
ComponentOne XapOptimizer
Overview

Size matters in Silverlight. In one click you can reduce the size of your

Silverlight apps up to 70% and secure your code with obfuscation. Add

ComponentOne XapOptimizer to your dev cycle with build

automations, backups, and limitless options. Optimize your Silverlight

applications (XAP files) with ComponentOne XapOptimizer. Without

any loss in functionality, you get an application with improved start-up

time, reducing network traffic.

 Getting Started

Get started with the

following topics:

- Key Features

- XAP Files|tag=About

XAP

Files;document=C1XapO

ptimizer.doc

- Getting

Started|tag=Getting

Started with

ComponentOne

XapOptimizer;document=

C1XapOptimizer.doc

Installing ComponentOne XapOptimizer
The following sections provide helpful information on installing ComponentOne XapOptimizer.

ComponentOne XapOptimizer Setup Files

The ComponentOne XapOptimizer installation program will create the following directory: C:\Program

Files\ComponentOne\XapOptimizer. This directory includes the EULA (End-user License Agreement), help file

and additional licensing information.

System Requirements

System requirements for ComponentOne XapOptimizer include the following:

 .NET 3.5 Framework or later

 SN.exe (Optional; The Strong Name Tool, typically installed with Visual Studio, is used to create strong-

named assemblies and is only required when signing optimized assemblies.)

Installing Demonstration Versions

If you wish to try ComponentOne XapOptimizer and do not have a serial number, follow the steps through the

installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products is that

the registered version will stamp every application you compile so a ComponentOne banner will not appear when

your users run the applications.

Activating ComponentOne Licensing

The ComponentOne XapOptimizer trial period begins when the product is installed, and it is available for 30

days. Prior to the end of the trial, you must activate ComponentOne XapOptimizer in order to continue using

them. If you have installed the trial version and then purchased ComponentOne XapOptimizer, follow these steps

in order to activate it:

1. Select the About button in the upper-right corner of the XapOptimizer application.

The About XapOptimizer screen will open.

2. Click the Activate button.

The Activate License dialog box will appear:

3. In the Activate License dialog box:

a. Enter your name in the User Name text box.

b. Enter your company name in the Company dialog box.

c. Enter the serial number you received when you purchased the product in the Serial Number text

box.

d. Select an activation method:

Method Description

Automatically over the This is the default method. If you have an Internet connection,

Internet ComponentOne XapOptimizer will be automatically
activated.

From our web site The activation wizard will give you an authentication number.

Browse to the Web site and enter your serial number and
authentication number to receive an Activation Code.

By e-mail The activation wizard will give you an authentication number.

Email your serial number and authentication number to
activate@componentone.com and a customer service
representative will provide you with an Activation Code.

Over the phone The activation wizard will give you an authentication number.

Call the Activation hotline at 866.379.0274 (U.S. and Canada)
or 412.681.0711 (International) 9:00 a.m. to 5:00 p.m. EST
Monday through Friday, provide your serial and authentication
numbers, and a customer service representative will provide
you with an Activation Code.

e. Click Next and follow the steps in the Activate License dialog box to receive an Activation Code.

Note that if you activate Automatically over the Internet, you do not have to do anything else

and the process is complete. If you choose another method, click Next again to continue.

4. Once the license is activated, the dialog box will ask if you want to register the product. Click Yes or No;

however, we recommend clicking Yes so we can notify you of product updates and upgrades.

You can also choose to register the product later from the About screen of the ComponentOne

XapOptimizer application.

Deactivating ComponentOne Licensing

If you need to deactivate ComponentOne licensing for any reason, click open ComponentOne XapOptimizer,

open the About screen, and choose License Deactivation.

Uninstalling ComponentOne XapOptimizer

To uninstall ComponentOne XapOptimizer:

1. Open the Control Panel and select the Add or Remove Programs.

2. Select ComponentOne XapOptimizer and click the Remove button.

3. Click Yes to remove the program.

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the

ComponentOne Web site at http://www.componentone.com/Support.

Some methods for obtaining technical support include:

 Online Support via HelpCentral

ComponentOne HelpCentral provides customers with a comprehensive set of technical resources in the

form of FAQs, samples, Version Release History, Articles, searchable Knowledge Base, searchable Online

Help and more. We recommend this as the first place to look for answers to your technical questions.

 Online Support via our Incident Submission Form
This online support service provides you with direct access to our Technical Support staff via an online

incident submission form. When you submit an incident, you'll immediately receive a response via e-mail

confirming that you've successfully created an incident. This email will provide you with an Issue

Reference ID and will provide you with a set of possible answers to your question from our

Knowledgebase. You will receive a response from one of the ComponentOne staff members via e-mail in 2

business days or less.

 Peer-to-Peer Product Forums and Newsgroups
ComponentOne peer-to-peer product forums and newsgroups are available to exchange information, tips,

and techniques regarding ComponentOne products. ComponentOne sponsors these areas as a forum for

users to share information. While ComponentOne does not provide direct support in the forums and

http://c1verification.componentone.com/webfiles/Activate.aspx
http://c1verification.componentone.com/webfiles/Activate.aspx
mailto:activate@componentone.com
http://www.componentone.com/Support
http://helpcentral.componentone.com/
http://helpcentral.componentone.com/ProductResources.aspx?View=FAQs
http://helpcentral.componentone.com/ProductResources.aspx?View=SAMPLES
http://helpcentral.componentone.com/ProductResources.aspx?View=VersionHistory
http://helpcentral.componentone.com/Articles.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://www.componentone.com/Support/
http://helpcentral.componentone.com/Forums.aspx

newsgroups, we periodically monitor them to ensure accuracy of information and provide comments when

appropriate. Please note that a ComponentOne User Account is required to participate in the

ComponentOne Product Forums.

 Installation Issues
Registered users can obtain help with problems installing ComponentOne products. Contact technical

support by using the online incident submission form or by phone (412.681.4738). Please note that this

does not include issues related to distributing a product to end-users in an application.

 Documentation
ComponentOne documentation is installed with each of our products and is also available online at

HelpCentral. If you have suggestions on how we can improve our documentation, please email the

Documentation team. Please note that e-mail sent to the Documentation team is for documentation

feedback only. Technical Support and Sales issues should be sent directly to their respective departments.

Note: You must create a ComponentOne Account and register your product with a valid serial number to

obtain support using some of the above methods.

About This Documentation
Acknowledgements

Microsoft, Windows, Windows Vista, and Visual Studio, are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries. Red Gate and .NET Reflector are trademarks or

registered trademarks of Red Gate Software Ltd. Firefox is a registered trademark of the Mozilla Foundation. Safari

is a trademark of Apple Inc., registered in the U.S. and other countries.

ComponentOne

If you have any suggestions or ideas for new features or controls, please call us or write:

Corporate Headquarters

ComponentOne LLC
201 South Highland Avenue

3
rd

 Floor

Pittsburgh, PA 15206 • USA

412.681.4343

412.681.4384 (Fax)

http://www.componentone.com

ComponentOne Doc-To-Help

This documentation was produced using ComponentOne Doc-To-Help® Enterprise.

Key Features

Size matters in Silverlight. In one click you can reduce the size of your Silverlight apps up to 70% and secure your

code with obfuscation. Add ComponentOne XapOptimizer to your dev cycle with build automations, backups,

and limitless options. With XapOptimizer, you can:

 Customize the Optimization Output

See what's going to be removed from the assembly before it is actually removed. You can also manually

"Pin" some elements to keep them after the optimization process.

http://helpcentral.componentone.com/Documentation.aspx
mailto:documentation@componentone.com
mailto:documentation@componentone.com
http://www.componentone.com/support
mailto:sales@componentone.com
http://www.componentone.com/
http://www.doctohelp.com/

 Create Backups

XapOptimizer has the ability to automatically create a back up version of the file to be optimized.

 Obfuscation

Choose to enable or disable obfuscation and choose the specific elements to obfuscate.

 Sign Assemblies

Choose whether to sign elements in the assembly and which specific elements to sign.

 Save Projects

XapOptimizer allows you to save projects allowing you to reopen the project at a later date or easily try

different options.

 Integrate with Your Build Process

Integrate XapOptimizer as part of the build process in Microsoft Visual Studio to automatically optimize

your XAP files.

 Use with Any Third Party Controls

Use XapOptimizer with any Silverlight assembly including third party controls; is not restricted to

ComponentOne controls.

About ComponentOne
XapOptimizer

ComponentOne XapOptimizer is a utility that optimizes Silverlight applications by making XAP files smaller and

more difficult to reverse engineer.

Reducing application size is always a good thing because small applications load faster and are easier to distribute

and install. This is especially important in Internet scenarios, where applications are deployed as part of Web pages

and are constantly downloaded and updated.

Preventing reverse engineering is also a common concern, especially for .NET applications which are easy to

disassemble using popular tools such as the Red Gate .NET Reflector.

ComponentOne XapOptimizer accomplishes these optimizations using two techniques:

 Pruning: Pruning (also known as dead-code elimination) consists of analyzing the application and

removing classes and resources that are not used. Dead code is common in applications that use libraries.

Libraries typically include many controls and classes of which each client application only uses small

subsets.

For example, if your application uses a C1HyperPanel, then it needs a reference to the C1.Silverlight.dll

assembly, which contains the C1HyperPanel as well as many other controls your application does not use

or need. In this case, XapOptimizer will create a new version of the C1.Silverlight.dll assembly that

contains only the C1HyperPanel class and its dependencies.

ComponentOne XapOptimizer will also remove unused resources (Styles, Templates, Brushes, and so

on) defined in resource dictionaries in XAML files

 Obfuscation: Obfuscation consists of changing the names of classes and fields in order to deter reverse

engineering. This process also reduces the size of assemblies by using obfuscated names that are shorter

than the original names.

For example, if your application has a public class called PasswordManager, the XapOptimizer

obfuscator will rename that class to something more like x. This makes the new assembly smaller and

harder to understand for anyone who opens it in a disassembler.

About XAP Files
To understand how ComponentOne XapOptimizer works, consider the structure of a XAP file. A XAP file is a

Silverlight application file. It's basically a file compressed in the ZIP format that includes all of the files needed by

your Silverlight application. To see exactly what's inside a XAP file, you can re-name the file with a .zip extension

and expand the file.

For example, if you examine the contents of a XAP file you'll see that it might contain a collection of files similar to

the following:

 AppManifest.xaml

 ServiceReferences.ClientConfig

 StockPortfolio.dll

 System.Windows.Controls.dll

 C1.Silverlight.Chart.dll

 C1.Silverlight.Data.dll

 C1.Silverlight.DataGrid.dll

 C1.Silverlight.dll

 C1.Silverlight.Extended.dll

The XAP file always contains an application manifest file and copies of the assemblies and resources referenced by

the application:

 An application manifest file (AppManifest.xaml)

The application manifest file is always present and includes deployment information for your application.

For example, it will list the application's entry point and a list of the files that comprise the application.

 A YourProject.dll assembly

This file is the compiled version of your Silverlight application. It should have the same file name as your

project.

 Any additional assemblies need for your project

The XAP file will include additional assemblies needed for your project, if any. So, for example, if you're

using the ComponentOne C1RadialGauge gauge control in your project, the XAP file will include the

C1.Silverlight.Gauges.dll assembly.

 External resources

If you embedded images or other external resources in your Silverlight application, they may also be

included in the XAP file.

While the XAP file is initially compressed to minimize deployment size, it can include unnecessary elements that

can be pruned and it can typically be further compressed – that's where ComponentOne XapOptimizer can help.

XapOptimizer further reduces the size of your Silverlight application to reduce load time.

How XapOptimizer Works
ComponentOne XapOptimizer works by extracting the individual files from the zipped archive, then using

reflection to build a call tree. The call tree starts with the application's entry point and expands to determine all the

classes that are used by the application. At the end of this process, any classes not used by the application are

removed from the assemblies, which are then obfuscated and repackaged into a new XAP file.

ComponentOne XapOptimizer works by extracting the original XAP file, then inspecting MSIL instructions and

XAML content to build a dependency tree. The dependency tree starts with the application's entry point and expands

to determine all the classes and XAML resources that are used by the application. At the end of this process, any

classes and XAML resources not used by the application are removed from the assemblies, which are then

obfuscated, resigned and repackaged into a new XAP file.

This brief description skips over some important details. Most important is that the dependency analysis process

performed by XapOptimizer cannot resolve dependencies when indirect instantiation mechanisms are used (using

Reflection for example). For more information, see Classes Used Through Reflection.

Command Line Arguments
When using ComponentOne XapOptimizer from the command line, you can specify several command line

arguments. These include:

 /p: Specifies the project name.

 /i: Specifies the location of the input XAP file.

 /o: Specifies the location of the output XAP file.

 /cmd: Runs ComponentOne XapOptimizer in command mode (not using the user interface).

Note that generally there are two exclusive modes: specifying just the input/output file locations or the

ComponentOne XapOptimizer project. So, for example, the following arguments are valid:

 XapOptimizer.exe /i: input.xap /o: output.xap

 XapOptimizer.exe /p:project.xoproj

See Adding XapOptimizer to the Build Process for an example.

Classes Used Through Reflection
Instead of creating objects using the new operator, some classes may use reflection instead, as shown below:

// Create the control as usual

// var ctl = new SilverlightControl1();

// Create the control using reflection

var asm = System.Reflection.Assembly.GetExecutingAssembly();

var type = asm.GetType("XapOptimizerTest.SilverlightControl1");

var ctor = type.GetConstructor(System.Type.EmptyTypes);

Control ctl = ctor.Invoke(null) as Control;

In this example, XapOptimizer will not be able to determine that the SilverlightControl1 class is used by the

project and will prune it from the application, causing it to fail.

In cases such as this, you need to tell the XapOptimizer not to prune or obfuscate the SilverlightControl1 class.

This is done by adding options to the XapOptimizer project, see Working with XapOptimizer for more information.

Getting Started with
ComponentOne XapOptimizer

When you initially open ComponentOne XapOptimizer, the Start screen should appear:

The following topics describe how to create, open, and save a XapOptimzer project, as well as how to customize

the ComponentOne XapOptimizer application's settings.

Creating a New XapOptimizer Project
Creating a new ComponentOne XapOptimizer project is simple – complete the following steps to create a new

project:

1. Launch the XapOptimizer application.

2. If the Start screen is not open, select the Start button from the navigation bar in the top-right corner of the

application.

3. On the Start screen, click the Create a New Project option.

The Open dialog box will appear.

4. In the Open dialog box, browse to where the XAP file you plan to optimize is located, select the XAP file,

and click Open.

If your Silverlight solution contains multiple projects, make sure you build the solution first, then select the

XAP file in the ClientBin folder of the server project. This will make it easier for you to test and deploy

the optimized XAP file. For example, if your application is called "MyApp", then you should choose the

XAP file located at: MyApp\MayAppWeb\ClientBin\MyApp.xap.

Once you've opened a file a progress bar will appear indicating that the file is being analyzed:

Once the file has been analyzed, the Files tab will appear. At this point, you can save your project (see

Saving a XapOptimizer Project), optimize the file by selecting the Optimize button (see Optimizing a

File), or you can prune, obfuscate, or sign assemblies before optimizing (see Working with XapOptimizer).

Saving a XapOptimizer Project
You can save your ComponentOne XapOptimizer project if you plan on returning to your XapOptimizer project

later, re-optimizing your XAP file, or if you want to save your settings to optimize another XAP file. Note that

ComponentOne XapOptimizer saves project files with a .xoproj extension.

Saving the Project

To save your project, complete the following steps:

1. Click the Save button in the top right-hand corner of any project screen:

If you have previously saved the file it will be saved in the same location. If you have not previously saved

the file the Save dialog box will appear.

2. If the Save dialog box appears, browse to a location to save the file, enter a name in the File name text

box, and click the Save button.

The file will be saved to the location indicated.

Saving the Project to a New Location

To save your project to a new location or with a different file name, complete the following steps:

1. Click the drop-down arrow on the Save button in the top right-hand corner of any project screen:

2. Click the Save As option.

3. In the Save As dialog box, browse to a location to save the file, enter a name in the File name text box, and

click the Save button.

The file will be saved to the location indicated.

Note that ComponentOne XapOptimizer will also prompt you to save the project when closing the project:

You can click Yes in this dialog box to save your project.

Opening an Existing XapOptimizer Project
You can open an existing project file if you have previously saved your ComponentOne XapOptimizer project

(see Saving a XapOptimizer Project for more information). To open an existing XapOptimizer file, complete the

following steps:

1. Launch the XapOptimizer application.

2. If the Start screen is not open, select the Start button from the navigation bar in the top-right corner of the

application.

3. On the Start screen, click the Open an Existing Project option.

The Open dialog box will appear. Note that you can also select your project in the Recent Projects list on

the Start screen if it is listed.

4. In the Open dialog box, browse to where the XAP file you plan to optimize is located, select the XAP file,

and click Open.

A progress bar will appear indicating that the file is being analyzed:

Once the file has been analyzed, the Files tab will appear.

Optimizing a File
Once you have created a new XapOptimizer project or opened an existing project you can optimize your XAP file.

Note that you can customize options before optimization, see Working with XapOptimizer for more information.

To optimize a XAP file, complete the following steps:

1. Click the Optimize button located in the lower right corner on any project screen:

A progress bar will appear, indicating that the file is being optimized:

When the file has finished optimizing, an Optimization Summary screen will appear indicating the size of

the initial file compared to the size of the optimized file:

2. Click View Detailed Log to view more information about the optimization process including a summary of

pruned, obfuscated, and signed elements.

3. Click the Back or Close ("X") button on this screen to return to the project.

Your XAP file will be optimized. If you choose, you can change settings and re-optimize your file. For

more information see Working with XapOptimizer.

Testing an Optimized XAP File
You don't have to deploy your optimized XAP file to test it. One way you can test your optimized XAP files is by

adding it to the build process and then running the project from Visual Studio. For more information, see Adding

XapOptimizer to the Build Process.

You could also embed your XAP file in an HTML page that you can open and then refresh after optimization (see

Adding Silverlight to a Web Page by Using HTML or JavaScript at MSDN for more information:

http://msdn.microsoft.com/en-us/library/cc838217(VS.95).aspx) or reopen the TestPage.html file that Visual Studio

typically creates when debugging or building a Silverlight application and that should have your XAP file already

embedded (generally located in the ProjectName\ProjectName\Bin\Debug directory).

Adding XapOptimizer to the Build Process
Once you've created a XapOptimizer project, you can add it to your build process in Visual Studio. This is easy to

do using a post-build event.

Complete the following steps:

1. Open the Silverlight project in Visual Studio.

2. Select the Release configuration (you probably will not want to optimize the project after each debug

build).

3. Right-click the main project node in the Solution Explorer and select Properties.

4. Click the Build Events tab on the left side of the Properties window.

5. Enter the following command in the Post-build event command line:
$Program Files\ComponentOne\XapOptimizer\XapOptimizer.exe /cmd

/p:$(ProjectDir)$(ProjectName).xoproj

Note that the command line statement in step 5 assumes that the command line version of ComponentOne

XapOptimizer is located in the Program Files\ComponentOne\XapOptimizer\bin folder. You may

change this line if the application is installed in a different directory. See Command Line Arguments for

more information about the arguments used in the above statement.

Once this step is finished, the XAP file will be optimized automatically every time you perform a release

build. You can easily test the optimization by running the release configuration from Visual Studio.

If your application does not use reflection, it will probably work right away without any customizations to the

project file. If you do use reflection, you may need to customize the XapOptimizer project. See Working with

XapOptimizer for more information.

Customizing XapOptimizer Options
ComponentOne XapOptimizer includes an Options screen allowing you to customize the XapOptimizer

application's settings. Note that these are global options and are not project specific.

Accessing the Option Screen

To access the Options screen, select the Options button located in the upper right-hand corner of the application:

The Options screen appears similar to the following image:

http://msdn.microsoft.com/en-us/library/cc838217(VS.95).aspx
http://msdn.microsoft.com/en-us/library/cc838217(VS.95).aspx)

The Options screen includes the following items:

 Language

Select the default language for the ComponentOne XapOptimizer application’s user interface. By default

English is selected.

 UI Transitions

Choose the transition effect used in the XapOptimizer application when showing and hiding the Options

and About screens. By default the Cube effect is selected.

 Show Tab Tips

Check this check box to display ToolTips in the XapOptimizer application when you hover the mouse

over tabs in the main window.

 Automatic Updates

Use this check box to determine if the ComponentOne XapOptimizer application should automatically

connect to the ComponentOne Web site on startup to look for updates. By default this item is checked and

the application is automatically updated. Uncheck this item to disable automatic updates.

 Backup Input XAP

Use this check box to determine if your original unoptimized XAP file is automatically backed up when the

file is optimized. By default this option is not checked, and the file is not backed up.

 Backup Subfolder

Select a subfolder location to back up your XAP file to. This option is only customizable when the Backup

Input XAP check box is checked. By default, the folder name is "backup". The folder location is relative to

the location of the original XAP file.

 SN.exe location

This option allows you to specify the location of the SN.exe utility (Strong Name Tool) that ships with

Visual Studio and is used to strong name assemblies. This utility is required when strong naming the

optimized assemblies.

 Apply Button

Once you have made changes to the XapOptimizer's options, select the Apply button to apply those

changes.

 Cancel Button

Click the Cancel button to cancel any changes you have made to the XapOptimizer's options.

Working with XapOptimizer

The following sections describe various options you can set when using ComponentOne XapOptimizer to reduce

the file size of your XAP files. By default, ComponentOne XapOptimizer will try to prune and obfuscate as much

of your application as possible and it will not strong-name the assemblies it generates.

In some cases, you may have to customize your XapOptimizer projects to prevent pruning and obfuscation of

classes that are used in reflection scenarios. You may also want to strong-name the output assemblies. This is done

using three tabs in the XapOptimizer application: Pruning, Obfuscation, and Signing.

Once you have completed customizing the project, you can test the customizations by rebuilding the application and

running it from Visual Studio (provided you have added the post-build event step described in the Adding

XapOptimizer to the Build Process topic).

Note that XapOptimizer project files are XML files, and you can edit them manually or programmatically if you

prefer to do so.

Files Tab
The Files tab is the first screen to open after creating a new project or opening an existing XapOptimizer project. In

the Files tab you can select the XAP file that you wish to optimize and select the output location for the optimized

file. By default the output file location will be the same as the input file location and the original file will be

overwritten by the optimized file.

The Files tab looks similar to the following:

The Files tab includes two sections:

 XAP Input

Select a file here to optimize. The file that you initially selected when you created a new project will be

displayed here by default.

 XAP Output

Choose a location for your optimized file to be saved. By default, the file that you initially selected when

you created a new project will be displayed here.

Selecting an Input File

To select a different input file to optimize, complete the following steps:

1. Click the ellipsis button in the XAP Input section to open the Open dialog box.

2. In the Open dialog box, browse to the location of your file and select Open to close the dialog box and

select your file.

The file you selected will appear in the XAP Input text box.

Selecting an Output File

To change the file output location or the name of the outputted file, complete the following steps:

1. Click the ellipsis button in the XAP Output section to open the Open dialog box.

2. In the Open dialog box, browse to the location where you plan to save your outputted optimized file and

select Open to close the dialog box and select your file.

The file you selected will appear in the XAP Output text box.

Pruning Tab
On the Pruning tab, you can choose elements to be included in your optimized file. Pinned elements will be

included and unpinned elements will not be included in the final optimized file.

The Pruning tab appears similar to the following image:

The Pruning tab includes the following elements:

 Navigation Arrows

Click the left and right navigation arrows to move through the tree list below. You can also navigate

through the list by using they keyboard arrow keys or by expanding nodes and selecting items with the

mouse.

 Reset Button

The Reset button returns all of the items in the list to the default settings. If you have pinned or unpinned

elements manually, you will lose your changed settings. If you want to restore the default pruning settings,

click the Reset button on the top-right corner of the screen. This will unpin all elements so you can restart

your customization.

 Search Bar

Type text in the search bar to locate items that match your term. You can enter one letter or a partial term to

have all elements including that letter or term appear.

 Filter Button

Click the Filter button to filter the tree list by element. You can filter the tree to display only elements that

are pinned (included in the optimized file), items that will be pruned, will not be pruned, and cannot be

pruned (and must stay in the optimized file).

 Element Tree

The element tree allows you to view the elements that will be included in the optimized file and to pin or

unpin elements to change the default settings. The element tree on the left shows all the assemblies and

classes in the project. Grayed out classes are ones that don't seem to be used in the project and will be

pruned by XapOptimizer. If you know that some classes will be invoked via reflection, click the pin icon

next to the class name. This will pin the class, preventing it from being pruned. Any classes that depend on

the pinned class will also be excluded from the pruning process.

 Description Window

The Description window appears below the element tree window and displays a description of the selected

element.

 Dependencies Window

The Dependencies tab is selected and its window visible by default. This pane shows a dependency

analysis for the currently selected class. This consists of two lists, one showing the classes that Depend on

the selected class and one showing the classes that are Used by the selected class. You can browse through

the dependencies in the application by double-clicking items under either branch. If you want to retrace

your steps through the dependency tree, use the arrow buttons at the top left corner of the screen.

 XAML Window

The XAML window lets you see the actual XAML markup for the selected element. This will give you a

better idea of how that element is used and whether it can be pruned or not.

 Splitter Bar

A splitter bar appears between the element tree and Dependencies/XAML windows. Drag the splitter bar to

resize the windows if needed.

Once you are done selecting classes that should not be pruned, you can click the Save button on the top right of the

screen to save your options. See Saving a XapOptimizer Project for more information.

Pinned and Unpinned Elements

ComponentOne XapOptimizer performs a dependency analysis and automatically detects elements that can be

pruned from the application. This automatic analysis works in most cases, but sometimes you may want to exclude

additional elements from the pruning process. To do this, you should "pin" the elements that you want to keep in the

application.

Pinned and unpinned elements in the element tree appear in differing fonts and with icons to distinguish them.

Elements appear similar to items in the following table:

Image Type Description

 Pinned. Pinned elements will not be pruned because they are

marked to stay in an assembly. When you pin an element,
all elements used by that element also stay in the
assembly. If you pin an element with subelements, all
subelements are pinned. You can expand the item and pin
or unpin subelements manually, as well.

 Partially pinned. Partially pinned elements are elements with subelements,

some of which have been pinned, and some which have
not been pinned.

 Will be pruned. Grayed out elements will be pruned because

XapOptimizer could not find any dependency to those
elements. You can avoid this by pinning items manually.

 Will not be pruned. Items that appear in a normal font will not be pruned and

will stay in the final assembly after optimization.

 Cannot be pruned. Some items cannot be pruned at all, due to limitations (for

example, if they are part of the Silverlight core). Items
that cannot be pruned will appear in a normal font. The top
level project assembly pictured to the left, for example,
cannot be pruned.

Pinning Elements

To pin an element, complete the following steps:

1. Expand nodes in the element tree and locate the item you wish to pin.

Note that only grayed out elements (items that would normally be pruned) can be pinned.

2. Click the Pin icon next to the item you wish to include. The item will be pinned and will no longer appear

grayed out. If you pin an element with subelements, all subelements will be pinned.

Note that you can also pin elements by pressing the SPACEBAR key when navigating the tree with the

keyboard.

Unpinning Elements

To unpin a pinned element, complete the following steps:

1. Expand nodes in the element tree and locate the item you wish to unpin.

Note that only pinned elements can be unpinned.

2. Click the Pin icon next to the item you wish to no longer include. The item will be unpinned and will

appear grayed out. If you unpin an element with subelements, all subelements will be unpinned.

Note that you can also unpin elements by pressing the SPACEBAR key when navigating the tree with the

keyboard.

Resetting Pinned Items

If you need to, you can reset pinned and unpinned items. Click the Reset button to return to the default settings.

Note that you will lose any changes that you have made.

Note that all elements defined in the main application assembly are kept in the final application. The pruning

process is only applied to auxiliary assemblies included in the application, which are often libraries.

Navigating the Element Tree

You can navigate through the element tree by using the navigation buttons or selecting items in the tree. You can

also navigate items using the XAML or Dependencies window.

Using the Navigation Buttons

To navigate through the element tree using the navigation buttons, complete the following steps:

1. Click an element in the element tree to activate navigation buttons, if the navigation buttons are not active.

2. Click the Previous arrow button to return to the previous item or the Next arrow button to move to the next

item.

Note that clicking the arrows buttons will move to each node and then items in that node before moving to

the next node.

Using the Element Tree

You can use the mouse to navigate the element tree. In the element tree, click an item to select it. You can expand

and contract nodes by clicking the "+" and "-" icons next to a node.

Using the Dependencies Window

You can navigate through the element tree by using the Dependencies window. Complete the following steps:

1. Select the Dependencies tab if the Dependencies window is not visible.

2. Using the mouse, expand nodes in the element tree and select an item.

The Dependencies window will display items that use and are used by the selected element.

3. In the Dependencies window, double-click an item to move to it in the element tree.

Reflection Warnings

ComponentOne XapOptimizer cannot determine the actual Type dependency in scenarios where the Reflection

API is used to instantiate or invoke an object (see Classes Used Through Reflection for more information). In those

cases, the Type may be pruned, causing the application to fail.

XapOptimizer will detect the usage of the Reflection API and it will notify you by displaying a warning icon on the

classes (or Silverlight application) where Reflection is being used. XapOptimizer will also display a ToolTip on

specific members where the API is invoked.

In the image below the Reflection API is being invoked inside the New method of the Extensions class:

If you receive a Reflection warning, you can either replace the Reflection invocation in code (if possible) or pin the

class that's being indirectly instantiated or invoked so it will not be pruned (see Pinned and Unpinned Elements for

more information).

Obfuscation Tab
By default, ComponentOne XapOptimizer obfuscates your XAP file as it optimizes it. The Obfuscation tab lets

you choose whether obfuscation is enabled or disabled and, if enabled, what elements should be obfuscated.

The Obfuscation tab appears similar to the following image:

The Obfuscation tab includes several elements, such as:

 Enable Obfuscation Check Box

The Enable Obfuscation check box lets you determine if code in the XAP file should be obfuscated or not.

By default this check box is checked and the file is obfuscated.

 Search Bar

Type text in the search bar to locate items that match your term. You can enter one letter or a partial term to

have all elements including that letter or term appear.

 Element Tree

The element tree allows you to view the elements that are included in the optimized file, and to select

whether or not elements are obfuscated. By default all elements are selected and obfuscated.

Once you are done configuring obfuscation, you can click the Save button on the top right of the screen to save your

options. See Saving a XapOptimizer Project for more information.

Disable Obfuscation

To disable obfuscation, uncheck the Enable Obfuscation check box.

Disable Obfuscation for Specific Elements

To disable obfuscation for specific elements, complete the following steps:

1. Expand nodes in the element tree and locate the item you wish to disable obfuscation for.

2. Uncheck the check box next to the item you wish to keep unobfuscated. When the file is optimized, the

element will not be obfuscated.

Enable Obfuscation

To enable obfuscation when disabled, check the Enable Obfuscation check box.

Enable Obfuscation for Specific Elements

To enable obfuscation for specific disabled elements, complete the following steps:

1. Expand nodes in the element tree and locate the item you wish to enable obfuscation for.

2. Check the check box next to the item you wish to obfuscate. When the file is optimized, the element will

now be obfuscated.

Signing Tab
On the Signing tab you can specify strong-names for the assemblies in the application. You can choose whether to

sign elements in the assembly and which specific elements to sign. By default all elements are unsigned. If you want

your assemblies to be strong-named, you have to check them on the list and then specify the "snk" file that will be

used to sign the assemblies.

The Signing tab appears similar to the following:

The Signing tab includes elements, such as:

 Sign assemblies in this XAP check box

The Sign assemblies in this XAP check box lets you determine if assemblies in the XAP file should be

signed or not. By default this check box is not checked and assemblies are not signed.

 Assembly grid

The assembly grid lists each assembly included in the XAP file. You can interact with this grid only if the

Sign assemblies in this XAP check box is checked. To specify the SNK file that will be used to sign the

assemblies, click the drop-down arrow in the Strong name key file field for an assembly and create a new

file or open an existing one.

To sign assemblies in the XAP file, you must enable signing assemblies and choose a strong name key file for

signed assemblies.

Note: For assemblies to be signed, on XapOptimizer's Option screen you must have chosen a location for

the Strong Name application included with Visual Studio (SN.exe). For more information, see Customizing
XapOptimizer Options.

Signing Assemblies

Complete the following steps to sign assemblies in your XAP file:

1. Check the Sign assemblies in this XAP check box to enable signing assemblies in the XAP file (by default

assemblies in your XAP file are not signed).

2. Click the drop-down arrow in the Strong name key file field for each assembly that you want to sign and:

 Choose New to create a new strong name key file. Browse to a location and enter a name in the Save

As dialog box and click Save to create your file.

OR

 Choose Browse to open existing new strong name key file. In the Open dialog box browse to your

file's location, select your file, and click Open to open your file.

The strong name key file name and location will appear next to the assembly name.

Once you are done configuring signing, you can click the Save button on the top right of the screen to save your

options. See Saving a XapOptimizer Project for more information. Note that signatures in third-party signed

assemblies will be removed when using XapOptimizer. For details see the Limitations and Troubleshooting topic.

Note: The .NET Framework security policy forbids singed assemblies to load unsigned ones. So, when you

manually choose to sign an assembly in XapOptimizer, you must ensure that all the assemblies it references
are going to be signed as well. If you do not, a System.IO.FileLoadException exception will be thrown with
the following message: "A strongly-named assembly is required'.

XapOptimizer Top Tips

Occasionally you may run into issues with ComponentOne XapOptimizer or you may have questions about using

the application. This section outlines some solutions and tips for using ComponentOne XapOptimizer.

The following list details some tips for using ComponentOne XapOptimizer:

 Reflection: If you are using the System.Reflection API in your code to dynamically create objects in the

application, make sure to you "Pin" all the corresponding Types you may instantiate using this technique.

For more information, see Reflection Warnings.

 Navigation APIs: Several third-party navigation libraries use System.Reflection API to dynamically

instantiate the visual components to be displayed to the users. So, the third-party library may be using

System.Reflection API even when you are not using it explicitly. If that's the case, make sure to "Pin" all

the visual components (Pages and UserControls) you know that are being used in the application

 Themes: Themes are usually loaded dynamically at run time, so XapOptimizer may not find any

dependencies to your Themes. Make sure to "Pin" any XAML resource that your application may be using

for the Themes you are using in the application.

 Obfuscation: If the application is not working correctly, the Web browser will display an error message.

Sometimes this error message can help you determine what's missing in the optimized assembly. Disabling

obfuscation can be helpful when trying to interpret these messages. Also, it's recommended that you not

obfuscate System assemblies (for example System.Xml.Linq).

Limitations and Troubleshooting

ComponentOne XapOptimizer does have some limitations. This section describes these limitations and offers

some suggestions for dealing with them and other issues.

XapOptimizer does not offer assembly cache support.

ComponentOne XapOptimizer does not include support for assembly caching. One solution when working with

ComponentOne XapOptimizer is to disable assembly caching from the Silverlight XAP file that you are building.

XapOptimizer removes signatures in third-party signed assemblies.

If you are using third-party signed assemblies in your application, the key will be removed by ComponentOne

XapOptimizer when the XAP file is being optimized. To solve this issue, locate the XAP file after optimization and

complete the following steps:

1. Select the XAP file and rename the file so that it has a .zip extension. So for example, Application.xap

would become Application.zip.

2. Unzip the renamed XAP file to a folder and remove the modified third-party signed assemblies.

3. Add the original third-party signed assemblies (corresponding to those you removed) to the folder.

4. Zip the XAP up again with the original assemblies.

5. Rename the XAP file so that it again has a .xap file extension. So for example, Application.zip would

become Application.xap.

The file should now be in the same state as before, except it will contain the original assembly for the third-party

signed assemblies in your project.

XapOptimizer does not work as expected.

Sometimes you may run into issues or error messages and be unsure how to proceed. For example, in some cases

XapOptimizer may be unable to determine the actual dependencies between classes or XAML resources. In these

scenarios, you should pin elements to ensure that required elements and resources will remain in the optimized

assembly. But it's not always easy to find the correct elements to be pinned so the application can continue working

as expected.

If you run into issues, try completing the following steps:

1. Pin SDK libraries (such as, System.Xml.Linq).

2. Pin all the resources and try again.

3. Disable Obfuscation and try again.

4. Pin all the elements and try again. If this works, you can start unpinning elements to determine where the

problem is.

If these steps do not work or you have any other questions, please contact support at support@componentone.com or

submit a support incident at http://www.componentone.com/Support/.

mailto:support@componentone.com
http://www.componentone.com/Support/

