

ComponentOne

Expression Editor for
WinForms

GrapeCity US

GrapeCity
201 South Highland Avenue, Suite 301
Pittsburgh, PA 15206
Tel: 1.800.858.2739 | 412.681.4343
Fax: 412.681.4384
Website: https://www.grapecity.com/en/
E-mail: us.sales@grapecity.com

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $25 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

https://www.grapecity.com/en/
mailto:us.sales@grapecity.com

Table of Contents
Expression Editor for WinForms Edition 2

Help with WinForms Edition 2

Key Features 3

Object Model Summary 4

Expression Editor Elements 5

Quick Start 6-7

Create Expressions 8

Built-in Functions, Operators, and Constants 9-15

Features 16

End-User Capabilities 16-18

Appearance and Styling 18-20

Working with Expression Editor 21

Integration with FlexGrid 21-22

Column Calculation in FlexGrid 22-23

Integration with FlexChart 23-25

Filtering in FlexChart 25

Integration with MSDataGrid 25-26

Integration with TreeView 26-27

Samples 28

Expression Editor for WinForms 1

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Expression Editor for WinForms Edition
Expression Editor for WinForms is a control that enables creating and editing expressions at run-time, which can then
be used to perform calculations and shaping data. Powered with Visual Studio-like IDE, Expression Editor offers smart
code completion, syntax highlighting, and error reporting functionalities. It provides standard operators, constants,
and functions to help perform aggregate, logical, mathematical, and conversion operations on data. This intuitive
control can be easily integrated with other data management and visualization controls such as grids and charts, to
aid analysis.

The control is composed of C1ExpressionEditor and C1ExpressionEditorPanel components. Both these components
can also be used as stand-alone controls in integration with other supported controls. For example,
C1ExpressionEditor component can be used as Excel-like formula bar in integration with FlexGrid to enter expressions.

The following topics help you get accustomed with the Expression Editor control, and explore its advanced
capabilities.

Help with WinForms Edition
For information about installing ComponentOne Studio WinForms Edition, licensing, creating project with the
Expression Editor control, getting technical help, and namespaces, visit Getting Started with WinForms Edition.

Expression Editor for WinForms 2

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://help.grapecity.com/componentone/NetHelp/c1studiowinforms/webframe.html#Getting_Started_with_WinForms_Edition.html

Key Features
Expression Editor for WinForms offers numerous advanced features that help end users create and edit complex
expressions. These are as follows:

Smart Code Completion
Expression Editor provides recommendation of possible methods in a list box based on what you typed so far.
This helps in completing expressions quickly and reduces the chances of typing errors.
Syntax Highlighting
Expression Editor uses different colors to write functions, fields, and operators. This helps in differentiating
these items and enhancing the readability of expressions, especially when the expressions span across multiple
lines.
Pre-defined Operators and Functions 
Expression Editor provides a wide variety of operators and functions to perform aggregate, logical, date time,
math, convert and text operations for the ease of users while working with expressions.
Error Reporting
Expression Editor validates the entered expression for error detection, immediately after user has finished
entering the expression. If the expression syntax is incorrect, then error message is shown within the Editor.

Expression Editor for WinForms 3

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Object Model Summary
Expression Editor comes with a rich object model, providing various classes, objects, collections, and associated
methods and properties for creating powerful applications with Expression Editor, to help perform advanced
operations using expressions. The following table lists some of these objects and their major properties.

C1ExpressionEditor

Properties: DataSource, Expression, ShowErrorBox, SyntaxHighlighting, UnderlineErrors.

Methods: Evaluate, SetCustomEngine.

C1ExpressionEditorPanel

Properties: ExpressionEditor, Theme, DefaultSize.

ExpressionEditorCollection Class

Properties: DataSource Property, ItemContext Property.

Expression Editor for WinForms 4

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Expression Editor Elements
Expression Editor comprises two components.

C1ExpressionEditor: Contains an expression text box where you can type expressions.
C1ExpressionEditorPanel: Displays a quick access toolbar containing Arithmetic and Logical operator buttons,
and a categorized view of built-in functions, operators, and constants.

The following image illustrates constituting components of Expression Editor control and their respective elements.

C1ExpressionEditor
Expression TextBox: Enables user to create and edit expressions.

Error Box: Shows the error information for the entered expression.

C1ExpressionEditorPanel
Operator Buttons: Buttons that represent shortcuts for operators.

Category Selection: A tree view which contains available functions, operators, fields and constants.

Items: A list box that lists the items selected from the Category Selection section.

Description Panel: A panel that displays the description of the item selected from the Category Selection section.

Expression Editor for WinForms 5

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Quick Start
This quick start topic guides you through a step-by-step process of creating Expression Editor control, and binding it
to an object to demonstrate creating expressions and performing operations on its fields.

The steps to create an application with Expression Editor control are as follows:

Step 1: Add Expression Editor components to application
Step 2: Bind the components
Step 3: Add Result panel
Step 4: Subscribe to and handle the ExpressionChanged event
Step 5: Build and Run the Project

The following image exhibits Expression Editor control.

Back to Top

Step 1: Add Expression Editor components to application

1. Create a Windows Forms application, and open Form1.cs.
2. Add C1ExpressionEditor and C1ExpressionEditorPanel components to your form.

Back to Top

Step 2: Bind the components

Bind the C1ExpressionEditor and C1ExpressionEditorPanel components using ExpressionEditor property exposed by
C1ExpressionEditorPanel class, as shown in the following code snippet.

C#

InitializeComponent();

Expression Editor for WinForms 6

Copyright © 2018 GrapeCity, Inc. All rights reserved.

c1ExpressionEditorPanel1.ExpressionEditor = c1ExpressionEditor1;

Back to Top

Step 3: Add Result panel

1. To create result panel, add a label and a text box control.
2. Set the text property of label to Result:, and name the text box txtResult.

Back to Top

Step 4: Subscribe to and handle the ExpressionChanged event

Subscribe to the ExpressionChanged event of C1ExpressionEditor, and handle the ExpressionChanged event to show
result of the entered expressions, as shown in the following code snippet.

C#

 //...
 c1ExpressionEditor1.ExpressionChanged += c1ExpressionEditor1_ExpressionChanged;
}
private void c1ExpressionEditor1_ExpressionChanged(object sender, EventArgs e)
{
 if (!c1ExpressionEditor1.IsValid)
 {
 txtResult.Text = "";
 }
 else
 {
 txtResult.Text = c1ExpressionEditor1.Evaluate()?.ToString();
 }
}

Back to Top

Step 5: Build and Run the Project

1. Click Build | Build Solution to build the project.
2. Press F5 to run the project.

You have successfully created a Windows forms application with Expression Editor control. Enter a valid expression
and see the results.

Back to Top

Expression Editor for WinForms 7

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Create Expressions
Expression Editor enables creating and editing complex expressions at run-time. It provides Excel-like formulas, in the
form of functions as well as operators and constants that help in shaping data using expressions.

To create expressions, use any of the following ways:

Simply begin typing within the text box of C1ExpressionEditor. The control can convert the typed string to an
expression.
Select from the available list of functions and operators from C1ExpressionEditorPanel.

Note that variables are enclosed in square brackets [].

Some examples of creating expressions using in-built functions and operators are as follows.

Using Logical and
Aggregate Functions Description

 Iif([Price] + [Cost]) >
500,300,400)

This expression evaluates the two constants 300 and 400 based on the condition
provided by the expression "([Price] + [Cost]) > 500".

 IsNull([Sales]) This expression evaluates whether Sales are null.

Using
DateTimeFunctions Description

 AddDays([OrderDate],
30)

This expression adds the number of days equivalent to integer value 30 to the
OrderDate value of the type DateTime.

DateDiffDay([DateStart],
[DateEnd])

This expression counts the number of days between DateStart and DateEnd.

Using Math Functions Description

 Sign([Value]) This expression returns the integer value indicating the sign of the provided Value.

 Exp([Value]) This expression calculates and returns the base of natural logarithms raised to
the power Value.

Using String Functions Description

 Mid([Name],0,4) This expression returns a string of specified number of 4 characters from the beginning
of the specified [Name] string.

 Remove([Name], 0, 3) This expression removes specified number of 3 characters from the beginning of the
string specified as 0.

Expression Editor for WinForms 8

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Built-in Functions, Operators, and Constants
Expression Editor provides following built-in:

Functions
Operators
Constants

Functions

Aggregate Functions Syntax Description

Average(value1….valueN) Average() Computes the average of a specified sequence of
numbers (or enumerable).

Count(value1….valueN) Count() Gets the number of elements actually contained in a
specified sequence

First(value1….valueN) First() Returns the first element of a specified sequence.

Last(value1….valueN) Last() Returns the last element of all the specified elements.

Max(value1….valueN) Max() Returns the maximum value in a specified sequence of
numbers (or enumerable).

Min(value1….valueN) Min() Returns the minimum value in a specified sequence of
numbers (or enumerable).

Sum(value1….valueN) Sum() Computes the sum of a specified sequence of numbers
(or enumerable).

DateTime Functions Syntax Description

Now() Now() Gets a System.DateTime object that is set to the current
date and time on this computer, expressed as the local
time.

Today() Today() Gets the current date.

AddDays(DateTime, DaysCount) AddDays(
DateTime date,
int days
)

Returns a new System.DateTime that adds the specified
number of days to the specified System.DateTime value.

AddHours(DateTime, HoursCount) AddHours(
DateTime date,
int hours
)

Returns a new System.DateTime that adds the specified
number of hours to the specified System.DateTime value.

AddMilliSeconds(DateTime,
MilliSecondsCount)

AddMilliSeconds(
DateTime date,
int milliSeconds
)

Returns a new System.DateTime that adds the specified
number of milliseconds to the specified
System.DateTime value.

AddMinutes(DateTime,
MinutesCount)

AddMinutes(
DateTime date,
int minutes

Returns a new System.DateTime that adds the specified
number of minutes to the specified System.DateTime
value.

Expression Editor for WinForms 9

Copyright © 2018 GrapeCity, Inc. All rights reserved.

)

AddMonths(DateTime,
MonthsCount)

AddMonths(
DateTime date,
int months
)

Returns a new System.DateTime that adds the specified
number of months to the specified System.DateTime
value.

AddSeconds(DateTime,
SecondsCount)

AddSeconds(
DateTime date,
int seconds
)

Returns a new System.DateTime that adds the specified
number of seconds to the specified System.DateTime
value.

AddTicks(DateTime, TicksCount) AddTicks(
DateTime date,
int ticks
)

Returns a new System.DateTime that adds the specified
number of ticks to the specified System.DateTime value.

AddTimeSpan(DateTime,
TimeSpan)

AddTimeSpan(
DateTime date,
TimeSpan timeSpan
)

Returns a new System.DateTime that adds the specified
number of System.TimeSpan to the specified
System.DateTime value.

AddYears(DateTime, YearsCount) AddYears(
DateTime date,
int years
)

Returns a new System.DateTime that adds the specified
number of years to the specified System.DateTime value.

DateDiffDay(startDate, endDate) DateDiffDay(,) Counts the number of day boundaries between two non-
nullable dates.

DateDiffHour(startDate, endDate) DateDiffHour(,) Counts the number of hour boundaries between two
non-nullable dates.

DateDiffMilliSecond(startDate,
endDate)

DateDiffMilliSecond(,) Counts the number of milliseconds boundaries between
two non-nullable dates.

DateDiffMinute(startDate,
endDate)

DateDiffMinute(,)

Counts the number of minutes boundaries between two
non-nullable dates.

DateDiffSecond(startDate,
endDate)

DateDiffSecond(,) Counts the number of seconds boundaries between two
non-nullable dates.

DateDiffTick(startDate, endDate) DateDiffTick(,) Counts the number of ticks boundaries between two
non-nullable dates.

GetDate(DateTime) GetDate() Gets the date component of specified System.DateTime
value.

GetDay(DateTime) GetDay() Gets the day of the month represented by the specified
System.DateTime value.

GetDayOfWeek(DateTime) GetDayOfWeek() Gets the day of the week represented by the specified
System.DateTime value.

GetDayOfYear(DateTime) GetDayOfYear() Gets the day of the year represented by the specified
System.DateTime value.

GetHour(DateTime) GetHour() Gets the hour component of the specified
System.DateTime value.

Expression Editor for WinForms 10

Copyright © 2018 GrapeCity, Inc. All rights reserved.

GetMilliSecond(DateTime) GetMilliSecond() Gets the milliSecond component of the specified
System.DateTime value.

GetMinute(DateTime) GetMinute() Gets the minute component of the specified
System.DateTime value.

GetMonth(DateTime) GetMonth() Gets the month component of the specified
System.DateTime value.

GetSecond(DateTime) GetSecond() Gets the seconds component of the specified
System.DateTime value.

GetTimeOfDay(DateTime) GetTimeOfDay()

Gets the time of day for the specified System.DateTime
value.

GetYear(DateTime) GetYear() Gets the year component of the specified
System.DateTime value.

UtcNow() UtcNow() Gets a System.DateTime object that is set to the current
date and time on this computer, expressed as the
Coordinated Universal Time (UTC).

Logical Functions Syntax Description

IsNull(Value) IsNull(object param) Returns True if the specified Value is NULL.

Iif(condition,
resultTrue,resultFalse)

Iif(
bool condition,
object
expressionTrue,
object
expressionFalse
)

Returns the evaluation of one of two expressions,
depending on the condition.

Math Functions Syntax Description

Abs(Value) Abs() Returns the absolute value of a number.

Acos(Value) Acos() Returns the angle whose cosine is the specified number.

Asin(Value) Asin() Returns the angle whose sine is the specified number.

Atan(Value) Atan() Returns the angle whose tangent is the specified
number.

Atan2(Value1, Value2) Atan2(,) Returns the angle whose tangent is the quotient of two
specified numbers.

Ceiling(Value) Ceiling() Returns the smallest integral value that's greater than or
equal to the specified decimal or double.

Cos(Value) Cos() Returns the cosine of the specified angle.

Cosh(Value) Cosh() Returns the hyperbolic cosine of the specified angle.

Exp(Value) Exp() Returns e (the base of natural logarithms) raised to the
specified power.

Floor(Value) Floor() Returns the largest integer that's less than or equal to
the specified decimal or double number.

Expression Editor for WinForms 11

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Log(Value) Log() Returns the natural (base e) logarithm of a specified
number or the logarithm of a specified number in a
specified base.

Log(Value, Base) Log(,) Returns the natural (base e) logarithm of a specified
number or the logarithm of a specified number in a
specified base.

Log10(Value) Log10() Returns the base 10 logarithm of a specified number.

Pow(Value1, Value2) Pow() Returns a specified number raised to the specified
power.

Rand(Value) Rand() Returns a nonnegative random number.

RandBetween(Value1, Value2) RandBetween() Returns a random number within a specified range.

Sign(Value) Sign() Returns an integer value indicating the sign of a number.

Sin(Value) Sin() Returns the sine of the specified angle.

Sinh(Value) Sinh() Returns the hyperbolic sine of the specified angle.

Sqrt(Value) Sqrt() Returns the square root of a specified number.

Tan(Value) Tan() Returns the tangent of the specified angle.

Tanh(Value) Tanh() Returns the hyperbolic tangent of the specified angle.

Convert Functions Syntax Description

CBool(string) CBool() Converts the specified string representation of a logical
value to its System.Boolean equivalent, or throws an
exception if the string is not equivalent to the value of
System.Boolean.TrueString or
System.Boolean.FalseString.

CByte(string) CByte() Converts the string representation of a number to its
System.Byte equivalent.

CChar(string) CChar() Converts the value of the specified string to its
equivalent Unicode character.

CDate(string) CDate() Converts the specified string representation of a date
and time to its System.DateTime equivalent.

Cdbl(string) CDbl() Converts string representation of a number to its
double-precision floating-point number equivalent.

CDec(string) CDec() Converts the string representation of a number to its
System.Decimal equivalent.

CInt(string) CInt() Converts the string representation of a number to its 32-
bit signed integer equivalent.

CLng(string) CLng() Converts the string representation of a number to its
64-bit signed integer equivalent.

CObj(value) CObj() Returns the specified elemsnt as System.Object.

CSByte(string) CSByte() Converts the string representation of a number to its 8-
bit signed integer equivalent.

Expression Editor for WinForms 12

Copyright © 2018 GrapeCity, Inc. All rights reserved.

CShort(string) CShort() Converts the string representation of a number to its 16-
bit signed integer equivalent.

CSng(string) CSng() Converts the string representation of a number to its
single-precision floating-point number equivalent.

CStr(value) CStr() Tries to evaluate the specified expression and return the
result as a string.

CType(value,type) CType(,) Returns an object of the specified type and whose value
is equivalent to the specified object.
value- the specified object for conversion.
type- the type name of object to return.

CUint(value) CUint() Converts the string representation of a number to its 32-
bit unsigned integer equivalent.

CULong(value) CULong() Converts the string representation of a number to its 64-
bit unsigned integer equivalent.

CUShort(value) CUShort() Converts the string representation of a number to its 16-
bit unsigned integer equivalent.

Text Functions Syntax Description

Replace(string,oldValue,newValue) Replace(,,) Replaces all occurrences of a specified string value with
another string value.

Rset(value, length) RSet(,) Returns a new string of a specified length in which the
end of the current string is padded with spaces or with a
specified character.

Rset(value, length,char) RSet(,,) Returns a new string of a specified length in which the
end of the current string is padded with spaces or with a
specified character.

Remove(string,start) Remove(,) Deletes all characters from this instance, beginning at a
specified position.

Remove(string,start,count) Remove(,,) Deletes all characters from this instance, beginning at a
specified position.

LSet(string,length) LSet(,) Returns a new string of a specified length in which the
beginning of the current string is padded with spaces or
with a specified character.

LSet(string,length,char) LSet(,,) Returns a new string of a specified length in which the
beginning of the current string is padded with spaces or
with a specified character.

UCase(string) UCase() Returns a character expression with lowercase character
data converted to uppercase.

LCase(string) LCase() Returns a character expression after converting
uppercase character data to lowercase.

Insert(string,index,value) Insert(,,) Returns a new string in which a specified string is
inserted at a specified index position in this instance.

Len(string) Len() Returns the number of characters of the specified string

Expression Editor for WinForms 13

Copyright © 2018 GrapeCity, Inc. All rights reserved.

expression.

Trim(string) Trim() Removes the space character char(32) or other specified
characters from the start or end of a string.

StartsWith(string,value) StartsWith(,) Determines whether the beginning of this string instance
matches a specified string.

StrReverse(string) StrReverse() Returns the reverse order of a string value.

EndsWith(string,value) EndsWith(,) Determines whether the end of this string instance
matches a specified string.

Contains(string,value) Contains(,) Returns a value indicating whether a specified substring
occurs within this string.

InStr(string,value) InStr(,) Searches an expression for another expression and
returns its starting position if found.

InStr(string,value,start) InStr(,,) Searches an expression for another expression and
returns its starting position if found.

Mid(string,start) Mid(,) Returns a string that contains all the characters starting
from a specified position in a string.

Mid(string,start,length) Mid(,,) Returns a string that contains a specified number of
characters starting from a specified position in a string.

Chr(string) Chr() Converts an int ASCII code to a character.

Asc(string) Acs() Returns the ASCII code value of the leftmost character of
a character expression.

Concat(string,value1…..valueN) Concat(,) Returns a string that is the result of concatenating two or
more string values.

Back to Top

Operators

Operators Syntax Description

Plus + Sums two numbers.

Concat & Generates a string concatenation of two expressions.

Minus - Finds the difference between two numbers or indicates the negative value of a numeric
expression.

Multiply * Multiplies two numbers.

Divide / Divides two numbers and returns a floating-point result.

Modulus Mod Divides two numbers and returns only the remainder.

Equal = Returns a Boolean value that indicates whether the left and right expressions are equal.

GreaterThan > Returns a Boolean value that indicates whether the left expression is greater than right
expression.

LessThan < Returns a Boolean value that indicates whether the left expression is less than right
expression.

Expression Editor for WinForms 14

Copyright © 2018 GrapeCity, Inc. All rights reserved.

NotEqual <> Returns a Boolean value that indicates whether the left and right expressions are not equal.

GreaterOrEqua >= Returns a Boolean value that indicates whether the left expression is greater than right
expression or equal.

LessOrEqual <= Returns a Boolean value that indicates whether the left expression is less than right
expression or equal.

And And Performs a logical conjunction on two expressions.

Or Or Performs a logical disjunction on two expressions.

Not Not Performs logical negation on an expression.

Back to Top

Constants

Constants Syntax Description

True True Returns True.

False False Returns False.

Nothing Nothing Returns Null.

Back to Top

Expression Editor for WinForms 15

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Features
Expression Editor supports following features to enable users create applications using Expression Editor, and work
with complex expressions.

End-User Capabilities
Learn about some features of Expression Editor, which enable the control to interact with end users and simplify
creating and editing expressions.

Appearance and Styling
Learn how to change the appearance of Expression Editor control.

End-User Capabilities
Expression Editor provides various features that enable end-users to interact with the control. These capabilities of the
Expression Editor control are as follows:

Syntax Highlighting

Expression Editor uses different colors to display functions and fields, just like the SQL Query editor. As these items are
differently colored, it increases the readability of expressions thereby making it easy to differentiate between
functions, operators, and fields. SyntaxHighlighting property of C1ExpressionEditor class controls whether the items
of expression should be highlighted. Note that operators and constants are not highlighted.

Smart Code Completion

Expression Editor for WinForms 16

Copyright © 2018 GrapeCity, Inc. All rights reserved.

When you type expressions, Expression Editor completes it by providing recommendations of possible functions or
fields in a list based on what you type. This feature helps to complete expression quickly and reduces the chance of
making typing errors.

Note that the smart code completion functionality only responds to the keyboard input and does not provide
any recommendations when you paste text in the editor.

Error Reporting

Expression Editor prevents syntax mistakes that might occur while writing expressions. The Editor immediately
validates the typed expression and shows the error message as soon as it finds an incorrect syntax. IsValid property of
C1ExpressionEditor class is used to control this behavior.

ToolTip Helper

Expression Editor for WinForms 17

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Each time mouse is hovered over a function, Expression Editor displays a tooltip for that function which contains its
description and syntax.

Result Preview

Expression Editor allows you to visualize final output and correct the possible errors, before finalizing the expression.
While you write a valid expression, it displays the result in the preview. Upon writing an invalid expression, it displays
error.

Back to Top

Appearance and Styling

Expression Editor for WinForms 18

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Expression Editor supports customizing its appearance by changing the look of its elements.

C1ExpressionEditorPanel class provides following properties to modify the appearance of Expression Editor's panel.

Properties Purpose

BackColor Modifies the background color of the control.

ForeColor Modifies the foreground color of the control.

Font Specifies the font of the text displayed by the control.

C1ExpressionEditor class provides following properties to modify the appearance of Expression Editor's text box.

Properties Purpose

BackColor Modifies the background color of the control.

ForeColor Modifies the foreground color of the control.

Font Specifies the font of the text displayed by the control.

The following image illustrates customizing the appearance of Expression Editor.

The following code demonstrates changing the appearance of Expression Editor control.

C#

c1ExpressionEditorPanel1.BackColor = Color.LightGoldenrodYellow;
c1ExpressionEditorPanel1.ForeColor = Color.BlueViolet;
c1ExpressionEditorPanel1.Font = new Font("GenericMonoSerif", 1);

c1ExpressionEditor1.BackColor = Color.Beige;

Expression Editor for WinForms 19

Copyright © 2018 GrapeCity, Inc. All rights reserved.

c1ExpressionEditor1.ForeColor = Color.Firebrick;
c1ExpressionEditor1.Font = new Font("GenericMonoSerif", 1);

Back to Top

Expression Editor for WinForms 20

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Working with Expression Editor
The following topics explore advanced functionalities of the Expression Editor control. Expression Editor aids in
creating simple as well as complex expressions. These expressions can then be used for shaping data in grid and chart
controls.

Here we assume that the user is familiar with programming in Visual Studio, and has gone through the Quick
Start topic.

Integration with FlexGrid
Learn how to integrate Expression Editor control with FlexGrid, and implementing column calculation for
unbound columns in FlexGrid using expressions.

Integration with FlexChart
Learn how to integrate Expression Editor control with FlexChart, and modifying the chart's view by applying filters
using expressions.

Integration with MSDataGrid
Learn how to integrate Expression Editor control with MSDataGrid.

Integration with FlexGrid
The Expression Editor supports integration with FlexGrid control. Expression Editor, when integrated with grid, enables
using expressions on grid and perform operations such as filtering, grouping, sorting, and column calculation over its
data.

To integrate Expression Editor with the FlexGrid, you need to use DataSource property of C1FlexGrid class that gets a
collection of objects to generate grid data. Once the grid is populated, data source of Expression editor can be bound
to data source of FlexGrid using the DataSource property of C1ExpressionEditor class.

The following image exhibits Expression Editor integrated with FlexGrid control.

Expression Editor for WinForms 21

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code demonstrates integrating FlexGrid with Expression Editor.

C#

C1FlexGrid _flexGrid;
C1ExpressionEditor _expEditor;
C1ExpressionEditorPanel _expPanel;

DataView _dvProducts;
DataSet _ds;

public Form1()
{
 InitializeComponent();
 GetDataSource();
 _flexGrid = new C1FlexGrid();
 _expEditor= new C1ExpressionEditor();
 _expEditor.Dock = DockStyle.Fill;
 _expEditor.ExpressionChanged += _expEditor_ExpressionChanged;
 _expPanel = new C1ExpressionEditorPanel();
 _expPanel.Dock = DockStyle.Fill;
 _expPanel.BringToFront();
 _expPanel.ExpressionEditor = _expEditor;
 _flexGrid.Dock = DockStyle.Fill;
 pnlFlexGrid.Controls.Add(_flexGrid);
 grpEditor.Controls.Add(_expEditor);
 grpExpPanel.Controls.Add(_expPanel);
 _dvProducts = _ds.Tables["Product"].DefaultView;
 _flexGrid.DataSource = _dvProducts;
 _expEditor.DataSource = _ds.Tables[0];

For the detailed data refer the sample project ExpressionEditorSamples accompanying the installer.

Following topic discuss column calculation on flexGrid using expressions. However, to understand how expression
editor helps in filtering, sorting, and grouping refer product sample accompanying the installer and the blog.

Back to Top

Column Calculation in FlexGrid
Expression Editor, when integrated with grid, allows calculating column data for unbound columns of FlexGrid.

To allow expressions to be used for generating data for unbound columns of FlexGrid, you can
enable AllowExpressionEditing in the unbound column of FlexGrid and create the expression for the unbound column.

The following image exhibits FlexGrid control, demonstrating column calculation using expressions.

Expression Editor for WinForms 22

Copyright © 2018 GrapeCity, Inc. All rights reserved.

http://help.grapecity.com/componentone/NetHelp/c1flexgrid/webframe.html#C1.Win.C1FlexGrid.4~C1.Win.C1FlexGrid.Column~AllowExpressionEditing.html
http://help.grapecity.com/componentone/NetHelp/c1flexgrid/C1.Win.C1FlexGrid.4~C1.Win.C1FlexGrid.Column.html

The following code demonstrates column calculation on FlexGrid columns through expressions.

C#

Column unboundcol = _flexGrid.Cols.Add();
unboundcol.DataType = typeof(object);
unboundcol.AllowEditing = false;
unboundcol.Name = "CustomColumn";
unboundcol.Caption = "Custom Column";
unboundcol.AllowExpressionEditing = true;
unboundcol.Expression = "[UnitsInStock] -[UnitsOnOrder]";

Back to Top

Integration with FlexChart
The Expression Editor supports integration with the FlexChart control. Expression Editor, when integrated with chart,
enables manipulating the visualization of chart using expressions.

To integrate Expression Editor with FlexChart, you need to use DataSource property of C1FlexChart class that gets a
collection of objects containing the series data. After getting the series data, data source of FlexChart can be bound to
data source of Expression Editor using its DataSource property.

The following image exhibits Expression Editor integrated with the FlexChart control.

Expression Editor for WinForms 23

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following code demonstrates integrating FlexChart with Expression Editor control.

C#

FlexChart _flexChart;
C1ExpressionEditor _expEditor;
C1ExpressionEditorPanel _expPanel;

DataView _dvProducts;
DataSet _ds;
public Form1()
{
 InitializeComponent();
 GetDataSource();
 _flexChart = new FlexChart();
 _flexChart.Dock = DockStyle.Fill;
 _flexChart.ChartType = C1.Chart.ChartType.Bar;
 _flexChart.Header.Content= "Sales By Category";
 _expEditor = new C1ExpressionEditor();
 _expEditor.Dock = DockStyle.Fill;
 _expEditor.ExpressionChanged += _expEditor_ExpressionChanged;
 _expPanel = new C1ExpressionEditorPanel();
 _expPanel.Dock = DockStyle.Fill;
 _expPanel.BringToFront();
 _expPanel.ExpressionEditor = _expEditor;
 pnlFlexChart.Controls.Add(_flexChart);
 grpEditor.Controls.Add(_expEditor);
 grpExpPanel.Controls.Add(_expPanel);
 _dvProducts = _ds.Tables["Sales"].DefaultView;
 _flexChart.DataSource = _dvProducts;

 _flexChart.BindingX = "CategoryName";
 _flexChart.Binding = "CategorySales";
 Series Sales = new Series();
 Sales.Name = "Sales";

 _flexChart.Series.Add(new Series());
 _expEditor.DataSource = _ds.Tables[0];

For the detailed data refer the sample project ExpressionEditorSamples accompanying the installer.

Expression Editor for WinForms 24

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Back to Top

Filtering in FlexChart
Expression Editor, when integrated with FlexChart, enables filtering of its data items using expressions.

To filter the data items of FlexChart based on expressions entered in Expression Editor, you can filter the data view
used by FlexChart. Note that, C1Expression Editor's data source should be same as the FlexChart's data source.

The following image exhibits FlexChart control, demonstrating filtering using expression entered in Expression Editor
control.

The following code demonstrates filtering the FlexChart's view through expression entered in Expression Editor
control.

1. Bind the FlexChart control with Expression Editor control, as discussed in Integration with FlexChart.
2. Filter the data view used by flexChart, as shown in the following code snippet.

C#
_dvProducts.RowFilter = _expEditor.Expression;

Back to Top

Integration with MSDataGrid
Expression Editor, when integrated with grid, enables using expressions on grid and perform operations such as filtering, grouping,
sorting, and column calculation over its data. To integrate Expression Editor with MSDataGrid, you need to use DataSource
property of MSDataGrid that takes a collection of objects to generate grid data. Once the grid is populated, data source of
Expression editor can be bound to data source of MSDataGrid using the DataSource property of C1ExpressionEditor class.

The following image exhibits Expression Editor integrated with MSDataGrid control.

Expression Editor for WinForms 25

Copyright © 2018 GrapeCity, Inc. All rights reserved.

https://msdn.microsoft.com/en-us/library/system.data.dataview.rowfilter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.data.dataview(v=vs.110).aspx

The following code demonstrates integrating MSDataGrid with Expression Editor.

C#

DataGridView _msGrid;
C1ExpressionEditor _expEditor;
C1ExpressionEditorPanel _expPanel;

DataView _dvProducts;
DataSet _ds;

public Form1()
{
 InitializeComponent();
 GetDataSource();
 _msGrid = new DataGridView();
 _expEditor= new C1ExpressionEditor();
 _expEditor.Dock = DockStyle.Fill;
 _expEditor.ExpressionChanged += _expEditor_ExpressionChanged;
 _expPanel = new C1ExpressionEditorPanel();
 _expPanel.Dock = DockStyle.Fill;
 _expPanel.BringToFront();
 _expPanel.ExpressionEditor = _expEditor;
 _msGrid.Dock = DockStyle.Fill;
 pnlFlexGrid.Controls.Add(_msGrid);
 grpEditor.Controls.Add(_expEditor);
 grpExpPanel.Controls.Add(_expPanel);
 _dvProducts = _ds.Tables["Product"].DefaultView;
 _msGrid.DataSource = _dvProducts; //DataSource takes collection of data to populate grid
 _expEditor.DataSource = _ds.Tables[0]; //DataSource of ExpressionEditor binds to data source

For the detailed data refer the sample project ExpressionEditorSamples accompanying the installer.

Back to Top

Integration with TreeView
Expression Editor supports integration with the TreeView control. When integrated with TreeView, Expression Editor
enables using expressions on TreeView and performs operations such as column calculation over its data. These
expressions can be added, edited, or removed on all the node levels available in the TreeView control.

To integrate Expression Editor with the TreeView, you need to use ExpressionInfo property of C1TreeColumn class,
which contains information about expressions. These expressions can be set for columns using Expressions property
of ExpressionInfo class.

Expression Editor for WinForms 26

Copyright © 2018 GrapeCity, Inc. All rights reserved.

The following image exhibits Expression Editor integrated with the TreeView control.

The following code demonstrates integration of Expression Editor with TreeView. In this code, expression is used on
the fifth column of the TreeView control which contains two levels. Here, we have added an expression for the second
level only.For this, we set our expression to the second item of the Expressions array, and set the first item as empty.

C#

private void Form1_Load(object sender, EventArgs e)
{
 this.categoriesTableAdapter.Fill(this.c1NWindDataSet.Categories);
 this.productsTableAdapter.Fill(this.c1NWindDataSet.Products);
 c1TreeView1.BindingInfo.DataSource = c1NWindDataSetBindingSource;

 c1TreeView1.Columns[4].ExpressionInfo.Expressions = new
 string[] { "", "[UnitPrice]*([UnitsInStock]+[UnitsOnOrder])" };
 }

Expression Editor for WinForms 27

Copyright © 2018 GrapeCity, Inc. All rights reserved.

Expression Editor Samples
Samples, which come with C1Studio installer, help you understand the product and its implementation better.
Expression Editor sample is available in the installed folder:

Documents\ComponentOne Samples\WinForms\Expression Editor\CS.

Documents\ComponentOne Samples\WinForms\Expression Editor\VB.

Sample Description

ExpressionEditorSamples This sample demonstrates how to create application with Expression Editor control, bind
it to an object and integrate it with FlexChart and FlexGrid.

Expression Editor for WinForms 28

Copyright © 2018 GrapeCity, Inc. All rights reserved.

	Table of Contents
	Expression Editor for WinForms Edition
	Help with WinForms Edition

	Key Features
	Object Model Summary
	Expression Editor Elements
	Quick Start
	Create Expressions
	Built-in Functions, Operators, and Constants
	Features
	End-User Capabilities
	Appearance and Styling

	Working with Expression Editor
	Integration with FlexGrid
	Column Calculation in FlexGrid

	Integration with FlexChart
	Filtering in FlexChart

	Integration with MSDataGrid
	Integration with TreeView

	 Samples

