
ComponentOne

Windows 7 Control Pack for
WinForms

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
Windows 7 Control Pack for WinForms Overview 3

Help with WinForms Edition 3

Key Features 4

Windows 7 Control Pack for WinForms Quick Starts 5

C1TaskDialog Quick Start 5

Step 1 of 4: Creating a C1TaskDialog Application 5-6

Step 2 of 4: Customizing the C1TaskDialog Application 6-7

Step 3 of 4: Adding Code to the C1TaskDialog Application 7-8

Step 4 of 4: Running the C1TaskDialog Application 8-9

C1TaskbarButton Quick Start 9

Step 1 of 4: Creating a C1TaskbarButton Application 9-10

Step 2 of 4: Creating a Custom Jump List 10-11

Step 3 of 4: Using the Apply and Clear Methods 11-12

Step 4 of 4: Running the Project 12-13

Windows 7 Control Pack for WinForms Components 14

C1TaskbarButton Component 14

C1TaskDialog Component 14-15

Design-Time Support 16

Windows 7 Control Pack for WinForms Smart Tags 16

C1TaskDialog Tasks Menu 16-18

C1TaskbarButton Tasks Menu 18-19

C1TaskDialog Collection Editors 19

RadioButtons Collection Editor 19-20

CustomButtons Collection Editor 20-21

C1TaskbarButton Collection Editors 21

Buttons Collection Editor 21-22

Items Collection Editor 22-23

Tasks Collection Editor 24

Working with Windows 7 Control Pack for WinForms 25

Working with C1TaskDialog 25

C1TaskDialog Operating System Compatibility 25

Command Links 26

Access Keys 26

Dialog Box Icons 26-27

Windows 7 Control Pack for WinForms 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

Common Buttons 27

Progress Bar 27-28

Working with C1TaskbarButton 28

C1TaskbarButton Operating System Compatibility 28-29

Taskbar Button Elements 29

Taskbar Button Progress Indicator 29-31

Taskbar Button Overlay 31

Jump List Elements 31-33

C1JumpPath Basics 33

C1JumpLink Basics 33-34

C1JumpTask Basics 34-36

Thumbnail Elements 36-37

Windows 7 Control Pack for WinForms Samples 38-39

Windows 7 Control Pack for WinForms Task-Based Help 40

C1TaskDialog Task-Based Help 40

Adding Command Link Buttons 40-41

Setting the Access Key 41-43

Setting the Default Button 43

Adding a Progress Bar 43-44

C1TaskbarButton Task-Based Help 44

Working with the Jump List 44-45

Adding Jump Tasks 45-46

Adding JumpLinks 46-47

Adding JumpPaths 47-48

Working with the Thumbnail Elements 48

Adding Thumbnail Buttons 48-49

Restricting the Thumbnail Preview 49

Working with the Taskbar Button 49-50

Adding a Progress Indicator to the Taskbar Button 50

Adding an Overlay Image to the Taskbar Button 50-51

Windows 7 Control Pack for WinForms 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

Windows 7 Control Pack for WinForms Overview
Integrate your applications with Windows 7 using Windows 7 Control Pack for WinForms.
These controls enable you to easily manage progress indicators, thumbnails and jump lists on
the Windows 7 taskbar, as well as create and display custom dialog boxes.

C1TaskbarButton works with Windows 7 taskbar extensions. You can adjust the application's
Jump List, thumbnail toolbar, icon overlay, and a progress bar displayed on the taskbar button.
Also, you can select a particular control on a form to use its contents as the thumbnail image.

C1TaskDialog is a powerful replacement for the standard message box under Windows Vista or
newer operating systems. Similar to other standard dialog boxes (such as OpenFileDialog) you
can set simply a few properties, then call to the Show() method to display the dialog box at
run-time.

Getting Started

Get started with the
following topics:

Key Features
Quick Start
Components
Samples

Help with WinForms Edition

Getting Started
For information on installing ComponentOne Studio WinForms Edition, licensing, technical support, namespaces
and creating a project with the control, please visit Getting Started with WinForms Edition.

Windows 7 Control Pack for WinForms 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/

Key Features
Windows 7 Control Pack for WinForms incorporates several key features, including the following:

Manage Jump Lists

Jump lists display when you right-click your application's button on the Windows 7 taskbar. They allow quick
access to recently used files or frequently used commands within your application. C1TaskbarButton enables
you to manage your form's jump list, which can include lists of items or tasks.

Show Progress Indicators

With C1TaskbarButton you can easily display progress indicators within your application's taskbar button.
Manage the progress value and choose a predefined state: Normal (Green), Error (Red), Paused (Yellow) or
Indeterminate (Marquee).

Manage Thumbnail Buttons

Add and manage thumbnail buttons in the taskbar button flyout with C1TaskbarButton.

Display an Overlay Icon

With C1TaskbarButton you can show an overlay icon on the taskbar button. Use this feature to show status
updates to the user even when the application is minimized.

Windows 7 and Vista-style Dialogs

Create and customize task dialogs without much effort. The C1TaskDialog component works like the common
Windows dialogs (such as OpenFileDialog). You can set a few properties and then simply call the Show()
method to display the dialog at run-time.

Customize Dialog Buttons

With C1TaskDialog you can completely customize the buttons on the dialog by just setting a few properties.
Add custom buttons, radio buttons, check boxes, hyperlinks, expandable footer areas, a progress bar and more.

.NET 2.0 Support

Windows 7 Control Pack for WinForms can be used in .NET 2.0 and higher targeting applications. The client
must have Windows 7 OS in order to see the features of C1TaskbarButton (Vista is the minimum requirement
for C1TaskDialog). Clients who do not meet the requirement will simply not see the feature (no crash or
exception).

Windows 7 Control Pack for WinForms 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Windows 7 Control Pack for WinForms Quick Starts
In this section you'll learn how to use the basic Windows 7 Control Pack for WinForms functionality to create a
customized dialog box using the C1TaskDialog control. You'll also customize the taskbar using the C1TaskbarButton
control. This section is not intended to be a comprehensive tutorial of all features of Windows 7 Control Pack for
WinForms, but rather provide a quick introduction and highlight some general approaches to using the product.

C1TaskDialog Quick Start
In this section you'll learn how to use the basic Windows 7 Control Pack for WinForms functionality to create a
customized dialog box using the C1TaskDialog control.

Step 1 of 4: Creating a C1TaskDialog Application
In this step you'll create a simple WinForms application and add the C1TaskDialog component to the application.

To begin, complete the following steps:

1. From the File menu in Microsoft Visual Studio, select New and click Project. The New Project dialog box
opens.

2. Under Project Types, choose either Visual Basic Projects or Visual C# Projects, and select Windows
Application from the list of Templates in the right pane.

3. Enter or browse for a location for your application in the Location field and click OK.
A new WinForms project is created in the specified location. In addition, a new Form is displayed in the
Designer view.

4. Resize the form in Design View.
5. Navigate to the Toolbox and double-click the C1TaskDialog item to add it to the application. The C1TaskDialog

component will appear in the component tray below the form.
6. Click once on the form to select it then navigate to the Toolbox and double-click on the Button item to add a

Button control to your application. Resize and position the Button control on the form.
7. Select the Button control and in the Properties window set its Text property to "Open Dialog Box".

What You've Accomplished
In this step you created a new application and added Button and C1TaskDialog controls to the application. The form
should appear similar to the following:

Windows 7 Control Pack for WinForms 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the next step you'll customize the appearance and behavior of the C1TaskDialog control.

Step 2 of 4: Customizing the C1TaskDialog Application
In the previous step you created a simple WinForms application and added the C1TaskDialog component to the
application. In this step, you'll customize the appearance of the C1TaskDialog without adding any code to your
project.

To begin, complete the following steps:

1. In Design view, click the C1TaskDialog once to select it, and locate and click the component's smart tag to
open the C1TaskDialog Tasks menu.

2. Click the Edit Custom Buttons option to open the C1TaskDialog.CustomButtons Collection Editor. You'll
add custom buttons in this dialog box.

3. In the C1TaskDialog.CustomButtons Collection Editor, click the Add button three times to add three custom
buttons to your application.

4. Set the following options to customize the buttons:
Set Button1's Text to "View ComponentOne Documentation" and Note item to "Help, tutorials,
manuals, and articles to help get you started or assist you along your development path."
Set Button2's Text to "Visit ComponentOne Forums" and Note item to "Use our peer-to-peer product
forums and newsgroups to exchange information, tips, and techniques pertaining to ComponentOne
development tools and Help authoring products."
Set Button3's Text to "Submit a Support Incident" and Note item to " Submit a support incident report
online. You'll receive an e-mail response from the ComponentOne support team."

5. In the C1TaskDialog.CustomButtons Collection Editor, click the OK button to close the dialog box and add
the custom buttons you just created.

6. Click the C1TaskDialog once to select it, and locate and click the component's smart tag to open the
C1TaskDialog Tasks menu.

7. Set the following properties to customize the appearance and behavior of the C1TaskDialog control:
 Set the Window Title item to "ComponentOne Windows 7 Control Pack for WinForms".
 Set the Main Icon item to Information.
 Set the Main Instructions item to "Online Resources".
 Set the Content item to "ComponentOne provides customers with a comprehensive set of technical
resources and offers various support options. Some of these resources and support options include:".
 Confirm that the Use Command Links check box is selected.

Windows 7 Control Pack for WinForms 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Select the Common Buttons drop-down arrow and choose Cancel from the list of buttons.
8. Click elsewhere on the form to close the C1TaskDialog Tasks menu.

What You've Accomplished
In this step you customized the C1TaskDialog control's appearance and behavior. If you select the Show Dialog
option from the C1TaskDialog Tasks menu, you'll see that the dialog box now looks similar to the following:

In the next step you'll add code to complete an action when the Command Link buttons are click and to open the
dialog box when the button on the form is clicked at run time.

Step 3 of 4: Adding Code to the C1TaskDialog Application
In the last step you created a new application and added Button and C1TaskDialog controls. You also customized the appearance and behavior of the
C1TaskDialog control. In this step you'll add code to complete an action when the Command Link buttons are click and to open the dialog box when the
button on the form is clicked at run time.

Complete the following steps:

1. In Design view, double-click the Button control to switch open the Code Editor and create the Button_Click event handler.
2. Add code to the Button_Click event handler so that the dialog box will open when the button is clicked; the event handler will appear similar to the

following:

To write code in Visual Basic

Visual Basic

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
 Me.C1TaskDialog1.Show()
End Sub

To write code in C#

C#

Windows 7 Control Pack for WinForms 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

private void button1_Click(object sender, EventArgs e)
{
 this.c1TaskDialog1.Show();
}

3. Return to Design view and select the C1TaskDialog control.
4. Navigate to the Properties window and select the lightning bolt Events button to view the C1TaskDialog control's events.
5. Double-click the ButtonClick event to create a new event handler and return to Code view.
6. Add code to the ButtonClick event handler so that click each Command Link navigates to a Web site; the event handler will appear similar to the

following:

To write code in Visual Basic

Visual Basic

Private Sub C1TaskDialog1_ButtonClick(ByVal sender As System.Object, ByVal e As
C1.Win.C1Win7Pack.TaskDialogButtonClickEventArgs) Handles C1TaskDialog1.ButtonClick
 If e.DialogResult = TaskDialogResult.[Custom] Then
 Select Case e.CustomButton.Name
 Case "Button1"

System.Diagnostics.Process.Start("http://www.componentone.com/SuperProducts/SupportServices/Documentation/")
 e.Cancel = True
 Exit Select
 Case "Button2"
 System.Diagnostics.Process.Start("http://www.componentone.com/forums/")
 e.Cancel = True
 Exit Select
 Case "Button3"
 System.Diagnostics.Process.Start("http://www.componentone.com/support/")
 Exit Select
 e.Cancel = True
 End Select
 End If
End Sub

To write code in C#

C#

private void c1TaskDialog1_ButtonClick(object sender, TaskDialogButtonClickEventArgs e)
{
 if (e.DialogResult == TaskDialogResult.Custom)
 {
 switch (e.CustomButton.Name)
 {
 case "Button1":

System.Diagnostics.Process.Start("http://www.componentone.com/SuperProducts/SupportServices/Documentation/");
 e.Cancel = true;
 break;
 case "Button2":
 System.Diagnostics.Process.Start("http://www.componentone.com/forums/");
 e.Cancel = true;
 break;
 case "Button3":
 System.Diagnostics.Process.Start("http://www.componentone.com/support/");
 break;
 e.Cancel = true;
 }
 }
}

What You've Accomplished
In this step you added code to your application to customized and initialized the C1TaskDialog control. In the next step you'll run the application to view
some of the possible run-time interactions.

Windows 7 Control Pack for WinForms 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 4 of 4: Running the C1TaskDialog Application
In the previous steps of this quick start you created a new application, added the C1TaskDialog control, and
customized the application. All that's left is to run the application to view some of the possible run-time interactions.

Complete the following steps to view some of the run-time interactions possible with your application:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time.
2. Click the Open Dialog Box button that appears on the form. The C1TaskDialog dialog box will appear.
3. Click on one of the Command Links, for example the first link:

The link will open in a browser window. Notice that the dialog box does not close when the link is clicked – this
is because the code you added in the previous step cancelled the dialog box closing.

4. Click the Cancel button. The dialog box will close.

Congratulations, you have completed the C1TaskDialog quick start! You created a new application, added the
C1TaskDialog control and customized it, added code to initialize the application, and run the application to view
some of the possible run-time interactions.

C1TaskbarButton Quick Start
In this section, you'll learn how to use the basic Windows 7 Control Pack for WinForms functionality to create a
taskbar button using the C1TaskbarButton control. You will also create and activate a jump list that contains jump
links and jump tasks.

Step 1 of 4: Creating a C1TaskbarButton Application
In this step you'll create a simple WinForms application and add the C1TaskbarButton component to the application.

Windows 7 Control Pack for WinForms 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

To begin, complete the following steps:

1. From the File menu in Microsoft Visual Studio, select New and click Project. The New Project dialog box
opens.

2. Under Project Types, choose either Visual Basic Projects or Visual C# Projects, and select Windows
Application from the list of Templates in the right pane.

3. Enter or browse for a location for your application in the Location field and click OK.
A new WinForms project is created in the specified location. In addition, a new form is displayed in the
Designer view.

4. Navigate to the Toolbox and double-click the C1TaskbarButton item to add it to the application. The
C1TaskbarButton component will appear in the component tray below the form.

What You've Accomplished
In this step, you created a new application and added the C1TaskbarButton control to the application. The project
should appear as follows:

Step 2 of 4: Creating a Custom Jump List
In the last step, you added a C1TaskbarButton to the form, but it doesn't really do much at this point. You can do
several things with it; you can add a progress indicator to it, create a jump list to it, or add a thumbnail toolbar to it. In
this section of the quick start, we're going to add a jump list with jump links and jump tasks.

Complete the following steps:

1. Click c1TaskbarButton1's smart tag to open the C1TaskbarButton Tasks List, and then click Edit JumpItems.

Windows 7 Control Pack for WinForms 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1JumpList.Items Collection Editor opens.

2. Click the Add drop-down arrow and select C1JumpLink from the list. In the properties grid, set the following
properties:

Set the Title property to "Google Search".
Set the ApplicationPath property to the location of your Internet Explorer .exe file (by default, this is"
C:\Program Files\Internet Explorer\iexplore.exe").
Set the Arguments property to "http://www.google.com".
Set the CustomCategory property to "Websites".

3. Now click the Duplicate the selected item button to duplicate the jump link, and then change the
following properties in the properties grid:

Change the setting of the Title property to "Google News".
Change the setting of the ApplicationPath property to "http://news.google.com".

4. Click OK to close the collection editor.
5. Click c1TaskbarButton1's smart tag to open the C1TaskbarButton Tasks List, and then click Edit Jump

Tasks.

The C1JumpList.Task Collection Editor opens.

6. Click Add to add a C1JumpTask to the jump list. Set the following properties.
Set the Title property to "Internet Explorer".
Set the ApplicationPath property to the location of your Internet Explorer .exe file (by default, this is"
C:\Program Files\Internet Explorer\iexplore.exe").

7. Click OK to close the collection editor.

What You've Accomplished
In this step, you added two jump links and two jump tasks to the jump list. In the next step, you'll learn how to apply
changes to the jump list and how to clear the jump list.

Step 3 of 4: Using the Apply and Clear Methods
In the last step you created the jump list, but you still have to apply the jump list. In this step, you'll also learn how to
clear jump lists.

Complete the following steps:

Windows 7 Control Pack for WinForms 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Navigate to the Toolbox and add two Button controls to your form. These will generically be named button1
and button2.

2. Set button1's Text property to "Activate Jump List".
3. Set button2's Text property to "Clear Jump List".
4. Adjust the buttons on the form so that the text isn't clipped. The should look a little like this:

5. In Design view, double-click the Activate Jump List button to add the button1_Click event handler and then
add the following code to it:

To write code in Visual Basic

Visual Basic

C1TaskbarButton1.JumpList.Apply()

To write code in C#

C#

c1TaskbarButton1.JumpList.Apply();

6. In Design view, double-click the Clear Jump List button to add a button2_Click event handler and then add
the following code to it:

To write code in Visual Basic

Visual Basic

C1TaskbarButton1.JumpList.ClearTasksAndCustomCategories()

To write code in C#

C#

c1TaskbarButton1.JumpList.ClearTasksAndCustomCategories();

What You've Accomplished
In this step, you added code to the project that will allow you to apply or clear the jump list at the click of a button. In
the next step, you'll run the project and see the result of your work.

Step 4 of 4: Running the Project
In the previous steps, you added a C1TaskbarButton control to your project, added a jump list to the control, and used

Windows 7 Control Pack for WinForms 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

methods that will apply changes and clear changes to the control. In this step, you'll run the project and see the
results of this quick start.

Complete the following steps:

1. Press F5 to build the project.
2. Right-click the taskbar button and observe that only the default list items appear.

3. On the form, click the Activate Jump List button.
4. Right-click the taskbar button and observe that the items you added in this tutorial appear.

5. On the form, click the Clear Jump List button.
6. Right-click the taskbar button and observe that the items you added in this tutorial topic have been cleared

and, once again, only the default items appear.

What You've Accomplished
You've completed the C1TaskbarButton control's quick start tutorial. If you'd like to learn more about this control, see
the C1TaskbarButton Task-Based Help and the Working with C1TaskbarButton topics.

Windows 7 Control Pack for WinForms 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

Windows 7 Control Pack for WinForms Components
Windows 7 Control Pack for WinForms consists of the following controls and components, which provide
functionality for creating a Windows 7-style application.

The C1TaskbarButton Component
C1TaskbarButton works with Windows 7 taskbar extensions. You can adjust the application's Jump List, thumbnail
toolbar, icon overlay, and a progress bar displayed on the taskbar button. Also, you can select a particular control on a
form to use its contents as the thumbnail image.

The C1TaskDialog Control
C1TaskDialog is a powerful replacement for the standard message box under Windows Vista or newer operating
systems. Similar to other standard dialog boxes (such as OpenFileDialog) you can set simply a few properties, then
call to the Show method to display the dialog box at run-time.

C1TaskbarButton Component
The C1TaskbarButton component works with Windows 7 taskbar extensions. You can adjust the application's Jump
List, thumbnail toolbar, icon overlay, and a progress bar displayed on the taskbar button. Also, you can select a
particular control on a form to use its contents as the thumbnail image.

C1TaskDialog Component
You can use the C1TaskDialog control as you would any other dialog box. A dialog box is a secondary window that
allows users to perform a command, asks users a question, or provides users with information or progress feedback.

Dialog boxes consist of a title bar (to identify the command, feature, or program where a dialog box came from), an
optional main instruction (to explain the user's objective with the dialog box), various controls in the content area (to
present options), and commit buttons (to indicate how the user wants to commit to the task).

For example, a C1TaskDialog control featuring Command Links:

Windows 7 Control Pack for WinForms 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1TaskDialog creates task dialog boxes. Task dialog boxes, like those you can create with C1TaskDialog, typically
consist of the following parts:

A title bar to identify the application or system feature where the dialog box came from.
A main instruction, with an optional icon, to identify the user's objective with the dialog box.
A content area for descriptive information and controls.
A command area for commit buttons, including a Cancel button, and optional More options and Don't show
this item again controls.
A footnote area for optional additional explanations and help, typically targeted at less experienced users.

Windows 7 Control Pack for WinForms 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

Design-Time Support
Windows 7 Control Pack for WinForms provides visual editing to make it easier to create a Windows 7 application.
The following sections describe how to use Windows 7 Control Pack for WinForms' design-time environment to
configure the Windows 7 Control Pack for WinForms controls:

Smart Tags and Tasks Menus
You can invoke each control's tasks menu by clicking on the smart tag () in the upper-right corner of the control. A
smart tag represents a short-cut tasks menu that provides the most commonly used properties in each control. For
more information on how to use the tasks menu for each control in Windows 7 Control Pack for WinForms, see
C1TaskDialog Tasks Menu and C1TaskbarButton Tasks Menu.

Properties Window
You can also easily configure Windows 7 Control Pack for WinForms at design time using the Properties window in
Visual Studio. You can access the Properties window by right-clicking the control and selecting Properties.

Windows 7 Control Pack for WinForms Smart Tags
The C1TaskDialog and C1TaskbarButton controls include a smart tag. A smart tag represents a short-cut tasks menu
that provides the most commonly used properties in each control. You can invoke the tasks menu by clicking on the
smart tag () in the upper-right corner of each control. For more information on how to use the tasks menu for each
control in C1Schedule, see C1TaskDialog Tasks Menu and C1TaskbarButton Tasks Menu.

C1TaskDialog Tasks Menu
In the C1TaskDialog Tasks menu you can quickly and easily customize the appearance and behavior of the
C1TaskDialog component's dialog box.

To access the C1TaskDialog Tasks menu, click on the smart tag () in the upper right corner of the control. This will
open the C1TaskDialog Tasks menu.

Windows 7 Control Pack for WinForms 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

Options include:

Show Dialog
Clicking the Show Dialog option displays the current dialog box. This option is useful as it allows you to
preview the appearance of the dialog box without running your application.
Window Title
Enter text in this text box to set the text that appears on the caption bar of the dialog box.
Main Icon
This option sets the main icon displayed in the dialog box and in the upper-left corner of the dialog box's
caption bar. Click this item's drop-down allow and choose an option. Options include None (default), Shield,
Information, Error, and Warning.
Main Instruction
Enter text in this text box to set the larger heading text that will be displayed at the top of the dialog box's
content area.
Content
Text entered in this area will be displayed below the Main Instruction and will typically consist of more detailed
information or instructions. You can enter HTML links in this section as well.
Edit Radio Buttons
Clicking this item will open the C1TaskDialog.RadioButtons Collection Editor. In this dialog box you can add
radio buttons to the dialog box and customize the text displayed next to each button. If you add a radio button
the dialog box will be previewed, to close the preview click in Visual Studio. See RadioButtons Collection Editor
for more information.
Edit Custom Buttons
Clicking this item will open the C1TaskDialog.CustomButtons Collection Editor. In this dialog box you can
add custom buttons to the dialog box and customize the text displayed next to each button. See
CustomButtons Collection Editor for more information.
Use Command Links
When this check box is checked (default) custom buttons will appear as command links rather than standard
buttons. Command links have a clean, lightweight appearance that allows for descriptive labels, and are
displayed with either a standard arrow or custom icon, and an optional supplemental explanation. See
Command Links for more information.

Windows 7 Control Pack for WinForms 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

Common Buttons
Select this option to add standard buttons to the dialog box. Click the drop-down arrow and check the check
boxes for the buttons you wish to include. Available buttons include Ok, Yes, No, Cancel, Retry, and Close.
The default option is None.
CheckBox Text
Text entered in this text box will be displayed next to a check box in the dialog box. If no text is entered
(default), the check box will not be displayed in the dialog box.
Footer Icon
This option sets the icon displayed in the footer area of the dialog box. Click this item's drop-down arrow and
choose an option. Options include None (default), Shield, Information, Error, and Warning.
Footer Text
Text entered in this section will be displayed in the footer area of the dialog box.
About C1TaskDialog
Clicking the About item displays the C1TaskDialog control's About dialog box, which is helpful in finding the
build number of the control.

You can also access some of these options in the component's context menu and more options in the Properties
window.

C1TaskbarButton Tasks Menu
In the C1TaskbarButton Tasks menu, you can quickly and easily edit the appearance and behavior of the
C1TaskbarButton component..

To access the C1TaskbarButton Tasks menu, click on the smart tag () in the upper right corner of the control. This
will open the C1TaskbarButton Tasks menu.

Options include:

Window AppID

Specifies the Application User Model ID for an individual window. Application User Model IDs are used
extensively by the taskbar in Windows 7 and later systems to associate processes, files, and windows with a
particular application.

Tooltip

Windows 7 Control Pack for WinForms 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

Specifies the ToolTip that will be displayed for an item in the taskbar. ToolTips are typically displayed when a
user hovers the mouse over an item.

Clip Control

Specifies a control to clip and display as a thumbnail image. If you choose a control from the drop-down box, a
portion of it will be restricted to use as an image.

Image List

Here you can select an image collection that might typically be used by another control such as a ListView,
TreeView, or ToolStrip control.

Edit Thumbnail Buttons

Clicking this item will open the C1Thumbnail. Buttons Collection Editor. In this dialog box you can add and
customize the appearance and behavior of thumbnail buttons to be used in the taskbar button flyout. See
Buttons Collection Editor for more information.

Known Category

In this drop-down box you can select the type of known category to display. Options include Neither (default),
Recent, and Frequent.

Edit Jump Items

Clicking this item will open the C1JumpList. Items Collection Editor. In this dialog box you can add and
customize the appearance and behavior of C1JumpTask and C1JumpLink items that appear in the jump list. See
Items Collection Editor for more information.

Edit Jump Tasks

Clicking this item will open the C1JumpList. Tasks Collection Editor. In this dialog box you can add and
customize the appearance and behavior of task (shortcut) items that appear in the jump list. See Tasks
Collection Editor for more information.

About C1TaskbarButton

Clicking the About item displays the C1TaskbarButton control's About dialog box, which is helpful in finding
the build number of the control.

You can also access some of these options in the component's context menu and more options in the Properties
window.

C1TaskDialog Collection Editors
The following topics detail collection editors that you can use to customize the C1TaskDialog component. Each of
these editors can be accessed from the C1TaskDialog control's Tasks menu, context menu, and Properties window.

RadioButtons Collection Editor
In the C1TaskDialog.RadioButtons Collection Editor dialog box you can add radio buttons to the C1TaskDialog
dialog box and customize the text displayed next to each button. To access the RadioButtons Collection Editor,
select the Edit Radio Buttons link from the C1TaskDialog control's Tasks menu, context menu, or below the
Properties window, or click the ellipses button next to the RadioButtons property in the Properties window.

Windows 7 Control Pack for WinForms 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

The RadioButtons Collection Editor appears similar to the following:

You can select an item in the Members list or, using the buttons below the list, you can add and remove radio buttons
or copy existing radio buttons. For each radio button you can set or change the Text that appears next to the button,
enable or disable the button, and set or change the name of the button.

If you add a radio button the dialog box with your changes will be automatically previewed. To close the preview click
elsewhere in Visual Studio.

CustomButtons Collection Editor
In the C1TaskDialog.CustomButtons Collection Editor dialog box you can add custom buttons to the dialog box
and customize the text displayed next to each button. To access the CustomButtons Collection Editor, select the
Edit Custom Buttons link from the C1TaskDialog control's Tasks menu, context menu, or below the Properties
window, or click the ellipses button next to the CustomButtons property in the Properties window.

The CustomButtons Collection Editor appears similar to the following:

Windows 7 Control Pack for WinForms 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can select an item in the Members list or, using the buttons below the list, you can add and remove buttons or
copy existing buttons. For each button you can set or change the Text that appears next to the button, determine
whether to show the elevation icon, add a note to add an extended text description of the button, enable or disable
the button, and set or change the name of the button.

The text you set in the Note property will only be displayed if the button is set to appear like a command link and not
a standard button. See Command Links for more information.

C1TaskbarButton Collection Editors
The following topics detail collection editors that you can use to customize the C1TaskbarButton component. Each of
these editors can be accessed from the C1TaskbarButton control's Tasks menu, context menu, and Properties window.

Buttons Collection Editor
In the C1TaskbarButton.Buttons Collection Editor dialog box you can add thumbnail buttons to the taskbar and
customize the appearance and behavior of each button. To access the Buttons Collection Editor, select the Edit
Thumbnail Buttons link from the C1TaskbarButton control's Tasks menu, context menu, or below the Properties
window, or click the ellipses button next to the Buttons property in the Properties window.

The Buttons Collection Editor appears similar to the following:

Windows 7 Control Pack for WinForms 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can select an item in the Members list or, using the buttons below the list, you can add and remove buttons or
copy existing buttons. For each button you can set or change icon, image, and background for the button, the ToolTip
that appears on mouse hover, the name of the button, and if it's enabled, interactive, and visible.

Items Collection Editor
In the C1JumpList. Items Collection Editor dialog box you can add and customize the appearance and behavior of
C1JumpPath and C1JumpLink items that appear in the jump list. To access the Items Collection Editor, select the Edit
Jump Items link from the C1TaskbarButton control's Tasks menu, context menu, or below the Properties window, or
click the ellipses button next to the Items property in the Properties window.

You can select an item in the Members list or, using the buttons below the list, you can add and remove buttons or
copy existing buttons. The Add button is a split button, to access all options on the Add button click the drop-down
arrow on the button.

The Items Collection Editor appears similar to the following when a C1JumpPath is selected:

Windows 7 Control Pack for WinForms 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can customize the C1JumpPath by setting the custom category the item is grouped in and the path to the file to
be included.

The Items Collection Editor appears similar to the following when a C1JumpLink is selected:

For each C1JumpLink you can set or change icon and title for the list, the ToolTip that appears on mouse hover, the
application path, arguments, the category it is included in, how it should be shown, and the working directory of the
application on startup.

Windows 7 Control Pack for WinForms 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

Tasks Collection Editor
In the C1JumpList.Tasks Collection Editor dialog box you can add and customize the appearance and behavior of
task (shortcut) items that appear in the jump list. To access the Tasks Collection Editor, select the Edit Jump Tasks
link from the C1TaskbarButton control's Tasks menu, context menu, or below the Properties window, or click the
ellipses button next to the Tasks property in the Properties window.

The Tasks Collection Editor appears similar to the following:

You can select an item in the Members list or, using the buttons below the list, you can add and remove items or copy
existing items. For each task you can set or change icon, image, and title for the item, the ToolTip that appears on
mouse hover, the application path, arguments, the category it is included in, how it should be shown, and the working
directory of the application on startup.

Windows 7 Control Pack for WinForms 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

Working with Windows 7 Control Pack for WinForms
The Windows 7 Control Pack for WinForms allows you to extend the behavior of the standard task bar and dialog
box in Microsoft Windows 7. The following topics explain the main aspects of the Windows 7 Control Pack for
WinForms controls.

Working with C1TaskDialog
C1TaskDialog is a powerful replacement for the standard message box under Windows Vista or newer operating
systems. The following topics explain the main aspects of the C1TaskDialog control.

C1TaskDialog Operating System Compatibility
C1TaskDialog is only supported on Windows Vista or later. The control will simply not display on older versions of
Windows and will not throw an exception. If the C1TaskDialog control is included in an application that may be run on
previous versions of Windows – Windows XP, for example – you may want to specify an alternative dialog box so that
important messages are displayed. You can do so by using the IsPlatformSupported property to detect the user's
operating system.

For example:

To write code in Visual Basic

Visual Basic

If C1TaskDialog.IsPlatformSupported Then
 c1TaskDialog1.Show()
Else
 ' Show a brief message with simple choice of the action
 Dim res As DialogResult = MessageBox.Show("Text", "Caption",
MessageBoxButtons.YesNoCancel)
 If res = DialogResult.Yes Then

 End If
End If

To write code in C#

C#

if (C1TaskDialog.IsPlatformSupported)
 c1TaskDialog1.Show();
else
{
 // Show a brief message with simple choice of the action
 DialogResult res = MessageBox.Show("Text", "Caption",
MessageBoxButtons.YesNoCancel);
 if (res == DialogResult.Yes)
 {
 ...
 }
}

Windows 7 Control Pack for WinForms 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

Command Links
Command links are customized button that provide explanations about various choices. Command links have a clean,
lightweight appearance that allows for descriptive labels, and are displayed with either a standard arrow or custom
icon, and an optional supplemental explanation.

For custom buttons to be displayed as command links set the UseCommandLinks property to True (default). If you do
not want the command link to include an icon, set the NoIconOnCommandLinks property to False. To make a
command link the default button, you can use the SetDefaultButton method to indicate the name of the button. See
the Setting the Default Button topic for an example.

Command links are similar to radio buttons in that they are used to select from a set of mutually exclusive, related
choices. Like radio buttons, command links are always presented in sets, never individually. In appearance, command
links have the lightweight appearance similar to regular links, without a frame or other strong click affordance.

Command links are also similar to command buttons, in that they can be the default "command button" and they can
have an access key assigned. Like commit buttons, on click they either close the window (for dialog boxes) or advance
to the next page (for wizards and pages flows).

Access Keys
An access key is an underlined character in the text of a menu, menu item, or the label of a control such as a button.
With an access key, the user can "click" a button by pressing the ALT key in combination with the predefined access
key. For example, if a button runs a procedure to print a form, and therefore its Text property is set to "Print," adding
an ampersand before the letter "P" causes the letter "P" to be underlined in the button text at run time. The user can
run the command associated with the button by pressing ALT+P. You cannot have an access key for a control that
cannot receive focus.

You can easily add access keys to buttons and command link buttons in a C1TaskDialog dialog box. To do so, you
would need to set the button's Text property to a string that includes an ampersand (&) before the letter that will be
the shortcut.

Note: To include an ampersand in a caption without creating an access key, include two ampersands (&&). A single
ampersand is displayed in the caption and no characters are underlined.

See the Setting the Access Key topic for an example.

Dialog Box Icons
The C1TaskDialog control includes several built-in icons that can be displayed in the header area or the footer area of
the dialog box. The following common icons are included:

Icon Name Description

None None Displays no icons.

Windows 7 Control Pack for WinForms 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

Shield A shield icon appears in the task dialog box.

Information An icon consisting of a lowercase letter "i" in a circle appears in the task dialog box.

Error A stop-sign icon appears in the task dialog box.

Warning An exclamation-point icon appears in the task dialog box.

To have an icon appear in the header area and in the caption bar, set the MainCommonIcon property to one of the
above options. To set the footer icon, set the FooterCommonIcon property to one of the above icons. Note that if you
want to add a custom icon to the header or footer areas, you can instead set the MainCustomIcon and
FooterCustomIcon properties to icon images of your choice.

Common Buttons
The C1TaskDialog control includes several built-in buttons that can be included in the bottom right corner of the
dialog box. To customize the dialog box with buttons, you can set the CommonButtons property to one or more of
the following values:

Button Name Description

None None Displays no buttons.

Ok Displays the Ok button.

Yes Displays the Yes button.

No Displays the No button.

Retry Displays the Retry button.

Cancel Displays the Cancel button.

Close Displays the Close button.

To set the default button, you can use the SetDefaultButton method to indicate the name of the button. See the
Setting the Default Button topic for details.

Progress Bar
The C1TaskDialog control includes a progress bar, C1ProgressBar, that can be included in a C1TaskDialog dialog
box. A progress bar can be used to indicate the progress of a lengthy operation. The progress bar consists of an area
that is filled from left to right as an operation progresses.

For example:

Windows 7 Control Pack for WinForms 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

A C1ProgressBar control visually indicates the progress of a lengthy operation in one of two styles:

A continuous bar that fills in from left to right.
A block that scrolls across a progress bar in a marquee fashion.

By default the section of the progress bar that is being filled appears green, but it can appear yellow when the
progress bar is paused, or red if there was an error and the progress bar is stopped. The State property sets the type
and state of the progress bar.

You can set the State property to one of the following options:

State Description

Indeterminate The progress is indeterminate (marquee).

Normal Normal progress is displayed.

Error An error occurred (red).

Paused The operation is paused (yellow).

A progress bar is typically used when an application performs tasks such as copying files or printing documents. Users
of an application might consider an application unresponsive if there is no visual cue. By using the progress bar in
your application, you alert the user that the application is performing a lengthy task and that the application is still
responding.

Working with C1TaskbarButton
C1TaskBarButton manages the application button on the Windows 7 taskbar. With it, you can create jump lists, add
thumbnail buttons, and display progress indicators on the taskbar with this straightforward, developer-friendly
component.

There are essentially three elements to the C1TaskbarButton control. The first is the taskbar button itself, which can be
modified with progress indicators and icon overlays; the second is the jump list, which appears when users right-click
the taskbar button; and the third is the thumbnail, which appears when users hover over the taskbar button.

Before you begin working with the different elements of the C1TaskbarButton control, it is recommended that you
read the C1TaskbarButton Operating System Compatibility topic.

C1TaskbarButton Operating System Compatibility
C1TaskbarButton is only supported by Windows 7. The control will not display on older versions of Windows, but it
will not throw an exception if the user is using an earlier version of Windows. If the C1TaskDialog control is included in
an application that may be run on previous versions of Windows – Windows XP or Vista, for example – you may want
to specify an alternative dialog box so that important messages are displayed. You can do so by using the

Windows 7 Control Pack for WinForms 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

IsPlatformSupported property to detect the user's operating system.

For example:

To write code in Visual Basic

Visual Basic

If C1TaskbarButton.IsPlatformSupported Then

Else
 ' Show a brief message with simple choice of the action
 Dim res As DialogResult = MessageBox.Show("Text", "Caption",
MessageBoxButtons.YesNoCancel)
 If res = DialogResult.Yes Then

 End If
End If

To write code in C#

C#

if (C1TaskbarButton.IsPlatformSupported)

else
{
 // Show a brief message with simple choice of the action
 DialogResult res = MessageBox.Show("Text", "Caption",
MessageBoxButtons.YesNoCancel);
 if (res == DialogResult.Yes)
 {
 ...
 }
}

Taskbar Button Elements
The taskbar button is simply a button that can be clicked to open an application, display a thumbnail, or open a jump
list. This section of the Help only covers the face of the taskbar button. To learn more about the jump lists and
thumbnails that can be constructed for the C1TaskbarButton control, see Jump List Elements and Thumbnail Elements.

Taskbar Button Progress Indicator
The C1TaskbarButton control includes a progress indicator. The progress indicator is visible on the taskbar button; it
can be used to communicate the progress of an operation, or it can be used to convey that an ongoing operation is in
progress. The progress bar always fills from the right-to-left on the taskbar button.

States
The progress bar can be set to one of four states, which are as follows:

Windows 7 Control Pack for WinForms 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

State Description Example

Indeterminate The Indeterminate state is what's
commonly referred to as the "marquee"
style.. It indicates an ongoing process by
continuously animating the progress bar
indicator rolling across the screen. The
progress indicator in the Indeterminate
state will always be green.

Normal The Normal state uses a green progress
indicator that only advances when a value
has changed. It indicates to users that the
operation is still processing as expected
whilst giving them an indication of the
progress of the operation.

Error The Error state changes the color of the
progress bar indicator to red, which
indicates to the user that there is an issue
with the operation.

Paused The Paused state changes the color of the
progress bar's indicator to yellow, which
indicates that the operation is currently
paused. This is commonly used when a
user initiates a pause or when the a user
must interact with something to advance
the operation.

Maximum Value
You can set a value of the complete operation by setting the Maximum property to a number. By default, the
Maximum property is set to 100.

Value
The progress bar's value is set by the Value property. If you wanted to set the value to the value of a trackbar, for
example, you would add the following code in the trackbar's Scroll event:

To write code in Visual Basic

Visual Basic

C1TaskbarButton1.ProgressIndicator.Value = trackBar1.Value

To write code in C#

C#

c1TaskbarButton1.ProgressIndicator.Value = trackBar1.Value;

Show and Hide Methods

Windows 7 Control Pack for WinForms 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

The C1ProgressIndicator class contains Show and Hide methods, making it simple for you to make progress bars
visible and invisible to users.

To write code in Visual Basic

Visual Basic

Private Sub progressCheckBox_CheckedChanged(sender As Object, e As EventArgs)
 If progressCheckBox.Checked Then
 taskbarButton.ProgressIndicator.Show()
 Else
 taskbarButton.ProgressIndicator.Hide()
 End If
End Sub

To write code in C#

C#

private void progressCheckBox_CheckedChanged(object sender, EventArgs e)
{
 if (progressCheckBox.Checked)
 {
 taskbarButton.ProgressIndicator.Show();
 }
 else
 {
 taskbarButton.ProgressIndicator.Hide();
 }
}

Taskbar Button Overlay
The overlay image is used to communicate information with a user about the state of an application. The
C1TaskbarButtons overly icon can be set at design time in the Properties window or can be set via code for run time
interaction. It is more common to see this property set when a specific event occurs at run time.

The OverlayIcon property takes type System.Drawing.Icon and requires the size of the icon to be no more than 16x16
pixels.

For task-based help about overlays, see Adding an Overlay Image to the Taskbar Button.

Jump List Elements
A jump list is a collection of jumps (or links) to documents, commands, files, programs, or links that can accessed by
right-clicking a taskbar button. In the C1TaskbarButton component, the C1JumpList class represents a jump list. A
jump list may contain the following elements:

Windows 7 Control Pack for WinForms 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://msdn.microsoft.com/en-us/library/wkat843k

C1JumpList
There are several things you can do to modify the jump list. For example, you can set the maximum number of items
that will appear on the jump list using the MaxSlots property. You may also set the known category section and the
position of the known category section via, respectively, the KnownCategory property and the KnownCategoryPosition
property.

There are three settings for the KnownCategory property: Recent, Frequent, and Neither. If you choose Recent, the
list will display a series of links to files that you've recently used. If you choose Frequent, the list will display a series of
links to applications and files you frequently use. If you select Neither, the user will never see a Recent or a Frequent
category associated with your. list.

C1JumpPaths, C1JumpLinks, and C1JumpTasks
C1JumpPaths and C1JumpLinks are both of the C1JumpItem class, whereas a C1JumpTask is represented by the
C1JumpTask class. The first two, C1JumpPaths and C1JumpLinks, are added to the C1JumpList by way of the
C1JumpLists Tasks property, while C1JumpTasks must be added using the C1JumpLists Tasks property.

To read more about C1JumpPaths, C1JumpLinks, and C1JumpTasks, see C1JumpPath Basics, C1JumpLink Basics, and
C1JumpTask Basics.

Applying Changes to the Jump List

Windows 7 Control Pack for WinForms 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

To apply changes to the jump list, you will need to call the C1JumpList.Apply method.

To write code in Visual Basic

Visual Basic

C1TaskbarButton1.JumpList.Apply()

To write code in C#

C#

c1TaskbarButton1.JumpList.Apply();

C1JumpPath Basics
A jump path, represented by the C1JumpLink class and inheriting from the C1JumpItem class, is reference to a file that
can be accessed and opened from the taskbar's jump list.

C1JumpPaths can be linked to any type of file; the only requirement is that your project be registered to handle the
file type. To register the file type, use the C1TaskbarButton's RegisterFileAssociations method, which takes two
overloads. The following method registers a .png file and commands the link to open Paint.NET to display the file:

To write code in Visual Basic

Visual Basic

C1TaskbarButton1.JumpList.Apply()

To write code in C#

C#

c1TaskbarButton1.JumpList.Apply();

C1JumpPath has two settable properties: Path and CustomCategory. Path simply sets the location of the file, and
CustomCategory specifies the category the jump path will appear in on the jump list. If the CustomCategory property
is not set, the paths will just appear in the Recent or Frequently Used categories.

By default, the C1JumpPaths icon will be the Windows default icon for that type of file, but you can change that by
specifying an icon in the RegisterFileAssociations method's defaultIcon string. The title of the C1JumpPath will be the
same as the filename.

C1JumpLink Basics
A jump link, represented by the C1JumpLink class and inheriting from the C1JumpItem class, represents a shortcut
from the jump list to an application.

Windows 7 Control Pack for WinForms 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

To specify the path to the .exe file you wish to link to, just set the ApplicationPath property.

A jump link be easily customized by setting a few properties. You can set the Title property to give your link a title,
and you can set the IconPath and IconIndex properties to change the icon associated with the jump link. Without a
title, the jump link won't appear in the jump list. However, C1JumpLink will use the application's default .ico file (if it
has one) if you don't set the icon properties. The C1JumpLink class also has a CustomCategory property that allows
you to group links together under headings.

You can pass arguments to any jump link by setting the Arguments property. For example, you can use the Arguments
property to open a specific text file in Notepad, such as in the following example:

In the above example, the ReadMe.txt file resides in the working directory, C:\Users\karaj\Documents\. If you don't
specify your own directory via the WorkingDirectory property, the working directory is assumed to be the directory
that the running application resides in.

C1JumpTask Basics
A jump task, which is represented by the C1JumpTask class, is a shortcut to an application. Anything labeled as a
C1JumpTask will appear underneath the Tasks category.

Windows 7 Control Pack for WinForms 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

Jump tasks are similar to jump links, only users jump tasks cannot remove jump tasks from the jump list, nor can they
pin a jump task to the taskbar.

To specify the path to the .exe file you wish to link to, just set the ApplicationPath property.

A jump task can be easily customized by setting a few properties. You can set the Title property to give your link a
title, and you can set the IconPath and IconIndex properties to change the icon associated with the jump task. Without
a title, the jump task won't appear in the jump list. However, C1JumpLink will use the application's default .ico file (if it
has one) if you don't set the icon properties. C1JumpLink also has a CustomCategory property that allows you to
group links together under headings.

You can pass arguments to any jump task by setting the Arguments property. For example, you can use the
Arguments property to open a file in Notepad, such as in the following example:

Windows 7 Control Pack for WinForms 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

In the above example, the Note.txt file resides in the working directory, C:\Users\karaj\Documents\. If you don't specify
your own directory via the WorkingDirectory property, the working directory is assumed to be the directory that the
running application resides in.

Thumbnail Elements
Taskbar button thumbnails, which are represented by the C1Thumbnail class, can consist of two elements: a live
preview of the application and a toolbar.

Thumbnail Preview
As long as the user has the thumbnail preview feature activated in Windows 7, a live preview of the entire application
window will appear in the thumbnail preview.

Windows 7 Control Pack for WinForms 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

If you want users to only see a portion of the application, you can restrict the preview to a portion of the application
by setting the ClipControl property. For example, you could restrict the preview to display only an application's rich
text editor by setting the ClipControl property to the ID of a RichTextBox control.

Thumbnail Toolbar
One of the most convenient additions to the Windows 7 UI was the thumbnail toolbar. These toolbars have cut down
on the need for time-wasting application switching. For example, the Windows Media Player now contains Previous,
Next, and Play/Pause buttons so that you can switch your music without cluttering your desktop with another window.
In the sample image below, you can see a toolbar at the bottom of the thumbnail.

A Windows 7 Pack for WinForms thumbnail button is represented by the C1ThumbButton class.

You can add an icon to a C1ThumbButton via the Icon property. By default, each button will have a button border, but
you can turn this off by setting the NoBackground property to True.

Windows 7 Control Pack for WinForms 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

Windows 7 Control Pack for WinForms Samples
Please be advised that this ComponentOne software tool is accompanied by various sample projects and/or demos,
which may make use of other development tools included with the ComponentOne Studio.

Please refer to the pre-installed product samples through the following path:

Documents\ComponentOne Samples\WinForms
Click one of the following links to view a list of Windows 7 Control Pack for WinForms samples:

Visual Basic samples

Sample Description

JumpItemDemo The sample works with the Recent, Frequent, and custom categories in application's jump list.

The sample adds custom destinations to a jump list. In addition, it allows to delete destinations
from the "known" and custom categories, register/unregister file association, and get the list of
items in the "known" (Recent and Frequent) categories.

A list of destinations and common tasks associated with an application is attached to that
application's taskbar button (as well as to the equivalent Start menu entry). This is the
application's jump list. The jump list is available whether the taskbar button is in a launcher state
(the application isn't running) or whether it represents one or more windows.

TaskbarDemo This sample shows a few taskbar extensions using the C1TaskbarButton component.

C1TaskbarButtonworks with Windows 7 taskbar extensions. You can adjust the application's
thumbnail toolbar, icon overlay, and the progress indicator displayed on the taskbar button. In
addition, you can select a particular control on a Form and use its contents as the thumbnail
image.

TaskDialogDemo The sample shows various elements of a task dialog box using the C1TaskDialog component.

Task dialog box is a powerful replacement of the old message box. It consists of several elements,
most of which are optional. The C1TaskDialog component gives an ability to create and adjust
task dialog boxes without much effort. It works like the common dialog boxes (OpenFileDialog,
for example). You can set a few properties, then call to the Show() method to display the dialog
box at run-time.

C# samples

Sample Description

JumpItemDemo The sample works with the Recent, Frequent, and custom categories in application's jump list.

The sample adds custom destinations to a jump list. In addition, it allows to delete destinations
from the "known" and custom categories, register/unregister file association, get the list of items
in the "known" (Recent and Frequent) categories.

A list of destinations and common tasks associated with an application is attached to that
application's taskbar button (as well as to the equivalent Start menu entry). This is the
application's jump list. The jump list is available whether the taskbar button is in a launcher state
(the application isn't running) or whether it represents one or more windows.

JumpTaskDemo This sample adds the Task category to a custom jump list.

In this sample, we add dynamic Tasks to a jump list. Typically, tasks are IShellLink items with
command-line arguments that indicate particular functionality that can be triggered by an

Windows 7 Control Pack for WinForms 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

application. The C1JumpTask class encapsulates the shell interface. It's easy to manipulate tasks
using the C1TaskbarButton component.

TaskbarDemo This sample shows a few taskbar extensions using the C1TaskbarButton component.

C1TaskbarButtonworks with Windows 7 taskbar extensions. You can adjust the application's
thumbnail toolbar, icon overlay, and the progress indicator displayed on the taskbar button. In
addition, you can select a particular control on a Form and use its contents as the thumbnail
image.

TaskDialogDemo The sample shows various elements of a task dialog box using the C1TaskDialog component.

Task dialog box is a powerful replacement of the old message box. It consists of several elements,
most of which are optional. The C1TaskDialog component gives an ability to create and adjust
task dialog boxes without much effort. It works like the common dialog boxes (OpenFileDialog,
for example). You can set a few properties, then call to the Show() method to display the dialog
box at run-time.

Windows 7 Control Pack for WinForms 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

Windows 7 Control Pack for WinForms Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio. If you are a novice to the
Windows 7 Control Pack for WinForms product, please see the Windows 7 Control Pack for WinForms Quick Starts
first.

Each topic provides a solution for specific tasks using the Windows 7 Control Pack for WinForms product. By
following the steps outlined in the help, you will be able to create projects demonstrating a variety of Windows 7
Control Pack for WinForms features.

Each task-based help topic also assumes that you have created a new .NET project and, unless otherwise stated, have
added a reference to the C1.Win.C1Win7Pack namespace and added a C1TaskDialog or C1TaskbarButton
component to the application. For additional information on this topic, see Creating a .NET Project.

C1TaskDialog Task-Based Help
The following topics detail information about how you can customize the appearance and behavior of the
C1TaskDialog control. If you are a novice to using the C1TaskDialog control, you may want to see the C1TaskDialog
Quick Start first. Note that each of the following task-based help topics assumes that you have created a new .NET
project and, unless otherwise stated, have added a reference to the C1.Win.C1Win7Pack namespace and added a
C1TaskDialog component to the application.

Adding Command Link Buttons
Command links have a clean, lightweight appearance that allows for descriptive labels, and are displayed with either a
standard arrow or custom icon, and an optional supplemental explanation. For more information, see the Command
Links topic. In this topic, you'll add a command link button to an existing C1TaskDialog control.

In the Tasks Menu
Complete the following steps to add a command link button with an access key to an existing C1TaskDialog control:

1. On the Form in Design view, click once on the C1TaskDialog component to select it.
2. Click the control's smart tag to open the C1TaskDialog Tasks menu. For more information about the menu,

see the C1TaskDialog Tasks Menu topic.
3. In the C1TaskDialog Tasks menu, confirm that the Use Command Links check box is checked.
4. In the C1TaskDialog Tasks menu, click the Add Custom Buttons item. The C1TaskDialog.CustomButtons

Collection Editor will open.
5. In the CustomButtons Collection Editor, click the Add button to add a new CustomButton.
6. Edit the button's Note text in the Properties pane, for example set it to "This button is a custom command

link."
7. Set the button's Text property in the Properties pane to "Command Link Example".
8. Click OK to close the CustomButtons Collection Editor.

In the Properties Window
Complete the following steps to add a command link button with an access key to an existing C1TaskDialog control:

1. On the Form in Design view, click once on the C1TaskDialog component to select it.
2. Navigate to the Properties window and confirm that the UseCommandLinks property is set to True.
3. In the Properties window, click the ellipses button next to the CustomButtons item. Alternatively, if the

Windows 7 Control Pack for WinForms 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/c1studiowinforms/#!Documents/creatinganetproject.htm

Commands area beneath the Properties window is displayed, you can select the Edit Custom Buttons item.
The C1TaskDialog.CustomButtons Collection Editor will open.

4. In the CustomButtons Collection Editor, click the Add button to add a new CustomButton.
5. Edit the button's Note text in the Properties pane, for example set it to "This button is a custom command

link."
6. Set the button's Text property in the Properties pane to "Command Link Example".
7. Click OK to close the CustomButtons Collection Editor.

In Code
The following code adds a command link button to an existing C1TaskDialog control:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 Dim C1CustomButton1 As New C1.Win.C1Win7Pack.C1CustomButton
 C1CustomButton1.Text = "Command Link Example"
 C1CustomButton1.Note = "This button is a custom command link."
 C1TaskDialog1.CustomButtons.Add(C1CustomButton1)
End Sub

To write code in C#

C#

public Form1()
{
 InitializeComponent();
 C1CustomButton c1CustomButton1 = new C1CustomButton();
 c1CustomButton1.Text = "Command Link Example";
 c1CustomButton1.Note = "This button is a custom command link.";
 c1TaskDialog1.CustomButtons.Add(c1CustomButton1);
}

When You've Accomplished
In this topic, you've added a command link button to an existing C1TaskDialog control.

Setting the Access Key
An access key is an underlined character in the text of a menu, menu item, or the label of a control such as a button.
With an access key, the user can "click" a button by pressing the ALT key in combination with the predefined access
key. For more information, see the Access Keys topic. In this topic, you'll add a custom button with an access key to an
existing C1TaskDialog control.

In the Tasks Menu
Complete the following steps to add a command link button with an access key to an existing C1TaskDialog control:

Windows 7 Control Pack for WinForms 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. On the Form in Design view, click once on the C1TaskDialog component to select it.
2. Click the control's smart tag to open the C1TaskDialog Tasks menu. For more information about the menu,

see the C1TaskDialog Tasks Menu topic.
3. In the C1TaskDialog Tasks menu, uncheck the Use Command Links check box.
4. In the C1TaskDialog Tasks menu, click the Add Custom Buttons item. The C1TaskDialog.CustomButtons

Collection Editor will open.
5. In the CustomButtons Collection Editor, click the Add button to add a new CustomButton.
6. Set the button's Text property in the Properties pane to "&Access Key Example". The ampersand indicates that

the letter after the ampersand should be used as the access key.
7. Click OK to close the CustomButtons Collection Editor.

In the Properties Window
Complete the following steps to add a command link button with an access key to an existing C1TaskDialog control:

1. On the Form in Design view, click once on the C1TaskDialog component to select it.
2. Navigate to the Properties window and set the UseCommandLinks property is set to False.
3. In the Properties window, click the ellipses button next to the CustomButtons item. Alternatively, if the

Commands area beneath the Properties window is displayed, you can select the Edit Custom Buttons item.
The C1TaskDialog.CustomButtons Collection Editor will open.

4. In the CustomButtons Collection Editor, click the Add button to add a new CustomButton.
5. Set the button's Text property in the Properties pane to "&Access Key Example". The ampersand indicates that

the letter after the ampersand should be used as the access key.
6. Click OK to close the CustomButtons Collection Editor.

In Code
The following code adds a command link button with an access key to an existing C1TaskDialog control:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 C1TaskDialog1.UseCommandLinks = False
 Dim C1CustomButton1 As New C1.Win.C1Win7Pack.C1CustomButton
 C1CustomButton1.Text = "&Access Key Example"
 C1TaskDialog1.CustomButtons.Add(C1CustomButton1)
End Sub

To write code in C#

C#

public Form1()
{
 InitializeComponent();
 c1TaskDialog1.UseCommandLinks = false;
 C1CustomButton c1CustomButton1 = new C1CustomButton();
 c1CustomButton1.Text = "&Access Key Example";
 c1TaskDialog1.CustomButtons.Add(c1CustomButton1);
}

Windows 7 Control Pack for WinForms 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

When You've Accomplished
In this topic, you've added a custom button with an access key to an existing C1TaskDialog control. Run your
application, and when the C1TaskDialog dialog box is open press the ALT + A keys to "click" the button.

Setting the Default Button
To set the default button you can use the SetDefaultButton method to the name of the button. The default button
indicates which button is clicked when the C1TaskDialog control has focus and the user presses the ENTER key.

In the Properties Window
Complete the following steps to set the default button to an existing button:

1. On the Form in Design view, click once on the C1TaskDialog component to select it.
2. Navigate to the Properties window and locate the DefaultButton item.
3. Click the drop-down area next to the DefaultButton item and select the button you want to be set to the

default button.

In Code
The following code sets the default button:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 C1TaskDialog1.SetDefaultButton(C1CustomButton1)
End Sub

To write code in C#

C#

public Form1()
{
 InitializeComponent();
 c1TaskDialog1.SetDefaultButton(c1CustomButton1);
}

When You've Accomplished
In this topic, you've set the default button to an existing button. If you run the application, you'll see that the button
you indicated is set as the default button – if you open the dialog box and press the ENTER key, the button will be
selected.

Adding a Progress Bar

Windows 7 Control Pack for WinForms 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

You can easily add a progress bar by using the C1ProgressBar class and members to customize the progress bar. A
progress bar can be used to indicate the progress of a lengthy operation. The progress bar consists of an area that is
filled from left to right as an operation progresses.

In the Properties Window
Complete the following steps to make the progress bar visible:

1. On the Form in Design view, click once on the C1TaskDialog component to select it.
2. Navigate to the Properties window and locate and expand the ProgressBar item.
3. Click the drop-down area next to the State item and select Indeterminate.
4. Click the drop-down area next to the Visible item and select True.

In Code
The following code makes the progress bar visible:

To write code in Visual Basic

Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load
 C1TaskDialog1.ProgressBar.State = TaskDialogProgressBarState.Indeterminate
 C1TaskDialog1.ProgressBar.Visible = True
End Sub

To write code in C#

C#

public Form1()
{
 InitializeComponent();
 c1TaskDialog1.ProgressBar.State = TaskDialogProgressBarState.Indeterminate;
 c1TaskDialog1.ProgressBar.Visible = true;
}

When You've Accomplished
In this topic you've made the progress bar visible in a dialog box and set the progress bar's state.

C1TaskbarButton Task-Based Help
The following topics detail information about how you can customize the appearance and behavior of the
C1TaskDialog control. If you are a novice to using the C1TaskbarButton control, you may want to see the
C1Taskbarbutton Quick Start first. Note that each of the following task-based help topics assumes that you have
created a new .NET project and, unless otherwise stated, have added a reference to the C1.Win.C1Win7Pack
namespace and added a C1TaskbarButton component to the application.

Working with the Jump List

Windows 7 Control Pack for WinForms 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

This section features tasks associated with a C1JumpList, including how to add tasks, links, and path jumps to the
jump list. Each topic assumes that you have referenced the C1.Win.C1Win7Pack namespace in your project.

Adding Jump Tasks
A jump task is a link from the taskbar's jump list to an application. A jump task can be added to the jump list at design
time through a collection editor or dynamically at run time.

In the Designer

Complete the following steps:

1. Open the C1JumpList.Tasks Collection Editor in one of the following ways:
Click the C1TaskbarButtons smart tag to open the C1TaskbarButton Tasks Menu and select Edit Jump
Tasks.

OR

In the Properties window, expand the JumpList node and then, next to Tasks, click the ellipses button.
2. In the C1JumpList.Tasks Collection Editor, click Add to add a jump task. You can set the task's properties in

the properties grid.

In Code

The following code creates one C1JumpTask and adds it to the jump list.

To write code in Visual Basic

Visual Basic

Dim c1JumpTask1 As New C1JumpTask()
c1TaskbarButton1.JumpList.Tasks.Add(c1JumpTask1)

To write code in C#

C#

C1JumpTask c1JumpTask1 = new C1JumpTask();
c1TaskbarButton1.JumpList.Tasks.Add(c1JumpTask1);

If you'd like to add a range of C1JumpTasks to the jump list, you can use the AddRange method instead, like this:

To write code in Visual Basic

Visual Basic

Dim C1JumpTask1 As New C1JumpTask()
Dim C1JumpTask2 As New C1JumpTask()
C1TaskbarButton1.JumpList.Tasks.AddRange(New C1.Win.C1Win7Pack.C1JumpTask()
{C1JumpTask1, C1JumpTask2})

To write code in C#

C#

C1JumpTask c1JumpTask1 = new C1JumpTask();
C1JumpTask c1JumpTask2 = new C1JumpTask();
c1TaskbarButton1.JumpList.Tasks.AddRange(new C1.Win.C1Win7Pack.C1JumpTask[]

Windows 7 Control Pack for WinForms 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

{c1JumpTask1, c1JumpTask2});

Adding JumpLinks
A jump link is a link from the jump list to an application. Jump links can be added at design time using a collection
editor, or they may be added dynamically with code.

In the Designer
Complete the following steps:

1. Open the C1JumpList.Items Collection Editor in one of the following ways:
Click the C1TaskbarButtons smart tag to open the C1TaskbarButton Tasks Menu and select Edit Jump
Items.

OR

In the Properties window, expand the JumpList node and then, next to Items, click the ellipses button.
2. In the C1JumpList.Items Collection Editor, open the Add drop-down list and select C1JumpLink.
3. Set the properties in the properties grid.

In Code
The following code creates one C1JumpLink and adds it to the jump list:

To write code in Visual Basic

Visual Basic

Dim c1JumpLink1 As New C1JumpLink()
c1TaskbarButton1.JumpList.Items.Add(c1JumpLink1)

To write code in C#

C#

C1JumpLink c1JumpLink1 = new C1JumpLink();
c1TaskbarButton1.JumpList.Items.Add(c1JumpLink1);

If you'd like to add a range of C1JumpLinks to the jump list, you can use the AddRange method instead, like this:

To write code in Visual Basic

Visual Basic

Dim C1JumpLink1 As New C1JumpLink()
Dim C1JumpLink2 As New C1JumpLink()
C1TaskbarButton1.JumpList.Items.AddRange(New C1.Win.C1Win7Pack.C1JumpLink()
{C1JumpLink1, C1JumpLink2})

To write code in C#

C#

Windows 7 Control Pack for WinForms 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

C1JumpLink C1JumpLink1 = new C1JumpLink();
C1JumpLink C1JumpLink2 = new C1JumpLink();
c1TaskbarButton1.JumpList.Items.AddRange(new C1.Win.C1Win7Pack.C1JumpLink[] {
 C1JumpLink1,
 C1JumpLink2});

Adding JumpPaths
Jump paths are links from the jump list to a specified file. Please note that your application has to have the file type of
this link registered, otherwise Jump Paths will simply not appear on the jump list.

In the Designer
Complete the following steps:

1. Open the C1JumpList.Items Collection Editor in one of the following ways:
Click the C1TaskbarButtons smart tag to open the C1TaskbarButton Tasks Menu and select Edit Jump
Items.

OR

In the Properties window, expand the JumpList node and then, next to Items, click the ellipses button.
2. In the C1JumpList.Items Collection Editor, open the Add drop-down list and select C1JumpPath.
3. Set the properties in the properties grid. There are only two properties, CustomCategory and Path, available for

a C1JumpPath.

In Code
The following code creates one C1JumpPath and adds it to the jump list:

To write code in Visual Basic

Visual Basic

Dim C1JumpPath1 As New C1JumpPath()
C1TaskbarButton1.JumpList.Items.Add(C1JumpPath1)

To write code in C#

C#

C1JumpPath c1JumpPath1 = new C1JumpPath();
c1TaskbarButton1.JumpList.Items.Add(c1JumpPath1);

If you'd like to add a range of C1JumpPaths to the jump list, you can use the AddRange method instead, like this:

To write code in Visual Basic

Visual Basic

Dim C1JumpPath1 As New C1JumpPath()
Dim C1JumpPath2 As New C1JumpPath()
C1TaskbarButton1.JumpList.Items.AddRange(New C1.Win.C1Win7Pack.C1JumpPath()
{C1JumpPath1, C1JumpPath2})

Windows 7 Control Pack for WinForms 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

To write code in C#

C#

C1JumpPath C1JumpPath1 = new C1JumpPath();C1JumpPath C1JumpPath2 = new C1JumpPath();
c1TaskbarButton1.JumpList.Items.AddRange(new C1.Win.C1Win7Pack.C1JumpPath[] {
 C1JumpPath1,
 C1JumpPath2});

Working with the Thumbnail Elements
This section contains task-based help regarding C1Thumbnails. Each topic assumes that you have referenced the
C1.Win.C1Win7Pack namespace in your project.

Adding Thumbnail Buttons
A C1TaskbarButton control will provide your application with a thumbnail that appears as the user hovers over the
application's icon with his or her cursor. This thumbnail window can also contain buttons, such as a next/previous
button, that allow users to interact with the application right from the Windows 7 toolbar. These buttons can be
added at design time via a collection editor or at run time via code.

In the Designer
1. Open the C1Thumbnails.Buttons Collection Editor in one of the following ways:

· Click the C1TaskbarButtons smart tag to open the C1TaskbarButton Tasks Menu and select Edit Thumbnail
Buttons.

OR

· In the Properties window, expand the Thumbnail node and then, next to Items, click the ellipses button.

2. In the C1Thumbnails.Buttons Collection Editor, click the Add button to add a button to the thumbnail.

3. Set the properties in the properties grid.

In Code
To add one button to the thumbnail, create the C1ThumbButton and add it to the thumbnail via the Add method,
such as in the following example:

To write code in Visual Basic

Visual Basic

Dim C1ThumbButton As New C1ThumbButton()
C1TaskbarButton1.Thumbnail.Buttons.Add(C1ThumbButton)

To write code in C#

C#

C1ThumbButton c1ThumbButton = new C1ThumbButton();
c1TaskbarButton1.Thumbnail.Buttons.Add(c1ThumbButton);

Windows 7 Control Pack for WinForms 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

To add two or more buttons to the thumbnail, create the C1ThumbButtons and add them to the thumbnail via the
AddRange method, such as in the following example:

To write code in Visual Basic

Visual Basic

Dim C1ThumbButton1 As New C1ThumbButton()
Dim C1ThumbButton2 As New C1ThumbButton()
C1TaskbarButton1.Thumbnail.Buttons.AddRange(New C1.Win.C1Win7Pack.C1ThumbButton()
{C1ThumbButton1, C1ThumbButton2})

To write code in C#

C#

C1ThumbButton C1ThumbButton1 = new C1ThumbButton();
C1ThumbButton C1ThumbButton2 = new C1ThumbButton();
c1TaskbarButton1.Thumbnail.Buttons.AddRange(new C1.Win.C1Win7Pack.C1ThumbButton[]
{C1ThumbButton1,C1ThumbButton2});

Restricting the Thumbnail Preview
You can restrict the portion of a window's client area you want to display in the thumbnail preview by setting the
ClipControl property to the ID of one of the form's elements.

In the Designer
1. Click the smart tag to open the C1TaskbarButton Tasks list.
2. Click the Clip Control drop-down arrow and select one of the elements on your page from the list. For

example, if you had a generic Button ("button1") control on your form and wanted to clip the thumbnail image
to that button, you'd select button1.

In Code
To restrict the thumbnail image to one element of your form, set the ClipControl property to the ID of that element.
For example:

To write code in Visual Basic

Visual Basic

C1TaskbarButton1.Thumbnail.ClipControl = button1

To write code in C#

C#

c1TaskbarButton1.Thumbnail.ClipControl = button1;

Working with the Taskbar Button

Windows 7 Control Pack for WinForms 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

This section contains task-based help regarding the C1TaskbarButton. Each topic assumes that you have referenced
the C1.Win.C1Win7Pack namespace in your project.

Adding a Progress Indicator to the Taskbar Button
This topic illustrates how to use the C1TaskbarButton control's progress indicator. In this tutorial, you'll set the value
of the progress indicator to the value of a track bar.

Complete the following steps:

1. Add a C1TaskbarButton control and a TrackBar control to your form.
2. In the Properties window, set the TrackBar control's Maximum property to "100" so that its maximum value is

the same as the progress indicator's default value.
3. With the TrackBar control still selected in the Properties window, double-click the Events button and then

double-click the Scroll event to add a Scroll event handler to Code view.
4. Add the following code to the trackBar1_Scroll event handler:

To write code in Visual Basic

Visual Basic

Private Sub trackBar1_Scroll(sender As Object, e As EventArgs)
 C1TaskbarButton1.ProgressIndicator.Value = trackBar1.Value
 C1TaskbarButton1.ProgressIndicator.Show()
End Sub

To write code in C#

C#

private void trackBar1_Scroll(object sender, EventArgs e)
 {
 c1TaskbarButton1.ProgressIndicator.Value = trackBar1.Value;
 c1TaskbarButton1.ProgressIndicator.Show();
 }

5. Press F5 to run the application and slide the track bar. Observe that the progress indicator on the taskbar
button advances as you slide the track bar.

Windows 7 Control Pack for WinForms 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding an Overlay Image to the Taskbar Button
The overlay image is used to communicate information with a user about the state of an application. The
C1TaskbarButtons overly icon can be set at design time in the Properties window or can be set via code for run time
interaction. It is more common to see this property set when a specific event occurs at run time, but this topic will
explain how to do it both ways.

Note: The icon overlay should always be 16 pixels by 16 pixels.

In the Designer
In the Properties window, click the ellipses button next to the OverlayIcon and select your image from the Image
dialog box.

In Code
Usually, you'll want to use an overlay icon in response to an application state, response, or event. The easiest thing to
do is to add your preferred .ico file to the project as a resource or to use the existing system icons.

This example illustrates how to add an overlay icon to a simple Button_Click event using system icons.

To write code in Visual Basic

Visual Basic

taskbarButton.OverlayIcon = New Icon(SystemIcons.[Error], 16, 16)

To write code in C#

C#

taskbarButton.OverlayIcon = new Icon(SystemIcons.Error, 16, 16);

This example illustrates how to add an overlay icon to a simple Button_Click event using an embedded .ico resource
named "Error".

To write code in Visual Basic

Visual Basic

taskbarButton.OverlayIcon = Properties.Resources.[Error]

To write code in C#

C#

taskbarButton.OverlayIcon = Properties.Resources.Error;

Windows 7 Control Pack for WinForms 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	Windows 7 Control Pack for WinForms Overview
	Help with WinForms Edition

	Key Features
	Windows 7 Control Pack for WinForms Quick Starts
	C1TaskDialog Quick Start
	Step 1 of 4: Creating a C1TaskDialog Application
	Step 2 of 4: Customizing the C1TaskDialog Application
	Step 3 of 4: Adding Code to the C1TaskDialog Application
	Step 4 of 4: Running the C1TaskDialog Application

	C1TaskbarButton Quick Start
	Step 1 of 4: Creating a C1TaskbarButton Application
	Step 2 of 4: Creating a Custom Jump List
	Step 3 of 4: Using the Apply and Clear Methods
	Step 4 of 4: Running the Project

	Windows 7 Control Pack for WinForms Components
	C1TaskbarButton Component
	C1TaskDialog Component

	Design-Time Support
	Windows 7 Control Pack for WinForms Smart Tags
	C1TaskDialog Tasks Menu
	C1TaskbarButton Tasks Menu

	C1TaskDialog Collection Editors
	RadioButtons Collection Editor
	CustomButtons Collection Editor

	C1TaskbarButton Collection Editors
	Buttons Collection Editor
	Items Collection Editor
	Tasks Collection Editor

	Working with Windows 7 Control Pack for WinForms
	Working with C1TaskDialog
	C1TaskDialog Operating System Compatibility
	Command Links
	Access Keys
	Dialog Box Icons
	Common Buttons
	Progress Bar

	Working with C1TaskbarButton
	C1TaskbarButton Operating System Compatibility
	Taskbar Button Elements
	Taskbar Button Progress Indicator
	Taskbar Button Overlay

	Jump List Elements
	C1JumpPath Basics
	C1JumpLink Basics
	C1JumpTask Basics

	Thumbnail Elements

	Windows 7 Control Pack for WinForms Samples
	Windows 7 Control Pack for WinForms Task-Based Help
	C1TaskDialog Task-Based Help
	Adding Command Link Buttons
	Setting the Access Key
	Setting the Default Button
	Adding a Progress Bar

	C1TaskbarButton Task-Based Help
	Working with the Jump List
	Adding Jump Tasks
	Adding JumpLinks
	Adding JumpPaths

	Working with the Thumbnail Elements
	Adding Thumbnail Buttons
	Restricting the Thumbnail Preview

	Working with the Taskbar Button
	Adding a Progress Indicator to the Taskbar Button
	Adding an Overlay Image to the Taskbar Button

