
ComponentOne

PdfViewer for UWP

ComponentOne, a division of GrapeCity
201 South Highland Avenue, Third Floor
Pittsburgh, PA 15206 USA

Website: http://www.componentone.com
Sales: sales@componentone.com
Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of GrapeCity, Inc. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the media on which the software is delivered is free from defects in material and
workmanship, assuming normal use, for a period of 90 days from the date of purchase. If a defect occurs during this
time, you may return the defective media to ComponentOne, along with a dated proof of purchase, and
ComponentOne will replace it at no charge. After 90 days, you can obtain a replacement for the defective media by
sending it and a check for $2 5 (to cover postage and handling) to ComponentOne.

Except for the express warranty of the original media on which the software is delivered is set forth here,
ComponentOne makes no other warranties, express or implied. Every attempt has been made to ensure that the
information contained in this manual is correct as of the time it was written. ComponentOne is not responsible for any
errors or omissions. ComponentOne’s liability is limited to the amount you paid for the product. ComponentOne is
not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not
permitted to make copies for the use of anyone else. We put a lot of time and effort into creating this product, and we
appreciate your support in seeing that it is used by licensed users only.

Table of Contents
PdfViewer for UWP 2

Getting Started 3

Help with UWP Edition 3

Key Features 4

Quick Start 5

Step 1 of 3: Adding C1PdfViewer to the Application 5-6

Step 2 of 3: Adding Code to the C1PdfViewer Application 6-7

Step 3 of 3: Running the C1PdfViewer Application 7-8

PdfViewer Features 9

Loading Documents 9

Asynchronous Loading 9

Loading Encrypted Files 9-10

Touch Interaction 10

View Modes 10

Orientation 10

Task-Based Help 11

Loading Documents from Application Resources 11-12

Loading Documents from the Web 12

Loading PDF Files Created by C1PdfDocument 12-13

Opening Potentially Protected Files 13-15

PdfViewer for UWP 1

Copyright © 2017 GrapeCity, inc. All rights reserved.

PdfViewer for UWP
Add document viewing capabilities to your Universal Windows apps. PdfViewer for UWP can display simple PDF
documents within your applications without requiring any external application. Load arbitrary PDF documents with
support for page zooming.

PdfViewer for UWP 2

Copyright © 2017 GrapeCity, inc. All rights reserved.

Getting Started

Help with UWP Edition
Getting Started

For information on installing ComponentOne Studio UWP Edition, licensing, technical support, namespaces and
creating a project with the control, please visit Getting Started with ComponentOne Studio UWP Edition.

PdfViewer for UWP 3

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://helpcentral.componentone.com/nethelp/C1StudioUWP/

Key Features
PdfViewer for UWP includes the following key features:

Load and View PDF Files

Load and view PDF files in your Universal Windows apps using the C1PdfViewer control. This XAML control has
no external dependency on the desktop or anything from Adobe to view or save files. Content is parsed and
rendered as native UWP elements.

Multi-touch Gesture Support

Users can slide the pages to scroll as well as pinch to zoom the document. Zooming can better legibility for
reading content on a small screen.

Horizontal Orientation

The C1PdfViewer control supports both Vertical and Horizontal orientation. Just set the Orientation property.

Encrypted File Support

The C1PdfViewer control supports viewing encrypted files. The C1PdfViewer.LoadDocument method has an
optional password parameter to view encrypted files.

PDF Specification Support

C1PdfViewer supports a subset of the PDF 1.5 specification. There are a few important limitations including
encryption, special fonts, and rare image formats. Documents that use non-supported content will still render,
but the formatting may be incorrect. It is recommended to use C1PdfViewer in a controlled environment where
the features used by your PDF files can be tested before being used. The full list of limitations can be found in
the documentation.

Get Pages from PDF

After loading a PDF, you can obtain a list of its pages as FrameworkElements to customize how the user views
each page. This enables a lot more flexibility in working with existing PDF documents. Just call the GetPages
method. For more information on how to use the GetPages method see the Printing with PDFViewer tutorial.

PdfViewer for UWP 4

Copyright © 2017 GrapeCity, inc. All rights reserved.

http://our.componentone.com/2013/02/12/printing-with-pdfviewer-for-winrt/

Quick Start
The following quick start guide is intended to get you up and running with PdfViewer for UWP. In this quick start
you'll start in Visual Studio and create a new project, add a PdfViewer for UWP control to your application, and add
content to the control.

Step 1 of 3: Adding C1PdfViewer to the Application
In this step you'll begin in Visual Studio to create a UWP-style application using PdfViewer for UWP. To set up your
project and add a C1PdfViewer control to your application, complete the following steps:

1. Select File | New | Project.
2. In the New Project dialog box, select Templates | Visual C# | Windows | Universal. From the templates list,

select Blank App (Universal Windows). Enter a Name and click OK to create your project.
3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and </Grid> tags, and click

once.
4. Add the following column and row definitions between the <Grid> and </Grid> tags:

Markup

<Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition/>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition Width="Auto"/>
</Grid.ColumnDefinitions>

Elements in the grid will now appear positioned.

5. Navigate to the Toolbox and double-check the C1PdfViewer icon to add the control to your application.
6. Edit the C1PdfViewer's markup so it appears similar to the following:

To write the markup in XAML:

Markup

<PdfViewer:C1PdfViewer x:Name="pdfViewer" ViewMode="FitWidth" Grid.Row="1"
Grid.ColumnSpan="2"/>

This markup gives the control a name, sets the ViewMode of the control so that the entire width of a PDF will
be displayed in the control, and customizes the layout of the control.

7. Navigate to the Toolbox and double-click the StackPanel icon to add it to the page. Edit the StackPanel's
markup so it appears similar to the following:

To write the markup in XAML:

Markup

<StackPanel Orientation="Horizontal" Margin="8" VerticalAlignment="Center" >
 <TextBlock Text="{Binding ElementName=pdfViewer, Path=PageNumber}"
FontSize="20" Foreground="{StaticResource ApplicationForegroundThemeBrush}" />

PdfViewer for UWP 5

Copyright © 2017 GrapeCity, inc. All rights reserved.

 <TextBlock Text=" / " Foreground="{StaticResource
ApplicationForegroundThemeBrush}" FontSize="20"/>
 <TextBlock Text="{Binding ElementName=pdfViewer, Path=PageCount}"
FontSize="20" Foreground="{StaticResource ApplicationForegroundThemeBrush}" />
</StackPanel>

This markup adds three TextBlock controls in the StackPanel.

8. Add the following markup just below the StackPanel's closing tag icon to add a Button to the page:

To write the markup in XAML:

Markup

<Button x:Name="btnLoad" Grid.Column="1" Content=" Load Pdf... "
HorizontalAlignment="Right" VerticalAlignment="Top" Margin="8"
Click="btnLoad_Click" />

You've successfully created a UWP-style application. In the next step you'll add code to the application to view a PDF.

Step 2 of 3: Adding Code to the C1PdfViewer Application
In the previous step you created a new UWP-style project and added a C1PDFViewer control to the application. In this
step you'll continue by adding a PDF document to the application, and code to display the PDF file in
the C1PdfViewer control.

Complete the following steps:

1. In the Solution Explorer, right-click the project name and select Add │ Existing Item.
2. In the Add Existing Item dialog box, locate a PDF file (for example the C1XapOptimizer.pdf included with the

samples) and click Add.
You can select any PDF file but will have to replace "C1XapOptimizer.pdf" with the name of your PDF file in the
code below.

3. Select the PDF file in the Solution Explorer, and in the Properties window set the file's Build Action to
Embedded Resource.

4. Right-click the page and select View | Code to switch to Code view.
5. In Code view, add the following import statements to the top of the page:

Visual Basic

Imports C1.Xaml.PdfViewer

C#

using C1.Xaml.PdfViewer;

6. Add code to the page's constructor so that it appears like the following:

Visual Basic

Public Sub New()
 Me.InitializeComponent()
 Dim asm As Assembly = GetType(MainPage).GetTypeInfo().Assembly
 Dim stream As Stream
 stream =

PdfViewer for UWP 6

Copyright © 2017 GrapeCity, inc. All rights reserved.

asm.GetManifestResourceStream("PdfViewerSamples.C1XapOptimizer.pdf")
 pdfViewer.LoadDocument(stream)
End Sub

C#

public MainPage()
{
 this.InitializeComponent();
 Assembly asm = typeof(MainPage).GetTypeInfo().Assembly;
 Stream stream =
asm.GetManifestResourceStream("PdfViewerSamples.C1XapOptimizer.pdf");
 pdfViewer.LoadDocument(stream);
}

You will need to replace "PdfViewerSamples" with the name of your project's namespace.

7. Add the following btnLoad_Click event handler to the project:

Visual Basic

Private Async Sub btnLoad_Click(sender As Object, e As
Windows.UI.Xaml.RoutedEventArgs)
 Dim openPicker As New FileOpenPicker()
 openPicker.FileTypeFilter.Add(".pdf")
 Dim file As StorageFile = Await openPicker.PickSingleFileAsync()
 If file IsNot Nothing Then
 Dim stream As System.IO.Stream = Await file.OpenStreamForReadAsync()
 pdfViewer.LoadDocument(stream)
 End If
End Sub

C#

private async void btnLoad_Click(object sender, Windows.UI.Xaml.RoutedEventArgs
e)
{
 FileOpenPicker openPicker = new FileOpenPicker();
 openPicker.FileTypeFilter.Add(".pdf");
 StorageFile file = await openPicker.PickSingleFileAsync();
 if (file != null)
 {
 Stream stream = await file.OpenStreamForReadAsync();
 pdfViewer.LoadDocument(stream);
 }
}

In this step you completed adding code to your application. In the next step you'll run the application and observe
run-time interactions.

Step 3 of 3: Running the C1PdfViewer Application

PdfViewer for UWP 7

Copyright © 2017 GrapeCity, inc. All rights reserved.

Now that you've created a UWP-style application and customized the application's appearance and behavior, the only
thing left to do is run your application. To run your application and observe PdfViewer for UWP's run-time behavior,
complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at run time. Notice
that a PDF file appears in the PDF width fitted to the viewer and page numbers displayed in the upper left
corner of the application.

2. Click the scroll bar to scroll through the document, and notice that you will scroll from one page in the PDF file
to the next.

3. Click the Load Pdf button, locate and select another PDF file, click Open, and notice that the file loads into
the C1PdfViewer control.

Congratulations!

You've completed the PdfViewer for UWP quick start and created a PdfViewer for UWP application, customized
the C1PdfViewer control, and viewed some of the run-time capabilities of your application.

PdfViewer for UWP 8

Copyright © 2017 GrapeCity, inc. All rights reserved.

PdfViewer Features

Loading Documents
To open an existing PDF file you can use the LoadDocument or LoadDocumentAsync method by passing a stream to
the file. To open a file selected by the user, complete the following code:

C#

FileOpenPicker openPicker = new FileOpenPicker();
openPicker.FileTypeFilter.Add(".pdf");
StorageFile file = await openPicker.PickSingleFileAsync();
if (file != null)
{
 Stream stream = await file.OpenStreamForReadAsync();
 pdfViewer.LoadDocument(stream);
}

Asynchronous Loading
For better performance you can have the C1PdfViewer control load documents in the background asynchronously.
Using the .NET await keyword, you can easily call asynchronous methods. To open a file selected by the user
asynchronously, complete the following code:

Note: In order to use the ‘await’ keyword, the event or method in which the call is made from must be marked as
asynchronous by using the ‘async’ keyword.

C#

FileOpenPicker openPicker = new FileOpenPicker();
openPicker.FileTypeFilter.Add(".pdf");
StorageFile file = await openPicker.PickSingleFileAsync();
if (file != null)
{
 Stream stream = await file.OpenStreamForReadAsync();
 await pdfViewer.LoadDocumentAsync(stream);
}

Loading Encrypted Files
You can open encrypted files using the C1PdfViewer so long as you have the password that the file was encrypted
with. To load password protected PDF documents use the LoadDocument or LoadDocumentAsync methods with the
password as a parameter.

C#

string password = "password";

PdfViewer for UWP 9

Copyright © 2017 GrapeCity, inc. All rights reserved.

await pdfViewer.LoadDocumentAsync(stream, password);

For a complete example that shows how to open encrypted and non-encrypted files together, see the topic Opening
Potentially Protected Files.

Touch Interaction
PdfViewer for UWP is optimized for a touch environment and includes several touch interactions. These interaction
are fairly intuitive, for example to move to view a different area of a document you can touch and drag your finger
across the screen of the phone and the section of the document that is displayed will change according to the
direction you move.

Additional interactions will be added in the future to improve the PdfViewer for UWP touch environment.

View Modes
The C1PdfViewer features multiple viewing modes so you can view documents at any scale. Users can set the zoom
level to fit the page into view. View just 1 page or view multiple pages depending upon the boundary.

You can determine how you want your pages to fit across the screen given the page height through the ViewMode
property. The ViewMode property includes the following options from the ViewMode enumeration:

Normal - Displays pages using the current zoom value.
OnePage - Automatically update the zoom value to fit one complete page inside the viewport.
FitWidth - Automatically update the zoom value to fit the width of one page inside the viewport.

The following Xaml markup shows how to set the ViewMode of the control so that the entire width of a PDF will be
displayed in the control:

XAML

<PdfViewer:C1PdfViewer x:Name="pdfViewer" ViewMode="FitWidth" Grid.Row="1"
Grid.ColumnSpan="2"/>

When the FitWidth option is used and the Orientation is set to Horizontal you can display more than two or less than
two pages depending on the boundary.

Orientation
The page orientation can be displayed horizontally or vertically in the PDFViewer using the Orientation property.

PdfViewer for UWP 10

Copyright © 2017 GrapeCity, inc. All rights reserved.

Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio and know how to use the
C1Chart control in general. If you are unfamiliar with PDFViewer for UWP product, please see the PDFViewer
for UWP quick start first.

Each topic in this section provides a solution for specific tasks using the PDFViewer for UWP product.

Each task-based help topic also assumes that you have created a new project.

Loading Documents from Application Resources
You can easily package an existing PDF file with your application and load it into C1PdfViewer at run time. For
example, complete the following steps:

1. Navigate to the Solution Explorer, right-click the project name, and select Add │ New Folder. Name the new
folder "Resources".

2. Right-click the Resources folder in the Solution Explorer and select Add │ Existing Item.
3. In the Add Existing Item dialog box, locate a PDF file. In the file type drop-down box, you may need to select

All Files to view the PDF file. Note that if you choose, you can instead pick another PDF file to use.
4. In the Solution Explorer, click the PDF file you just added to the application (in this example, we'll assume the

file is named MyPdf.pdf). In the Properties window, set its BuildAction property to Content and confirm that
the Copy to Output Directory item is set to Do not Copy.

5. Switch to Code view by double-clicking on the preview in Design view.
6. Add the following imports statement to the top of the page:

Visual Basic

Imports C1.Xaml.PdfViewer

C#

using C1.Xaml.PdfViewer;

7. Add the following code to the main class:

Visual Basic

Dim resource As StorageFile = Await
StorageFile.GetFileFromApplicationUriAsync(New Uri("ms-
appx:///Resources/MyPdf.pdf"))
Dim stream As Stream = Await resource.OpenStreamForReadAsync()
Await PdfDocument.LoadFromFileAsync(resource)
C1PdfViewer1.LoadDocument(stream)

C#

StorageFile resource = await StorageFile.GetFileFromApplicationUriAsync(new
Uri("ms-appx:///Resources/MyPdf.pdf"));
Stream stream = await resource.OpenStreamForReadAsync();
await PdfDocument.LoadFromFileAsync(resource);
C1PdfViewer1.LoadDocument(stream);

This code calls the LoadDocument method passing in the application resource stream.

PdfViewer for UWP 11

Copyright © 2017 GrapeCity, inc. All rights reserved.

What You've Accomplished

In this example you've loaded a PDF file into the C1PdfViewer from the application resources. You packaged an
existing PDF file with your application in code and loaded it into the C1PdfViewer at run time.

Loading Documents from the Web
To load a file from the Web you must first download it to your application using an asynchronous request object such
as HttpClient. Then you simply pass the resulting stream to the LoadDocument method or LoadDocumentAsync
method. The following code snippet example uses an HTTP request:

C#

private async void LoadDocument()
{
 // load file from the Web
 HttpClient client = new HttpClient();
 string url = “http://cdn.componentone.com/files/win8/Win8_UXG_RTM.pdf”;

 try
 {
 var stream = await client.GetStreamAsync(new Uri(url, UriKind.Absolute));
 pdfViewer.LoadDocument(stream);
 }
 catch
 {
 var dialog = new MessageDialog("There was an error attempting to download the
document.");
 dialog.ShowAsync();
 }
}

Loading PDF Files Created by C1PdfDocument
With PDF for UWP class library you can create PDF documents in code and save them out to a stream. The following
code snippet shows how to create a simple document and load it into C1PdfViewer without having to save it into
isolated storage or put it on the Web:

Visual Basic

' create new C1PdfDocument
Dim doc As New C1PdfDocument()
' add some content to PDF
doc.DrawString("Hello World!", New Font("Arial", 14), Colors.Black,
doc.PageRectangle)
' save PDF to memory stream
Dim ms As New MemoryStream()
doc.Save(ms)
' load PDF from stream
ms.Seek(0, SeekOrigin.Begin) c1PdfViewer1.LoadDocument(ms)

PdfViewer for UWP 12

Copyright © 2017 GrapeCity, inc. All rights reserved.

C#

// create new C1PdfDocument
C1PdfDocument doc = new C1PdfDocument();
// add some content to PDF
doc.DrawString("Hello World!", new Font("Arial", 14), Colors.Black,
doc.PageRectangle);
// save PDF to memory stream
MemoryStream ms = new MemoryStream();
doc.Save(ms);
// load PDF from stream
ms.Seek(0, SeekOrigin.Begin); await c1PdfViewer1.LoadDocumentAsync(ms);

Opening Potentially Protected Files
When giving the end-user the ability to open a PDF file, sometimes you can’t predict whether or not the file will be
password protected or not. The following sample method demonstrates how to perform this check and open the
document accordingly.

Visual Basic

' open an existing PDF file
Private Sub _btnOpen_Click(sender As Object, e As RoutedEventArgs)
Dim dlg = New OpenFileDialog()
dlg.Filter = "Pdf files (*.pdf)|*.pdf"
If dlg.ShowDialog().Value
Then Dim ms = New System.IO.MemoryStream()
Using stream = dlg.File.OpenRead()
stream.CopyTo(ms)
End Using LoadProtectedDocument(ms, Nothing)
End If
End Sub

C#

// open an existing PDF file
void _btnOpen_Click(object sender, RoutedEventArgs e)
{
var dlg = new OpenFileDialog();
dlg.Filter = "Pdf files (*.pdf)|*.pdf";
if (dlg.ShowDialog().Value)
 {
 var ms = new System.IO.MemoryStream();
 using (var stream = dlg.File.OpenRead())
 {
 stream.CopyTo(ms);

PdfViewer for UWP 13

Copyright © 2017 GrapeCity, inc. All rights reserved.

 }
 LoadProtectedDocument(ms, null);
 }
}

If a protected file is attempted to be read, then we will call the LoadProtectedDocument method. Calling this method
with null for a password will open unprotected files. If the file is password-protected (encrypted), an Exception will be
thrown and caught. The user will then be prompted for the actual password and the method will call itself recursively.

Visual Basic

' loads password-protected Pdf documents.
 Private Sub LoadProtectedDocument(stream As System.IO.MemoryStream, password As
String)
 Try
 stream.Position = 0
 _viewer.LoadDocument(stream, password)
 Catch x As Exception
 'if (x.Message.IndexOf("password") > -1)
 '{
 Dim msg = "This file seems to be password-protected." & vbCr & vbLf & "Please
provide the password and try again." C1.Silverlight.C1PromptBox.Show(msg, "Enter
Password", Function(text, result)
 If result = MessageBoxResult.OK Then
 ' try again using the password provided by the user
 LoadProtectedDocument(stream, text)
 End If
'}
'else
'{
' throw;
'}
End Function)
End Try
End Sub

C#

// loads password-protected Pdf documents.
void LoadProtectedDocument(System.IO.MemoryStream stream, string password)
 {
 try
 {
 stream.Position = 0;
 _viewer.LoadDocument(stream, password);
 }
 catch (Exception x)
 {
 //if (x.Message.IndexOf("password") > -1)
 //{
 var msg = "This file seems to be password-protected.\r\nPlease provide the

PdfViewer for UWP 14

Copyright © 2017 GrapeCity, inc. All rights reserved.

password and try again.";
 C1.Silverlight.C1PromptBox.Show(msg, "Enter Password", (text, result) =>
 {
 if (result == MessageBoxResult.OK)
 {
 // try again using the password provided by the user
 LoadProtectedDocument(stream, text);
 }
 });
 //}
 //else
 //{
 // throw;
 //}
 }
}

PdfViewer for UWP 15

Copyright © 2017 GrapeCity, inc. All rights reserved.

	Table of Contents
	PdfViewer for UWP
	Getting Started
	Help with UWP Edition

	Key Features
	Quick Start
	Step 1 of 3: Adding C1PdfViewer to the Application
	Step 2 of 3: Adding Code to the C1PdfViewer Application
	Step 3 of 3: Running the C1PdfViewer Application

	PdfViewer Features
	Loading Documents
	Asynchronous Loading
	Loading Encrypted Files

	Touch Interaction
	View Modes
	Orientation

	Task-Based Help
	Loading Documents from Application Resources
	Loading Documents from the Web
	Loading PDF Files Created by C1PdfDocument
	Opening Potentially Protected Files

