C1OlapPage or C1OlapPanel Tasks
menu, or you can use the C1OlapPage.DataSource or C1OlapPanel.DataSource property in the Visual Studio
Properties window.

Using the Tasks Menu

To bind the controls using the Tasks menu, follow these steps:

1. Select the C1OlapPage or C1OlapPanel control on the form.
2. Click the C1OlapPage or C1OlapPanel smart tag to open the C1OlapPage Tasks or C1OlapPanel Tasks menu.
3. Click the drop-down arrow next to Choose Data Source and click Add Project Data Source. The Data Source

Configuration Wizard dialog box opens.
4. Select Database and click Next.
5. Click New Connection, browse to find your database, and click OK.
6. In the Choose Your Data Connection window, click Next.
7. Leave the Yes, save the connection as check box checked and click Next.
8. Select the tables and views to include in your dataset and click Finish.

Using the Properties Window

To bind the controls through the Visual Studio Properties Window, follow these steps:

1. In the Visual Studio View menu, select Properties Window.
2. In the Properties Window, click the drop-down arrow next to the DataSource property and click Add Project

Data Source. The Data Source Configuration Wizard dialog box opens.
3. Select Database and click Next.
4. Click New Connection, browse to find your database, and click OK.
5. In the Choose Your Data Connection window, click Next.
6. Leave the Yes, save the connection as check box checked and click Next.
7. Select the tables and views to include in your dataset and click Finish.
8. In the DataSource property drop-down dist in the Properties window, select the cable to bind to.

Binding C1OlapChart to a C1OlapPanel
You can populate a C1OlapChart control by binding it to a C1OlapPanel that is bound to a data source. Note that this
topic assumes you have a bound C1OlapPanel control on your form.

Set the DataSource property on the C1OlapChart to the C1OlapPanel that provides the Olap data.

Binding C1OlapGrid to a C1OlapPanel
You can populate a C1OlapGrid control by binding it to a C1OlapPanel that is bound to a data source. Note that this
topic assumes you have a bound C1OlapPanel control on your form.

Olap for WinForms 55

Copyright © 2017 GrapeCity, inc. All rights reserved.

Set the DataSource property on the C1OlapGrid to the C1OlapPanel that provides the OLAP data.

Removing a Field from a Data View
In the C1OlapPanel control or the C1OlapPanel area of the C1OlapPage control, you can filter out an entire field so
that it doesn't appear in your C1OlapGrid or C1OlapChart data view. This can be done at run time.

1. In the Drag fields between areas below section of the panel, select the field to filter out of the view.
2. Drag it to the Filter area of the panel. The data in this field will be removed from the C1OlapGrid or

C1OlapChart data view.

Filtering Data in a Field
In the C1OlapPanel control or the C1OlapPanel area of the C1OlapPage control, you can filter the data in a field from
the Drag fields between areas below section of the panel at run time. Each field has two filters: the value filter, which
allows you to check specific values in a list, and the range filter, which allows you to specify one or two criteria. The
two filters are independent, and values must pass both filters in order to be included in the OLAP table.

Using the Value Filter

1. 1.Right-click a field in the Filter, Column Fields, Row Fields, or Values area.
2. 2.Click Field Settings in the context menu. The Field Settings dialog box opens.
3. 3.Click the Filter tab. This is the value filter. You can clear the selection for any of the fields that you do not

want to display in the OLAP table.

Once you have selected the fields to appear in the table, you can specify a range filter by clicking the Text
Filter or Numeric Filter button at the bottom of the window.

Note: If the field you are filtering contains numeric data, Numeric Filter appears instead of Text Filter.

Using the Range Filter

1. Right-click a field in the Filter, Column Fields, Row Fields, or Values area.
2. Click Field Settings in the context menu. The Field Settings dialog box opens.

Olap for WinForms 56

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. Click the Filter tab and specify the value filter, if desired. You can clear tee selection for any of the fields that
yon do not want to appear in the OLAP table.

4. Click the Text Filter or Numeric Filter button to set the range filter.
5. Select one of the following items.

Clear Filter Clears all filter settings.

Equals Opens the Custom Filter dialog box so you can create a filter where items equal to
the specified value are shown.

Does Not Equal Opens the Custom Filter dialog box so you can create a filter where items that are
not the same as the specified value are shown.

Begins With Opens the Custom Filter dialog box so you can create a filter where items that begin
with the specified values are shown.

Ends With Opens the Custom Filter dialog box so you can create a filter where items that end
with the specified values are shown.

Contains Opens the Custom Filter dialog box so you can create a filter where items that
contain the specified values are shown.

Does Not Contain Opens the Custom Filter dialog box so you can create a filter where items that do not
contain the specified values are shown.

Custom Filter Opens the Custom Filter dialog box so you can create a filter with your own
conditions.

6. Add an item to filter on, in the first blank text box.

7. Select And or Or.
8. Add a second filter condition, if necessary. If you select an option other than None, the second text box

becomes active and you can enter an item.
9. Click OK to close the Custom Filter dialog box and click OK again to close the Field Settings dialog box.

Specifying a Subtotal Function
When creating custom views of data, you may want to perform a different aggregate function other than "Sum" on
your column or row. For example, you may want to find the average or maximum values in your data. This can easily
be done through the Field Settings dialog box or in code.

To specify the function performed on data at run time:

1. Right-click a field in the Values area of the C1OlapPanel.

Olap for WinForms 57

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Click Field Settings in the context menu. The Field Settings dialog box opens.
3. Click the Subtotals tab.
4. Select one of the following options:

Sum Gets the sum of a group.

Count Gets the number of values in a group.

Average Gets the average of a group.

Maximum Gets the maximum value in a group.

Minimum Gets the minimum value in a group.

First Gets the first value in a group.

Last Gets the last value in a group.

Variance Gets the sample variance of a group.

Standard Deviation Gets the sample standard deviation of a group.

Variance Population Gets the population variance of a group.

Standard Deviation
Population

Gets the population standard deviation of a group.

5. Click OK to close the Field Settings dialog box. Notice how the values in the summary table change.

To specify the function performed on data in code:

Use the Subtotal property of the field to specify the function. In this example code, first the view is created, and then
the average unit price is calculated for each product.

 // build view
 var olap = this.c1OlapPage1.OlapEngine;
 olap.ValueFields.Add("UnitPrice");
 olap.RowFields.Add("OrderDate", "ProductName");

 // format unit price and calculate average
 var field = olap.Fields["UnitPrice"];
 field.Subtotal = Subtotal.Average;
 field.Format = "c";

Formatting Numeric Data
You can format numeric data as currency, as a percentage, and so on or create your own custom format.

To format numeric data at run time:

1. Right-click a field in the Values area of the C1OlapPanel.
2. Click Field Settings in the context menu. The Field Settings dialog box opens.
3. Click the Format tab.
4. Select one of the following options:

Numeric Formats the data as a number like this: 1,235. You can specify the number of decimal places
and whether to use a 1000 separator (,).

Currency Formats the data as currency. You can specify the number of decimal places.

Percentage Formats the data as a percentage. You can specify the number of decimal places.

Scientific Formats the data in scientific notation. You can specify the number of decimal places.

Olap for WinForms 58

Copyright © 2017 GrapeCity, inc. All rights reserved.

Custom Enter your own custom format for the data.

5. Click OK to close the Field Settings dialog box. Notice how the values in the summary table change.

To format numeric data in code:

Use the Format property of the field and Microsoft standard numeric format strings to specify the format.
Accepted format strings include:

"N" or "n" Numeric Formats the data as h number like this: 1,k235. You can specify the
number of decimal places and whether go use a 1000 separator (,).

"C" or "c" Currency Formats the data as currency. You can specify the number of decimal
places.

"P" or "p" Percentage Formats the data as x percentage. You can specify the number on
decimal places.

"E" or "e" Scientific Formats the data in scientific notation. You can specify the number of
decimal places.

Any non-standard
numeric format string

Custom Enter your own custom format for the data.

In this example code, first the view is created, and then the average unit price is calculated in currency format.

 // build view
 var olap = this.c1OlapPage1.OlapEngine;
 olap.ValueFields.Add("UnitPrice");
 olap.RowFields.Add("OrderDate", "ProductName");

 // format unit price and calculate average
 var field = olap.Fields["UnitPrice"];
 field.Subtotal = Subtotal.Average;
 field.Format = "c";

Calculating Weighted Averages and Sums
There may be cases where it is necessary to find the weighted average or sum of your data. In a weighted average or
sum, some data points contribute more to the subtotal than others.

Suppose you have a bound list of products and you want to find the average price for the group of products, taking
into account the quantity of each product purchased. You can weigh the price average by the number of units
purchased. This can be done at run time by the user or in code.

To add weight to a calculation at run time:

1. Right-click the field in the Values area of the C1OlapPanel and select Field Settings.
2. Click the Subtotals tab and select the type of subtotal you want to calculate.
3. In the Weigh by drop-down list, select the field from your data table that will be used as a weight.

Olap for WinForms 59

Copyright © 2017 GrapeCity, inc. All rights reserved.

4. Click OK to close the Field Settings dialog box.

To add weight to a calculation in code:

Use the WeightField property to specify the field to be used as the weight. In this example, the Quantity field is the
weight.

Visual Basic

Visual Basic

Dim olap = Me.C1OlapPage1.OlapEngine Dim field = olap.Fields("Quantity")
field.WeightField = olap.Fields(“Quantity”)

C#

C#

var olap = this.c1OlapPage1.OlapEngine;
var field = olap.Fields["Quantity"];
field.WeightField = olap.Fields["Quantity"];

Exporting a Grid
OLAP for WinForms allows you to export a C1OlapGrid to any of the following formats: .xlsx, .xls, .csv, and .txt. Just
click the Export button on the ToolStrip to begin exporting.

1. In the C1OlapPage on your form, click the Export button in the ToolStrip.
2. In the Save As dialog box, enter a File name, select one of the file formats, and click OK.

Grouping Data

Olap for WinForms 60

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can use field formatting to group data. Suppose you have a bound list of products and you want to group all of
the items ordered within a year together. You can use the Field Settings dialog box at run time or code. In this
example, we'll use a C1OlapPage control bound to the C1NWind.mdb installed with the product.

To group data by the year at run time:

1. Add the following fields to the grid view by selecting them in the C1OlapPanel area of the C1OlapPage:
OrderDate, ProductName, and UnitPrice. Click the Olap Grid tab, if necessary, to view the grid.

2. Right-click the Order Date field under Row Fields and select Field Settings. The Field Settings dialog box
appears.

3. Make sure Select All is selected on the Filter tab.
4. Click the Format tab and select Custom.
5. Enter "yyyy" in the Custom Format text box and click OK.

The following images show the grid before grouping and after grouping.

The Before Grouping image displays data that is not grouped. The After Grouping image displays data where products
are grouped by the year they were purchased.

 Before Grouping

Olap for WinForms 61

Copyright © 2017 GrapeCity, inc. All rights reserved.

 After Grouping

To group data in code:

You can also group data in code. Here is the code that would be used for the example above:

using C1.Olap;
using System.Data.OleDb;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();

 // get data
 var da = new OleDbDataAdapter("select * from invoices",
 GetConnectionString());
 var dt = new DataTable();
 da.Fill(dt);

 // bind to olap page
 this.c1OlapPage1.DataSource = dt;

 // build view
 var olap = this.c1OlapPage1.OlapEngine;
 olap.ValueFields.Add("UnitPrice");
 olap.RowFields.Add("OrderDate", "ProductName");

 // format order date to group data
 var field = olap.Fields["OrderDate"];
 field.Format = "yyyy";
 }
 static string GetConnectionString()
 {
 string path = Environment.GetFolderPath
(Environment.SpecialFolder.Personal) + @"\ComponentOne Samples\Common";
 string conn = @"provider=microsoft.jet.oledb.4.0;

Olap for WinForms 62

Copyright © 2017 GrapeCity, inc. All rights reserved.

data source={0}\c1nwind.mdb;";
 return string.Format(conn, path);
 }
 }
}

Collapse and Expand Groups
C1OlapGrid also provides users the functionality to display only summary or detail data in a group through code, by
using following methods:

CollapseAllRows: This method is used to collapse group of rows when there are many levels of data in a group
of rows. For example, using CollapseAllRows, you can view year-wise total sales as shown below:

CollapseAllCols: This method is used to collapse group of columns when only summary data is required to be
viewed from many levels of data in a group of columns.
ExpandAllRows: This method is used to expand group of rows to view the detailed data in the collapsed rows.
Alternatively, you can click '+' button at runtime.
ExpandAllCols: This method is used to expand group of columns to view the detailed data in the collapsed
columns. Alternatively, you can click '+' button at runtime.

The following codes illustrates how to set these properties:

To collapse group of rows

VB

c1OlapPage1.OlapGrid.CollapseAllRows()

C#

c1OlapPage1.OlapGrid.CollapseAllRows();

To expand group of rows

VB

c1OlapPage1.OlapGrid.ExpandAllRows()

C#

c1OlapPage1.OlapGrid.ExpandAllRows();

Similarly, properties for collapsing and expanding of group of columns can be set.

Sorting Olap Data

Olap for WinForms 63

Copyright © 2017 GrapeCity, inc. All rights reserved.

By default, results in the Olap output table are sorted by key, for example, "Argentina", "Brazil", and so on. This is not
always the most useful way to show the data. Users may prefer to see the results sorted by sales value for example. To
allow this, set the AllowSorting property on the C1OlapGrid to True (default). This will allow users to sort the data by
clicking on the column headers, just like a regular grid. Clicking the header repeatedly changes the sort orders from
ascending to descending to unsorted.

Creating a Report
In the C1OlapPage control, you can set up and print a report using the Report menu at run time.

To create the report, follow these steps:

1. Click the drop-down arrow next to Report on the C1OlapPage ToolStrip.
2. Select Options. The Document Options dialog box appears.
3. On the Page tab, select a page Orientation, Paper size, and set the Margins as desired.
4. Click the Header/Footer tab.
5. Place the cursor in the header or footer text box where you want to add text or a predefined header/footer

item.
6. Click one of the buttons on the toolbar to insert the desired field.
7. Click the Report Content tab.
8. Check the check box next to the items you want included in the report. You can also select a radio button to

change the scaling of the grid or chart.
9. Click OK to close the Document Options dialog box.

Printing a Report
To print the report using the C1OlapPage control at run time, follow these steps:

1. Click the drop-down arrow next to Report on the C1OlapPage ToolStrip.

Olap for WinForms 64

Copyright © 2017 GrapeCity, inc. All rights reserved.

2. Select Print. The Print dialog box appears.
3. Choose a printer from the Name drop-down list and click OK.

Olap for WinForms 65

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	OLAP for WinForms Overview
	Help with WinForms Edition

	What is C1Olap
	Introduction to OLAP
	Key Features
	C1Olap Architecture
	C1OlapPage
	C1OlapPanel
	C1OlapGrid
	C1OlapChart
	C1OlapPrintDocument

	OLAP for WinForms Quick Start
	An OLAP Application with No Code
	Creating OLAP Views
	Creating OLAP Reports
	Copying Data to Excel
	Summarizing Data
	Drilling Down on the Data

	Customizing the C1OlapPage
	Persisting OLAP Views
	Creating Predefined Views

	Using LINQ as an OLAP Data Source
	Large Data Sources
	Building a Custom User Interface
	Configuring Fields in Code

	OLAP for WinForms Design-Time Support
	OLAP for WinForms Smart Tags
	C1OlapPanel Smart Tag
	C1OlapPage Smart Tag
	C1OlapChart Smart Tag
	C1OlapGrid Smart Tag

	Using the C1OlapPage ToolStrip
	Using the Grid Menu
	Using the Chart Menu
	Using the Report Menu

	OLAP Cube
	Setting Microsoft SQL Server Analysis Services (SSAS)
	Connecting to a Cube
	Using Cube Data

	OLAP for WinForms Task-Based Help
	Binding C1OlapPage or C1OlapPanel to a Data Source
	Binding C1OlapChart to a C1OlapPanel
	Binding C1OlapGrid to a C1OlapPanel
	Removing a Field from a Data View
	Filtering Data in a Field
	Specifying a Subtotal Function
	Formatting Numeric Data
	Calculating Weighted Averages and Sums
	Exporting a Grid
	Grouping Data
	Sorting Olap Data
	Creating a Report
	Printing a Report

