

ComponentOne

Xamarin.Android Controls

Copyright © 1987-2015 GrapeCity, Inc. All rights reserved

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com

Sales: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh , PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $25 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Xamarin.Android Documentation 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/
mailto:sales@componentone.com

Table of Contents
 1

Getting Started with Xamarin.Android Controls 4

Breaking Changes for Xuni User 4-5

NuGet Packages 5

Redistributable Files 5-6

System Requirements 6

Creating a New Xamarin.Android App 6-9

Adding NuGet Packages to your App 9-11

Licensing 11

Licensing your app using website 11-12

Finding the Application Name 12-14

About this Documentation 14

Technical Support 14-15

Controls 16

Calendar 16

Quick Start: Display a C1Calendar Control 16-18

CollectionView 18-19

Quick Start 19-21

FlexChart 21-22

Chart Elements 22-23

Chart Types 23-27

Quick Start: Add Data to FlexChart 27-32

FlexGrid 32-33

Quick Start: Add Data to FlexGrid 33-36

FlexPie 37

Quick Start: Add Data to FlexPie 37-40

Gauge 40

Gauge Types 40-41

Quick Start: Add and Configure Gauge 41-45

Input 45

AutoComplete 45

Quick Start: Populating C1AutoComplete with data 45-48

ComboBox 48-49

Quick Start: Display a C1ComboBox Control 49-50

Xamarin.Android Documentation 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

DropDown 50

Creating a Custom Date Picker using C1DropDown 50-52

MaskedTextField 52

Mask Symbols 52-53

Quick Start: Display C1MaskedTextField Controls 53-54

Xamarin.Android Documentation 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

Getting Started with Xamarin.Android Controls
ComponentOne Xamarin.Android is a collection of Android UI controls developed by GrapeCity. Xamarin.Android
Edition has been optimized for Android development with outstanding built-in features and superior flexibility. It
allows you to design views in XML and develop applications similar to the pre-built UI controls in Android.

For existing Xuni new users, the new architecture brings many new features:

Enhanced performance
The new controls should generally perform better than the old controls (sometimes doubling performance). By
specifically focusing on the Xamarin architecture, the controls cut out some intermediary logic and are
optimized for the platform. Since they’re entirely in C#, so you can also expect a more consistent experience.
Designer support
The new controls should also support Xamarin’s designers for iOS and Android applications. This makes it
much easier to construct your Android XML or iOS Storyboards using these controls.
New control features
The controls have been rethought for the new architecture with the combined experience of Xuni, Wijmo, as
well as ComponentOne controls. Some controls have a number additional features (such as FlexGrid).

Breaking Changes for Xuni User
New Package Names

The packages have changed their prefix if you're coming from Xuni. For instance,

Xuni.Android.Calendar now corresponds to C1.Android.Calendar

We have also moved to a more consistent naming scheme for our controls based on the following pattern:

C1.[Platform].[ControlName]

For example, FlexGrid is available in C1.Xamarin.Forms.Grid

Xamarin.Android Documentation 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

Additionally, FlexChart, FlexPie, and ChartCore have all been consolidated into one single package instead of three
different packages. To use FlexChart or FlexPie, you now need to add a single package developed for the platform of
your choice:

C1.Android.Chart

Namespace Changes

We’ve made some changes to the namespace of the current controls, which are in line with the changes in package
names. For example, Xuni.Android.FlexGrid now corresponds to C1.Android.Grid.

Minor API Changes

There are some minor changes in API between ComponentOne Xamarin Edition and Xuni. These should mostly
amount to additions, slight change in syntax, and use of prefix 'C1' instead of 'Xuni' in class and object names. For
FlexChart, however, the control is very actively growing in terms of API, so missing features are intended to be added
in the future.

NuGet Packages
The following NuGet packages are available for download:

Package Name Description

C1.CollectionView This is the dependency package for CollectionView and is automatically installed when
any dependent package is installed.

C1.Android.CollectionView This is the dependency package to use CollectionView with a native RecyclerView on
Android.

C1.Android.Calendar Installing this NuGet package adds all the references that enable you to use the
Calendar control in your Xamarin.Android application.

C1.Android.Core This is the dependency package for the control NuGet packages and is automatically
installed when any dependent package is installed.

C1.Android.Chart Installing this NuGet package adds all the references that enable you to use the
FlexChart and FlexPie controls in your Xamarin.Android application.

C1.Android.Grid Installing this NuGet package adds all the references that enable you to use the FlexGrid
control in your Xamarin.Android application.

C1.Android.Gauge Installing this NuGet package adds all the references that enable you to use the Gauge
controls in your Xamarin.Android application.

C1.Android.Input Installing this NuGet package adds all the references that enable you to use the Input
controls in your Xamarin.Android application.

Redistributable Files
Xamarin.Android Edition, developed and published by GrapeCity, inc., can be used to develop applications in
conjunction with Microsoft Visual Studio, Xamarin Studio or any other programming environment that enables the
user to use and integrate controls. You may also distribute, free of royalties, the following redistributable files with any
such application you develop to the extent that they are used separately on a single CPU on the client/workstation

Xamarin.Android Documentation 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

side of the network.

Control Redistributable File

Calendar C1.Android.Calendar.dll

CollectionView C1.CollectionView.dll, C1.Android.CollectionView.dll

Core C1.Android.Core.dll

FlexChart C1.Android.Chart.dll

FlexGrid C1.Android.Grid.dll

Gauge C1.Android.Gauge.dll

Input C1.Android.Input.dll

System Requirements
ComponentOne Xamarin.Android can be used in applications written for the following mobile operating systems:

Requirements

Xamarin Platform 2.3.3.193 and above
Visual Studio 2015 Update 3
Android 4.2.2 and above

Windows System Requirements

Windows 8.1 and above

Mac System Requirements

Xamarin Studio or Visual Studio for Mac
MacOS 10.12
Android 7 SDK (API 24) installed

Creating a New Xamarin.Android App
This topic demonstrates how to create a new Xamarin.Android app in Visual Studio or Xamarin Studio. See the System
Requirements before proceeding. To download and install Xamarin Studio, visit http://xamarin.com/download.

To know more about Xamarin.iOS, visit:

https://developer.xamarin.com/guides/ios/getting_started/

Complete the following steps to create a new Xamarin.Android app:

Xamarin.Android Documentation 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://xamarin.com/download
https://developer.xamarin.com/guides/ios/getting_started/

1. Select File | New | Project.
2. Under installed templates, select Visual C# | Android.
3. In the right pane, select Blank App.
4. Type a name for your app and select a location to save it.

5. Click OK.

Visual Studio (Windows)

Xamarin.Android Documentation 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

1. Select File | New Solution.
2. Select Android | App.
3. In the right pane, select Android App.
4. Type a name for your app and select a location to save it.
5. Click OK.

6. Add a name for your app and select a location to save it.

Visual Studio for Mac (macOS)

Xamarin.Android Documentation 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

7. Click Next.

8. Click Create.

Xamarin.Android Documentation 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

Adding NuGet Packages to your App
To install Installing NuGet

1. Go to http://nuget.org/ and click Install NuGet.
2. Run the NuGet.vsix installer.
3. In the Visual Studio Extension Installer window, click Install.
4. Once the installation is complete, click Close.

To add Xamarin References to your App

In order to use Xamarin controls on Android platform, related references need to be added to your project. Complete
the following steps to add Xamarin references to your project.

To manually create a Xamarin feed source

1. Open an existing or a new Xamarin.Android App.
2. In the Project menu, select Manage NuGet Packages.
3. In the Manage NuGet Packages dialog, click Online and then click GrapeCity.
4. Click Install next to C1.Android.ControlName (eg. C1.Android.Chart). This adds the references for

Xamarin control.
5. Click I Accept to accept the license and then click Close in the Manage NuGet Packages dialog.

Visual Studio (PC)

1. Open an existing or a new Android app.
2. In the Solution Explorer, right-click the project and select Add | Add NuGet Packages. The Add NuGet

Packages dialog appears.
3. From the drop down menu in the top left corner, select GrapeCity. The available Xamarin packages are

displayed.
4. Select the package C1.Android.Control and click the Add Package button. This adds the references for the

Xamarin control.

Visual Studio for Mac

Xamarin.Android Documentation 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://nuget.org/

1. In the Tools menu, select NuGet Package Manager | Package Manager Settings. The Options dialog
appears.

2. In the left pane, select Package Sources.
3. Click the Add (+) button in top right corner to add a new source under Available package sources.
4. Set the Name of the new package source. Set the source as http://nuget.grapecity.com/nuget/.
5. Click OK. The Xamarin feed has now been added as another NuGet feed sources.

To install Xamarin using the new feed:

1. Open an existing or a new Android app.
2. Select Project | Manage NuGet Packages.
3. In the Manage NuGet Packages dialog, go to the Online drop down and select Xamarin. The available

Xamarin packages get displayed in the right pane.
4. Click Install next to the NuGet package (for example, C1.Android.Chart). This updates the references for

the Xamarin control.
5. Click I Accept to accept the ComponentOne license for Xamarin and then click Close in the Manage NuGet

Packages dialog.

Visual Studio (PC)

1. In the Projects menu, select Add Packages.
2. In the Add Packages dialog, open the drop-down menu in the top left corner and select Configure

Sources. The Preferences dialog appears.
3. In the left pane, expand Packages and select Sources.
4. Click the Add button to open the Add Package Source dialog.
5. Set the Name of the new package source as Xamarin and the URL as http://nuget.grapecity.com/nuget/.
6. Click Add Source button to add the Xamarin feed as a new feed source.
7. Click OK.

To install Xamarin using the new feed:

1. Open an existing or a new Android app.
2. In the Solution Explorer, right-click the project and select Add | Add Packages. The Add Packages

dialog appears.
3. In the Add Packages dialog, open the drop-down menu in the top left corner and select Xamarin. The

available packages are displayed.
4. Select the package (for example C1.Android.Chart) and click the Add Package button. This adds the

references for the Xamarin control.

Visual Studio for Mac

Licensing
ComponentOne Xamarin Edition contains runtime licensing, which means the library requires a unique key to be
validated at runtime. The process is quick, requires minimal memory, and does not require network connection. Each
application that uses ComponentOne Xamarin Edition requires a unique license key. This topic gives you in-depth
instructions on how to license your app. For more information on GrapeCity licensing and subscription model, visit
https://www.componentone.com/Pages/Licensing/.

To know the licensing process in details, see the following links

Licensing your app using GrapeCity License Manager Add-in
Licensing you app using website

Xamarin.Android Documentation 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://nuget.grapecity.com/nuget/
http://nuget.grapecity.com/nuget/
https://www.componentone.com/Pages/Licensing/

Licensing your app using website
ComponentOne Xamarin Edition users can license their app via the ComponentOne website. If you are using
ComponentOne Xamarin Edition with Visual Studio on PC, you have the option to use the GrapeCity License
Manager Add-in. For more information, see Licensing your app using GrapeCity License Manager Add-in.

How to License your app using the website

1. Open a pre-existing mobile application or create a new mobile application.
2. Add the required Xamarin Edition NuGet packages to your application through the NuGet Package Manager.
3. Visit https://www.componentone.com/Members/?ReturnUrl=%2fMyAccount%2fMyXuni.aspx.

You must create a GrapeCity account and login to access this web page.

4. If you are generating a full license, select your serial number from the drop-down menu at the top of the page.
If you are generating a trial license, leave it selected as Evaluation.

5. Select C# for the language.
6. In the App Name text box, enter the name of your application. This name should match the Default

Namespace of your application. See Finding the Application Name to know how to find the name of your
application.

7. Click the Generate button. A runtime license will be generated in the form of a string contained within a class.
8. Copy the license and complete the following steps to add it in your application.

1. Open your application in Visual Studio or Xamarin Studio.
2. In the Solution Explorer, right-click the project YourAppName.
3. Select Add | New. The Add New Item dialog appears.
4. Under installed templates, select C# | Class.
5. Set the name of the class as License.cs and click OK.
6. In the class License.cs, create a new string to store the runtime license inside the constructor as shown

below.
C#

public static class License
{
 public const string Key = "Your Key";
}

7. From the Solution Explorer, open MainActivity.cs and set the runtime license inside the OnCreate()
method as shown below.
C#

C1.Android.Core.LicenseManager.Key = License.Key;

If you are generating a trial license, your application is now ready to be used for trial purposes. You can repeat this
process for any number of applications. You must generate a new trial license for each app because they are unique
to the application name.

The trial period is limited to 30 days, which begins when you generate your first runtime license. The controls will
stop working after your 30-day trial period is over.

Finding the Application Name
ComponentOne Xamarin Edition licenses are unique to each application. Before you can generate a runtime license, you
need to know the name of the application where the license will be used.

Visual Studio

Xamarin.Android Documentation 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

https://www.componentone.com/Members/?ReturnUrl=/MyAccount/MyXuni.aspx

1. Open a pre-existing mobile application.
2. In the Solution Explorer, right-click the project YourAppName and select Properties.
3. Open the Library tab.
4. The application name is the same as the displayed Default namespace.

You need to generate a new runtime license in case you rename the assembly later.

Visual Studio for Mac

1. Open a pre-existing mobile application.
2. In the Solution Explorer, right click the project YourAppName and select Options.
3. The application name is displayed on the Main Settings tab.

Xamarin.Android Documentation 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

About this Documentation
Acknowledgements

Microsoft, Windows, Windows Vista, and Windows Server are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Contact Us

If you have any suggestions or ideas for new features or controls, please call us or write:

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 • USA
1.800.858.2739 | 412.681.4343
412.681.4384 (Fax)

http://www.componentone.com/

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the ComponentOne
website to explore more.

Some methods for obtaining technical support include:

Online Resources

Xamarin.Android Documentation 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/
http://www.componentone.com/
http://www.componentone.com/

ComponentOne provides customers with a comprehensive set of technical resources in the form of Licensing
FAQs, samples, demos, and videos, searchable online documentation and more. We recommend this as the
first place to look for answers to your technical questions.
Online Support
The online support service provides you direct access to our Technical Support staff via Submit a ticket. When
you submit an incident, you immediately receive a response via e-mail confirming that the incident is created
successfully. This email provides you with an Issue Reference ID. You will receive a response from us via an
email within two business days.
Product Forums
Forums are available for users to share information, tips, and techniques regarding all the platforms supported
by the ComponentOne Xamarin Edition, including Xamarin Forms, Xamarin.iOS and Xamarin.Android.
ComponentOne developers or community engineers will be available on the forums to share insider tips and
technique and answer users' questions. Note that a user account is required to participate in the Forums.
Installation Issues
Registered users can obtain help with problems installing Xamarin Edition on their systems. Contact technical
support by using the online incident submission form or by phone (412.681.4738). Please note that this does
not include issues related to distributing a product to end-users in an application.
Documentation
ComponentOne documentation is available online for viewing. If you have suggestions on how we can improve
our documentation, please send a feedback to the Documentation team. Note that the feedback sent to the
Documentation team is for documentation related issues only. Technical support and sales issues should be
sent directly to their respective departments.

Note: You must create a user account and register your product with a valid serial number to obtain support
using some of the above methods.

Xamarin.Android Documentation 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.componentone.com/Pages/Licensing/
http://www.componentone.com/Pages/Licensing/
http://www.componentone.com/Studio/Pages/Samples
http://www.componentone.com/Studio/Pages/Demos
http://our.componentone.com/videos/
http://our.componentone.com/docs/
https://supportone.componentone.com/login
http://our.componentone.com/docs/
http://feedback.componentone.com/forums/281442-xuni-documentation
https://supportone.componentone.com/login
mailto:sales@componentone.com

Controls

Calendar
The C1Calendar control provides a calendar through which you can navigate to any date in any year. The control
comes with an interactive date selection user interface (UI) with month, year and decade view modes. Users can view
as well as select multiple dates on the calendar.

The C1Calendar provides the ability to customize day slots so that users can visualize date information on the
calendar. In addition, you can also customize the appearance of the calendar using your own content and style.

Key Features

Custom Day Content: Customize the appearance of day slots by inserting custom content.
View Modes: Tap header to switch from month mode to year and decade mode.
Appearance: Easily style different parts of the control with heavy customizations.
Date Range Selection: Simply tap two different dates to select all the dates in between.
Orientation: Toggle the scroll orientation to either horizontal or vertical.

Quick Start: Display a C1Calendar Control

Xamarin.Android Documentation 16

Copyright © 2017 GrapeCity, inc. All rights reserved.

This section describes how to add a C1Calendar control to your android application and select a date on the calendar
at runtime. This topic comprises of two steps:

Step 1: Add a Calendar control
Step 2: Run the project

The following image shows how C1Calendar appears after completing the above steps.

Step 1: Add a Calendar control

To add C1Calendar control to your layout, open the .axml file in your layout folder from the Solution Explorer and
replace its code with the code below.

XML

<?xml version="1.0" encoding="utf-8"?>
<C1.Android.Calendar.C1Calendar
xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/Calendar" />

Alternatively, you can drag a C1Calendar control from the Toolbox within the custom control tab onto your layout
surface in designer mode.

Xamarin.Android Documentation 17

Copyright © 2017 GrapeCity, inc. All rights reserved.

Then, inside your activity, add the following code to the OnCreate method to initialize your layout.

C#

protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 ActionBar.SetDisplayHomeAsUpEnabled(true);

 SetContentView(Resource.Layout.GettingStarted);
 }

Step 2: Run the project

Press F5 to run the application.

CollectionView
C1CollectionView is a powerful data binding component that is designed to be used with data controls, such as
FlexGrid. CollectionView provides currency, filtering, grouping and sorting services for your data collection. The
ICollectionView interface also includes the IEditableCollectionView that defines methods and properties for editing.
The C1CollectionView class implements the following interfaces:

ICollectionView: provides current record management, custom sorting, filtering, and grouping.

Key Features

Provides filtering, grouping and sorting on a data set.
Can be used with the data collection controls, such as FlexGrid.
Provides currency for master-detail support for iOS apps.

Xamarin.Android Documentation 18

Copyright © 2017 GrapeCity, inc. All rights reserved.

Based on the .NET implementation of ICollectionView.

C1.CollectionView is .NET Standard compliant while C1.iOS.CollectionView provides the ability to quickly connect your
C1CollectionView to a UITableView.

Quick Start
This section describes how to use the CollectionView to provide on demand data loading with a RecyclerView. It
demonstrates how you can use a CollectionView for incremental loading within your app.

C#

public class SimpleOnDemandActivity : Activity
 {
 private SimpleOnDemandCollectionView _collectionView;

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 SetContentView(Resource.Layout.SimpleOnDemand);

 SwipeRefresh = FindViewById<SwipeRefreshLayout>
(Resource.Id.SwipeRefresh);
 RecyclerView = FindViewById<RecyclerView>(Resource.Id.RecyclerView);

 _collectionView = new SimpleOnDemandCollectionView();
 RecyclerView.SetLayoutManager(new LinearLayoutManager(this));
 RecyclerView.SetAdapter(new SimpleOnDemandAdapter(_collectionView));

 SwipeRefresh.Refresh += OnRefresh;
 }

 public SwipeRefreshLayout SwipeRefresh { get; set; }
 public RecyclerView RecyclerView { get; set; }

 private async void OnRefresh(object sender, System.EventArgs e)
 {
 try
 {
 SwipeRefresh.Refreshing = true;
 await _collectionView.RefreshAsync();
 }
 finally
 {
 SwipeRefresh.Refreshing = false;
 }
 }
 }

 internal class SimpleOnDemandAdapter : C1RecyclerViewAdapter<MyDataItem>

Xamarin.Android Documentation 19

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {

 public SimpleOnDemandAdapter(ICollectionView<MyDataItem> collectionView)
 : base(collectionView)
 {
 }

 protected override RecyclerView.ViewHolder OnCreateItemViewHolder(ViewGroup
parent)
 {
 var view = LayoutInflater.From(parent.Context)
 .Inflate(Resource.Layout.ListItem, null, false);
 return new SimpleOnDemandViewHolder(view);
 }

 protected override void OnBindItemViewHolder(RecyclerView.ViewHolder holder,
int position)
 {
 var h = holder as SimpleOnDemandViewHolder;
 var item = CollectionView[position];
 h.SetTitle(item.ItemName);
 h.SetSubtitle(item.ItemDateTime.ToLongTimeString());
 }
 }

 internal class SimpleOnDemandViewHolder : RecyclerView.ViewHolder
 {
 private TextView _title;
 private TextView _subTitle;

 public SimpleOnDemandViewHolder(View itemView)
 : base(itemView)
 {
 _title = itemView.FindViewById<TextView>(Resource.Id.Title);
 _subTitle = itemView.FindViewById<TextView>(Resource.Id.Subtitle);
 var icon = itemView.FindViewById<ImageView>(Resource.Id.Icon);
 icon.Visibility = ViewStates.Gone;
 }

 internal void SetTitle(string title)
 {
 _title.Text = title;
 }

 internal void SetSubtitle(string subTitle)
 {
 _subTitle.Text = subTitle;
 }
 }

Xamarin.Android Documentation 20

Copyright © 2017 GrapeCity, inc. All rights reserved.

 public class SimpleOnDemandCollectionView : C1CursorCollectionView<MyDataItem>
 {
 public SimpleOnDemandCollectionView()
 {
 PageSize = 20;
 }

 public int PageSize { get; set; }
 protected override async Task<Tuple<string, IReadOnlyList<MyDataItem>>>
GetPageAsync(string pageToken, int? count = null)
 {
 var newItems = new List<MyDataItem>();
 await Task.Run(() =>
 {
 // create new page of items
 for (int i = 0; i < this.PageSize; i++)
 {
 newItems.Add(new MyDataItem(this.Count + i));
 }
 });
 return new Tuple<string, IReadOnlyList<MyDataItem>>("token not used",
newItems);
 }
 }
 public class MyDataItem
 {
 public MyDataItem(int index)
 {
 this.ItemName = "My Data Item #" + index.ToString();
 this.ItemDateTime = DateTime.Now;
 }
 public string ItemName { get; set; }
 public DateTime ItemDateTime { get; set; }

 }

FlexChart
The FlexChart control allows you to represent data visually in Android mobile applications. Depending on the type of
data you need to display, you can represent your data as bars, columns, bubbles, candlesticks, lines, scattered points
or even display them in multiple chart types.

FlexChart manages the underlying complexities inherent in a chart control completely, allowing developers to
concentrate on important application specific tasks.

Xamarin.Android Documentation 21

Copyright © 2017 GrapeCity, inc. All rights reserved.

Key Features

Chart Type: Change a line chart to a bar chart or any other chart type by setting a single property. FlexChart
supports over ten different chart types.
Touch Based Labels: Display chart values using touch based labels.
Multiple Series: Add multiple series on a single chart.

Chart Elements
FlexChart is composed of several elements as shown below:

Chart Canvas Area on which all chart elements including the series, axes title and legend are placed.

Xamarin.Android Documentation 22

Copyright © 2017 GrapeCity, inc. All rights reserved.

Chart Header Text that you want to display at the top of your chart, basically a title that serves as a
heading for your chart.

Axes Two primary axes, X and Y. Although in some cases you may add secondary axes as well.

Series Collection of data that is plotted on the chart.

Legend Name of the series added in the chart along with predefined symbols and colors used to
plot data for that series.

Tooltip Tooltips or labels that appear when you hover on a series.

Chart Types
You can change the type of the FlexChart control depending on your requirement. Chart type can be changed by setting the
ChartType property of the FlexChart control. In case of adding multiple series to FlexChart, each series of the chart are of the
default chart type selected for that chart. However, you can set chart type for each series in code.

In Code

C#

chart.ChartType = ChartType.Area;

Line and LineSymbol chart

A Line chart draws each series as connected points of data, similar to area chart except that the area below the connected points is
not filled. The series can be drawn independently or stacked. It is the most effective way of denoting changes in value between
different groups of data. A LineSymbol chart is similar to line chart except that it represents data points using symbols.

These charts are commonly used to show trends and performance over time.

Line Chart LineSymbol Chart

Area chart

An Area chart draws each series as connected points of data and the area below the connected points is filled with color to denote

Xamarin.Android Documentation 23

Copyright © 2017 GrapeCity, inc. All rights reserved.

volume. Each new series is drawn on top of the preceding series. The series can either be drawn independently or stacked.

These charts are commonly used to show trends between associated attributes over time.

Bar and Column chart

A Bar chart or a Column chart represents each series in the form of bars of the same color and width, whose length is determined by
its value. Each new series is plotted in the form of bars next to the bars of the preceding series. When the bars are arranged
horizontally, the chart is called a bar chart and when the bars are arranged vertically, the chart is called column chart. Bar charts and
Column charts can be either grouped or stacked.

These charts are commonly used to visually represent data that is grouped into discrete categories, for example age groups,
months, etc.

Bar Chart Column Chart

Bubble chart

A Bubble chart represents three dimensions of data. The X and Y values denote two of the data dimensions. The third dimension is
denoted by the size of the bubble.

Xamarin.Android Documentation 24

Copyright © 2017 GrapeCity, inc. All rights reserved.

These charts are used to compare entities based on their relative positions on the axis as well as their size.

Scatter

A Scatter chart represents a series in the form of points plotted using their X and Y axis coordinates. The X and Y axis coordinates
are combined into single data points and displayed in uneven intervals or clusters.

These charts are commonly used to determine the variation in data point density with varying x and y coordinates.

Candlestick chart

A Candlestick chart is a financial chart that shows the opening, closing, high and low prices of a given stock. It is a special type of
HiLoOpenClose chart that is used to show the relationship between open and close as well as high and low. Candle chart uses price
data (high, low, open, and close values) and it includes a thick candle-like body that uses the color and size of the body to reveal
additional information about the relationship between the open and close values. For example, long transparent candles show
buying pressure and long filled candles show selling pressure.

Elements of a Candlestick chart

Xamarin.Android Documentation 25

Copyright © 2017 GrapeCity, inc. All rights reserved.

The Candlestick chart is made up of the following elements: candle, wick, and tail.

Candle: The candle or the body (the solid bar between the opening and closing values) represents the change in stock price
from opening to closing.
Wick and Tail: The thin lines, wick and tail, above and below the candle depict the high/low range.
Hollow Body: A hollow candle or transparent candle indicates a rising stock price (close was higher than open). In a hollow
candle, the bottom of the body represents the opening price and the top of the body represents the closing price.
Filled Body: A filled candle indicates a falling stock price (open was higher than close). In a filled candle the top of the body
represents the opening price and the bottom of the body represents the closing price.

In a Candlestick there are five values for each data point in the series.

x: Determines the date position along the x axis.
high: Determines the highest price for the day, and plots it as the top of the candle along the y axis.
low: Determines the lowest price for the day, and plots it as the bottom of the candle along the y axis.
open: Determines the opening price for the day.
close: Determines the closing price for the day.

The following image shows a candlestick chart displaying stock prices.

High Low Open Close chart

HiLoOpenClose are financial charts that combine four independent values to supply high, low, open and close data for a point in a
series. In addition to showing the high and low value of a stock, the Y2 and Y3 array elements represent the stock's opening and
closing price respectively.

Xamarin.Android Documentation 26

Copyright © 2017 GrapeCity, inc. All rights reserved.

Spline and SplineSymbol chart

A Spline chart is a combination of line and area charts. It draws a fitted curve through each data point and its series can be drawn
independently or stacked. It is the most effective way of representing data that uses curve fittings to show difference of values. A
SplineSymbol chart is similar to Spline chart except that it represents data points using symbols.

These charts are commonly used to show trends and performance over time, such as product life-cycle.

Spline Chart SplineSymbol Chart

SplineArea chart

SplineArea charts are spline charts that display the area below the spline filled with color. SplineArea chart is similar to Area chart as
both the charts show area, except that SplineArea chart uses splines and Area chart uses lines to connect data points.

SplineArea Chart

Quick Start: Add Data to FlexChart
This section describes how to add a FlexChart control to your android application and add data to it.

This topic comprises of three steps:

Step 1: Create a data source for FlexChart

Xamarin.Android Documentation 27

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 2: Add a FlexChart control
Step 3: Run the project

The following image shows how the FlexChart appears, after completing the steps above.

Step 1: Create a Data Source for FlexChart

Add a new class to serve as the data source for FlexChart control.

C#

public class FlexChartDataSource
{

Xamarin.Android Documentation 28

Copyright © 2017 GrapeCity, inc. All rights reserved.

 private List<Month> appData;

 public List<Month> Data
 {
 get { return appData; }
 }

 public FlexChartDataSource()
 {
 // appData
 appData = new List<Month>();
 var monthNames =
"Jan,Feb,March,April,May,June,July,Aug,Sept,Oct,Nov,Dec".Split(',');
 var salesData = new[] { 5000, 8500, 7000, 6500, 12000, 14800, 18500, 7500,
6500, 13000, 20000, 9000 };
 var downloadsData = new[] { 6000, 7500, 12000, 5800, 11000, 7000, 16000,
17500, 19500, 13250, 13800, 19000 };
 var expensesData = new[] { 15000, 18000, 15500, 18500, 11000, 16000, 8000,
7500, 6500, 6000, 13500, 5000 };
 for (int i = 0; i < 12; i++)
 {
 Month tempMonth = new Month();
 tempMonth.Name = monthNames[i];
 tempMonth.Sales = salesData[i];
 tempMonth.Downloads = downloadsData[i];
 tempMonth.Expenses = expensesData[i];
 appData.Add(tempMonth);

 }
 }
}

public class Month
{
 string _name;
 long _sales, _downloads, _expenses;

 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 public long Sales
 {
 get { return _sales; }
 set { _sales = value; }
 }

 public long Downloads
 {

Xamarin.Android Documentation 29

Copyright © 2017 GrapeCity, inc. All rights reserved.

 get { return _downloads; }
 set { _downloads = value; }
 }
 public long Expenses
 {
 get { return _expenses; }
 set { _expenses = value; }
 }
}

Back to Top

Step 2: Add a FlexChart control in code

To add FlexChart control to your layout, open the .axml file in your layout folder from the Solution Explorer and
replace its code with the following code.

XML

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <C1.Android.Chart.FlexChart
 android:id="@+id/flexchart"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

Alternatively, you can drag a FlexChart control from the Toolbox within the custom control tab onto your layout
surface in designer mode.

Xamarin.Android Documentation 30

Copyright © 2017 GrapeCity, inc. All rights reserved.

Then, inside your activity, add the following code to the OnCreate method to initialize your layout.

C#

 public class GettingStartedActivity : Activity
 {
 private FlexChart mChart;

 protected override void OnCreate(Bundle savedInstanceState)
 {

 base.OnCreate(savedInstanceState);
 SetContentView(Resource.Layout.activity_getting_started);

 // initializing widget
 mChart = this.FindViewById<FlexChart>(Resource.Id.flexchart);
 // set the binding for X-axis of FlexChart
 mChart.BindingX = "Name";

 // initialize series elements and set the binding to variables of
 // ChartPoint
 ChartSeries seriesSales = new ChartSeries();
 seriesSales.Chart = mChart;
 seriesSales.SeriesName = "Sales";
 seriesSales.Binding = "Sales,Sales";
 mChart.Series.Add(seriesSales);
 mChart.ItemsSource = ChartPoint.GetList();
 }

 }

Xamarin.Android Documentation 31

Copyright © 2017 GrapeCity, inc. All rights reserved.

Step 3: Run the project

Press F5 to run your application.

FlexGrid
The FlexGrid control provides a powerful and flexible way to display data from a data source in tabular format.
FlexGrid is a full-featured grid, providing various features including automatic column generation; sorting, grouping
and filtering data using the CollectionView; and intuitive touch gestures for cell selection, sorting, scrolling and
editing.

FlexGrid brings a spreadsheet-like experience to your Android mobile apps with quick cell editing capabilities. FlexGrid
provides design flexibility with conditional formatting and cell level customization. This allows developers to create
complex grid-based applications, as well as provides the ability to edit and update databases at runtime.

Key Features

Auto Generate Columns: Generates grid columns automatically when set to true.
Data Binding: FlexGrid allows you to bind data with business objects, and display it in rows and columns of
the grid.
Touch-based Cell Selection, Zooming and Editing: FlexGrid supports touch-based cell selection and editing.

Xamarin.Android Documentation 32

Copyright © 2017 GrapeCity, inc. All rights reserved.

Double-tapping inside a cell puts it into the edit mode similar to Microsoft Excel. FlexGrid also allows smooth
scrolling.
Format Columns: FlexGrid supports various format options that can be used to display data with simple
format strings.
Themes: FlexGrid supports various application and device themes to enhance grid's appearance.
Pull-to-Refresh and Incremental Loading: FlexGrid supports the ability to load data on demand via the
CollectionView and refresh data by pulling down at the top of the grid.

Quick Start: Add Data to FlexGrid
This section describes how to add a FlexGrid control to your Android app and add data to it.

This topic comprises of three steps:

Step 1: Create a data source for FlexGrid
Step 2: Add a FlexGrid control
Step 3: Run the project

The following image shows how the FlexGrid appears, after completing the steps above:

Step 1: Create a data source for FlexGrid

Add a new class to serve as the data source for FlexGrid control.

Customer.cs

public class Customer
 {

Xamarin.Android Documentation 33

Copyright © 2017 GrapeCity, inc. All rights reserved.

 int _id, _countryID;
 string _first, _last;
 bool _active;
 double _weight;
 DateTime _hired;
 static Random _rnd = new Random();
 static string[] _firstNames =
"Andy|Ben|Charlie|Dan|Ed|Fred|Gil|Herb|Jack|Rich|Ted|Ulrich|Vic|Xavier".Split('|');
 static string[] _lastNames =
"Ambers|Bishop|Cole|Evers|Lehman|Neiman|Orsted|Quaid|Richards|Trask".Split('|');
 static string[] _countries = "China|India|United
States|Indonesia|Brazil|Pakistan|Bangladesh|Nigeria|Russia|Japan".Split('|');

 public Customer()
 : this(_rnd.Next(10000))
 {
 }
 public Customer(int id)
 {
 ID = id;
 First = GetString(_firstNames);
 Last = GetString(_lastNames);
 CountryID = _rnd.Next() % _countries.Length;
 Active = _rnd.NextDouble() >= .5;
 Hired = DateTime.Today.AddDays(-_rnd.Next(1, 365));
 Weight = 50 + _rnd.NextDouble() * 50;
 }
 public int ID
 {
 get { return _id; }
 set { _id = value;}
 }
 public string Name
 {
 get { return string.Format("{0} {1}", First, Last); }
 }
 public string Country
 {
 get { return _countries[_countryID]; }
 }
 public int CountryID
 {
 get { return _countryID; }
 set {_countryID = value; }
 }
 public bool Active
 {
 get { return _active; }
 set { _active = value;}
 }
 public string First

Xamarin.Android Documentation 34

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 get { return _first; }
 set {_first = value; }
 }
 public string Last
 {
 get { return _last; }
 set {_last = value; }
 }
 public DateTime Hired
 {
 get { return _hired; }
 set { _hired = value;}
 }
 public double Weight
 {
 get { return _weight; }
 set {_weight = value; }
 }
 static string GetString(string[] arr)
 {
 return arr[_rnd.Next(arr.Length)];
 }
 static string GetName()
 {
 return string.Format("{0} {1}", GetString(_firstNames),
GetString(_lastNames));
 }
 // Provide static list.
 public static ObservableCollection<Customer> GetCustomerList(int count)
 {
 var list = new ObservableCollection<Customer>();
 for (int i = 0; i < count; i++)
 {
 list.Add(new Customer(i));
 }
 return list;
 }
 //Provide static value members.
 public static string[] GetCountries() { return _countries; }
 public static string[] GetFirstNames() { return _firstNames; }
 public static string[] GetLastNames() { return _lastNames; }
 }

Back to Top

Step 2: Add a FlexGrid control

Initialize FlexGrid control in code

To add the FlexGrid control to your layout, open the .axml file in your layout folder from the Solution Explorer and
replace its code with the code below.

Xamarin.Android Documentation 35

Copyright © 2017 GrapeCity, inc. All rights reserved.

XML

<?xml version="1.0" encoding="utf-8"?>
<C1.Android.Grid.FlexGrid xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/Grid" />

Alternatively, you can drag a FlexGrid control from the Toolbox within the custom control tab onto your layout surface
in designer mode.

Then, inside your activity, add the following code to the OnCreate method to initialize your layout.

XML

protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 SetContentView(Resource.Layout.GettingStarted);

 var grid = FindViewById<FlexGrid>(Resource.Id.Grid);
 grid.ItemsSource = Customer.GetCustomerList(100);
 }

Back to Top

Step 3: Run the project

Press F5 to your application.

Back to Top

Xamarin.Android Documentation 36

Copyright © 2017 GrapeCity, inc. All rights reserved.

FlexPie
The FlexPie control allows you to create customized pie charts that represent a series as slices of a pie. The arc length
of each slice depicts the value represented by that slice. Pie charts are commonly used to display proportional data
such as percentage cover. Multi-colored slices make pie charts easy to understand and usually the value represented
by each slice is displayed with the help of labels.

Key Features

Touch Based Labels: Display values using touch based labels.
Exploding and Donut Pie Charts: Use simple FlexPie properties to convert it into an exploding pie chart or a
donut pie chart.

Quick Start: Add Data to FlexPie
This section describes how to add a FlexPie control to your android app and add data to it. This topic comprises of
three steps:

Step 1: Create a data source for FlexPie
Step 2: Add a FlexPie control
Step 3: Run the Project

The following image shows how the FlexPie appears after completing the steps above:

Xamarin.Android Documentation 37

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://www.goxuni.com/docs/android/api/com/grapecity/xuni/flexpie/FlexPie.html

Step 1: Create a data source for FlexPie

Add a new class to serve as the data source for FlexPie control.

PieChartData

public class PieChartData
 {
 public string Name {get; set;}
 public double Value {get; set;}

 public static IEnumerable<PieChartData> DemoData()
 {
 List<PieChartData> result = new List<PieChartData> ();
 string[] fruit = new string[]
{"Oranges","Apples","Pears","Bananas","Pineapples" };

 Random r = new Random ();

 foreach (var f in fruit)
 result.Add (new PieChartData { Name = f, Value = r.Next(100) * 101});

 return result;
 }
 }

Step 2: Add a FlexPie control

Xamarin.Android Documentation 38

Copyright © 2017 GrapeCity, inc. All rights reserved.

To add a FlexPie control to your layout, open the .axml file in your layout folder from the Solution Explorer and
replace its code with the code below.
XML

<?xml version="1.0" encoding="utf-8"?>
<C1.Android.Chart.FlexPie xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/flexPie"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center"/>

Alternatively, you can drag a FlexPie control from the Toolbox within the custom control tab onto your layout surface
in designer mode.

Then, inside your activity, add the following code to the OnCreate method to initialize your layout.

XML

public class GettingStartedActivity : Activity
 {
 private FlexPie mFlexPie;

 protected override void OnCreate(Bundle savedInstanceState)
 {
 // setting the dark theme
 // FlexPie automatically adjusts to the current theme
 SetTheme(Android.Resource.Style.ThemeHolo);

 base.OnCreate(savedInstanceState);
 SetContentView(Resource.Layout.flexpie_activity_getting_started);

Xamarin.Android Documentation 39

Copyright © 2017 GrapeCity, inc. All rights reserved.

 // initializing widgets
 mFlexPie = (FlexPie)FindViewById(Resource.Id.flexPie);

 mFlexPie.BindingName = "Name";
 mFlexPie.Binding = "Value";

 // setting the source of data/items and default values in FlexPie
 mFlexPie.ItemsSource = PieChartData.DemoData();
 }
 }

Back to Top

Step 3: Run the Project

Press F5 to run the application.

Gauge
The Gauge control allows you to display information in a dynamic and unique way by delivering the exact graphical
representation you require. Gauges are better than simple labels because they also display a range, allowing users to
determine instantly whether the current value is low, high, or intermediate.

Key Features
Easy Customization: Restyle the Gauge by changing a property to create gauges with custom colors, fills and
more.
Ranges: Add colored ranges to the Gauge to draw attention to a certain range of values. Use simple properties
to customize their start and end points, as well as appearance.
Direction: Place the C1LinearGauge and C1BulletGraph horizontally or vertically.
Pointer Customization: Customize the pointer color, border, origin and more to make the Gauge more
appealing.
Animation: Use out-of-the-box animations to add effects to the Gauge control.

Xamarin.Android Documentation 40

Copyright © 2017 GrapeCity, inc. All rights reserved.

Gauge Types
C1Gauge comprises of three kinds of gauges: LinearGauge, RadialGauge, and BulletGraph.

Type Image Usage

LinearGauge: A linear gauge displays the
value along a linear scale, using a linear
pointer. The linear scale can be either
horizontal or vertical, which can be set using
the direction property.

A linear
gauge is
commonly
used to
denote data
as a scale
value such as
length,
temperature,
etc.

RadialGauge: A radial gauge displays the
value along a circular scale, using a curved
pointer. The scale can be rotated as defined
by the startAngle and sweepAngle properties.

A radial
gauge is
commonly
used to
denote data
such as
volume,
velocity, etc.

BulletGraph: A bullet graph displays a single
value on a linear scale, along with a target
value and ranges that instantly indicate
whether the value is good, bad or in some
other state.

A bullet graph
is a variant of
a linear
gauge,
designed
specifically for
use in
dashboards
that display a
number of
single value
data, such as
yearly sales
revenue.

Quick Start: Add and Configure Gauge

Xamarin.Android Documentation 41

Copyright © 2017 GrapeCity, inc. All rights reserved.

This section describes how to add a C1Gauge control to your Android app. This topic comprises two steps:

Step 1: Add Gauge Controls
Step 2: Run the Project

The following image shows how the C1Gauge appears after completing the steps above:

Step 1: Add Gauge Controls

Initialize Gauge controls in code

To add C1Gauge controls to your layout, open the .axml file in your layout folder from the Solution Explorer and
replace its code with following code.

XML

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:paddingLeft="16dp"
 android:paddingRight="16dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/lineargauge" />
 <c1.android.gauge.C1LinearGauge
 android:id="@+id/linearGauge1"

Xamarin.Android Documentation 42

Copyright © 2017 GrapeCity, inc. All rights reserved.

 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/bulletgraph" />
 <c1.android.gauge.C1BulletGraph
 android:id="@+id/bulletGraph1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/radialgauge" />
 <c1.android.gauge.C1RadialGauge
 android:id="@+id/radialGauge1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

Alternatively, you can drag the C1LinearGauge, C1RadialGauge, or C1BulletGraph control from the Toolbox within the
custom control tab onto your layout surface in designer mode.

Then, inside your activity, add the following code to the OnCreate method to initialize your layout.

C#

public class GettingStartedActivity : Activity
 {
 private C1LinearGauge mLinearGauge;
 private C1RadialGauge mRadialGauge;

Xamarin.Android Documentation 43

Copyright © 2017 GrapeCity, inc. All rights reserved.

 private C1BulletGraph mBulletGraph;
 private TextView mValueText;
 private int mValue = 25;
 private int mMin = 0;
 private int mMax = 100;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.activity_getting_started);

 // initializing widgets
 mRadialGauge = (C1RadialGauge)FindViewById(Resource.Id.radialGauge1);
 mLinearGauge = (C1LinearGauge)FindViewById(Resource.Id.linearGauge1);
 mBulletGraph = (C1BulletGraph)FindViewById(Resource.Id.bulletGraph1);

 // setting dafault values
 mBulletGraph.Enabled = true;
 mBulletGraph.Value = mValue;
 mBulletGraph.Bad = 45;
 mBulletGraph.Good = 80;
 mBulletGraph.Min = mMin;
 mBulletGraph.Max = mMax;
 mBulletGraph.Target = 90;
 mBulletGraph.ShowText = GaugeShowText.All;
 mBulletGraph.Step = 1;
 mBulletGraph.IsReadOnly = false;
 mBulletGraph.IsAnimated = true;

 mLinearGauge.Enabled = true;
 mLinearGauge.Value = mValue;
 mLinearGauge.Min = mMin;
 mLinearGauge.Max = mMax;
 mLinearGauge.Step = 1;
 mLinearGauge.ShowText = GaugeShowText.All;
 mLinearGauge.IsReadOnly = false;
 mLinearGauge.IsAnimated = true;

 mRadialGauge.Enabled = true;
 mRadialGauge.Value = mValue;
 mRadialGauge.Min = mMin;
 mRadialGauge.Max = mMax;
 mRadialGauge.Step = 1;
 mRadialGauge.ShowText = GaugeShowText.All;
 mRadialGauge.IsReadOnly = false;
 mRadialGauge.IsAnimated = true;
 }

 }

Step 2: Run the Project

Xamarin.Android Documentation 44

Copyright © 2017 GrapeCity, inc. All rights reserved.

Press F5 to run your application.

Input

AutoComplete
The C1AutoComplete is an editable input control designed to show possible text suggestions automatically as the
user types text. The control filters a list of pre-defined items dynamically as a user types to provide suggestions that
best or completely match the input. The suggestions that match the user input appear instantly in a drop-down list as
shown in the image.

Key Features

Customize Appearance - Use basic appearance properties to customize the appearance of the drop-down list.
Delay - Use delay feature to provide some time gap (in milliseconds) between user input and suggestion.
Highlight Matches - Highlight the input text with matching string in the suggestions.

Quick Start: Populating C1AutoComplete with data

Xamarin.Android Documentation 45

Copyright © 2017 GrapeCity, inc. All rights reserved.

This section describes how to add a C1AutoComplete control to your Android application, and populating it with data.
The data is shown This topic comprises of three steps:

Step 1: Add C1AutoComplete Control
Step 3: Run the Project

The following image shows a C1AutoComplete control displaying input suggestion as the user types.

Step 1: Add C1AutoComplete Control

Initialize C1AutoComplete control in code

To add C1AutoComplete control to your layout, open the .axml file in your layout folder from the Solution Explorer
and replace the code with following code.

XML

<?xml version="1.0" encoding="utf-8"?>
<C1.Android.Input.C1AutoComplete
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/autocomplete_highlight"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

Alternatively, you can drag C1AutoComplete control from the Toolbox within the custom control tab onto your layout
surface in designer mode.

Xamarin.Android Documentation 46

Copyright © 2017 GrapeCity, inc. All rights reserved.

 Then, inside your activity, add the following code to initialize your layout and add data for C1AutoComplete control.

C#

public class AutoCompleteActivity : Activity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 SetContentView(Resource.Layout.activity_autocomplete);

 var highLightAutoComplete =
(C1AutoComplete)this.FindViewById(Resource.Id.autocomplete_highlight);
 highLightAutoComplete.ItemsSource = Countries.GetDemoDataList();
 highLightAutoComplete.DisplayMemberPath = "Name";
 }
 }
 public class Countries : object
 {
 public string Name { get; set; }
 public Countries()
 {
 this.Name = string.Empty;
 }
 public Countries(string name, double sales, double salesgoal, double
download, double downloadgoal, double expense, double expensegoal, string fruits)
 {
 this.Name = name;
 }

Xamarin.Android Documentation 47

Copyright © 2017 GrapeCity, inc. All rights reserved.

 public static IEnumerable<object> GetDemoDataList()
 {
 List<object> array = new List<object>();

 var quarterNames = "Australia,Bangladesh,Brazil,Canada,China".Split(',');

 for (int i = 0; i < quarterNames.Length; i++)
 {
 array.Add(new Countries
 {
 Name = quarterNames[i]
 });
 }
 return array as IEnumerable<object>;
 }
 }

Step 2: Run the Project

Press F5 to run your application.

ComboBox
The C1ComboBox is an input control that combines the features of a standard text box and a list view. The control is
used to display and select data from the list that appears in a drop-down. Users can also type the text into the
editable text box that appears in the header to provide input. The control also supports automatic completion to
display input suggestions as the user types in the text box.

Xamarin.Android Documentation 48

Copyright © 2017 GrapeCity, inc. All rights reserved.

Key Features

Automatic Completion - The C1ComboBox control supports automatic completion feature that provides
relevant suggestions to user while typing the text in the text area.
Edit Mode - By default, C1ComboBox control is non-editable. However, you can make it editable so that users
can modify their input as well.

Quick Start: Display a C1ComboBox Control
This section describes adding a C1ComboBox control to your Android application and displaying a list of items in the
drop-down as suggestions for users.

Complete the following steps to display a C1ComboBox control.

Step 1: Add C1ComboBox Control
Step 2: Run the Project

The following image shows a C1ComboBox displaying input suggestions as the user types.

Step 1: Add C1ComboBox Control

Initialize C1ComboBox Control

To add the C1ComboBox C1control to you layout, open the .axml file in your layout folder from the Solution Explorer
and replace its code with the code below.

XML

<?xml version="1.0" encoding="utf-8"?>
<C1.Android.Input.C1AutoComplete
xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/autocomplete_highlight"
 android:layout_width="match_parent"
 android:layout_height="wrap_content" />

Alternatively, you can drag a C1ComboBox control from the Toolbox within the custom control tab onto your layout
surface in designer mode. Then, inside your activity, add the following code to initialize C1ComboBox

C#

public class ComboBoxActivity : Activity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {

Xamarin.Android Documentation 49

Copyright © 2017 GrapeCity, inc. All rights reserved.

 base.OnCreate(savedInstanceState);
 LinearLayout layout = new LinearLayout(this);
 layout.Orientation = Orientation.Vertical;

 C1ComboBox comboBox = new C1ComboBox(this);
 comboBox.DisplayMemberPath = "Name";
 comboBox.ItemsSource = Countries.GetDemoDataList();
 comboBox.SelectedBackgroundColor = Color.Green;
 layout.AddView(comboBox);
 comboBox.SelectedValue = new System.Object { };
 Space emptySpace = new Space(this);
 layout.AddView(emptySpace);

 this.SetContentView(layout);
 }
 }

Step 2: Run the Project

Press F5 to run your application.

DropDown
The C1DropDown is a basic drop-down control that can be used as a base to create custom drop-down controls such
as date picker, auto complete menus, etc. The control comprises three major elements including a header view, a
button, and a drop-down view. The header includes the entire width of the control, while the button is placed on the
top of the header, indicating that the control can be expanded. The drop-down includes the entire length of the
control and gets expanded or collapsed.

Creating a Custom Date Picker using C1DropDown
This topic provides you a walkthrough to creating a custom date picker using the C1DropDown control. For this, you
begin by creating an Android application, and initializing a C1DropDown, a C1Calendar control, and a
C1MaskedTextField control. To create a date picker, you need to set the header property to the object of the
MaskedTextField and DropDown property to the object of the C1Calendar class.

The image below shows how a custom date picker created using the C1DropDown appears.

Xamarin.Android Documentation 50

Copyright © 2017 GrapeCity, inc. All rights reserved.

Add the following code to the ViewController file to display the control.

C#

public class DropDownActivity : Activity
 {
 C1DropDown dropdown;
 C1MaskedTextView header;
 C1Calendar calendar;

 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);
 dropdown = new C1DropDown(this);
 header = new C1MaskedTextView(this);
 header.Mask = Resources.GetString(Resource.String.date_mask_string);

 calendar = new C1Calendar(this);
 dropdown.Header = header;
 dropdown.DropDown = calendar;
 dropdown.DropDownHeight = 800;
 dropdown.IsAnimated = true;

 calendar.SelectionChanged += (object sender,
CalendarSelectionChangedEventArgs e) =>

Xamarin.Android Documentation 51

Copyright © 2017 GrapeCity, inc. All rights reserved.

 {
 dropdown.IsDropDownOpen = false;
 System.DateTime dateTime = calendar.SelectedDates[0];
 string strDate =
dateTime.ToString(Resources.GetString(Resource.String.date_mask_format));
 header.Value = strDate;
 };

 LinearLayout layout = new LinearLayout(this);
 LinearLayout.LayoutParams parameters = new
LinearLayout.LayoutParams(LinearLayout.LayoutParams.MatchParent,
LinearLayout.LayoutParams.WrapContent);
 layout.AddView(dropdown, parameters);
 SetContentView(layout);
 }
 }

MaskedTextField
The C1MaskedTextField control is designed to capture properly formatted user input. The control prevents users from
entering invalid values in an input field, and other characters like slash or hyphen. The control also provides data
validation by skipping over invalid entries as the user types. The control uses special elements called mask symbols or
mask inputs to specify the format in which the data should be entered in an input field.

For example, you can use the MaskedTextField control to create an input field that accepts phone numbers with area
code only, or Date field that allows users to enter date in dd/mm/yyyy format only.

Mask Symbols
The C1MaskedTextField control provides an editable mask that supports a set of special mask characters/symbols.
These characters are used to specify the format in which the data should be entered in an input field. For this, all you
need to do is use the mask property and specify the data format.

For example, setting the mask property for a C1MaskedTextField control to "90/90/0000" lets users enter date in
international format. Here, the "/" character works as a logical date separator.

The following table enlists mask symbols supported by the C1MaskedTextField control.

Mask Symbol Description

0 Digit

Xamarin.Android Documentation 52

Copyright © 2017 GrapeCity, inc. All rights reserved.

9 Digit or space

Digit, sign, or space

L Letter

? Letter, optional

C Character, optional

& Character, required

I Letter or space

A Alphanumeric

a Alphanumeric or space

. Localized decimal point

, Localized thousand separator

: Localized time separator

/ Localized date separator

$ Localized currency symbol

< Converts characters that follow to lowercase

> Converts characters that follow to uppercase

| Disables case conversion

\ Escapes any character, turning it into a literal

All others Literals.

Quick Start: Display C1MaskedTextField Controls
This section describes adding C1MaskedTextField controls to an Android application for specifying four input fields,
namely ID, Date of Birth, Phone and State. The ID input field accepts a nine-digit number separated by hyphens, the
Date of Birth field accepts a date in mm/dd/yyyy format, the Phone field accepts a 10-digit number with area code,
and the State field accepts abbreviated postal code of a state.

The following image shows the input fields after completing the above steps.

Add the following code to initialize four input fields using C1MaskedTextField controls in you .axml file.

XML

<?xml version="1.0" encoding="utf-8"?>
<GridLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:columnCount="2"
 android:paddingBottom="20dp"
 android:paddingLeft="20dp"
 android:paddingRight="20dp"

Xamarin.Android Documentation 53

Copyright © 2017 GrapeCity, inc. All rights reserved.

 android:paddingTop="20dp"
 android:rowCount="4">
 <C1.Android.Input.C1MaskedTextView
 android:id="@+id/idMask"
 android:layout_width="300dp"
 android:layout_height="wrap_content"
 app:c1_mask="999 99-0000"
 app:c1_promptChar="_" />
 <C1.Android.Input.C1MaskedTextView
 android:id="@+id/dateMask"
 android:layout_width="300dp"
 android:layout_height="wrap_content"
 app:c1_mask="90/90/0000"
 app:c1_promptChar="_" />
 <C1.Android.Input.C1MaskedTextView
 android:id="@+id/phoneMask"
 android:layout_width="300dp"
 android:layout_height="wrap_content"
 app:c1_mask="(999)000-0000"
 app:c1_promptChar="_" />
 <C1.Android.Input.C1MaskedTextView
 android:id="@+id/stateMask"
 android:layout_width="300dp"
 android:layout_height="wrap_content"
 app:c1_mask="LL"
 app:c1_promptChar="_" />
</GridLayout>

Xamarin.Android Documentation 54

Copyright © 2017 GrapeCity, inc. All rights reserved.

	€
	Table of Contents
	Getting Started with Xamarin.Android Controls
	Breaking Changes for Xuni User
	NuGet Packages
	Redistributable Files
	System Requirements
	Creating a New Xamarin.Android App
	Adding NuGet Packages to your App
	Licensing
	Licensing your app using website
	Finding the Application Name

	About this Documentation
	Technical Support

	Controls
	Calendar
	Quick Start: Display a C1Calendar Control

	CollectionView
	Quick Start

	FlexChart
	Chart Elements
	Chart Types
	Quick Start: Add Data to FlexChart

	FlexGrid
	Quick Start: Add Data to FlexGrid

	FlexPie
	Quick Start: Add Data to FlexPie

	Gauge
	Gauge Types
	Quick Start: Add and Configure Gauge

	Input
	AutoComplete
	Quick Start: Populating C1AutoComplete with data

	ComboBox
	Quick Start: Display a C1ComboBox Control

	DropDown
	Creating a Custom Date Picker using C1DropDown

	MaskedTextField
	Mask Symbols
	Quick Start: Display C1MaskedTextField Controls

