
ComponentOne

SpellChecker for WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
SpellChecker for WinForms Overview 2

Help with WinForms Edition 2

Key Features 3

SpellChecker for WinForms Quick Start 4

C1SpellChecker Fundamentals 5

Modes of Spell-Checking 5

Types of Dictionary Files 5-6

Spell-Checking International Applications 6-7

Spell-Checking Different Types of Controls 7

Built-in Spell Dialog Box 7-8

Customizing the Spell Dialog 8-10

Other Spell-Checking Services 10

Building and Maintaining Dictionary Files 11

Editing the Contents of the DCT File 11-13

Creating a New DCT File 13-14

SpellChecker for WinForms Samples 15-16

SpellChecker for WinForms Task-Based Help 17

Creating a Custom Dictionary 17-18

Making Automatic Replacements as you Type 18-19

Setting the Spell Dialog Language 19-20

Spell-Checking a C1FlexGrid Control 20-29

SpellChecker for WinForms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

SpellChecker for WinForms Overview
SpellChecker for WinForms, our .NET product for multi-language spell checking, has been re-engineered to provide
the easiest-to-use and most efficient spell checker available on the market today. Just drop the C1SpellChecker and
text box controls on your Windows Form, set one property, and experience Microsoft Word-like spell checking
capable of processing 400,000 words per second!

C1SpellChecker adapts to your organization's needs – providing as-you-type spell checking, multi-language support,
full customization, and more. Take advantage of the new functionality, speed, and flexibility – start using
C1SpellChecker today.

Help with WinForms Edition

Getting Started
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

SpellChecker for WinForms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/

Key Features
The C1SpellChecker replaces the C1Spell component offering substantial new features, including:

Code-free text box integration
Use the extender SpellCheck property to link the C1SpellChecker component to any text box-derived control
– no code is necessary!
Fastest SpellChecker
Fastest SpellChecker capable of processing 400,000 words per second.
As-you-type spell checking
As you type, a red, wavy underline indicates any spelling mistakes; right-clicking the error shows a context
menu with spelling suggestions.
Dialog box spell checking
Use the CheckControl method to check the content of any text box using a modal dialog box –
C1SpellChecker automatically highlights suspect words.
Spell checking intelligence
Differentiate between upper and lower case; therefore, "paul" is marked as a spelling mistake, and "Paul" is not.
Full dialog box customization
Incorporate your organization's look and feel – add customizable images, text, buttons, and more to the
default spelling dialog box.
Interactive context menu
Right-click a misspelled word and the default context menu offers a list of suggestions, the option to Ignore
All, use AutoCorrect, or choose a word from the spelling dialog box.
Spell checking support for other types of controls
Supports programmatic interfaces that can be used to add spell checking functionality to other kinds of
controls, such as grids.
Flexibility to create custom dictionaries
Using the dictionary editor (C1DictionaryEditor.exe), create and maintain custom-built dictionary files to
distribute with your application – helpful for words specific to certain industries.
Multi-language support
Includes 16 international dictionaries.
Spell check strings of code

Create custom text parsers to spell check C# and VB code files, for example.

SpellChecker for WinForms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

SpellChecker for WinForms Quick Start
This section will lead you through the creation of a basic Visual Studio project that uses the C1SpellChecker
component with a RichTextBox control. Note that you could also check the spelling of the text in any TextBox control.

Complete the following steps to create a basic spell-checking form:

1. Add the C1SpellChecker component to the Toolbox.
2. From the Toolbox, double-click the C1SpellChecker component to add it to the form. Note that the

component will appear below the form, not on it.
3. From the Toolbox, double-click the RichTextBox control to add it to the form.
4. Select the RichTextBox, and set the following properties:

Dock property to Fill.
SpellChecking on C1SpellChecker1 property to True.

Note: The SpellChecking property is an extender property provided by the C1SpellChecker.

Now the sample application is ready; it’s that easy! Run the application, type any text in the box, and observe
Microsoft Word-style spell-checking functionality (right-click misspelled words to see a list of suggestions):

Notice that spelling errors are indicated by a red, wavy underline. Right-clicking the spelling error provides valid
spelling alternatives (just like in Microsoft Word).

SpellChecker for WinForms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1SpellChecker Fundamentals
This section covers the essentials of C1SpellChecker. After reading the following topics you will have a good
understanding of how the C1SpellChecker operates.

Modes of Spell-Checking
The C1SpellChecker component supports the following three modes of spell-checking:

Batch mode
Use the CheckText, CheckWord, and GetSuggestions methods to check strings and get lists of errors and
spelling suggestions.
Dialog mode
Use the CheckControl method to check the content of any Windows.Forms.TextBoxBase-derived controls using
a modal dialog box. The C1SpellChecker will check the text and display a dialog box where the user can
choose to correct or ignore each error. See the Built-in Spell Dialog Box topic for details.
You can also check editors that do not derive from Windows.Forms.TextBoxBase. To do that, you have to create
a wrapper class that implements the ISpellCheckableEditor interface.
As-you-type mode Set the extender property SpellCheck on any Windows.Forms.TextBoxBase-derived control
to True, and the C1SpellChecker will monitor changes to the control. Any spelling mistakes will be indicated
on the control by a red, wavy underline; right-clicking the errors will show a context menu with spelling
suggestions.
You can also provide as-you-type spelling support for editors that do not derive from
Windows.Forms.TextBoxBase. To do that, you have to create a wrapper class that implements the
ISpellCheckableRichEditor interface.

In all three modes described above, the spell-checker follows rules that can be customized using the Options
property. Options available include types of words to ignore (capitalization, numbers, URLs), whether to display
suggestions in a context menu, the number of suggestions to display, and so on.

Types of Dictionary Files
The C1SpellChecker control uses up to three dictionaries while checking text:

Main dictionaries: Read-only dictionary that contains the main word list. The US-English version of this
dictionary is built into the control, so there's no need for any additional files. Other languages are available as
.dct files that ship with the control, and can be selected using the FileName property.
User dictionaries: Read-write dictionary used to store words that are correct, but are not part of the main
dictionaries. These files are stored as plain UTF-8 text, and can be selected using the FileName property.
Custom dictionaries: Any .NET object that implements the ISpellDictionary interface. This allows users to
create their own dictionary classes, using whatever scheme makes sense in their application. A custom
dictionary could, for example, look up words on the Web using a Web service (and then cache them for speed).

Word Lists
The main dictionaries are zip files with a .dct extension. The zip file may contain several word lists, each one stored as
a UTF-8-encoded text file containing lists of valid words. All such entries must have a ".words" extension. For
information on how to add word lists, see the Editing the Contents of the DCT File and Creating a New DCT File topics.

Rules

SpellChecker for WinForms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

The file may also include a "rules" entry that specifies rules to apply when spell-checking text in the dictionary
language. For example, the French dictionary that ships with C1SpellChecker contains the following entries:

IgnorePrefix: l' d' j' da' m' s' n' qu'
IgnoreSuffix: 's

These tell the spell checker to ignore some common prefixes and suffixes; they are removed before the word is
checked. For example:

· l'amour (check 'amour' -> correct)
· l'amuor (check 'amuor' -> incorrect)
· Maxim's (check 'Maxim' -> correct)
· Naxim's (check 'Naxim' -> incorrect)

Prefixes and suffixes not included will be tagged as spelling errors:

h'amour (check 'h'amour' -> incorrect)
x'amuor (check 'x'amuor' -> incorrect)

Spell-Checking International Applications
C1SpellChecker has a built-in American English dictionary. To spell-check text in other languages, use the
MainDictionary property and set the FileName property to the name of the dictionary you want to use.

ComponentOne ships the following 15 international dictionaries with C1SpellChecker, in addition to the English – US
dictionary that is built into the control:

C1Spell_de-DE.dct German dictionary.

C1Spell_el-GR.dct Greek dictionary.

C1Spell_en-AU.dct English – Australia dictionary.

C1Spell_en-CA.dct English – Canada dictionary.

C1Spell_en-GB.dct English – Great Britain dictionary.

C1Spell_en-US.dct English – US dictionary, built into the control as well.

C1Spell_es-AR.dct Spanish – Argentina dictionary.

C1Spell_es-ES.dct Spanish – Spain dictionary.

C1Spell_es-MX.dct Spanish – Mexico dictionary.

C1Spell_fr-CA.dct French – Canada dictionary.

C1Spell_fr-FR.dct French – France dictionary.

C1Spell_it-IT.dct Italian dictionary.

C1Spell_nl-NL.dct Dutch dictionary.

C1Spell_pt-BR.dct Portuguese – Brazil dictionary.

C1Spell_pt-PT.dct Portuguese – Portugal dictionary.

C1Spell_ru-RU.dct Russian dictionary.

Note: By default, the DCT files are installed in the C:\Program Files\ComponentOne\WinForms Edition\bin
directory.

SpellChecker for WinForms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

If your application uses any dictionaries other than the built-in American English, then you need to deploy the
dictionaries with the application.

Deploying Dictionaries
Deploying dictionaries is trivial for English applications since the English dictionary is built into the C1SpellChecker
component. Other languages are available, but require deploying the appropriate dictionaries.

The easiest way to deploy the dictionaries with your application is to add the .dct files to your project, and set the
Build Action property to None and the Copy to Output Directory property to Copy if newer. This will place the .dct
files in the application directory where C1SpellChecker can find them.

When using this deployment method, make sure the main dictionary's FileName value specifies a file name without a
path. This way, the component will search for the dictionary in the directory where the C1SpellChecker assembly is
located.

By default, C1SpellChecker will also localize the built-in spell dialog box automatically, based on the current culture.
You can override this behavior and specify the language used in the dialog box by setting the DialogLanguage
property.

Using the C1SpellChecker Dictionary Editor
You can use the dictionary maintenance utility that ships with C1SpellChecker to modify the dictionaries that ship
with C1SpellChecker and also to create new dictionaries. For more details on maintaining and creating dictionaries,
see the Building and Maintaining Dictionary Files section.

Spell-Checking Different Types of Controls
C1SpellChecker can spell-check controls that derive from Windows.Forms.TextBoxBase. This includes the TextBox and
RichTextBox controls.

To spell-check other types of controls (a grid for example), you have to create a wrapper class that implements the
ISpellCheckableEditor interface or the ISpellCheckableRichEditor interface.

The ISpellCheckableEditor interface specifies the minimum set of methods and properties necessary to implement
modal (dialog-base) spell-checking. The ISpellCheckableRichEditor interface extends ISpellCheckableEditor and
specifies additional methods needed to provide as-you-type spell-checking (with the red wavy underlines and spelling
suggestions in the context-sensitive menu).

Note: The samples that ship with the C1SpellChecker control include an application called SpellGrid that
shows how you can implement the ISpellCheckableEditor interface in a class and use that class to spell-check a
C1FlexGrid control.

Built-in Spell Dialog Box
Here is the default built-in Spelling dialog box:

SpellChecker for WinForms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

To enable the Spell Dialog, use the CheckControl method to link the C1SpellChecker component to a control
derived from Windows.Forms.TextBoxBase. For example, the following code links the C1SpellChecker component to a
RichTextBox control:

To write code in Visual Basic

Visual Basic

Private Sub btnSpellCheck_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSpellCheck.Click
 C1SpellChecker1.CheckControl(RichTextBox1)
End Sub

To write code in C#

C#

private void btnSpellCheck_Click(object sender, EventArgs e)
{
 c1SpellChecker1.CheckControl(richTextBox1);
}

While spell checking, the C1SpellChecker will automatically highlight misspelled words when the user interacts with
the built-in Spell Dialog.

Customizing the Spell Dialog
The Spell Dialog can be customized three different ways:

1. Create an instance of the C1SpellDialog class, attach event handlers, then pass the instance of the dialog to the
CheckControl method. For example:

To write code in Visual Basic

Visual Basic

Private Sub btnSpell_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSpell.Click

SpellChecker for WinForms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

 ' create a spell-checking dialog box
 Using dlg As New C1SpellDialog()
 ' connect event handler
 AddHandler dlg.ErrorDisplayed, AddressOf dlg_ErrorDisplayed
 ' spell-check the RichTextBox control
 C1SpellChecker1.CheckControl(Me.RichTextBox, False, dlg)
 End Using
End Sub
Private Sub dlg_ErrorDisplayed(ByVal sender As Object, ByVal e As EventArgs)
 ' get the C1SpellDialog that fired the event
 Dim dlg As C1SpellDialog = TryCast(sender, C1SpellDialog)
 ' show information about the error currently displayed
 ToolStripStatusLabel1.Text = String.Format("Error {0} of {1}: '{2}'",
dlg.ErrorIndex + 1, dlg.ErrorCount, dlg.CurrentError.Text)
End Sub

To write code in C#

C#

private void btnSpell_Click(object sender, EventArgs e)
{
 // create a spell-checking dialog box
 using (C1SpellDialog dlg = new C1SpellDialog())
 {
 // connect event
 dlg.ErrorDisplayed += new EventHandler(dlg_ErrorDisplayed);
 // spell-check the RichTextBox
 c1SpellChecker1.CheckControl(this.richTextBox, false, dlg);
 }
}
void dlg_ErrorDisplayed(object sender, EventArgs e)
{
 // get the C1SpellDialog that fired the event
 C1SpellDialog dlg = sender as C1SpellDialog;
 // show information about the error currently displayed
 toolStripStatusLabel1.Text = string.Format("Error {0} of {1}: '{2}'",
 dlg.ErrorIndex + 1, dlg.ErrorCount, dlg.CurrentError.Text);
}

Note that the code above assumes that you have added a Button control and a StatusStrip control with a
ToolStripStatusLabel to your form at design time.

OR

2. Create a new spell-checking dialog class that implements the ISpellDialog interface. Then pass an instance of
the new dialog to the CheckControl method.

OR

3. If you need more extensive customization, you can create your own spell dialog box and use that instead of the
built-in one.

Note: The samples that ship with the C1SpellChecker include a CustomSpellDialog application that includes

SpellChecker for WinForms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

the source code for two dialogs that you can use as a base for creating your own spell dialog boxes.

Other Spell-Checking Services
C1SpellChecker exposes lower-level methods for checking text that is not necessarily in any controls. For example,
you can use these methods to spell-check text stored in databases or in text files.

The CheckText method spell-checks a string and returns a list of errors in a CharRange object. The GetSuggestions
method provides a list of suggestions for misspelled words.

SpellChecker for WinForms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

Building and Maintaining Dictionary Files
The SpellChecker for .WinForms distribution CD includes a C1SpellChecker Dictionary Editor called
C1DictionaryEditor.exe that allows you to create and maintain dictionary files (.dct). You can use it to add words to
the main dictionary or to create new dictionaries in languages other than English.

The installation utility copies the C1DictionaryEditor.exe program to the ComponentOne directory you specify
during the installation process (by default it installs to the C:\Program Files\ComponentOne\WinForms Edition\bin
directory). When you run C1DictionaryEditor.exe, you will see the following on your screen:

The utility is simple and
easy to use. It is used to perform two functions:

Open existing .dct files and add words or word lists.
Create new .dct files.

Editing the Contents of the DCT File
To edit the contents of an existing dictionary file (.dct), complete the following steps:

1. Double-click the C1DictionaryEditor.exe (by default it installs to the C:\Program
Files\ComponentOne\WinForms Edition\C1SpellChecker) to open the C1SpellChecker Dictionary Editor.

2. Click the Open Dictionary button and browse for the .dct file to edit.

Note: For a list of .dct files that ship with C1SpellChecker, see the Spell-Checking International
Applications topic.

The editor shows all the entries in the .dct file:

SpellChecker for WinForms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

The entries appear as items on the list box on the left. Selecting an entry shows its contents on the editor that
appears on the right pane.

3. You can edit the contents of the .dct file using the following methods:
Typing or pasting words into the existing word list on the right.
Selecting the Add Wordlist button and creating a new word list to add:

To rename the word list, select the Rename Wordlist button and change the default "main.words" name:

Tips: When creating a word list, note that case is important. Lowercase entries in word lists match regular
words (for example, "word" matches "word", "Word", and "WORD"). Entries that start with an uppercase

SpellChecker for WinForms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

character do not match lowercase words and should be used for names (for example, "Paul" matches
"Paul" and "PAUL", but not "paul").
Also note that the words in word lists don't have to be in any specific order. The words will be sorted
automatically when the file is saved.

4. Once you are done making changes, save the file.

Creating a New DCT File
DCT files are simply zip files with one or more word lists. Each word list is an entry in the zip file, and its name must
end with the ".words" extension (otherwise it will be ignored by the C1SpellChecker). Each word list is a UTF-8-
encoded text file.

To create a new dictionary file (.dct), complete the following steps:

1. Double-click the C1DictionaryEditor.exe to open the C1SpellChecker Dictionary Editor.

2. Click the New Dictionary button . The New Dictionary dialog box appears.
3. Enter the name of the dictionary (for example, Architecture.dct) and press the Save button.
4. The editor creates rules and main.words items on the list box on the left. Selecting an entry shows its contents

on the editor that appears on the right pane.

The "rules" entry specifies rules to apply when spell-checking text in the dictionary language. For example, the
new dictionary creates the following entries by default:

IgnorePrefix: l'
IgnoreSuffix: 's

For more information on rules, see the Types of Dictionary Files topic.

5. Select the main.words entry and press the Rename Wordlist button to open the dialog box:

Rename the list, "buildings.words" for example, and click OK.

SpellChecker for WinForms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

6. Then type or paste words into the word list on the right, for example: p

Tips: When creating a word list, note that case is important. Lowercase entries in word lists match regular
words (for example, "word" matches "word", "Word", and "WORD"). Entries that start with an uppercase
character do not match lowercase words and should be used for names (for example, "Paul" matches
"Paul" and "PAUL", but not "paul").
Also note that the words in word lists don't have to be in any specific order. The words will be sorted
automatically when the file is saved.

Notice in the bottom-right corner of the dialog box the editor keeps count of the number of entries.

7. Once you are done making changes, save the file.

SpellChecker for WinForms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

SpellChecker for WinForms Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos,
which may make use of other development tools included with ComponentOne Studio.

Please refer to the pre-installed product samples through the following path:

Documents\ComponentOne Samples\WinForms
The following table provides a description for each sample.

Visual Basic and C# Samples

Sample Description

AutoReplace Shows how the AutoReplaceList property works. The AutoReplaceList contains a list of words
and replacements. While the C1SpellChecker is monitoring a text box, it looks for matches
against this list and automatically replaces them in the editor, as the user types.

C1SpellCheckerSpeed Measures the C1SpellChecker performance when checking long documents. The sample has
three buttons that spell-check the novel Moby Dick, the Declaration of Independence, and
the King James Bible. After each document has been checked, the application shows the
performance measurements.

CustomDictionary Shows how to implement a custom spell dictionary class. The sample implements a
CustomDictionary that accepts all words starting with the letter 'z' as correct.

CustomParser Shows how to implement a custom spell-checking parser class. Custom parsers are classes
that implement the ISpellParser interface.

CustomSpellDialog Demonstrates how to implement a custom spell-checking modal dialog. This sample shows
how to create your own spell dialog box and use that instead of the built-in one. Custom
spell dialogs are Form objects that implement the ISpellDialog interface.

LocalizedSpellMenu Shows how to customize the spelling context menu. The sample attached an event handler
to the mouse down event of each control being spell-checked, then modifies the
ContextMenuStrip for the controls by changing the menu items to Portuguese.

QuickStart Shows how to use the C1SpellChecker component to check different types of controls:
regular TextBox, RichTextBox, or C1FlexGrid.

SpellGrid Shows how to implement a custom spell-checking modal dialog for a control (C1FlexGrid)
that does not derive from TextBoxBase. This sample shows how to create a wrapper class
that implements the ISpellCheckableEditor interface on behalf of a C1FlexGrid control.

TXTextSpellChecker Shows how to implement as-you-type spell-checking with the TXTextControl. The
TXTextControl is a very popular and powerful text editor control
(http://www.textcontrol.com/). It supports advanced features like tables, doc and html file
format import and export, pdf output, and more. The TXTextControl does not include a built-
in spell checker. This sample shows how you can implement a control that derives from the
TXTextControl and implements the interfaces required by the C1SpellChecker in order to
support as-you-type spell-checking.

WebBrowserSpell Demonstrates spell-checking editors that derive from the standard WebBrowser class. This
sample shows underlining errors with red-wavy underlines as you type, with suggestions in
context-sensitive menus, and also the dialog-based modal spell-check. The methods used
are the same as the ones used with TextBoxBase controls: SetActiveSpellChecking, turns as-
you-type spell checking on or off, and CheckControl, performs a dialog-based modal check

SpellChecker for WinForms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

of the text in the control.
Sample Description

SpellChecker for WinForms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

SpellChecker for WinForms Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio. By following the steps outlined
in the help, you will be able to utilize the features of C1SpellChecker.

Each task-based help topic also assumes that you have created a new .NET project and have added the
C1SpellChecker component to the Visual Studio Toolbox.

Creating a Custom Dictionary
In addition to the standard MainDictionary and UserDictionary dictionaries, C1SpellChecker also supports custom
dictionaries. You can specify the custom dictionary with the CustomDictionary property.

For example, you can create a custom dictionary that accepts as correct any words that start with 'z'; therefore, any
word that starts with 'z' will be correct.

1. From the Toolbox, add the C1SpellChecker component and RichTextBox control to your form.
Note that the C1SpellChecker component will appear below the form, not on it.

2. Select the RichTextBox, and set the following properties:
Dock property to Fill.
SpellChecking on C1SpellChecker1 property to True.

3. To specify the custom dictionary, add the following code:

To write code in Visual Basic

Visual Basic

Private _customDict As New MySpellDictionary()
Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 C1SpellChecker1.CustomDictionary = _customDict
End Sub
Public Class MySpellDictionary
 Implements C1.Win.C1SpellChecker.ISpellDictionary
 Public Function Contains(ByVal word As String) As Boolean Implements
C1.Win.C1SpellChecker.ISpellDictionary.Contains
 Return word.StartsWith("z", StringComparison.InvariantCultureIgnoreCase)
 End Function
End Class

To write code in C#

C#

MySpellDictionary _customDict = new MySpellDictionary();

private void Form1_Load(object sender, EventArgs e)
{
 c1SpellChecker1.CustomDictionary = _customDict;
}
public class MySpellDictionary : C1.Win.C1SpellChecker.ISpellDictionary
{
 public bool Contains(string word)

SpellChecker for WinForms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 return word.StartsWith("z", StringComparison.InvariantCultureIgnoreCase);
 }
}

Making Automatic Replacements as you Type
Use the AutoReplaceList property to spell-check a list of words, and if a match is found on the list then the misspelled
word is replaced with the corresponding list entry as-you-type.

For example, you can monitor spelling on a Windows.Forms.RichTextBox control using this list. To see this feature in
action, complete the following steps:

1. From the Toolbox, add the C1SpellChecker component and RichTextBox control to your form.

Note that the C1SpellChecker component will appear below the form, not on it.

2. Select the RichTextBox, and set the following properties:
Dock property to Fill.
SpellChecking on C1SpellChecker1 property to True.

3. Enter the following in your source code to declare the directive for the C1.Win.C1SpellChecker:

To write code in Visual Basic

Visual Basic

Imports C1.Win.C1SpellChecker

To write code in C#

C#

using C1.Win.C1SpellChecker;

4. Then double-click the RichTextBox and implement the following code in the body of the
RichTextBox1_TextChanged event handler:

To write code in Visual Basic

Visual Basic

' build AutoReplace list
C1SpellChecker1.AutoReplaceList.Clear()
C1SpellChecker1.AutoReplaceList.Add("becuase", "because")
C1SpellChecker1.AutoReplaceList.Add("cant", "can't")
C1SpellChecker1.AutoReplaceList.Add("recieve", "receive")
C1SpellChecker1.AutoReplaceList.Add("teh", "the")
C1SpellChecker1.AutoReplaceList.Add("wont", "won't")
 ' activate as-you-type spell-checking on the RichTextBox
C1SpellChecker1.SetActiveSpellChecking(RichTextBox1, True)

To write code in C#

C#

// build AutoReplace list

SpellChecker for WinForms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

c1SpellChecker1.AutoReplaceList.Clear();
c1SpellChecker1.AutoReplaceList.Add("becuase", "because");
c1SpellChecker1.AutoReplaceList.Add("cant", "can't");
c1SpellChecker1.AutoReplaceList.Add("recieve", "receive");
c1SpellChecker1.AutoReplaceList.Add("teh", "the");
c1SpellChecker1.AutoReplaceList.Add("wont", "won't");
 // activate as-you-type spell-checking on the RichTextBox
c1SpellChecker1.SetActiveSpellChecking(richTextBox1, true);

This code builds the following list using the AutoReplaceList.Add method:

Misspelled word Correction word

because because

cant can't

receive receive

the the

wont won't

Then it activates as-you-type spell-checking on the RichTextBox control using the SetActiveSpellChecking
method.

Run the application and observe the following:

Setting the Spell Dialog Language
You can specify the language used in the Spell Dialog by setting the DialogLanguage property. For example, to set
the language to German add the following code to your project:

To write code in Visual Basic

Visual Basic

C1SpellChecker1.Options.DialogLanguage = DialogLanguage.German

SpellChecker for WinForms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

c1SpellChecker1.Options.DialogLanguage = DialogLanguage.German;

Note that the dialog language does not affect spelling. To change the language used for spelling, use the
MainDictionary property to select a different spelling dictionary. For example, the following code sets the main
dictionary to German:

To write code in Visual Basic

Visual Basic

C1SpellChecker1.MainDictionary.FileName = "C:\Program Files\ComponentOne Studio.NET
2.0\bin\C1Spell_de-DE.dct"

To write code in C#

C#

c1SpellChecker1.MainDictionary.FileName = "C:\\Program Files\\ComponentOne Studio.NET
2.0\\bin\\C1Spell_de-DE.dct";

Spell-Checking a C1FlexGrid Control
To spell-check other types of controls (a grid for example), you have to create a wrapper class that implements the
ISpellCheckableEditor interface or the ISpellCheckableRichEditor interface. To do this, complete the following steps:

1. First, add the necessary controls and set some basic properties:
1. From the Toolbox, add the C1SpellChecker component, C1FlexGrid control, and Button control to

your form. Note that the C1SpellChecker component will appear in the component tray.
2. Arrange the grid and button controls on the Form.
3. Select the Button control and set its Text property to Spell-Check the Grid in the Properties window.
4. Select the C1FlexGrid control and set its Name property to _flex.
5. Select the C1SpellChecker control and set its Name property to _spell.
6. Select the Form and set its Name property to FlexGridForm.

2. To specify the namespaces used in this example, add the following statements before any declarations in the
Code Editor:

To write code in Visual Basic

Visual Basic

Imports System.Data.OleDb
Imports C1.Win.C1FlexGrid
Imports C1.Win.C1SpellChecker

To write code in C#

C#

using System.Data.OleDb;
using C1.Win.C1FlexGrid;
using C1.Win.C1SpellChecker;

SpellChecker for WinForms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

3. To initialize the grid, double-click the Form and add the following code to the FlexGridForm_Load event. Note
that you may have to change the connection string slightly, because it has a reference to the C1NWind.mdb
database and that file might be in a different folder in your system:

To write code in Visual Basic

Visual Basic

' load data
Dim sql As String = "select * from employees"
Dim conn As String = "provider=microsoft.jet.oledb.4.0;data source=C:\Users\
<User Name>\Documents\ComponentOne Samples\Common\C1NWind.mdb;"
Dim da As New OleDbDataAdapter(sql, conn)
Dim dt As New DataTable()
da.Fill(dt)
 ' initialize grid
_flex.Styles.Normal.WordWrap = True
_flex.DataSource = dt
Dim c As Column = _flex.Cols("Notes")
c.Width = 350
_flex.AutoSizeRows()
 ' hook up spell-checker when editing starts
AddHandler _flex.StartEdit, AddressOf _flex_StartEdit
 ' use green underline here, just for fun
_spell.Options.UnderlineColor = Color.DarkGreen
/innovasys:widgetproperty>

To write code in C#

C#

// load data
string sql = "select * from employees";
string conn = @"provider=microsoft.jet.oledb.4.0;data source=C:\Users\<User
Name>\Documents\ComponentOne Samples\Common\C1NWind.mdb;";
OleDbDataAdapter da = new OleDbDataAdapter(sql, conn);
DataTable dt = new DataTable();
da.Fill(dt);
 // initialize grid
_flex.Styles.Normal.WordWrap = true;
_flex.DataSource = dt;
Column c = _flex.Cols["Notes"];
c.Width = 350;
_flex.AutoSizeRows();
 // hook up spell-checker when editing starts
_flex.StartEdit += new RowColEventHandler(_flex_StartEdit);
 // use green underline here, just for fun
_spell.Options.UnderlineColor = Color.DarkGreen;

4. Add the StartEdit event to the C1FlexGrid control and then add the following code inside the flex_StartEdit
event. The SetSpellChecking method is used to provide as-your type spelling in the grid editor.

To write code in Visual Basic

SpellChecker for WinForms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

Visual Basic

' provide as-you-type spelling in the grid editor
Private Sub _flex_StartEdit(ByVal sender As Object, ByVal e As RowColEventArgs)
 Dim tb As TextBoxBase = TryCast(_flex.Editor, TextBoxBase)
 If tb IsNot Nothing Then
 _spell.SetSpellChecking(tb, True)
 End If
End Sub

To write code in C#

C#

// provide as-you-type spelling in the grid editor
void _flex_StartEdit(object sender, RowColEventArgs e)
{
 TextBoxBase tb = _flex.Editor as TextBoxBase;
 if (tb != null)
 {
 _spell.SetSpellChecking(tb, true);
 }
}

5. To spell-check the grid, double-click the Button control and add the following code to the Button_Click event:

To write code in Visual Basic

Visual Basic

' create spell-checkable wrapper for C1FlexGrid
Dim editor As New FlexGridSpeller(_flex, "Title", "Notes")
 ' spell-check
Dim errorCount As Integer = _spell.CheckControl(editor)
If errorCount > -1 Then
 Dim msg As String = String.Format("Spell-checking complete. {0} error(s)
found.", errorCount)
 MessageBox.Show(msg)
Else
 MessageBox.Show("Spell-checking cancelled.")
End If

To write code in C#

C#

// create spell-checkable wrapper for C1FlexGrid
FlexGridSpeller editor = new FlexGridSpeller(_flex, "Title", "Notes");
 // spell-check
int errorCount = _spell.CheckControl(editor);
 if (errorCount > -1)
 {
 string msg = string.Format("Spell-checking complete. {0} error(s) found.",
errorCount);
 MessageBox.Show(msg);

SpellChecker for WinForms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }
else
{
 MessageBox.Show("Spell-checking cancelled.");
}

6. Add the following code to create a wrapper class that implements the ISpellCheckableEditor interface:

To write code in Visual Basic

Visual Basic

Public Class FlexGridSpeller
Implements ISpellCheckableEditor
'-------------------------------
#Region "** fields"
 Private _flex As C1FlexGrid
 ' grid being spell-checked
 Private _cols As Integer()
 ' columns to be spell-checked
 Private _row As Integer, _col As Integer
 ' cell being spell-checked (_row, _cols[_col])
 Private _selStart As Integer
 ' selection being checked within the cell
 Private _selLength As Integer
 #End Region
 '-------------------------------
#Region "** ctors"
 ' check some columns
 Public Sub New(ByVal flex As C1FlexGrid, ByVal ParamArray cols As String())
 ' save parameters
 _flex = flex
 ' create column list if needed
 If cols Is Nothing Then
 Dim list As New List(Of String)()
 For Each col As Column In flex.Cols
 If col.DataType.ToString() = "String" Then
 list.Add(col.Name)
 End If
 Next
 cols = list.ToArray()
 End If
 ' convert column names to column indices
 _cols = New Integer(cols.Length - 1) {}
 For i As Integer = 0 To _cols.Length - 1
 Dim name As String = cols(i)
 If Not _flex.Cols.Contains(name) Then
 Throw New Exception("column not found: " + name)
 End If
 _cols(i) = _flex.Cols(name).Index
 Next
 ' scan cells until an error is found
 _row = -1

SpellChecker for WinForms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

 _col = 0
 MoveNext()
 End Sub
 ' check all columns
 Public Sub New(ByVal flex As C1FlexGrid)
 Me.New(flex, Nothing)
 End Sub
 #End Region
 '-------------------------------
#Region "** object model"
 ' move on to the next cell
 Public Function MoveNext() As Boolean
 ' initialize or increment row/col position
 If _row < 0 Then
 ' initialize
 _row = _flex.Rows.Fixed
 _col = 0
 ElseIf _col < _cols.Length - 1 Then
 ' next column
 _col += 1
 Else
 ' next row
 _row += 1
 _col = 0
 End If
 ' return true if we still have valid cells
 Return _row < _flex.Rows.Count AndAlso _col < _cols.Length
 End Function
 #End Region
 '-------------------------------
#Region "** ISpellCheckableEditor"
 Public ReadOnly Property Control() As Control Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.Control
 Get
 Return _flex
 End Get
 End Property
 Public Property HideSelection() As Boolean Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.HideSelection
 Get
 Return False
 End Get
 Set(ByVal value As Boolean)
 End Set
 End Property
 Public Property Text() As String Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.Text
 Get
 Return _flex.GetDataDisplay(_row, _cols(_col))
 End Get
 Set(ByVal value As String)

SpellChecker for WinForms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

 _flex(_row, _cols(_col)) = value
 End Set
 End Property
 Public Property SelectedText() As String Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.SelectedText
 Get
 Return Text.Substring(_selStart, _selLength)
 End Get
 Set(ByVal value As String)
 Dim t As String = Text
 t = String.Format("{0}{1}{2}", _
 Text.Substring(0, _selStart), _
 value, _
 Text.Substring(_selStart + _selLength))
 Text = t
 End Set
 End Property
 Public Property SelectionLength() As Integer Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.SelectionLength
 Get
 Return _selLength
 End Get
 Set(ByVal value As Integer)
 _selLength = value
 End Set
 End Property
 Public Property SelectionStart() As Integer Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.SelectionStart
 Get
 Return _selStart
 End Get
 Set(ByVal value As Integer)
 _selStart = value
 End Set
 End Property
 Public Sub [Select](ByVal start As Integer, ByVal length As Integer)
Implements C1.Win.C1SpellChecker.ISpellCheckableEditor.Select
 ' keep track of selection within the cell
 _selStart = start
 _selLength = length
 ' check that the cell being checked is selected
 _flex.[Select](_row, _cols(_col))
 End Sub
 Public Sub SelectAll()
 _selStart = 0
 _selLength = Text.Length
 End Sub
 Public Function HasMoreText() As Boolean Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.HasMoreText
 Return MoveNext()
 End Function

SpellChecker for WinForms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Public Sub BeginSpell() Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.BeginSpell
 End Sub
 Public Sub EndSpell() Implements
C1.Win.C1SpellChecker.ISpellCheckableEditor.EndSpell
 End Sub
#End Region
End Class

To write code in C#

C#

public class FlexGridSpeller : ISpellCheckableEditor
{
 //-------------------------------
 #region ** fields
 // grid being spell-checked
 C1FlexGrid _flex;
 // columns to be spell-checked
 int[] _cols;
 // cell being spell-checked (_row, _cols[_col])
 int _row, _col;
 // selection being checked within the cell
 int _selStart;
 int _selLength;
 #endregion
 //-------------------------------
 #region ** ctors
 // check some columns
 public FlexGridSpeller(C1FlexGrid flex, params string[] cols)
 {
 // save parameters
 _flex = flex;
 // create column list if needed
 if (cols == null)
 {
 List list = new List();
 foreach (Column col in flex.Cols)
 {
 if (col.DataType == typeof(string))
 list.Add(col.Name);
 }
 cols = list.ToArray();
 }
 // convert column names to column indices
 _cols = new int[cols.Length];
 for (int i = 0; i < _cols.Length; i++)
 {
 string name = cols[i];
 if (!_flex.Cols.Contains(name))
 {

SpellChecker for WinForms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

 throw new Exception("column not found: " + name);
 }
 _cols[i] = _flex.Cols[name].Index;
 }

 // scan cells until an error is found
 _row = -1;
 _col = 0;
 MoveNext();
 }
 // check all columns
 public FlexGridSpeller(C1FlexGrid flex)
 : this(flex, null)
 {
 }
 #endregion
 //-------------------------------
 #region ** object model
 // move on to the next cell
 public bool MoveNext()
 {
 // initialize or increment row/col position
 if (_row < 0)
 {
 // initialize
 _row = _flex.Rows.Fixed;
 _col = 0;
 }
 else if (_col < _cols.Length - 1)
 {
 // next column
 _col++;
 }
 else
 {
 // next row
 _row++;
 _col = 0;
 }

 // return true if we still have valid cells
 return _row < _flex.Rows.Count && _col < _cols.Length;
 }
 #endregion
 //-------------------------------
 #region ** ISpellCheckableEditor
 public Control Control
 {
 get { return _flex; }
 }
 public bool HideSelection

SpellChecker for WinForms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 get { return false; }
 set { }
 }
 public string Text
 {
 get { return _flex.GetDataDisplay(_row, _cols[_col]); }
 set { _flex[_row, _cols[_col]] = value; }
 }
 public string SelectedText
 {
 get { return Text.Substring(_selStart, _selLength); }
 set
 {
 string text = Text;
 text = string.Format("{0}{1}{2}",
 text.Substring(0, _selStart),
 value,
 text.Substring(_selStart + _selLength));
 Text = text;
 }
 }
 public int SelectionLength
 {
 get { return _selLength; }
 set { _selLength = value; }
 }
 public int SelectionStart
 {
 get { return _selStart; }
 set { _selStart = value; }
 }
 public void Select(int start, int length)
 {
 // keep track of selection within the cell
 _selStart = start;
 _selLength = length;

 // check that the cell being checked is selected
 _flex.Select(_row, _cols[_col]);
 }
 public void SelectAll()
 {
 _selStart = 0;
 _selLength = Text.Length;
 }
 public bool HasMoreText()
 {
 return MoveNext();
 }
 public void BeginSpell()

SpellChecker for WinForms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 }
 public void EndSpell()
 {
 }
 #endregion
}

Run the application and observe the following:
To spell-check the grid, press the Spell-Check the Grid button. The CheckControl method shows a Spell Dialog for
the grid and returns the number of spelling errors found:

SpellChecker for WinForms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	SpellChecker for WinForms Overview
	Help with WinForms Edition

	Key Features
	SpellChecker for WinForms Quick Start
	C1SpellChecker Fundamentals
	Modes of Spell-Checking
	Types of Dictionary Files
	Spell-Checking International Applications
	Spell-Checking Different Types of Controls
	Built-in Spell Dialog Box
	Customizing the Spell Dialog
	Other Spell-Checking Services

	Building and Maintaining Dictionary Files
	Editing the Contents of the DCT File
	Creating a New DCT File

	SpellChecker for WinForms Samples
	SpellChecker for WinForms Task-Based Help
	Creating a Custom Dictionary
	Making Automatic Replacements as you Type
	Setting the Spell Dialog Language
	Spell-Checking a C1FlexGrid Control

